इकाई वेक्टर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 68: Line 68:
=== सामान्य इकाई वैक्टर ===
=== सामान्य इकाई वैक्टर ===


{{main|Orthogonal coordinates}}
{{main|ऑर्थोगोनल निर्देशांक}}


Common themes of unit vectORS पूरे भौतिकी और [[ज्यामिति]] में होता है:<ref>{{cite book|title=कैलकुलस (शाउम की रूपरेखा श्रृंखला)|edition=5th|publisher=Mc Graw Hill|author1=F. Ayres |author2=E. Mendelson |year=2009|isbn=978-0-07-150861-2}}</ref>
इकाई सदिश के सामान्य विषय पूरे भौतिकी और [[ज्यामिति]] में पाए जाते हैं<ref>{{cite book|title=कैलकुलस (शाउम की रूपरेखा श्रृंखला)|edition=5th|publisher=Mc Graw Hill|author1=F. Ayres |author2=E. Mendelson |year=2009|isbn=978-0-07-150861-2}}</ref>


{| class="wikitable"
{| class="wikitable"
|-
|-


! scope="col" width="200" | Unit vector
! scope="col" width="200" | इकाई सदिश
! scope="col" width="150" | Nomenclature
! scope="col" width="150" | नामपद्धति
! scope="col" width="410" | Diagram
! scope="col" width="410" | आरेख
|-
|-
| Tangent vector to a curve/flux line || <math> \mathbf{\hat{t}}</math> || rowspan="3" | [[File:Tangent normal binormal unit vectors.svg|200px|"200px"]] [[File:Polar coord unit vectors and normal.svg|200px|"200px"]]
| वक्र/फ्लक्स रेखा के लिए टेंगेंट सदिश  के रूप में होते है || <math> \mathbf{\hat{t}}</math> || rowspan="3" | [[File:Tangent normal binormal unit vectors.svg|200px|"200px"]] [[File:Polar coord unit vectors and normal.svg|200px|"200px"]]
A normal vector <math> \mathbf{\hat{n}} </math> to the plane containing and defined by the radial position vector <math> r \mathbf{\hat{r}} </math> and angular tangential direction of rotation <math> \theta \boldsymbol{\hat{\theta}} </math> is necessary so that the vector equations of angular motion hold.
एक सामान्य सदिश <math> \mathbf{\hat{n}} </math> रेडियल स्थिति सदिश द्वारा युक्त और परिभाषित समष्टि के लिए <math> r \mathbf{\hat{r}} </math> और रोटेशन की कोणीय स्पर्शरेखा दिशा <math> \theta \boldsymbol{\hat{\theta}} </math> आवश्यक है ताकि कोणीय गति के सदिश समीकरण बने रहें।.
|-
|-
|Normal to a surface tangent plane/plane containing radial position component and angular tangential component
|रेडियल स्थिति घटक और कोणीय स्पर्शरेखा घटक युक्त सतह स्पर्शरेखा समष्टि/ समष्टि के लिए सामान्य रूप में होते है
|| <math> \mathbf{\hat{n}}</math>
|| <math> \mathbf{\hat{n}}</math>


Line 88: Line 88:
<math> \mathbf{\hat{n}} = \mathbf{\hat{r}} \times \boldsymbol{\hat{\theta}} </math>
<math> \mathbf{\hat{n}} = \mathbf{\hat{r}} \times \boldsymbol{\hat{\theta}} </math>
|-
|-
| Binormal vector to tangent and normal
| स्पर्शरेखा और सामान्य के लिए बिननॉर्मल सदिश के रूप में होते है
|| <math> \mathbf{\hat{b}} = \mathbf{\hat{t}} \times \mathbf{\hat{n}} </math><ref>{{cite book|title=Vector Analysis (Schaum's Outlines Series)|edition=2nd|publisher=Mc Graw Hill|author1=M. R. Spiegel |author2=S. Lipschutz |author3=D. Spellman |year=2009|isbn=978-0-07-161545-7}}</ref>
|| <math> \mathbf{\hat{b}} = \mathbf{\hat{t}} \times \mathbf{\hat{n}} </math><ref>{{cite book|title=Vector Analysis (Schaum's Outlines Series)|edition=2nd|publisher=Mc Graw Hill|author1=M. R. Spiegel |author2=S. Lipschutz |author3=D. Spellman |year=2009|isbn=978-0-07-161545-7}}</ref>
|-
|-
| Parallel to some axis/line || <math> \mathbf{\hat{e}}_{\parallel} </math> || rowspan="2" | [[File:Perpendicular and parallel unit vectors.svg|200px|"200px"]]
| किसी अक्ष/रेखा के समानांतर होता है || <math> \mathbf{\hat{e}}_{\parallel} </math> || rowspan="2" | [[File:Perpendicular and parallel unit vectors.svg|200px|"200px"]]
One unit vector <math> \mathbf{\hat{e}}_{\parallel}</math> aligned parallel to a principal direction (red line), and a perpendicular unit vector <math> \mathbf{\hat{e}}_{\bot}</math> is in any radial direction relative to the principal line.
One unit vector <math> \mathbf{\hat{e}}_{\parallel}</math> aligned parallel to a principal direction (red line), and a perpendicular unit vector <math> \mathbf{\hat{e}}_{\bot}</math> is in any radial direction relative to the principal line.
|-
|-
| Perpendicular to some axis/line in some radial direction
| कुछ रेडियल दिशा में कुछ अक्ष/रेखा के लंबवत रूप में होते है
|| <math> \mathbf{\hat{e}}_{\bot} </math>
|| <math> \mathbf{\hat{e}}_{\bot} </math>
|-
|-
| Possible angular deviation relative to some axis/line
| कुछ अक्ष/रेखा के सापेक्ष संभावित कोणीय विचलन के रूप में होते है
|| <math> \mathbf{\hat{e}}_{\angle} </math>
|| <math> \mathbf{\hat{e}}_{\angle} </math>
|| [[File:Angular unit vector.svg|200px|"200px"]]
|| [[File:Angular unit vector.svg|200px|"200px"]]
Line 122: Line 122:
*[[चार-वेग]]
*[[चार-वेग]]
*जैकबियन आव्यूह और निर्धारक
*जैकबियन आव्यूह और निर्धारक
*सामान्य [[वेक्टर]]
*सामान्य [[वेक्टर|सदिश]]  
*ध्रुवीय समन्वय प्रणाली
*ध्रुवीय समन्वय प्रणाली
*मानक आधार
*मानक आधार
Line 128: Line 128:
* इकाई [[एकक वर्ग]], [[ एकक क्यूब ]], इकाई सर्कल, इकाई स्फीयर और [[ एकक हाइपरबोला ]]
* इकाई [[एकक वर्ग]], [[ एकक क्यूब ]], इकाई सर्कल, इकाई स्फीयर और [[ एकक हाइपरबोला ]]
* सदिश संकेतन
* सदिश संकेतन
*लोगों का वेक्टर
*लोगों का सदिश
*[[ एकक मैट्रिक्स | एकक आव्यूह]]
*[[ एकक मैट्रिक्स | एकक आव्यूह]]



Revision as of 23:18, 5 March 2023


गणित में, सामान्यतया सदिश समष्टि में इकाई सदिश की लंबाई 1 होती है। इकाई सदिश को प्रायः लोअरकेस अक्षर द्वारा सरकमफ्लेक्स या "हैट" के रूप में दर्शाया जाता है, जैसा कि

उच्चारण -हैट के रूप में दर्शाया जाता है।

शब्द दिशा सदिश , जिसे सामान्यतः डी के रूप में निरूपित किया जाता है, जिसका उपयोग स्थानिक दिशा और सापेक्ष दिशा का प्रतिनिधित्व करने के लिए उपयोग की जाने वाली इकाई सदिश का वर्णन करने के लिए किया जाता है। 2डी स्थानिक दिशाएँ संख्यात्मक रूप से इकाई वृत्त पर बिंदुओं के समतुल्य होते है और 3डी में स्थानिक दिशाएँ इकाई क्षेत्र पर एक बिंदु के के बराबर होते है।

एक गैर-शून्य सदिश यू का सामान्यीकृत सदिश यू की दिशा में इकाई सदिश के रूप में होता है जैसे ,

जहां एफ यू का मानक (गणित) या लंबाई होता है।[1][2] सामान्यीकृत सदिश शब्द को कभी कभी इकाई सदिश के लिए पर्याय के रूप में उपयोग किया जाता है।

इकाई सदिश को अधिकांशतः सदिश समष्टि के आधार (रैखिक बीजगणित) बनाने के लिए चुना जाता है और समष्टि में प्रत्येक सदिश को इकाई सदिश के रैखिक संयोजन के रूप में लिखा जा सकता है।

ऑर्थोगोनल निर्देशांक

कार्टेशियन निर्देशांक

इकाई सदिश का उपयोग कार्टेशियन समन्वय प्रणाली के अक्षों का प्रतिनिधित्व करने के लिए किया जाता है। उदाहरण के लिए, तीन आयामी कार्टेशियन समन्वय प्रणाली के x, y, और z अक्षों की दिशा में मानक इकाई सदिश के रूप में होते है

वे पारस्परिक रूप से ओर्थोगोनल इकाई सदिश का एक सेट बनाते हैं, जिसे सामान्यतः रैखिक बीजगणित में एक मानक आधार के रूप में संदर्भित किया जाता है।

वे अधिकांशतः सामान्य सदिश संकेतन जैसे, i का उपयोग करके निरूपित किया जाता है मानक इकाई सदिश संकेतन के अतिरिक्त जैसे,   के रूप में होता है, तथा अधिकांश संदर्भों में यह माना जा सकता है कि i, j, और k या और एक 3-डी कार्टेशियन समन्वय प्रणाली के वर्सर्स होते है। अंकन पद्धति , , , या , के साथ या उसके बिना गणित का उपयोग किया जाता है,[1]विशेष रूप से उन संदर्भों में जहां i, j, k किसी अन्य मात्रा के साथ भान्ति उत्पन्न करता है, उदाहरण के लिए, I , J , k जैसे अनुक्रमित सूचकांक प्रतीकों के साथ होता है, जो किसी सेट या सरणी या चर के अनुक्रम के तत्व की पहचान करने के लिए उपयोग किया जाता है।

जब समष्टि में एक इकाई सदिश कार्टेशियन समन्वय प्रणाली में व्यक्त किया जाता है तो कार्टेशियन संकेतन के साथ सदिश का प्रतिनिधित्व करता है, जो कि I, J, K के रैखिक संयोजन के रूप में होता है, इसके तीन स्केलर घटकों को दिशा कोसाइन के रूप में संदर्भित किया जाता है। प्रत्येक घटक का मान संबंधित आधार सदिश के साथ इकाई सदिश द्वारा गठित कोण के कोसाइन के बराबर होता है। यह एक सीधी रेखा, सीधी रेखा के खंड, उन्मुख अक्ष या उन्मुख अक्ष सदिश के खंड के अभिविन्यास कोणीय स्थिति का वर्णन करने के लिए उपयोग की जाने वाली विधियों में से एक है।

बेलनाकार निर्देशांक

बेलनाकार समरूपता के लिए उपयुक्त तीन ऑर्थोगोनल इकाई सदिश के रूप में होती है

  • (भी नामित या ), उस दिशा का प्रतिनिधित्व करती है, जिसके साथ समरूपता के अक्ष से बिंदु की दूरी को मापा जाता है
  • , गति की दिशा का प्रतिनिधित्व करते हुए देखा जाता है कि यदि बिंदु समरूपता अक्ष के प्रति घड़ी की वामावर्त दिशा में घूमता है
  • , समरूपता अक्ष की दिशा का प्रतिनिधित्व करती है

वे कार्टेशियन आधार से संबंधित हैं , , द्वारा दर्शायी गई है,

सदिश और के कार्य के रूप में होते है और दिशा में स्थिर नहीं होते है। बेलनाकार निर्देशांक में अंतर या एकीकृत करते समय इन इकाई सदिश को भी संचालित किया जाता है। डेरिवेटिव के संबंध में के रूप में होते है


गोलाकार निर्देशांक

गोलाकार समरूपता के लिए उपयुक्त इकाई सदिश के रूप में होती है, जिस दिशा में मूल से रेडियल दूरी बढ़ जाती है; , वह दिशा जिसमें सकारात्मक एक्स-अक्ष से एक्स-वाई समतल वामावर्त में कोण बढ़ता रहता है और जिस दिशा में सकारात्मक z अक्ष से कोण बढ़ता है। प्रतिनिधित्व के अतिरेक को कम करने के लिए ध्रुवीय कोण को सामान्यतः शून्य और 180 डिग्री के बीच ले जाया जाता है। गोलाकार निर्देशांक में लिखे गए किसी भी क्रमबद्ध ट्रिपलेट के संदर्भ को विशेष रूप से ध्यान देना महत्वपूर्ण होता है, तथा भूमिकाओं के रूप में और अधिकांशतः उलट होते हैं। यहाँ, अमेरिकन भौतिकी कन्वेंशन[3] का प्रयोग किया जाता है। अज़ीमुथल कोण छोड़ देता है बेलनाकार निर्देशांक में समान रूप से परिभाषित किया गया। कार्टेशियन समन्वय प्रणाली संबंध के रूप में होती है

गोलाकार इकाई सदिश दोनों पर निर्भर करते हैं और और इसलिए 5 संभावित गैर-शून्य डेरिवेटिव के रूप में होते है। अधिक पूर्ण विवरण के लिए, जैकबियन आव्यूह और निर्धारक को देखें।गैर-शून्य डेरिवेटिव के रूप में होते है।


सामान्य इकाई वैक्टर

इकाई सदिश के सामान्य विषय पूरे भौतिकी और ज्यामिति में पाए जाते हैं[4]

इकाई सदिश नामपद्धति आरेख
वक्र/फ्लक्स रेखा के लिए टेंगेंट सदिश के रूप में होते है "200px" "200px"

एक सामान्य सदिश रेडियल स्थिति सदिश द्वारा युक्त और परिभाषित समष्टि के लिए और रोटेशन की कोणीय स्पर्शरेखा दिशा आवश्यक है ताकि कोणीय गति के सदिश समीकरण बने रहें।.

रेडियल स्थिति घटक और कोणीय स्पर्शरेखा घटक युक्त सतह स्पर्शरेखा समष्टि/ समष्टि के लिए सामान्य रूप में होते है

In terms of polar coordinates;

स्पर्शरेखा और सामान्य के लिए बिननॉर्मल सदिश के रूप में होते है [5]
किसी अक्ष/रेखा के समानांतर होता है "200px"

One unit vector aligned parallel to a principal direction (red line), and a perpendicular unit vector is in any radial direction relative to the principal line.

कुछ रेडियल दिशा में कुछ अक्ष/रेखा के लंबवत रूप में होते है
कुछ अक्ष/रेखा के सापेक्ष संभावित कोणीय विचलन के रूप में होते है "200px"

Unit vector at acute deviation angle φ (including 0 or π/2 rad) relative to a principal direction.


वक्रता निर्देशांक

सामान्यतः , एक समन्वय प्रणाली को कई रैखिक स्वतंत्रता इकाई सदिश का उपयोग करके विशिष्ट रूप से निर्दिष्ट किया जा सकता है [1](वास्तविक संख्या समष्टि की स्वतंत्रता की डिग्री के बराबर है)।साधारण 3-समष्टि के लिए, इन सदिश को निरूपित किया जा सकता है ।यह लगभग हमेशा सुविधाजनक होता है कि सिस्टम को ऑर्थोनॉर्मल और दाहिने हाथ का नियम होना चाहिए। दाएं हाथ:

कहाँ क्रोनकर डेल्टा है (जो कि i = j के लिए 1 है, और 0 अन्यथा) और लेवी-सिविटा प्रतीक है (जो कि IJK के रूप में आदेशित क्रम के लिए 1 है, और kji के रूप में आदेशित क्रमपरिवर्तन के लिए −1)।

राइट वर्सोर

में एक इकाई सदिश डब्ल्यू। आर। हैमिल्टन द्वारा एक राइट वर्सोर कहा जाता था, क्योंकि उन्होंने अपने चतुर्भुजों को विकसित किया था ।वास्तव में, वह सदिश शब्द का प्रवर्तक था, हर चतुर्भुज के रूप में एक स्केलर भाग s और एक सदिश भाग v है। यदि V एक इकाई सदिश है , फिर v का वर्ग चतुर्भुज में -1 है।इस प्रकार यूलर के सूत्र द्वारा, 3-स्पेयर में एक पाठ्यक्रम में होना है।जब ang एक समकोण है, तो वर्सोर एक सही संस्करण है: इसका स्केलर भाग शून्य है और इसका सदिश भाग V एक इकाई सदिश है

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 Weisstein, Eric W. "इकाई वेक्टर". mathworld.wolfram.com (in English). Retrieved 2020-08-19.
  2. "Unit Vectors | Brilliant Math & Science Wiki". brilliant.org (in English). Retrieved 2020-08-19.
  3. Tevian Dray and Corinne A. Manogue,Spherical Coordinates, College Math Journal 34, 168-169 (2003).
  4. F. Ayres; E. Mendelson (2009). कैलकुलस (शाउम की रूपरेखा श्रृंखला) (5th ed.). Mc Graw Hill. ISBN 978-0-07-150861-2.
  5. M. R. Spiegel; S. Lipschutz; D. Spellman (2009). Vector Analysis (Schaum's Outlines Series) (2nd ed.). Mc Graw Hill. ISBN 978-0-07-161545-7.


संदर्भ