पूर्व आदेश: Difference between revisions
No edit summary |
No edit summary |
||
| Line 21: | Line 21: | ||
यदि प्रतिवर्तता को [[अविचलित संबंध]] से बदल दिया जाता है (ट्रांज़िटिविटी रखते हुए) तो परिणाम को एक विशुद्ध पूर्व-आदेश कहा जाता है; स्पष्ट रूप से, <math>P</math> पर '''a''' {{em|strict preorder}} एक सजातीय द्विआधारी संबंध है <math>\,<\,</math> पर <math>P</math> जो निम्नलिखित बाधाओं को पूरा करता है: | यदि प्रतिवर्तता को [[अविचलित संबंध]] से बदल दिया जाता है (ट्रांज़िटिविटी रखते हुए) तो परिणाम को एक विशुद्ध पूर्व-आदेश कहा जाता है; स्पष्ट रूप से, <math>P</math> पर '''a''' {{em|strict preorder}} एक सजातीय द्विआधारी संबंध है <math>\,<\,</math> पर <math>P</math> जो निम्नलिखित बाधाओं को पूरा करता है: | ||
<li>असंवेदनशीलता या विरोधी संवेदनशीलता संबंध : {{em|not}} <math>a < a</math> सभी के लिए <math>a \in P;</math> वह है, <math>\,a < a</math> है {{em|false}} सभी के लिए <math>a \in P,</math> और | <li>असंवेदनशीलता या विरोधी संवेदनशीलता संबंध: {{em|not}} <math>a < a</math> सभी के लिए <math>a \in P;</math> वह है, <math>\,a < a</math> है {{em|false}} सभी के लिए <math>a \in P,</math> और | ||
<li>सकर्मक संबंध : यदि <math>a < b \text{ and } b < c \text{ then } a < c</math> सभी '''के लिए''' <math>a, b, c \in P.</math> के लिए,<li>एक द्विआधारी संबंध एक विशुद्ध पूर्व-आदेश है यदि और केवल यदि यह एक [[सख्त आंशिक आदेश|विशुद्ध आंशिक आदेश]] है। परिभाषा के अनुसार, एक विशुद्ध आंशिक आदेश एक असममित संबंध विशुद्ध पूर्व आदेश है, जहां <math>\,<\,</math> को {{em|asymmetric}} कहा जाता है यदि <math>a < b \text{ implies } \textit{ not } \ b < a</math> सभी <math>a, b.</math>के लिए होता है , इसके विपरीत, प्रत्येक विशुद्ध पूर्व-आदेश एक विशुद्ध आंशिक आदेश है क्योंकि प्रत्येक सकर्मक अपरिवर्तनीय संबंध आवश्यक रूप से असममित संबंध है। | <li>सकर्मक संबंध: यदि <math>a < b \text{ and } b < c \text{ then } a < c</math> सभी '''के लिए''' <math>a, b, c \in P.</math> के लिए,<li>एक द्विआधारी संबंध एक विशुद्ध पूर्व-आदेश है यदि और केवल यदि यह एक [[सख्त आंशिक आदेश|विशुद्ध आंशिक आदेश]] है। परिभाषा के अनुसार, एक विशुद्ध आंशिक आदेश एक असममित संबंध विशुद्ध पूर्व आदेश है, जहां <math>\,<\,</math> को {{em|asymmetric}} कहा जाता है यदि <math>a < b \text{ implies } \textit{ not } \ b < a</math> सभी <math>a, b.</math>के लिए होता है , इसके विपरीत, प्रत्येक विशुद्ध पूर्व-आदेश एक विशुद्ध आंशिक आदेश है क्योंकि प्रत्येक सकर्मक अपरिवर्तनीय संबंध आवश्यक रूप से असममित संबंध है। | ||
<li> | <li> | ||
<li>चूंकि वे समतुल्य हैं, विशुद्ध आंशिक आदेश शब्द को विशेष रूप से विशुद्ध पूर्व आदेश पर पसंद किया जाता है और पाठकों को ऐसे संबंधों के विवरण के लिए विशुद्ध आंशिक आदेश के लिए संदर्भित किया जाता है।विशुद्ध पूर्व-आदेश के विपरीत, कई (गैर-विशुद्ध) पूर्व-आदेश हैं जो (गैर-विशुद्ध) आंशिक आदेश नहीं हैं।<li>यदि एक पूर्व-आदेश भी प्रतिसममित संबंध है, अर्थात, <math>a \leq b</math> और <math>b \leq a</math> तात्पर्य <math>a = b,</math> तो यह [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित]] समुच्चय है। | <li>चूंकि वे समतुल्य हैं, विशुद्ध आंशिक आदेश शब्द को विशेष रूप से विशुद्ध पूर्व आदेश पर पसंद किया जाता है और पाठकों को ऐसे संबंधों के विवरण के लिए विशुद्ध आंशिक आदेश के लिए संदर्भित किया जाता है।विशुद्ध पूर्व-आदेश के विपरीत, कई (गैर-विशुद्ध) पूर्व-आदेश हैं जो (गैर-विशुद्ध) आंशिक आदेश नहीं हैं।<li>यदि एक पूर्व-आदेश भी प्रतिसममित संबंध है, अर्थात, <math>a \leq b</math> और <math>b \leq a</math> तात्पर्य <math>a = b,</math> तो यह [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित]] समुच्चय है। | ||
<li>दूसरी तरफ, यदि यह सममित संबंध है, अर्थात यदि <math>a \leq b</math> तात्पर्य <math>b \leq a,</math> तो यह एक तुल्यता संबंध है। | <li>दूसरी तरफ, यदि यह सममित संबंध है, अर्थात यदि <math>a \leq b</math> तात्पर्य <math>b \leq a,</math> तो यह एक तुल्यता संबंध है।<li>एक पूर्व-आदेश [[कुल अग्रिम आदेश]] है यदि <math>a \leq b</math> या <math>b \leq a</math> सभी '''के लिए''' <math>a, b \in P.</math> के लिए होता है। | ||
एक पूर्व-आदेश [[कुल अग्रिम आदेश]] है यदि <math>a \leq b</math> या <math>b \leq a</math> सभी '''के लिए''' <math>a, b \in P.</math> के लिए होता है। | |||
| Line 69: | Line 67: | ||
== उपयोग == | == उपयोग == | ||
कई स्थितियों में पूर्व-आदेश एक महत्वपूर्ण भूमिका निभाते हैं: | कई स्थितियों में पूर्व-आदेश एक महत्वपूर्ण भूमिका निभाते हैं: | ||
* हर पूर्व-आदेश को एक सामयिकता दी जा सकती है, [[अलेक्जेंडर टोपोलॉजी|अलेक्जेंडर सामयिक]] ; और वास्तव में, समुच्चय पर प्रत्येक पूर्व-आदेश उस समुच्चय पर एक अलेक्जेंड्रोव सामयिक के साथ एक-से-एक पत्राचार में है। | * हर पूर्व-आदेश को एक सामयिकता दी जा सकती है, [[अलेक्जेंडर टोपोलॉजी|अलेक्जेंडर सामयिक]]; और वास्तव में, समुच्चय पर प्रत्येक पूर्व-आदेश उस समुच्चय पर एक अलेक्जेंड्रोव सामयिक के साथ एक-से-एक पत्राचार में है। | ||
* [[आंतरिक बीजगणित]] को परिभाषित करने के लिए पूर्व-आदेशों का उपयोग किया जा सकता है। | * [[आंतरिक बीजगणित]] को परिभाषित करने के लिए पूर्व-आदेशों का उपयोग किया जा सकता है। | ||
* अग्रिम आदेश कुछ प्रकार के [[मॉडल तर्क]] के लिए क्रिपके शब्दार्थ प्रदान करते हैं। | * अग्रिम आदेश कुछ प्रकार के [[मॉडल तर्क]] के लिए क्रिपके शब्दार्थ प्रदान करते हैं। | ||
| Line 89: | Line 87: | ||
=== विभाजनों पर अग्रिम आदेश और आंशिक आदेश === | === विभाजनों पर अग्रिम आदेश और आंशिक आदेश === | ||
<math>S</math> पर | <math>S</math> पर <math>\,\lesssim\,</math> के पूर्व आदेश को देखते हुए <math>S</math> पर तुल्यता संबंध <math>\,\sim\,</math> को परिभाषित कर सकता है जैसे कि:<math display="block">a \sim b \quad \text{ if and only if } \quad a \lesssim b \; \text{ and } \; b \lesssim a.</math> परिणामी संबंध <math>\,\sim\,</math>प्रतिवर्ती है क्योंकि पूर्व-आदेश <math>\,\lesssim\,</math> प्रतिवर्त है; <math>\,\lesssim\,</math> की संक्रामकता को दो बार प्रयुक्त करके सकर्मक और परिभाषा के अनुसार सममित को प्रदर्शित करता है । | ||
इस संबंध का उपयोग करके, तुल्यता के भागफल समुच्चय <math>S / \sim,</math> पर एक आंशिक क्रम बनाना संभव है, जो कि सभी [[तुल्यता वर्ग|तुल्यता वर्गों]] | |||
इस संबंध का उपयोग करके, तुल्यता के भागफल समुच्चय <math>S / \sim,</math> पर एक आंशिक क्रम बनाना संभव है, जो कि सभी [[तुल्यता वर्ग|तुल्यता वर्गों]] का समुच्चय <math>\,\sim.</math> है यदि पूर्व आदेश <math>R^{+=},</math>द्वारा निरूपित किया जाता है तब तुल्यता वर्ग <math>R</math>-चक्र का समुच्चय<math>S / \sim</math> है : | |||
<math>x \in [y]</math> यदि और केवल यदि <math>x = y</math> या <math>x</math> एक में है <math>R</math>-साइकिल के साथ <math>y</math> किसी भी स्थितियों में, पर <math>S / \sim</math> परिभाषित करना संभव है <math>[x] \leq [y]</math> यदि और केवल यदि <math>x \lesssim y.</math> यह अच्छी तरह से परिभाषित है, जिसका अर्थ है कि इसकी परिभाषित स्थिति किस प्रतिनिधि पर निर्भर नहीं करती है <math>[x]</math> और <math>[y]</math> चुने गए हैं, की परिभाषा से अनुसरण करते हैं <math>\,\sim.\,</math> यह आसानी से सत्यापित है कि यह आंशिक रूप सेआदेश किए गए समुच्चय का उत्पादन करता है। | <math>x \in [y]</math> यदि और केवल यदि <math>x = y</math> या <math>x</math> एक में है <math>R</math>-साइकिल के साथ <math>y</math> किसी भी स्थितियों में, पर <math>S / \sim</math> परिभाषित करना संभव है <math>[x] \leq [y]</math> यदि और केवल यदि <math>x \lesssim y.</math> यह अच्छी तरह से परिभाषित है, जिसका अर्थ है कि इसकी परिभाषित स्थिति किस प्रतिनिधि पर निर्भर नहीं करती है <math>[x]</math> और <math>[y]</math> चुने गए हैं, की परिभाषा से अनुसरण करते हैं <math>\,\sim.\,</math> यह आसानी से सत्यापित है कि यह आंशिक रूप सेआदेश किए गए समुच्चय का उत्पादन करता है। | ||
इसके विपरीत, किसी समुच्चय <math>S,</math> के विभाजन पर किसी आंशिक क्रम से <math>S</math> पर स्वतः पूर्व-आदेश बनाना संभव है | इसके विपरीत, किसी समुच्चय <math>S,</math> के विभाजन पर किसी आंशिक क्रम से <math>S</math> पर स्वतः पूर्व-आदेश बनाना संभव है । पूर्व-आदेशों और युग्म (विभाजन, आंशिक क्रम) के बीच एक-से-एक पत्राचार होता है। | ||
{{em|उदाहरण}}: अनुमानित रूप में <math>S</math> एक [[सिद्धांत (गणितीय तर्क)|सिद्धांत]] हो, जो कुछ गुणों के साथ [[वाक्य (गणितीय तर्क)|वाक्य]] का एक समुच्चय है (जिसका विवरण सिद्धांत में पाया जा सकता है)। उदाहरण के लिए, <math>S</math> एक [[प्रथम-क्रम सिद्धांत]] (जैसे ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत) या एक सरल [[प्रस्तावक कलन]] अथवा शून्य-क्रम सिद्धांत हो सकता है | <math>S</math> के अनेक गुणों में से एक है कि यह तार्किक परिणामों के अनुसार बंद है, उदाहरण के लिए, यदि कोई वाक्य <math>A \in S</math> तार्किक रूप से कुछ वाक्य <math>B,</math> का तात्पर्य है जो <math>A \Rightarrow B</math> और <math>B \Leftarrow A,</math> हो तो आवश्यक रूप से <math>B \in S</math> (विधि समुच्चय करके) के रूप में भी लिखा जाएगा। | |||
<li> | <li> | ||
| Line 122: | Line 113: | ||
एक पूर्व-आदेश द्वारा प्रेरित विशुद्ध पूर्व आदेश | एक पूर्व-आदेश द्वारा प्रेरित विशुद्ध पूर्व आदेश | ||
एक पूर्व आदेश दिया <math>\,\lesssim,</math> एक नया रिश्ता <math>\,<\,</math> घोषित करके परिभाषित किया जा सकता है <math>a < b</math> यदि और केवल यदि <math>a \lesssim b \text{ and not } b \lesssim a.</math> तुल्यता संबंध का उपयोग करना <math>\,\sim\,</math> ऊपर प्रस्तुत किया गया, <math>a < b</math> यदि और केवल यदि <math>a \lesssim b \text{ and not } a \sim b;</math> और इसलिए निम्नलिखित धारण करता है | एक पूर्व आदेश दिया <math>\,\lesssim,</math> एक नया रिश्ता <math>\,<\,</math> घोषित करके परिभाषित किया जा सकता है <math>a < b</math> यदि और केवल यदि <math>a \lesssim b \text{ and not } b \lesssim a.</math> तुल्यता संबंध का उपयोग करना <math>\,\sim\,</math> ऊपर प्रस्तुत किया गया, <math>a < b</math> यदि और केवल यदि <math>a \lesssim b \text{ and not } a \sim b;</math> और इसलिए निम्नलिखित धारण करता है<math display="block">a \lesssim b \quad \text{ if and only if } \quad a < b \; \text{ or } \; a \sim b.</math>रिश्ता <math>\,<\,</math> एक विशुद्ध आंशिक आदेश है और {{em|every}} विशुद्ध आंशिक आदेश इस तरह से बनाया जा सकता है। | ||
<math display="block">a \lesssim b \quad \text{ if and only if } \quad a < b \; \text{ or } \; a \sim b.</math> | |||
रिश्ता <math>\,<\,</math> एक विशुद्ध आंशिक आदेश है और {{em|every}} विशुद्ध आंशिक आदेश इस तरह से बनाया जा सकता है। | |||
{{em|If}} अग्रिम आदेश <math>\,\lesssim\,</math> प्रतिसममित संबंध है (और इस प्रकार एक आंशिक क्रम) तो तुल्यता <math>\,\sim\,</math> समानता है (अर्थात, <math>a \sim b</math> यदि और केवल यदि <math>a = b</math>) और इसलिए इस स्थितियों में, की परिभाषा <math>\,<\,</math> के रूप में पुनर्स्थापित किया जा सकता है:<math display="block">a < b \quad \text{ if and only if } \quad a \leq b \; \text{ and } \; a \neq b \quad\quad (\text{assuming } \lesssim \text{ is antisymmetric}).</math>किन्तु खास बात यह है कि यह नई बाधा है {{em|not}} संबंध की सामान्य परिभाषा के रूप में (न ही यह समतुल्य है) उपयोग किया जाता है <math>\,<\,</math> (वह है, <math>\,<\,</math> है {{em|not}} के रूप में परिभाषित: <math>a < b</math> यदि और केवल यदि <math>a \lesssim b \text{ and } a \neq b</math>) क्योंकि यदि पूर्व-आदेश <math>\,\lesssim\,</math> प्रतिसममित नहीं है तो परिणामी संबंध <math>\,<\,</math> सकर्मक नहीं होगा (विचार करें कि समतुल्य गैर-बराबर तत्व कैसे संबंधित हैं)। | |||
Revision as of 20:34, 22 February 2023
| Transitive binary relations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
गणित में, विशेष रूप से क्रम सिद्धांत में, एक पूर्व-आदेश या अर्ध-आदेश एक द्विआधारी संबंध है जो प्रतिवर्त संबंध और सकर्मक संबंध भी कहा जाता है। समतुल्य संबंधों और (गैर-विशुद्ध) आंशिक आदेशों की तुलना में सीमाएँ अधिक सामान्य हैं, दोनों एक पूर्व-आदेश की विशेष स्थितियों हैं: एक प्रतिसममित संबंध (या कंकाल) पूर्व-आदेश एक आंशिक आदेश है, और एक सममित संबंध पूर्व-आदेश एक तुल्यता संबंध है।
यह नाम पूर्व आदेश इस विचार से आता है कि पूर्व-आदेश (जो आंशिक आदेश नहीं हैं) 'लगभग' (आंशिक) आदेश हैं, किन्तु पूरी तरह से नहीं; वे न तो आवश्यक रूप से प्रतिसममित और न ही असममित संबंध हैं। क्योंकि पूर्व-आदेश एक बाइनरी संबंध है, प्रतीक संबंध के लिए सांकेतिक उपकरण के रूप में उपयोग किया जा सकता है। यद्यपि, क्योंकि वे आवश्यक रूप से प्रतिसममित नहीं हैं, कुछ सामान्य अंतर्ज्ञान प्रतीक से जुड़े प्रयुक्त नहीं हो सकता हैं। दूसरी तरफ, एक आंशिक क्रम और एक तुल्यता संबंध को परिभाषित करने के लिए, एक सामान्य शैली में एक पूर्व-आदेश का उपयोग किया जा सकता है। यद्यपि, ऐसा करना सदैव उपयोगी या अनुपयोगी होता है, यह अध्ययन किए जा रहे बाधा क्षेत्र पर निर्भर करता है।
शब्दों में, कब होने पर b covers a या वह a precedes b , या वह b reduces a आदि कहे जा सकते है । कभी-कभी, अंकन ← या → या के स्थान पर प्रयोग किया जाता है।
प्रत्येक पूर्व-आदेश एक निर्देशित ग्राफ से मिलता हुआ होता है, समुच्चय के तत्वों के साथ कोने के अनुरूप होता है, और कोने के बीच निर्देशित किनारों के अनुरूप तत्वों के युग्म के बीचआदेश संबंध प्रदर्शित करता है। इसका विलोम सत्य नहीं है: अधिकांश निर्देशित रेखांकन न तो प्रतिवर्त और न ही सकर्मक होते हैं । सामान्यतः, संबंधित ग्राफ़ में चक्र (ग्राफ़ सिद्धांत) हो सकता है। एक पूर्व-आदेश जो असममित है अब चक्र नहीं है; यह एक आंशिक क्रम है, और एक निर्देशित चक्रीय ग्राफ से मिलता हुआ होता है। एक पूर्व-आदेश जो सममित है एक तुल्यता संबंध प्रदर्शित करता है; इसके बारे में सोचा जा सकता है कि ग्राफ़ के किनारों पर दिशा चिह्नक विलुप्त हो गए हैं। सामान्यतः, पूर्व-आदेश के संबंधित निर्देशित ग्राफ में कई वियोजित किए गए घटक हो सकते हैं।
औपचारिक परिभाषा
एक सजातीय संबंध पर विचार करें तो किसी दिए गए समुच्चय पर जिससे परिभाषा के अनुसार, का कुछ उपसमुच्चय है और अंकन के स्थान पर प्रयोग किया जाता है , तब को preorder या quasiorder कहा जाता है यदि यह प्रतिवर्ती संबंध और सकर्मक संबंध है; अर्थात्, यदि यह संतुष्ट करता है:
- प्रतिवर्ती संबंध: सभी के लिए और
- सकर्मक संबंध: यदि सभी के लिए
- एक समुच्चय जो एक पूर्व-आदेश से लैस होता है उसे एक पूर्व आदेश समुच्चय (या प्रोसेट) कहा जाता है।[2] विशुद्ध पूर्व-आदेश पर बल या इसके विपरीत, एक पूर्व-आदेश को गैर-विशुद्ध पूर्व-आदेश के रूप में भी संदर्भित किया जा सकता है।
यदि प्रतिवर्तता को अविचलित संबंध से बदल दिया जाता है (ट्रांज़िटिविटी रखते हुए) तो परिणाम को एक विशुद्ध पूर्व-आदेश कहा जाता है; स्पष्ट रूप से, पर a strict preorder एक सजातीय द्विआधारी संबंध है पर जो निम्नलिखित बाधाओं को पूरा करता है:
उदाहरण
ग्राफ सिद्धांत
- (ऊपर चित्र देखें) x//4 से अभिप्राय सबसे बड़े पूर्णांक से है जो x से कम या उसके बराबर 4 से विभाजित है, इस प्रकार 1//4 0 है, जो निश्चित रूप से 0 से कम या उसके बराबर है, जो स्वयं 0//4 के रूप में समान है।
- किसी भी निर्देशित ग्राफ़ (संभवतः चक्र युक्त) में पहुंच योग्यता संबंध एक पूर्व-आदेश को जन्म देता है, जहां पूर्व-आदेश में यदि और केवल यदि निर्देशित ग्राफ में x से y तक का रास्ता है। इसके विपरीत, प्रत्येक पूर्व-आदेश एक निर्देशित ग्राफ़ का रीचैबिलिटी संबंधशिप है (उदाहरण के लिए, ग्राफ़ जिसमें प्रत्येक जोड़ी के लिए x से y तक का कोर है (x, y) साथ यद्यपि, कई अलग-अलग ग्राफ़ में एक-दूसरे के समान गम्यता पूर्व-आदेश हो सकते हैं। उसी तरह, निर्देशित अचक्रीय ग्राफ़ की पुन: योग्यता, बिना चक्र वाले निर्देशित ग्राफ़, आंशिक रूप से निर्देशित किए गए समुच्चयों को जन्म देते हैं (अतिरिक्त एंटीसिमेट्री संपत्ति को संतुष्ट करने वाले पूर्व-आदेश)।
- ग्राफ सिद्धांत में ग्राफ-सामान्य संबंध।
कंप्यूटर विज्ञान
कंप्यूटर विज्ञान में, निम्नलिखित पूर्व-आदेशों के उदाहरण मिल सकते हैं।
- स्पर्शोन्मुख आदेश कार्यों . पर पूर्व-आदेश का कारण बनता है संबंधित तुल्यता संबंध को स्पर्शोन्मुख तुल्यता कहा जाता है।
- बहुपद-समय, कई-एक (मानचित्रण) और ट्यूरिंग रिडक्शन जटिलता वर्गों पर पूर्व-आदेश हैं।
- उप-टाइपिंग संबंध सामान्यतः पूर्व-आदेश होते हैं।[3]
- अनुकार अग्रिम आदेश अग्रिम आदेश (इसलिए नाम) हैं।
- सार पुनर्लेखन प्रणालियों में संबंधों में कमी।
- द्वारा परिभाषित परिस्थितियों के सेट पर समावेशन पूर्व आदेश, यदि t का एक सबटर्म(उपवाक्य) s का प्रतिस्थापन उदाहरण है।
- थीटा-अवधारणा,[4] जो तब होता है जब पूर्व के लिए एक प्रतिस्थापन प्रयुक्त करने के बाद, एक वियोगात्मक प्रथम-क्रम सूत्र में शाब्दिक दूसरे द्वारा निहित होते हैं।
अन्य
और उदाहरण:
- प्रत्येक परिमित सामयिक स्थान परिभाषित करके अपने बिंदुओं पर एक पूर्व-आदेश को जन्म देता है यदि और केवल यदि x, y के प्रत्येक निकटतम से संबंधित है। इस तरह से एक सामयिक(टोपोलॉजिकल) स्थान के विशेषज्ञता पूर्व-आदेश के रूप में हर परिमित पूर्व-आदेश का गठन किया जा सकता है। यही है, परिमित सामयिक और परिमित सीमा के मध्य एक-से-एक पत्राचार होता है। चूंकि, अनंत सामयिक रिक्त स्थान और उनकी विशेषज्ञता की सीमाओं के बीच संबंध एक-से-एक नहीं है।
- एक नेट एक निर्देशित समुच्चय पूर्व-आदेश है, अर्थात तत्वों की प्रत्येक जोड़ी में ऊपरी सीमा होती है। नेट के माध्यम से अभिसरण की परिभाषा सामयिक में महत्वपूर्ण है, जहां महत्वपूर्ण विशेषताओं को खोए बिना पूर्व-आदेशों को आंशिक रूप से आदेशित समुच्चयों द्वारा प्रतिस्थापित नहीं किया जा सकता है।
- द्वारा परिभाषित संबंध यदि जहां f कुछ पूर्व-आदेश में एक प्रकार्य है।
- द्वारा परिभाषित संबंध यदि x से y तक कुछ अंतःक्षेपण समारोह उपस्थित है। अन्तःक्षेपण को या किसी भी प्रकार की संरचना-संरक्षण कार्य, जैसे रिंग समरूपता, या क्रमचय अनुमान से बदला जा सकता है।
- गणनीय कुल अदेशन(ऑर्डरिंग) के लिए अंत:स्थापन संबंध।
- एक श्रेणी किसी भी वस्तु x से किसी भी अन्य वस्तु y में अधिकतम एक रूपवाद के साथ एक पूर्व-आदेश है। ऐसी श्रेणियों को पतली श्रेणी कहा जाता है। इस अर्थ में, श्रेणियां वस्तुओं के बीच एक से अधिक संबंधों की अनुमति देकर पूर्व-आदेशों को सामान्यीकृत करती हैं: प्रत्येक आकारिकी एक विशिष्ट (नामित) पूर्व-आदेश संबंध है।
विशुद्ध दुर्बल अदेशन कुल अग्रिम आदेश का उदाहरण:
- वरीयता, सामान्य मॉडल के अनुसार।
उपयोग
कई स्थितियों में पूर्व-आदेश एक महत्वपूर्ण भूमिका निभाते हैं:
- हर पूर्व-आदेश को एक सामयिकता दी जा सकती है, अलेक्जेंडर सामयिक; और वास्तव में, समुच्चय पर प्रत्येक पूर्व-आदेश उस समुच्चय पर एक अलेक्जेंड्रोव सामयिक के साथ एक-से-एक पत्राचार में है।
- आंतरिक बीजगणित को परिभाषित करने के लिए पूर्व-आदेशों का उपयोग किया जा सकता है।
- अग्रिम आदेश कुछ प्रकार के मॉडल तर्क के लिए क्रिपके शब्दार्थ प्रदान करते हैं।
- अग्रिम आदेश का उपयोग फोर्सिंग में समुच्चय सिद्धान्त में स्थिरता और स्वतंत्रता परिणामों को सिद्ध करने के लिए किया जाता है।[5]
निर्माण
एक समुच्चय पर प्रत्येक द्विआधारी संबंध को सकर्मक बंद और प्रतिवर्ती क्लोजर को लेकर पर पूर्व-आदेश तक बढ़ाया जा सकता है , सकर्मक समापन में पथ कनेक्शन को इंगित करता है यदि और केवल यदि से तक कोई -पथ है।
एक द्विआधारी संबंध दिया पूरक रचना एक पूर्व-आदेश बनाता है जिसे बायाँ अवशिष्ट कहा जाता है,[6] जहाँ , के विलोम संबंध को दर्शाता है और के पूरक संबंध को दर्शाता है जबकि संबंध संरचना को दर्शाता है।
विभाजनों पर अग्रिम आदेश और आंशिक आदेश
पर के पूर्व आदेश को देखते हुए पर तुल्यता संबंध को परिभाषित कर सकता है जैसे कि:
इस संबंध का उपयोग करके, तुल्यता के भागफल समुच्चय पर एक आंशिक क्रम बनाना संभव है, जो कि सभी तुल्यता वर्गों का समुच्चय है यदि पूर्व आदेश द्वारा निरूपित किया जाता है तब तुल्यता वर्ग -चक्र का समुच्चय है :
यदि और केवल यदि या एक में है -साइकिल के साथ किसी भी स्थितियों में, पर परिभाषित करना संभव है यदि और केवल यदि यह अच्छी तरह से परिभाषित है, जिसका अर्थ है कि इसकी परिभाषित स्थिति किस प्रतिनिधि पर निर्भर नहीं करती है और चुने गए हैं, की परिभाषा से अनुसरण करते हैं यह आसानी से सत्यापित है कि यह आंशिक रूप सेआदेश किए गए समुच्चय का उत्पादन करता है।
इसके विपरीत, किसी समुच्चय के विभाजन पर किसी आंशिक क्रम से पर स्वतः पूर्व-आदेश बनाना संभव है । पूर्व-आदेशों और युग्म (विभाजन, आंशिक क्रम) के बीच एक-से-एक पत्राचार होता है।
उदाहरण: अनुमानित रूप में एक सिद्धांत हो, जो कुछ गुणों के साथ वाक्य का एक समुच्चय है (जिसका विवरण सिद्धांत में पाया जा सकता है)। उदाहरण के लिए, एक प्रथम-क्रम सिद्धांत (जैसे ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत) या एक सरल प्रस्तावक कलन अथवा शून्य-क्रम सिद्धांत हो सकता है | के अनेक गुणों में से एक है कि यह तार्किक परिणामों के अनुसार बंद है, उदाहरण के लिए, यदि कोई वाक्य तार्किक रूप से कुछ वाक्य का तात्पर्य है जो और हो तो आवश्यक रूप से (विधि समुच्चय करके) के रूप में भी लिखा जाएगा।
अग्रिम-आदेश और विशुद्ध पूर्व-आदेश
एक पूर्व-आदेश द्वारा प्रेरित विशुद्ध पूर्व आदेश
एक पूर्व आदेश दिया एक नया रिश्ता घोषित करके परिभाषित किया जा सकता है यदि और केवल यदि तुल्यता संबंध का उपयोग करना ऊपर प्रस्तुत किया गया, यदि और केवल यदि और इसलिए निम्नलिखित धारण करता है
If अग्रिम आदेश प्रतिसममित संबंध है (और इस प्रकार एक आंशिक क्रम) तो तुल्यता समानता है (अर्थात, यदि और केवल यदि ) और इसलिए इस स्थितियों में, की परिभाषा के रूप में पुनर्स्थापित किया जा सकता है:किन्तु खास बात यह है कि यह नई बाधा है not संबंध की सामान्य परिभाषा के रूप में (न ही यह समतुल्य है) उपयोग किया जाता है (वह है, है not के रूप में परिभाषित: यदि और केवल यदि ) क्योंकि यदि पूर्व-आदेश प्रतिसममित नहीं है तो परिणामी संबंध सकर्मक नहीं होगा (विचार करें कि समतुल्य गैर-बराबर तत्व कैसे संबंधित हैं)।
- परिभाषित करना जैसा (अर्थात, संबंध का प्रतिवर्त समापन लें)। यह विशुद्ध आंशिक आदेश से जुड़ा आंशिक आदेश देता हैप्रतिवर्ती क्लोजर के माध्यम से; इस स्थितियों में समानता समानता है तो प्रतीक और आवश्यकता नहीं है।
- परिभाषित करना जैसा(अर्थात, संबंध का व्युत्क्रम पूरक लें), जो परिभाषित करने के अनुरूप है न तो ; ये संबंध और सामान्य रूप से सकर्मक नहीं हैं; यद्यपि, यदि वे हैं एक समानता है; उस स्थितियों मेंएक विशुद्ध दुर्बल आदेश है। परिणामी पूर्व-आदेश जुड़ा हुआ संबंध है (जिसे पहले टोटल कहा जाता था); अर्थात कुल पूर्व आदेश।
पूर्व-आदेशों की संख्या
| Elements | Any | Transitive | Reflexive | Symmetric | Preorder | Partial order | Total preorder | Total order | Equivalence relation |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
| 2 | 16 | 13 | 4 | 8 | 4 | 3 | 3 | 2 | 2 |
| 3 | 512 | 171 | 64 | 64 | 29 | 19 | 13 | 6 | 5 |
| 4 | 65,536 | 3,994 | 4,096 | 1,024 | 355 | 219 | 75 | 24 | 15 |
| n | 2n2 | 2n2−n | 2n(n+1)/2 | n! | |||||
| OEIS | A002416 | A006905 | A053763 | A006125 | A000798 | A001035 | A000670 | A000142 | A000110 |
Note that S(n, k) refers to Stirling numbers of the second kind. जैसा कि ऊपर बताया गया है, पूर्व-आदेशों और जोड़े (विभाजन, आंशिक क्रम) के बीच 1-टू-1 पत्राचार है। इस प्रकार पूर्व-आदेशों की संख्या प्रत्येक विभाजन पर आंशिक आदेशों की संख्या का योग है। उदाहरण के लिए:
- for
- 1 partition of 3, giving 1 preorder
- 3 partitions of 2 + 1, giving preorders
- 1 partition of 1 + 1 + 1, giving 19 preorders
- for
- 1 partition of 4, giving 1 preorder
- 7 partitions with two classes (4 of 3 + 1 and 3 of 2 + 2), giving preorders
- 6 partitions of 2 + 1 + 1, giving preorders
- 1 partition of 1 + 1 + 1 + 1, giving 219 preorders
अंतराल
के लिए अंतराल (गणित) बिंदुओं का समुच्चय x संतोषजनक है और भी लिखा इसमें कम से कम अंक a और b होते हैं। कोई भी परिभाषा को सभी जोड़ियों तक विस्तारित करना चुन सकता है अतिरिक्त अंतराल सभी खाली हैं।
इसी विशुद्ध संबंध का उपयोग करना, कोई भी अंतराल को परिभाषित कर सकता है अंक x संतोषजनक के समुच्चय के रूप में और भी लिखा एक खुला अंतराल तथापि खाली हो सकता है भी और इसी प्रकार परिभाषित किया जा सकता है।
यह भी देखें
- आंशिक रूप से आदेशित समुच्चय - पूर्व आदेश जो प्रतिसममित संबंध है।
- तुल्यता संबंध - पूर्वक्रम जो कि सममित संबंध है।
- विशुद्ध दुर्बल आदेश या कुल अग्रिम आदेश - पूर्व आदेश जो जुड़ा हुआ संबंध है।
- कुल आदेश - पूर्व आदेश जो प्रतिसममित और कुल है।
- निर्देशित समुच्चय।
- पहले से आदेश किए गए समुच्चय की श्रेणी।
- पूर्व-आदेश देना।
- अच्छी तरह से आदेश देने वाला।
टिप्पणियाँ
- ↑ on the set of numbers divisible by 4
- ↑ For "proset", see e.g. Eklund, Patrik; Gähler, Werner (1990), "Generalized Cauchy spaces", Mathematische Nachrichten, 147: 219–233, doi:10.1002/mana.19901470123, MR 1127325.
- ↑ Pierce, Benjamin C. (2002). Types and Programming Languages. Cambridge, Massachusetts/London, England: The MIT Press. pp. 182ff. ISBN 0-262-16209-1.
- ↑ Robinson, J. A. (1965). "A machine-oriented logic based on the resolution principle". ACM. 12 (1): 23–41. doi:10.1145/321250.321253. S2CID 14389185.
- ↑ Kunen, Kenneth (1980), Set Theory, An Introduction to Independence Proofs, Studies in logic and the foundation of mathematics, vol. 102, Amsterdam, The Netherlands: Elsevier.
- ↑ In this context, "" does not mean "set difference".
संदर्भ
- Schmidt, Gunther, "Relational Mathematics", Encyclopedia of Mathematics and its Applications, vol. 132, Cambridge University Press, 2011, ISBN 978-0-521-76268-7
- Schröder, Bernd S. W. (2002), Ordered Sets: An Introduction, Boston: Birkhäuser, ISBN 0-8176-4128-9