ट्रीविड्थ: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 104: Line 104:
व्यवहार में, शोइखेत और गीजर (1997) की एक कलन विधि 100 तक के शीर्षों और 11 तक की ट्रीविड्थ के साथ आलेखों की ट्रीविड्थ निर्धारित कर सकता है, और इष्टतम ट्रेविड्थ के साथ इन आलेख पृष्ठरज्जु पूर्णता का पता लगा सकता है।
व्यवहार में, शोइखेत और गीजर (1997) की एक कलन विधि 100 तक के शीर्षों और 11 तक की ट्रीविड्थ के साथ आलेखों की ट्रीविड्थ निर्धारित कर सकता है, और इष्टतम ट्रेविड्थ के साथ इन आलेख पृष्ठरज्जु पूर्णता का पता लगा सकता है।


एक बड़े आलेख के लिए, कोई भी खोज-आधारित तकनीकों जैसे शाखा और परिबद्ध  (बीएनबी) का उपयोग कर सकता है और ट्रीविड्थ की गणना करने के लिए सर्वप्रथम खोज कर सकता है।
एक बड़े आलेख के लिए, कोई भी खोज-आधारित प्रविधि जैसे शाखा और परिबद्ध  (बीएनबी) का उपयोग कर सकता है और ट्रीविड्थ की गणना करने के लिए सर्वप्रथम खोज कर सकता है।


ट्रीविड्थ की गणना के लिए प्रथम बीएनबी कलन विधि, जिसे क्विकबीबी कलन विधि कहा जाता है<ref>{{Cite web |title=विभव गोगटे|url=https://personal.utdallas.edu/~vibhav.gogate/quickbb.html |access-date=2022-11-27 |website=personal.utdallas.edu}}</ref>जिसे गोगेट और डेक्टर द्वारा प्रस्तावित किया गया था।<ref name=":0">{{Cite arXiv |last1=Gogate |first1=Vibhav |last2=Dechter |first2=Rina |date=2012-07-11 |title=ट्रीविड्थ के लिए एक पूर्ण एनीटाइम एल्गोरिथम|class=cs.DS |eprint=1207.4109 }}</ref> चूँकि किसी भी बीएनबी कलन विधि की गुणवत्ता उपयोग की जाने वाली निचली सीमा की गुणवत्ता पर अत्यधिक निर्भर होती है, गोगेट और डेक्टर<ref name=":0" /> ने ट्रीविड्थ पर एक निचली सीमा की गणना के लिए एक उपन्यास कलन विधि भी प्रस्तावित की जिसे लघु-न्यूनतम-चौड़ाई कहते हैं।<ref name=":0" />एक उच्च स्तर पर, लघु-न्यूनतम-चौड़ाई कलन विधि के तथ्यों को जोड़ती है। एक आलेख की ट्रीविड्थ कभी भी इसकी न्यूनतम डिग्री से बड़ी नहीं होती है या ट्रीविड्थ पर कम सीमा उत्पन्न करने के लिए इसकी छोटी होती है। लघु-न्यूनतम-चौड़ाई कलन विधि बार-बार एक न्यूनतम डिग्री शीर्ष और उसके सहवासीयों में से एक के मध्य शीर्षो को अनुबंधित करके एक [[ग्राफ माइनर|आलेख लघु]] का निर्माण करता है, जब तक कि केवल एक शीर्ष नहीं रह जाता है। इन निर्मित लघुओ पर न्यूनतम डिग्री की अधिकतम सीमा आलेख के ट्रीविड्थ पर निचली सीमा होने की अधिपत्रित है।
ट्रीविड्थ की गणना के लिए प्रथम बीएनबी कलन विधि, जिसे क्विकबीबी कलन विधि कहा जाता है<ref>{{Cite web |title=विभव गोगटे|url=https://personal.utdallas.edu/~vibhav.gogate/quickbb.html |access-date=2022-11-27 |website=personal.utdallas.edu}}</ref>जिसे गोगेट और डेक्टर द्वारा प्रस्तावित किया गया था।<ref name=":0">{{Cite arXiv |last1=Gogate |first1=Vibhav |last2=Dechter |first2=Rina |date=2012-07-11 |title=ट्रीविड्थ के लिए एक पूर्ण एनीटाइम एल्गोरिथम|class=cs.DS |eprint=1207.4109 }}</ref> चूँकि किसी भी बीएनबी कलन विधि की गुणवत्ता उपयोग की जाने वाली निचली सीमा की गुणवत्ता पर अत्यधिक निर्भर होती है, गोगेट और डेक्टर<ref name=":0" /> ने ट्रीविड्थ पर एक निचली सीमा की गणना के लिए एक उपन्यास कलन विधि भी प्रस्तावित की जिसे लघु-न्यूनतम-चौड़ाई कहते हैं।<ref name=":0" />एक उच्च स्तर पर, लघु-न्यूनतम-चौड़ाई कलन विधि के तथ्यों को जोड़ती है। एक आलेख की ट्रीविड्थ कभी भी इसकी न्यूनतम डिग्री से बड़ी नहीं होती है या ट्रीविड्थ पर कम सीमा उत्पन्न करने के लिए इसकी छोटी होती है। लघु-न्यूनतम-चौड़ाई कलन विधि बार-बार एक न्यूनतम डिग्री शीर्ष और उसके सहवासीयों में से एक के मध्य शीर्षो को अनुबंधित करके एक [[ग्राफ माइनर|आलेख लघु]] का निर्माण करता है, जब तक कि केवल एक शीर्ष नहीं रह जाता है। इन निर्मित लघुओ पर न्यूनतम डिग्री की अधिकतम सीमा आलेख के ट्रीविड्थ पर निचली सीमा होने की अधिपत्रित है।
Line 133: Line 133:


===[[ पथचौड़ाई |पाथविड्थ]]===
===[[ पथचौड़ाई |पाथविड्थ]]===
एक आलेख के पाथविड्थ ट्री अपघटन के माध्यम से ट्रीविड्थ की एक बहुत ही समान परिभाषा है, लेकिन यह ट्री अपघटन तक ही सीमित है जिसमें अपघटन का अंतर्निहित ट्री एक [[पथ ग्राफ|पथ आलेख]] है। वैकल्पिक रूप से, पाथविड्थ को पृष्ठरज्जु आलेख से ट्रीविड्थ की परिभाषा के अनुरूप [[अंतराल ग्राफ|अंतराल]] आलेख से परिभाषित किया जा सकता है। नतीजतन, एक आलेख की पाथविड्थ हमेशा कम से कम उतनी ही बड़ी होती है, जितनी इसकी ट्रीविड्थ होती है, लेकिन यह केवल एक लघुगणक कारक द्वारा बड़ी हो सकती है।<ref name="b98"/>एक अन्य पैरामीटर, [[ग्राफ बैंडविड्थ|आलेख बैंडविड्थ]], की [[उचित अंतराल ग्राफ|उचित अंतराल]] आलेख से समान परिभाषा है, और कम से कम पाथविड्थ जितना बड़ा है। अन्य संबंधित मापदंडों में [[ पेड़ की गहराई |ट्री की गहराई]] सम्मिलित है, एक संख्या जो एक छोटे-अवरुद्ध आलेख श्रेणी के लिए बाध्य है यदि और केवल अगर श्रेणी एक पथ को छोड़ देता है, और डीजेनेरेसी (आलेख सिद्धांत), एक आलेख की विरलता का एक उपाय जो पर है इसकी ट्रीविड्थ के सबसे बराबर।
एक आलेख के पाथविड्थ ट्री अपघटन के माध्यम से ट्रीविड्थ की एक बहुत ही समान परिभाषा है, लेकिन यह ट्री अपघटन तक ही सीमित है जिसमें अपघटन का अंतर्निहित ट्री एक [[पथ ग्राफ|पथ आलेख]] है। वैकल्पिक रूप से, पाथविड्थ को पृष्ठरज्जु आलेख से ट्रीविड्थ की परिभाषा के अनुरूप [[अंतराल ग्राफ|अंतराल]] आलेख से परिभाषित किया जा सकता है। परिणामस्वरूप, एक आलेख की पाथविड्थ हमेशा कम से कम उतनी ही बड़ी होती है, जितनी इसकी ट्रीविड्थ होती है, लेकिन यह केवल एक लघुगणक कारक द्वारा बड़ी हो सकती है।<ref name="b98"/>एक अन्य पैरामीटर, [[ग्राफ बैंडविड्थ|आलेख बैंडविड्थ]], की [[उचित अंतराल ग्राफ|उचित अंतराल]] आलेख से समान परिभाषा है, और कम से कम पाथविड्थ जितना बड़ा है। अन्य संबंधित मापदंडों में [[ पेड़ की गहराई |ट्री गहनता]] सम्मिलित है, एक संख्या जो एक लघु-अवरुद्ध आलेख श्रेणी के लिए बाध्य है और यदि केवल श्रेणी एक पथ को बाहर करता है, और अध: पतन, एक आलेख की विरलता का एक उपाय जो ट्रीविड्थ के समान है।


===संजाल लघु आकार===
===संजाल लघु आकार===
क्योंकि एक की ट्रीविड्थ {{math|''n'' × ''n''}} संजाल आलेख है {{mvar|n}}, आलेख की ट्रीविड्थ {{mvar|G}} हमेशा छोटे आकार के सबसे बड़े श्रेणी संजाल आलेख के आकार से बड़ा या उसके बराबर होता है {{mvar|G}}. दूसरी दिशा में, [[नील रॉबर्टसन (गणितज्ञ)]] और पॉल सीमोर (गणितज्ञ) द्वारा संजाल लघु प्रमेय से पता चलता है कि एक असीम कार्य मौजूद है {{mvar|f}} जैसे कि सबसे बड़े श्रेणी संजाल लघु का आकार कम से कम हो {{math|''f''(''r'')}} कहाँ {{mvar|r}} ट्रीविड्थ है।<ref>Robertson, Seymour. ''Graph minors. V. Excluding a planar graph''. [http://www.sciencedirect.com/science/article/pii/0095895686900304] {{Open access}}</ref> सबसे अच्छी सीमा पर जाना जाता है {{mvar|f}} वो है {{mvar|f}} कम से कम होना चाहिए {{math|Ω(''r''<sup>''d''</sup>)}} कुछ निश्चित स्थिरांक के लिए {{math|''d'' > 0}}, और अधिक से अधिक<ref>{{harvtxt|Chekuri|Chuzhoy|2016}}</ref>
क्योंकि एक {{math|''n'' × ''n''}} संजाल आलेख की ट्रीविड्थ {{mvar|n}} है, आलेख {{mvar|G}} की ट्रीविड्थ हमेशा छोटे आकार के सबसे बड़े श्रेणी संजाल आलेख के आकार से बड़ा या उसके बराबर होता है {{mvar|G}}. दूसरी दिशा में, [[नील रॉबर्टसन (गणितज्ञ)]] और पॉल सीमोर (गणितज्ञ) द्वारा संजाल लघु प्रमेय से पता चलता है कि एक असीम कार्य मौजूद है {{mvar|f}} जैसे कि सबसे बड़े श्रेणी संजाल लघु का आकार कम से कम हो {{math|''f''(''r'')}} कहाँ {{mvar|r}} ट्रीविड्थ है।<ref>Robertson, Seymour. ''Graph minors. V. Excluding a planar graph''. [http://www.sciencedirect.com/science/article/pii/0095895686900304] {{Open access}}</ref> सबसे अच्छी सीमा पर जाना जाता है {{mvar|f}} वो है {{mvar|f}} कम से कम होना चाहिए {{math|Ω(''r''<sup>''d''</sup>)}} कुछ निश्चित स्थिरांक के लिए {{math|''d'' > 0}}, और अधिक से अधिक<ref>{{harvtxt|Chekuri|Chuzhoy|2016}}</ref>
:<math>O \left( \sqrt{ r / \log r} \right).</math>
:<math>O \left( \sqrt{ r / \log r} \right).</math>
के लिए {{math|Ω}} निचले परिबद्ध  में प्रतीकांकन, [[बिग ओ नोटेशन|बिग ओ प्रतीकांकन]] देखें। प्रतिबंधित आलेख श्रेणीों के लिए सख्त सीमाएँ जानी जाती हैं, जिससे द्विविमता के सिद्धांत के माध्यम से उन श्रेणीों पर कई आलेख अनुकूलन समस्याओं के लिए कुशल कलन विधि की ओर अग्रसर होता है।{{sfnp|Demaine|Hajiaghayi|2008}}
के लिए {{math|Ω}} निचले परिबद्ध  में प्रतीकांकन, [[बिग ओ नोटेशन|बिग ओ प्रतीकांकन]] देखें। प्रतिबंधित आलेख श्रेणीों के लिए सख्त सीमाएँ जानी जाती हैं, जिससे द्विविमता के सिद्धांत के माध्यम से उन श्रेणीों पर कई आलेख अनुकूलन समस्याओं के लिए कुशल कलन विधि की ओर अग्रसर होता है।{{sfnp|Demaine|Hajiaghayi|2008}}

Revision as of 20:03, 14 March 2023

एक आलेख सिद्धांत में, अप्रत्यक्ष आलेख का ट्रीविड्थ एक पूर्णांक संख्या है, जो अनौपचारिक रूप से निर्दिष्ट करती है कि आलेख एक ट्री से कितनी दूर है। सबसे छोटी ट्रीविड्थ 1 है; और ट्रीविड्थ 1 वाले आलेख वास्तव में ट्री और फॉरेस्ट्स हैं। अधिकतम 2 ट्रीविड्थ वाले आलेख श्रृंखला-समानांतर आलेख हैं। यथार्थत: k ट्रीविड्थ वाले उच्चतम आलेख को k-ट्री कहा जाता है, और अधिकतम k पर ट्रीविड्थ वाले आलेख को आंशिक k-ट्री कहा जाता है। कई अन्य अच्छी तरह से अध्ययन किए गए आलेख श्रेणीयों में भी ट्रीविड्थ की सीमा होती है।

ट्रीविड्थ को औपचारिक रूप से कई समतुल्य माध्यमों से परिभाषित किया जा सकता है: आलेख के ट्री अपघटन में निर्धारित किए गए सबसे बड़े शीर्ष आकार, आलेख के पृष्ठ रज्जु समापन में सबसे बड़े गुट्ट के आकार, हेवन के अधिकतम क्रम के संदर्भ में आलेख पर परसूट-उत्सरण के खेल के लिए एक रणनीति का वर्णन, या एक कंटक गुल्म के अधिकतम आदेश के संदर्भ में, जुड़े उप-आलेख का एक संग्रह जो सभी एक दूसरे को स्पर्श करते हैं .

ट्रीविड्थ का उपयोग सामान्यतः आलेख कलन विधि के पैरामिट्रीकृत जटिलता विश्लेषण में एक पैरामीटर के रूप में किया जाता है। कई कलन विधि जो सामान्य आलेख के लिए एनपी कठिन हैं, आसान हो जाते हैं जब ट्रीविड्थ एक स्थिरांक से घिरा होता है।

ट्रीविड्थ की अवधारणा मूल रूप से किसके द्वारा प्रस्तुत की गई थी? (अम्बर्टो बर्टेल & फ्रांसेस्को ब्रियोस्की 1972) आयाम के नाम से। इसे बाद में द्वारा पुनः से खोजा गया था रुडोल्फ हेलिन (1976), उन गुणों के आधार पर जो इसे एक अलग आलेख पैरामीटर, हैडविगर संख्या के साथ साझा करता है। बाद में इसे पुनः से द्वारा खोजा गया था (नील रॉबर्टसन & पॉल सीमोर 1984) और उसके पश्चात कई अन्य लेखकों द्वारा अध्ययन किया गया है।[1]


परिभाषा

File:Tree decomposition.svg
आठ शीर्षों वाला एक आलेख, और छह बिंदु वाले एक ट्री पर इसका एक ट्री अपघटन। प्रत्येक आलेख एज दो शीर्षों को जोड़ता है जो किसी ट्री नोड पर एक साथ सूचीबद्ध होते हैं, और प्रत्येक आलेख शीर्ष को ट्री के सन्निहित सबट्री के बिंदु पर सूचीबद्ध किया जाता है। प्रत्येक ट्री नोड अधिकतम तीन शीर्षों को सूचीबद्ध करता है, इसलिए इस अपघटन की चौड़ाई दो है।

एक आलेख का एक ट्री अपघटन G = (V, E) एक ट्री है T बिंदु के साथ X1, …, Xn, जहां प्रत्येक Xi का उपसमुच्चय है V, निम्नलिखित गुणों को संतुष्ट करता है[2]

  1. सभी समुच्चयों का मिलन Xi बराबर है V. यही है, प्रत्येक आलेख शीर्ष कम से कम एक ट्री नोड में समाहित है।
  2. अगर Xi और Xj दोनों में एक शीर्ष है v, पुनः सभी बिंदु Xk का T के बीच (अद्वितीय) पथ में Xi और Xj रोकना v भी। समतुल्य रूप से, ट्री बिंदु में शीर्ष होता है v का कनेक्टेड सबट्री बनाता है T.
  3. हर किनारे के लिए (v, w) आलेख में, एक सबसमुच्चय है Xi जिसमें दोनों सम्मिलित हैं v और w. यही है, कोने आलेख में आसन्न होते हैं, जब संबंधित उप-वृक्षों में एक आम नोड होता है।

एक ट्री के अपघटन की चौड़ाई उसके सबसे बड़े समुच्चय का आकार है Xi शून्य से एक कम। ट्रीविड्थ tw(G) आलेख का G के सभी संभव ट्री अपघटन के बीच न्यूनतम चौड़ाई है G. इस परिभाषा में, ट्रीविड्थ को एक के बराबर बनाने के लिए सबसे बड़े समुच्चय के आकार को एक से घटा दिया जाता है।

समान रूप से, कीट्रीविड्थ G युक्त पृष्ठरज्जु आलेख में सबसे बड़े क्लिक (आलेख सिद्धांत) के आकार से एक कम है G सबसे छोटी अधिकतम क्लिक के साथ। इस क्लिक साइज के साथ पृष्ठरज्जु आलेख को जोड़कर प्राप्त किया जा सकता है G हर दो शीर्षों के बीच एक किनारा जो दोनों कम से कम एक समुच्चय से संबंधित हैं Xi.

ट्रीविड्थ को हेवन (आलेख थ्योरी) के संदर्भ में भी चित्रित किया जा सकता है, एक आलेख पर परिभाषित एक निश्चित खोज-चोरी के खेल के लिए एक चोरी की रणनीति का वर्णन करने वाले कार्य। एक आलेख G में ट्रीविड्थ है k अगर और केवल अगर यह आदेश का स्श्रेणी है k + 1 लेकिन कोई उच्च क्रम नहीं, जहां आदेश का स्श्रेणी है k + 1 एक कार्य है β जो प्रत्येक समुच्चय को मानचित्र करता है X अधिक से अधिक k कोने में G के जुड़े घटकों में से एक में G \ X और वह एकरसता गुण का पालन करता है β(Y) ⊆ β(X) जब कभी भी XY.

File:3x3 grid graph haven.svg
3×3 संजाल आलेख में क्रम चार का एक ब्रैमबल (आलेख सिद्धांत), जिसके अस्तित्व से पता चलता है कि आलेख में कम से कम 3 ट्रीविड्थ है

ब्रम्बल (आलेख सिद्धांत) का उपयोग करके एक समान लक्षण वर्णन भी किया जा सकता है, जुड़े उप-आलेख के श्रेणी जो सभी एक दूसरे को छूते हैं (अर्थात् या तो वे एक शीर्ष साझा करते हैं या किनारे से जुड़े होते हैं)।[3] एक कंटक-गुल्म का क्रम उप-आलेख के श्रेणी के लिए सबसे छोटा हिटिंग समुच्चय है, और आलेख की ट्रीविड्थ एक कंटक-गुल्म के अधिकतम क्रम से एक कम है।

उदाहरण

हर पूरा आलेख Kn में ट्रीविड्थ है n – 1. पृष्ठरज्जु आलेख के संदर्भ में ट्रीविड्थ की परिभाषा का उपयोग करके इसे सबसे आसानी से देखा जा सकता है: पूरा आलेख पहले से ही पृष्ठरज्जु है, और अधिक किनारों को जोड़ने से इसके सबसे बड़े समूह के आकार को कम नहीं किया जा सकता है।

कम से कम दो शीर्षों वाले कनेक्टेड आलेख में ट्रीविड्थ 1 है यदि और केवल यदि वह एक ट्री है। एक ट्री की ट्रीविड्थ एक ही तर्क के अनुसार पूर्ण आलेख के लिए होती है (अर्थात्, यह पृष्ठरज्जु है, और अधिकतम क्लिक आकार दो है)। इसके विपरीत, यदि किसी आलेख में एक चक्र है, तो आलेख के प्रत्येक पृष्ठरज्जु पूर्णता में कम से कम एक त्रिभुज सम्मिलित होता है जिसमें चक्र के लगातार तीन कोने होते हैं, जिससे यह पता चलता है कि इसकी ट्रीविड्थ कम से कम दो है।

परिबद्ध ट्रीविड्थ

परिबद्ध ट्रीविड्थ वाले आलेख श्रेणी

किसी निश्चित स्थिरांक के लिए k, ज़्यादा से ज़्यादा ट्रीविड्थ का आलेख k को आंशिक k-ट्री कहा जाता है। परिबद्ध ट्रीविड्थ वाले आलेख के अन्य श्रेणीों में कैक्टस आलेख, स्यूडोफॉरेस्ट, श्रृंखला-समानांतर आलेख, बाहरी आलेख, हालीन आलेख और अपोलोनियन संजाल सम्मिलित हैं।[4] संरचित क्रमादेश के संकलक में उत्पन्न होने वाले नियंत्रण-प्रवाह आलेख में ट्रीविड्थ भी होता है, जो कुछ कार्यों जैसे कि रजिस्टर आवंटन को उन पर कुशलता से करने की अनुमति देता है।[5]

समतलीय आलेख में परिबद्ध ट्रीविड्थ नहीं होता है, क्योंकि n × n संजाल आलेख ट्रीविड्थ के साथ एक प्लेनर आलेख है n. इसलिए, अगर F एक लघु-अवरुद्ध आलेख श्रेणी है जिसमें परिबद्ध ट्रीविड्थ है, इसमें सभी समतलीय आलेख सम्मिलित नहीं हो सकते। इसके विपरीत, यदि श्रेणी में आलेख के लिए कुछ समतलीय आलेख लघु के रूप में नहीं हो सकते हैं F, तो एक स्थिरांक k है जैसे कि सभी आलेख F में अधिकतम ट्रीविड्थ k है. अर्थात्, निम्नलिखित तीन स्थितियाँ एक दूसरे के समतुल्य हैं:[6]

  1. F परिबद्ध -ट्रीविड्थ आलेख का लघु-अवरुद्ध श्रेणी है;
  2. चरित्र चित्रण करने वाले बहुत से वर्जित लघुों में से एक F समतलीय है;
  3. F एक छोटा-अवरुद्ध आलेख श्रेणी है जिसमें सभी समतलीय आलेख सम्मिलित नहीं हैं।

वर्जित लघु

Error creating thumbnail:
ट्रीविड्थ 3 के लिए चार प्रतिबंधित लघु: K5 (शीर्ष-बाएँ), अष्टफलक का आलेख (नीचे-बाएँ), वैगनर आलेख (शीर्ष-दाएँ), और पंचकोणीय प्रिज़्म का आलेख (नीचे-दाएँ)

k के प्रत्येक परिमित मान के लिए, अधिकांश k पर ट्रीविड्थ के आलेख को वर्जित लघुों के परिमित समुच्चय द्वारा चित्रित किया जा सकता है। (अर्थात, ट्रीविड्थ > k के किसी भी आलेखों के समुच्चय में से एक आलेख लघु के रूप में सम्मिलित है)। वर्जित लघुों के इन समुच्चयों में से प्रत्येक में कम से कम एक समतलीय आलेख सम्मिलित होता है।

k के बड़े मानों के लिए, वर्जित लघु की संख्या कम से कम उतनी ही तीव्रता से बढ़ती है जितनी कि k के वर्गमूल की चरघातांकी होती है।[9] हालांकि, वर्जित लघुों के आकार और संख्या पर ज्ञात ऊपरी सीमाएं इस निचली सीमा से बहुत अधिक हैं।[10]

कलन विधि

ट्रीविड्थ की गणना

यह निर्धारित करने के लिए एनपी-पूर्ण है कि कि किसी दिए गए आलेख G में किसी दिए गए चर k पर ट्रीविड्थ है या नहीं है।[11]

हालाँकि, जब k एक निश्चित स्थिरांक होता है, तो ट्रीविड्थ k वाले आलेख को पहचाना जा सकता है, और रैखिक समय में उनके लिए एक चौड़ाई k ट्री अपघटन का निर्माण किया जाता है।[12] k पर इस कलन विधि की समय निर्भरता चरघातांकी है।

एक बड़ी संख्या में क्षेत्रों में ट्रीविड्थ की भूमिकाओं के कारण, आलेख के ट्रीविड्थ की गणना करने वाले विभिन्न व्यावहारिक और सैद्धांतिक कलन विधि विकसित की गई थी। आवेदन के आधार पर, इनपुट या ट्रीविड्थ के आकार से चलने वाले समय में उन्नति सन्निकटन अनुपात, या उन्नति निर्भरता पसंद कर सकते हैं। नीचे दी गई तालिका कुछ ट्रीविड्थ कलन विधि का अवलोकन प्रदान करती है। यहाँ k ट्रीविड्थ है और n एक इनपुट आलेख G के शीर्षों की संख्या है।

प्रत्येक कलन विधि समय f(k) ⋅ g(n) में अनुमानित स्तम्भ में दी गई चौड़ाई का अपघटन करता है। उदाहरण लिए, समय 2O(k3)n में बोडलैंडर (1996) की कलन विधि या तो अधिकतम k पर चौड़ाई के इनपुट आलेख G के ट्री अपघटन का निर्माण या विवरण करता है कि G की ट्रीविड्थ k से अधिक है। इसी प्रकार, बोडलैंडर एट अल (2016) समय 2O(k)n में या तो अधिकतम 5k + 4 चौड़ाई के इनपुट आलेख G के ट्री अपघटन का निर्माण या विवरण करता है कि G की ट्रीविड्थ k से अधिक है, कोरहोनेन (2021) ने समान संचालन समय में इसे सुधार कर 2k + 1 कर दिया है।

सन्निकटन f(k) g(n) संदर्भ
यथार्थ O(1) O(nk+2) अर्नबोर्ग, कॉर्नियल & प्रोस्कुरोव्स्की (1987)
4k + 3 O(33k) O(n2) रॉबर्टसन & सेमुर (1995)
8k + 7 2O(k log k) n log2 n लेगरग्रेन (1996)
5k + 4 (or 7k + 6) 2O(k log k) n log n रीड (1996)
यथार्थ 2O(k3) O(n) बोडलैंडर (1996)
O(1) nO(1) फीज, हजियाघयी & ली (2008)
4.5k + 4 23k n2 आमिर (2010)
11/3k + 4 23.6982k n3 log4n आमिर (2010)
यथार्थ O(1) O(1.7347n) फोमिन, टोडिंका & विलंगेर (2015)
3k + 2 2O(k) O(n log n) बोडलैंडर et al. (2016)
5k + 4 2O(k) O(n) बोडलैंडर et al. (2016)
k2 O(k7) O(n log n) फोमिन et al. (2018)
5k + 4 28.765k O(n log n) बेलबासी & फ्यूरर (2021a)
2k + 1 2O(k) O(n) कोरहोनेन (2021)
5k + 4 26.755k O(n log n) बेलबासी & फ्यूरर (2021b)
यथार्थ 2O(k2) n4 कोरहोनेन & लोकशतानोव (2022)
(1+)k kO(k/) n4 कोरहोनेन & लोकशतानोव (2022)
Unsolved problem in गणित:

क्या बहुपद समय में प्लानर ग्राफ की ट्रेविड्थ की गणना की जा सकती है?

यह ज्ञात नहीं है कि समतलीय आलेख की ट्रीविड्थ का निर्धारण एनपी-पूर्ण है, या क्या उनकी ट्रीविड्थ की गणना बहुपद समय में की जा सकती है।[13]

व्यवहार में, शोइखेत और गीजर (1997) की एक कलन विधि 100 तक के शीर्षों और 11 तक की ट्रीविड्थ के साथ आलेखों की ट्रीविड्थ निर्धारित कर सकता है, और इष्टतम ट्रेविड्थ के साथ इन आलेख पृष्ठरज्जु पूर्णता का पता लगा सकता है।

एक बड़े आलेख के लिए, कोई भी खोज-आधारित प्रविधि जैसे शाखा और परिबद्ध (बीएनबी) का उपयोग कर सकता है और ट्रीविड्थ की गणना करने के लिए सर्वप्रथम खोज कर सकता है।

ट्रीविड्थ की गणना के लिए प्रथम बीएनबी कलन विधि, जिसे क्विकबीबी कलन विधि कहा जाता है[14]जिसे गोगेट और डेक्टर द्वारा प्रस्तावित किया गया था।[15] चूँकि किसी भी बीएनबी कलन विधि की गुणवत्ता उपयोग की जाने वाली निचली सीमा की गुणवत्ता पर अत्यधिक निर्भर होती है, गोगेट और डेक्टर[15] ने ट्रीविड्थ पर एक निचली सीमा की गणना के लिए एक उपन्यास कलन विधि भी प्रस्तावित की जिसे लघु-न्यूनतम-चौड़ाई कहते हैं।[15]एक उच्च स्तर पर, लघु-न्यूनतम-चौड़ाई कलन विधि के तथ्यों को जोड़ती है। एक आलेख की ट्रीविड्थ कभी भी इसकी न्यूनतम डिग्री से बड़ी नहीं होती है या ट्रीविड्थ पर कम सीमा उत्पन्न करने के लिए इसकी छोटी होती है। लघु-न्यूनतम-चौड़ाई कलन विधि बार-बार एक न्यूनतम डिग्री शीर्ष और उसके सहवासीयों में से एक के मध्य शीर्षो को अनुबंधित करके एक आलेख लघु का निर्माण करता है, जब तक कि केवल एक शीर्ष नहीं रह जाता है। इन निर्मित लघुओ पर न्यूनतम डिग्री की अधिकतम सीमा आलेख के ट्रीविड्थ पर निचली सीमा होने की अधिपत्रित है।

डॉव और कोर्फ़[16] ने सर्वोत्तम-प्रथम खोज का उपयोग करके क्विकबीबी कलन विधि में सुधार किया। कुछ आलेखों पर, यह सर्वोत्तम-प्रथम खोज कलन विधि क्विकबीबी की तुलना में तीव्रता का एक क्रम है।

छोटी ट्रीविड्थ के आलेख पर अन्य समस्याओं का समाधान

1970 के दशक की प्रारंभिक में, यह देखा गया कि आलेख पर परिभाषित संयोजी अनुकूलन समस्याओं की एक बड़ी श्रेणी को गैर क्रमिक गतिशील क्रमादेश द्वारा कुशलतापूर्वक हल किया जा सकता है, जब तक कि आलेख में एक परिबद्ध आयाम है,[17] बोडलैंडर (1998) द्वारा ट्रीविड्थ के समतुल्य अवलोकन किया गया एक पैरामीटर है। बाद में, 1980 के दशक के अंत में कई लेखकों ने स्वतंत्र रूप से अवलोकन किया[18] कि कई कलन विधि समस्याएं जो एनपी-पूर्ण हैं। इन आलेखों के ट्री-अपघटन का उपयोग करते हुए बाध्य ट्रीविड्थ के आलेख के लिए गतिशील क्रमादेश द्वारा कुशलतापूर्वक हल किया जा सकता है।

एक उदाहरण के रूप में, ट्रीविड्थ k के आलेख में रंजक की समस्या को आलेख के ट्री अपघटन पर एक गतिशील क्रमादेश कलन विधि का उपयोग करके हल किया जा सकता है। ट्री अपघटन के प्रत्येक समुच्चय के लिए, और रंग वर्गों में Xi के शीर्षों के प्रत्येक विभाजन के लिए, कलन विधि निर्धारित करता है कि क्या रंग मान्य है और ट्री अपघटन में सभी संतति बिंदु तक बढ़ाया जा सकता है, उन बिन्दुओ पर संग्रहीत एक समान प्रकार की सूचना के संयोजन से गणना की। परिणामी कलन विधि समय O(kk+O(1)n) में एक n-शीर्ष आलेख का एक इष्टतम रंग पाता है, एक समयबद्धता जो इस समस्या को निश्चित-पैरामीटर सरल बनाता है।

कौरसेल प्रमेय

समस्याओं की एक बड़ी श्रेणी के लिए, कक्षा से किसी समस्या को हल करने के लिए एक रैखिक समय कलन विधि है, यदि एक ट्री-अपघटन निरंतर बाध्य ट्रीविड्थ के साथ प्रदान किया जाता है। विशेष रूप से, कौरसेल की प्रमेय[19]में व्याख्या की गयी है कि यदि एक आलेख समस्या को एक अक द्वितीय-क्रम तर्क का उपयोग करते हुए आलेख के तर्क में व्यक्त किया जा सकता है, तो इसे परिबद्ध ट्रीविड्थ के साथ आलेख पर रैखिक समय में हल किया जा सकता है। एक अक द्वितीय-क्रम तर्क आलेख गुणों का वर्णन करने वाली एक भाषा है जो निम्नलिखित निर्माणों का उपयोग करती है:

  • तर्क संचालन, जैसे
  • सदस्यता परीक्षण, जैसे eE, vV
  • शीर्षों, किनारों, शीर्षों के समुच्चयों और/या किनारों के समुच्चयों पर परिमाणीकरण, जैसे vV, eE, IV, FE
  • निकटता परीक्षण (u का समापन बिंदु e है), और कुछ विस्तारण जो अनुकूलीकरण जैसी चीज़ों की अनुमति देते हैं।

उदाहरण, आलेख के लिए तीनों रंगों की समस्या पर विचार करें। एक आलेख G = (V, E) के लिए, यह समस्या पूछती है कि क्या तीनों रंगों के प्रत्येक शीर्ष vV को निर्दिष्ट करना संभव है, ताकि कोई भी दो आसन्न शीर्षों को एक ही रंग निर्दिष्ट न किया जा सके। इस समस्या को एक अक द्वितीय-क्रम तर्क में निम्नानुसार व्यक्त किया जा सकता है:

,

जहाँ W1, W2, W3 तीनों रंगों में से प्रत्येक वाले शीर्षों के उपसमुच्चय का प्रतिनिधित्व करते हैं।

इसलिए, कौरसेल के परिणामों से, 3-रंग की समस्या को एक आलेख के लिए रैखिक समय में हल किया जा सकता है, जो कि परिबद्ध स्थिर ट्रीविड्थ का ट्री-अपघटन हैं।

संबंधित पैरामीटर

पाथविड्थ

एक आलेख के पाथविड्थ ट्री अपघटन के माध्यम से ट्रीविड्थ की एक बहुत ही समान परिभाषा है, लेकिन यह ट्री अपघटन तक ही सीमित है जिसमें अपघटन का अंतर्निहित ट्री एक पथ आलेख है। वैकल्पिक रूप से, पाथविड्थ को पृष्ठरज्जु आलेख से ट्रीविड्थ की परिभाषा के अनुरूप अंतराल आलेख से परिभाषित किया जा सकता है। परिणामस्वरूप, एक आलेख की पाथविड्थ हमेशा कम से कम उतनी ही बड़ी होती है, जितनी इसकी ट्रीविड्थ होती है, लेकिन यह केवल एक लघुगणक कारक द्वारा बड़ी हो सकती है।[4]एक अन्य पैरामीटर, आलेख बैंडविड्थ, की उचित अंतराल आलेख से समान परिभाषा है, और कम से कम पाथविड्थ जितना बड़ा है। अन्य संबंधित मापदंडों में ट्री गहनता सम्मिलित है, एक संख्या जो एक लघु-अवरुद्ध आलेख श्रेणी के लिए बाध्य है और यदि केवल श्रेणी एक पथ को बाहर करता है, और अध: पतन, एक आलेख की विरलता का एक उपाय जो ट्रीविड्थ के समान है।

संजाल लघु आकार

क्योंकि एक n × n संजाल आलेख की ट्रीविड्थ n है, आलेख G की ट्रीविड्थ हमेशा छोटे आकार के सबसे बड़े श्रेणी संजाल आलेख के आकार से बड़ा या उसके बराबर होता है G. दूसरी दिशा में, नील रॉबर्टसन (गणितज्ञ) और पॉल सीमोर (गणितज्ञ) द्वारा संजाल लघु प्रमेय से पता चलता है कि एक असीम कार्य मौजूद है f जैसे कि सबसे बड़े श्रेणी संजाल लघु का आकार कम से कम हो f(r) कहाँ r ट्रीविड्थ है।[20] सबसे अच्छी सीमा पर जाना जाता है f वो है f कम से कम होना चाहिए Ω(rd) कुछ निश्चित स्थिरांक के लिए d > 0, और अधिक से अधिक[21]

के लिए Ω निचले परिबद्ध में प्रतीकांकन, बिग ओ प्रतीकांकन देखें। प्रतिबंधित आलेख श्रेणीों के लिए सख्त सीमाएँ जानी जाती हैं, जिससे द्विविमता के सिद्धांत के माध्यम से उन श्रेणीों पर कई आलेख अनुकूलन समस्याओं के लिए कुशल कलन विधि की ओर अग्रसर होता है।[22]

हैलिन का संजाल प्रमेय अनंत आलेख के लिए ट्रीविड्थ और संजाल लघु आकार के बीच संबंध का एक एनालॉग प्रदान करता है।[23]

व्यास और स्थानीय ट्रीविड्थ

एक श्रेणी {{mvar|F}उप-आलेख लेने के तहत अवरुद्ध किए गए आलेख के बारे में कहा जाता है कि स्थानीय ट्रीविड्थ, या डायमीटर-ट्रीविड्थ गुण, यदि श्रेणी में आलेख की ट्रीविड्थ उनके डायमीटर (आलेख सिद्धांत) के एक फ़ंक्शन द्वारा ऊपरी सीमा में है। यदि आलेख लघु लेने के अंतर्गत कक्षा को भी अवरुद्ध माना जाता है, तो F ने स्थानीय ट्रीविड्थ को सीमित कर दिया है यदि और केवल यदि के लिए वर्जित आलेख विशेषताओं में से एक है F एक शीर्ष आलेख है।[24] इस परिणाम के मूल प्रमाणों से पता चला है कि शीर्ष-लघु-मुक्त आलेख श्रेणी में ट्रीविड्थ व्यास के कार्य के रूप में सबसे अधिक दोगुनी घातीय रूप से बढ़ता है;[25] बाद में इसे एकल घातीय तक कम कर दिया गया[22] और अंत में एक रैखिक सीमा के लिए।[26]

परिबद्ध स्थानीय ट्रीविड्थ द्विविमीयता के कलन विधि सिद्धांत से निकटता से संबंधित है,[27] और पहले क्रम तर्क में परिभाषित प्रत्येक आलेख संपत्ति को शीर्ष-लघु-मुक्त आलेख श्रेणी के लिए तय किया जा सकता है जो कि केवल थोड़ा सुपरलाइनर है।[28]

आलेख के एक श्रेणी के लिए यह भी संभव है कि स्थानीय ट्रीविड्थ को सीमित करने के लिए लघुों के तहत अवरुद्ध नहीं किया गया है। विशेष रूप से यह परिबद्ध डिग्री आलेख के एक श्रेणी के लिए तुच्छ रूप से सही है, क्योंकि परिबद्ध व्यास उप-आलेख में परिबद्ध आकार होता है। एक अन्य उदाहरण 1- समतली आलेख द्वारा दिया गया है, आलेख जो प्रति किनारे एक क्रॉसिंग के साथ विमान में खींचे जा सकते हैं, और अधिक आम तौर पर उन आलेख के लिए होते हैं जो बंधे हुए जीनस की सतह पर प्रति किनारे क्रॉसिंग की एक सीमित संख्या के साथ खींचे जा सकते हैं। बंधे हुए स्थानीय ट्रीविड्थ के छोटे-अवरुद्ध आलेख श्रेणीों के साथ, इस संपत्ति ने इन आलेखों के लिए कुशल सन्निकटन कलन विधि का रास्ता बताया है।[29]

हैडविगर संख्या और एस-कार्य

Halin (1976) आलेख पैरामीटर के एक श्रेणी को परिभाषित करता है जिसे वह कॉल करता है S-फंक्शंस, जिसमें ट्रीविड्थ सम्मिलित है। लघु-मोनोटोन (एक फ़ंक्शन f को लघु-मोनोटोन के रूप में संदर्भित किया जाता है यदि, जब भी H का लघु है G, किसी के पास f(H) ≤ f(G)), जब एक नया शीर्ष जोड़ा जाता है जो कि सार्वभौमिक शिखर है, और एक क्लिक (आलेख थ्योरी) शीर्ष विभाजक के दोनों ओर दो उप-आलेख से बड़ा मान लेने के लिए। इस तरह के सभी कार्यों का समुच्चय तत्ववार न्यूनीकरण और अधिकतमकरण के संचालन के तहत एक पूर्ण जाली बनाता है। इस जाली में शीर्ष तत्व ट्रीविड्थ है, और नीचे का तत्व हैडविगर संख्या है, जो दिए गए आलेख में सबसे बड़े पूर्ण आलेख आलेख का आकार है।

टिप्पणियाँ

  1. Diestel (2005) pp.354–355
  2. Diestel (2005) section 12.3
  3. Seymour & Thomas (1993).
  4. 4.0 4.1 Bodlaender (1998).
  5. Thorup (1998).
  6. Robertson & Seymour (1986).
  7. 7.0 7.1 Bodlaender (1988).
  8. Arnborg, Proskurowski & Corneil (1990); Satyanarayana & Tung (1990).
  9. Ramachandramurthi (1997).
  10. Lagergren (1993).
  11. Arnborg, Corneil & Proskurowski (1987).
  12. Bodlaender (1996).
  13. Kao (2008).
  14. "विभव गोगटे". personal.utdallas.edu. Retrieved 2022-11-27.
  15. 15.0 15.1 15.2 Gogate, Vibhav; Dechter, Rina (2012-07-11). "ट्रीविड्थ के लिए एक पूर्ण एनीटाइम एल्गोरिथम". arXiv:1207.4109 [cs.DS].
  16. "ट्रीविड्थ के लिए सर्वश्रेष्ठ-प्रथम खोज". www.aaai.org. Retrieved 2022-11-27.
  17. Bertelè & Brioschi (1972).
  18. Arnborg & Proskurowski (1989); Bern, Lawler & Wong (1987); Bodlaender (1988).
  19. Courcelle (1990); Courcelle (1992)
  20. Robertson, Seymour. Graph minors. V. Excluding a planar graph. [1] open access publication – free to read
  21. Chekuri & Chuzhoy (2016)
  22. 22.0 22.1 Demaine & Hajiaghayi (2008).
  23. Diestel (2004).
  24. Eppstein (2000).
  25. Eppstein (2000); Demaine & Hajiaghayi (2004a).
  26. Demaine & Hajiaghayi (2004b).
  27. Demaine et al. (2004); Demaine & Hajiaghayi (2008).
  28. Frick & Grohe (2001).
  29. Grigoriev & Bodlaender (2007).


संदर्भ