एसी पावर: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Power in alternating current systems}} | {{Short description|Power in alternating current systems}} | ||
{{About|एसी प्रणालियों में विद्युत|उपयोगिता-आपूर्ति वाली एसी विद्युत के बारे में जानकारी|मेन्स विद्युत}} | {{About|एसी प्रणालियों में विद्युत|उपयोगिता-आपूर्ति वाली एसी विद्युत के बारे में जानकारी|मेन्स विद्युत}} | ||
[[File:City lights in motion.jpg|thumb|250px|इस गति-धुंधले लंबे प्रदर्शन में गैर-तापदीप्त शहर के प्रकाश का टिमटिमाना दिखाया गया है। गतिमान प्रकाश के निशानों के असतत स्वरुप से मुख्य शक्ति की एसी प्रकृति का पता चलता है।]]एक विद्युत परिपथ में, [[तात्कालिक शक्ति]] परिपथ के एक दिए गए बिंदु से ऊर्जा के प्रवाह की समय दर है। [[प्रत्यावर्ती धारा]] परिपथों में, | [[File:City lights in motion.jpg|thumb|250px|इस गति-धुंधले लंबे प्रदर्शन में गैर-तापदीप्त शहर के प्रकाश का टिमटिमाना दिखाया गया है। गतिमान प्रकाश के निशानों के असतत स्वरुप से मुख्य शक्ति की एसी प्रकृति का पता चलता है।]]एक विद्युत परिपथ में, [[तात्कालिक शक्ति|तात्क्षणिक शक्ति]] परिपथ के एक दिए गए बिंदु से ऊर्जा के प्रवाह की समय दर है। [[प्रत्यावर्ती धारा]] परिपथों में, प्रेरक और [[संधारित्र]] जैसे ऊर्जा भंडारण तत्व ऊर्जा प्रवाह की दिशा के आवधिक उत्क्रमण में परिणत हो सकते हैं। इसका एसआई मात्रक [[वाट]] है। | ||
[[एसी तरंग|एसी तरंगरूप]] के एक पूर्ण चक्र पर औसत तात्क्षणिक शक्ति के एक ऐसे भाग को तात्क्षणिक सक्रिय शक्ति के रूप में जाना जाता है, जिसके परिणामस्वरूप एक दिशा में ऊर्जा का शुद्ध हस्तांतरण होता है, और इसके समय औसत को '''सक्रिय शक्ति''' या '''वास्तविक शक्ति''' के रूप में जाना जाता है।<ref name="IEEE_1459" />{{rp|3}} तात्क्षणिक शक्ति का उस भाग को तात्क्षणिक प्रतिघाती शक्ति के रूप में जाना जाता है, जिसके परिणामस्वरूप ऊर्जा का कोई शुद्ध हस्तांतरण नहीं होता है, बल्कि संग्रहित ऊर्जा के कारण प्रत्येक चक्र में स्रोत और भार के बीच दोलन होता है, और इसका आयाम '''प्रतिघाती शक्ति''' का निरपेक्ष मान है।<ref name="ThomasRosaToussaint_2016">{{cite book | title = रैखिक सर्किट का विश्लेषण और डिजाइन| edition = 8 | first1 = Roland E. | last1 = Thomas | first2 = Albert J. | last2 = Rosa | first3 = Gregory J. | last3 = Toussaint | publisher = Wiley | year = 2016 | pages = 812–813 | isbn = 978-1-119-23538-5}}</रेफरी><nowiki><ref name="IEEE_1459"></nowiki>{{cite book | title = साइनसॉइडल, नॉनसाइनसॉइडल, संतुलित, या असंतुलित स्थितियों के तहत इलेक्ट्रिक पावर मात्रा के मापन के लिए आईईईई मानक परिभाषाएं| publisher = IEEE | year = 2010 | isbn = 978-0-7381-6058-0 | doi = 10.1109/IEEESTD.2010.5439063}}</रेफरी>{{rp|4}} | |||
=={{anchor|Active power|Reactive power|Apparent power|Complex power|Real power}}साइनसोइडल स्थिर-अवस्था == में सक्रिय, प्रतिक्रियाशील, स्पष्ट और जटिल शक्ति | =={{anchor|Active power|Reactive power|Apparent power|Complex power|Real power}}साइनसोइडल स्थिर-अवस्था == में सक्रिय, प्रतिक्रियाशील, स्पष्ट और जटिल शक्ति | ||
एक साधारण प्रत्यावर्ती धारा (AC) सर्किट में एक स्रोत और एक [[रैखिक सर्किट]] [[समय-अपरिवर्तनीय प्रणाली]] | टाइम-इनवेरिएंट लोड होता है, जिसमें करंट और वोल्टेज दोनों समान आवृत्ति पर [[साइन लहर]] होते हैं।<nowiki><ref name="Das_2015"></nowiki>{{cite book | title = पावर सिस्टम हार्मोनिक्स और पैसिव फ़िल्टर डिज़ाइन| first = J. C. | last = Das | publisher = Wiley, IEEE Press | year = 2015 | page = 2 | isbn = 978-1-118-86162-2 | quote = रैखिक और अरेखीय भार के बीच अंतर करने के लिए, हम कह सकते हैं कि रैखिक समय-अपरिवर्तनीय भार की विशेषता है ताकि एक साइनसोइडल वोल्टेज के एक आवेदन के परिणामस्वरूप वर्तमान का एक साइनसोइडल प्रवाह हो।}}</ref> | एक साधारण प्रत्यावर्ती धारा (AC) सर्किट में एक स्रोत और एक [[रैखिक सर्किट]] [[समय-अपरिवर्तनीय प्रणाली]] | टाइम-इनवेरिएंट लोड होता है, जिसमें करंट और वोल्टेज दोनों समान आवृत्ति पर [[साइन लहर]] होते हैं।<nowiki><ref name="Das_2015"></nowiki>{{cite book | title = पावर सिस्टम हार्मोनिक्स और पैसिव फ़िल्टर डिज़ाइन| first = J. C. | last = Das | publisher = Wiley, IEEE Press | year = 2015 | page = 2 | isbn = 978-1-118-86162-2 | quote = रैखिक और अरेखीय भार के बीच अंतर करने के लिए, हम कह सकते हैं कि रैखिक समय-अपरिवर्तनीय भार की विशेषता है ताकि एक साइनसोइडल वोल्टेज के एक आवेदन के परिणामस्वरूप वर्तमान का एक साइनसोइडल प्रवाह हो।}}</ref> | ||
== | == ज्यावक्रीय स्थिर-अवस्था में सक्रिय, प्रतिघाती, आभासी और जटिल शक्ति == | ||
साधारण प्रत्यावर्ती धारा (एसी) परिपथ में एक स्रोत और एक रैखिक समय-अपरिवर्तनीय भार होता है, धारा और विभवान्तर दोनों एक ही आवृत्ति पर ज्यावक्रीय होते हैं।[[:en:AC_power#cite_note-Das_2015-3|<sup>[3]</sup>]] यदि भार विशुद्ध रूप से [[प्रतिरोधी]] है, तो दो राशियाँ एक ही समय में अपनी ध्रुवीयता को उलट देती हैं। हर पल विभवान्तर और करंट का गुणनफल धनात्मक या शून्य होता है, जिसका परिणाम यह होता है कि ऊर्जा प्रवाह की दिशा उलटी नहीं होती है। इस मामले में, केवल सक्रिय शक्ति स्थानांतरित की जाती है। | |||
यदि लोड विशुद्ध रूप से | यदि लोड विशुद्ध रूप से प्रतिघाती है, तो विभवान्तर और करंट 90 डिग्री चरण से बाहर हैं। प्रत्येक चक्र के दो तिमाहियों के लिए, विभवान्तर और करंट का गुणनफल धनात्मक होता है, लेकिन अन्य दो तिमाहियों के लिए, उत्पाद ऋणात्मक होता है, जो यह दर्शाता है कि औसतन उतनी ही ऊर्जा भार में प्रवाहित होती है जितनी कि वापस बाहर प्रवाहित होती है। प्रत्येक आधे चक्र में कोई शुद्ध ऊर्जा प्रवाह नहीं होता है। इस मामले में, केवल प्रतिघाती शक्ति प्रवाहित होती है: भार में ऊर्जा का कोई शुद्ध हस्तांतरण नहीं होता है; हालाँकि, विद्युत शक्ति तारों के साथ प्रवाहित होती है और उसी तारों के साथ विपरीत दिशा में प्रवाहित होकर लौटती है। इस प्रतिघाती शक्ति प्रवाह के लिए आवश्यक धारा लाइन प्रतिरोध में ऊर्जा का प्रसार करती है, भले ही आदर्श लोड डिवाइस स्वयं ऊर्जा का उपभोग न करे। व्यावहारिक भार में प्रतिरोध के साथ-साथ अधिष्ठापन, या धारिता भी होती है, इसलिए सक्रिय और प्रतिघाती दोनों शक्तियाँ सामान्य भार में प्रवाहित होंगी। | ||
आभासी शक्ति | आभासी शक्ति विभवान्तर और करंट के मूल-माध्य-वर्ग मानों का गुणनफल है। पावर सिस्टम को डिजाइन और संचालित करते समय आभासी शक्ति को ध्यान में रखा जाता है, क्योंकि हालांकि प्रतिघाती शक्ति से जुड़ा करंट लोड पर काम नहीं करता है, फिर भी इसे पावर स्रोत द्वारा आपूर्ति की जानी चाहिए। कंडक्टर, ट्रांसफॉर्मर और जनरेटर को कुल करंट को ले जाने के लिए आकार देना चाहिए, न कि केवल उस करंट को जो उपयोगी कार्य करता है। विद्युत ग्रिडों में पर्याप्त प्रतिघाती शक्ति की आपूर्ति प्रदान करने में विफलता से विभवान्तर का स्तर कम हो सकता है और, कुछ परिचालन स्थितियों के तहत, नेटवर्क या [[बिजली चली गयी|ब्लैकआउट]] का पूर्ण पतन हो सकता है। एक अन्य परिणाम यह है कि दो भारों के लिए आभासी शक्ति जोड़ने से कुल शक्ति तब तक सही नहीं होगी जब तक कि उनके पास धारा और विभवान्तर (समान शक्ति कारक) के बीच समान चरण अंतर न हो। | ||
परंपरागत रूप से, कैपेसिटर के साथ ऐसा व्यवहार किया जाता है जैसे कि वे | परंपरागत रूप से, कैपेसिटर के साथ ऐसा व्यवहार किया जाता है जैसे कि वे प्रतिघाती शक्ति उत्पन्न करते हैं, और इंडिकेटर्स के साथ ऐसा व्यवहार किया जाता है जैसे कि वे इसका उपभोग करते हैं। यदि एक संधारित्र और एक प्रारंभ करनेवाला को समानांतर में रखा जाता है, तो संधारित्र और प्रारंभ करनेवाला के माध्यम से बहने वाली धाराएँ जोड़ने के बजाय रद्द हो जाती हैं। विद्युत शक्ति संचरण में शक्ति कारक को नियंत्रित करने के लिए यह मूलभूत तंत्र है; कैपेसिटर (या इंडक्टर्स) लोड द्वारा 'खपत' ('जेनरेट') की प्रतिघाती शक्ति के लिए आंशिक रूप से क्षतिपूर्ति करने के लिए परिपथ में डाले जाते हैं। विशुद्ध रूप से कैपेसिटिव परिपथ धारा तरंग के साथ प्रतिघाती शक्ति की आपूर्ति करते हैं, जो विभवान्तर तरंग को 90 डिग्री तक ले जाते हैं, जबकि विशुद्ध रूप से आगमनात्मक परिपथ धारा तरंग के साथ प्रतिघाती शक्ति को अवशोषित करते हैं, विभवान्तर तरंग को 90 डिग्री से पीछे कर देते हैं। इसका परिणाम यह है कि कैपेसिटिव और इंडक्टिव परिपथ तत्व एक दूसरे को रद्द कर देते हैं।[[:en:AC_power#cite_note-4|<sup>[4]</sup>]] | ||
[[File:Cmplxpower.svg|thumb|293x293px|<u>'''शक्ति त्रिभुज'''</u>जटिल शक्ति सक्रिय और | [[File:Cmplxpower.svg|thumb|293x293px|<u>'''शक्ति त्रिभुज'''</u>जटिल शक्ति सक्रिय और प्रतिघाती शक्ति का सदिश योग है। आभासी शक्ति, जटिल शक्ति का परिमाण है।<br> '''सक्रिय शक्ति''', ''P''<br> '''प्रतिघाती शक्ति''', ''Q''<br> '''जटिल शक्ति''', ''S'<br> '''''आभासी शक्ति''''', ''{{pipe}}S{{pipe}}<br> '''धारा के सापेक्ष विभवान्तर का चरण''', <math>\varphi</math>]]एक सिस्टम में ऊर्जा प्रवाह का वर्णन करने के लिए इंजीनियर निम्नलिखित शब्दों का उपयोग करते हैं (और उनमें से प्रत्येक को उनके बीच अंतर करने के लिए एक अलग इकाई असाइन करते हैं): | ||
* सक्रिय शक्ति,<ref>''[http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 Definition of Active Power in the International Electrotechnical Vocabulary] {{webarchive |url=https://web.archive.org/web/20150423120137/http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 |date=April 23, 2015 }}</ref> पी, या 'वास्तविक शक्ति':<ref>''IEEE 100 : the authoritative dictionary of IEEE standards terms.-7th ed.'' {{ISBN|0-7381-2601-2}}, page 23</ref> वाट (डब्ल्यू); | * सक्रिय शक्ति,<ref>''[http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 Definition of Active Power in the International Electrotechnical Vocabulary] {{webarchive |url=https://web.archive.org/web/20150423120137/http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 |date=April 23, 2015 }}</ref> पी, या 'वास्तविक शक्ति':<ref>''IEEE 100 : the authoritative dictionary of IEEE standards terms.-7th ed.'' {{ISBN|0-7381-2601-2}}, page 23</ref> वाट (डब्ल्यू); | ||
* | * प्रतिघाती शक्ति, ''Q'': [[वोल्ट-एम्पीयर]] प्रतिघाती (वार); | ||
* कॉम्प्लेक्स पावर, ''S'': वोल्ट-एम्पीयर (VA); | * कॉम्प्लेक्स पावर, ''S'': वोल्ट-एम्पीयर (VA); | ||
* | * आभासी शक्ति, |''S''|: जटिल शक्ति ''S'' का [[परिमाण (वेक्टर)]]: वोल्ट-एम्पीयर (VA); | ||
* करंट के सापेक्ष | * करंट के सापेक्ष विभवान्तर का चरण, ''φ'': करंट और विभवान्तर के बीच अंतर का कोण (डिग्री में); <math>\varphi=\arg(V)-\arg(I)</math>. करंट लैगिंग [[वोल्टेज|विभवान्तर]] (क्वाड्रंट (प्लेन ज्योमेट्री) I वेक्टर), करंट लीडिंग विभवान्तर (क्वाड्रेंट IV वेक्टर)। | ||
इन सभी को आसन्न आरेख (जिसे शक्ति त्रिकोण कहा जाता है) में दर्शाया गया है। | इन सभी को आसन्न आरेख (जिसे शक्ति त्रिकोण कहा जाता है) में दर्शाया गया है। | ||
आरेख में, पी सक्रिय शक्ति है, क्यू | आरेख में, पी सक्रिय शक्ति है, क्यू प्रतिघाती शक्ति है (इस मामले में सकारात्मक), एस जटिल शक्ति है और एस की लंबाई आभासी शक्ति है। प्रतिघाती शक्ति कोई कार्य नहीं करती है, इसलिए इसे वेक्टर आरेख के '''काल्पनिक अक्ष''' के रूप में दर्शाया जाता है। सक्रिय शक्ति काम करती है, इसलिए वह वास्तविक धुरी है। | ||
शक्ति की इकाई वाट (प्रतीक: डब्ल्यू) है। | शक्ति की इकाई वाट (प्रतीक: डब्ल्यू) है। आभासी शक्ति अक्सर वोल्ट-एम्पीयर (VA) में व्यक्त की जाती है क्योंकि यह RMS विभवान्तर और RMS [[विद्युत प्रवाह]] का उत्पाद है। प्रतिघाती शक्ति की इकाई var है, जो वोल्ट-एम्पीयर प्रतिघाती के लिए है। चूंकि प्रतिघाती शक्ति भार में कोई शुद्ध ऊर्जा स्थानांतरित नहीं करती है, इसे कभी-कभी "वाटलेस" शक्ति कहा जाता है। हालांकि, यह [[विद्युत ग्रिड]] में एक महत्वपूर्ण कार्य करता है और इसकी कमी को 2003 के पूर्वोत्तर ब्लैकआउट में एक महत्वपूर्ण कारक के रूप में उद्धृत किया गया है।<ref>{{cite web |title=August 14, 2003 Outage – Sequence of Events |url=http://www.ferc.gov/industries/electric/indus-act/blackout/09-12-03-blackout-sum.pdf |publisher=[[FERC]] |date=2003-09-12 |access-date=2008-02-18 |archive-url=https://web.archive.org/web/20071020070028/http://www.ferc.gov/industries/electric/indus-act/blackout/09-12-03-blackout-sum.pdf |archive-date=2007-10-20 |url-status=dead }}</ref> इन तीन राशियों के बीच संबंध को समझना पावर इंजीनियरिंग को समझने के केंद्र में है। उनके बीच गणितीय संबंध को वैक्टर द्वारा दर्शाया जा सकता है या जटिल संख्याओं का उपयोग करके व्यक्त किया जा सकता है, S = P + j Q (जहाँ j [[काल्पनिक इकाई]] है)। | ||
[[File:Active-and-reactive-power-064pf-en.svg|thumb|500px|एसी प्रणाली में | [[File:Active-and-reactive-power-064pf-en.svg|thumb|500px|एसी प्रणाली में तात्क्षणिक शक्ति जब धारा विभवान्तर से 50 डिग्री पीछे हो जाती है।]] | ||
== | == ज्यावक्रीय स्थिर-अवस्था में गणना और समीकरण == | ||
[[चरण]]बद्ध रूप में जटिल शक्ति (इकाइयां: VA) का सूत्र है: | [[चरण]]बद्ध रूप में जटिल शक्ति (इकाइयां: VA) का सूत्र है: | ||
:<math>S=VI^*=|S|\angle\varphi</math>, | :<math>S=VI^*=|S|\angle\varphi</math>, | ||
जहाँ V चरण रूप में | जहाँ V चरण रूप में विभवान्तर को RMS के रूप में आयाम के साथ दर्शाता है, और I चरण रूप में धारा को RMS के रूप में आयाम के साथ दर्शाता है। साथ ही परिपाटी द्वारा, I के जटिल संयुग्म का उपयोग किया जाता है, जिसे निरूपित किया जाता है<math>I^*</math> (या <math>\overline I</math>), स्वयं I के बजाय। ऐसा इसलिए किया जाता है क्योंकि अन्यथा S को परिभाषित करने के लिए उत्पाद VI का उपयोग करने से ऐसी मात्रा प्राप्त होगी जो V या I के लिए चुने गए संदर्भ कोण पर निर्भर करती है, लेकिन S को V I* के रूप में परिभाषित करने से ऐसी मात्रा प्राप्त होती है जो संदर्भ कोण पर निर्भर नहीं करती है और अनुमति देती है S को P और Q से संबंधित करने के लिए।<ref>{{Cite book|last=Close|first=Charles M.|title=The Analysis of Linear Circuits|pages=398 (section 8.3)}}</ref> | ||
जटिल शक्ति के अन्य रूप (वोल्ट-एम्प्स, VA में इकाइयाँ) Z, भार [[विद्युत प्रतिबाधा|प्रतिबाधा]] (ओम, Ω में इकाइयाँ) से प्राप्त होते हैं। | जटिल शक्ति के अन्य रूप (वोल्ट-एम्प्स, VA में इकाइयाँ) Z, भार [[विद्युत प्रतिबाधा|प्रतिबाधा]] (ओम, Ω में इकाइयाँ) से प्राप्त होते हैं। | ||
| Line 53: | Line 53: | ||
आर लोड के प्रतिरोध (ओम, Ω में इकाइयां) को दर्शाता है। | आर लोड के प्रतिरोध (ओम, Ω में इकाइयां) को दर्शाता है। | ||
प्रतिघाती शक्ति (वोल्ट-एम्प्स-प्रतिघाती, var में इकाइयाँ) इस प्रकार प्राप्त होती हैं: | |||
:<math>Q=|S|\sin{\varphi}=|I|^2 X=\frac{|V|^2}{|Z|^2} \times{X}</math>. | :<math>Q=|S|\sin{\varphi}=|I|^2 X=\frac{|V|^2}{|Z|^2} \times{X}</math>. | ||
विशुद्ध रूप से | विशुद्ध रूप से प्रतिघाती भार के लिए, प्रतिघाती शक्ति को सरल बनाया जा सकता है: | ||
:<math> Q = \frac{|V|^2}{X}</math>, | :<math> Q = \frac{|V|^2}{X}</math>, | ||
| Line 67: | Line 67: | ||
:<math>S=P+jQ</math>, | :<math>S=P+jQ</math>, | ||
और | और आभासी शक्ति (वोल्ट-एम्प्स, VA में इकाइयाँ) के रूप में | ||
:<math>|S|=\sqrt{P^2+Q^2}</math>. | :<math>|S|=\sqrt{P^2+Q^2}</math>. | ||
| Line 76: | Line 76: | ||
{{Main|शक्ति गुणांक}} | {{Main|शक्ति गुणांक}} | ||
एक | एक परिपथ में सक्रिय शक्ति और आभासी शक्ति के अनुपात को शक्ति कारक कहा जाता है। समान मात्रा में सक्रिय शक्ति संचारित करने वाली दो प्रणालियों के लिए, कम शक्ति कारक वाली प्रणाली में ऊर्जा के कारण उच्च परिसंचारी धाराएँ होंगी जो लोड में ऊर्जा भंडारण से स्रोत पर लौटती हैं। ये उच्च धाराएँ उच्च नुकसान उत्पन्न करती हैं और समग्र संचरण दक्षता को कम करती हैं। कम शक्ति कारक परिपथ में सक्रिय शक्ति की समान मात्रा के लिए उच्च आभासी शक्ति और उच्च हानि होगी। पावर फैक्टर 1.0 है जब विभवान्तर और करंट फेज में होते हैं। यह शून्य है जब करंट विभवान्तर को 90 डिग्री से आगे या पीछे करता है। जब विभवान्तर और करंट फेज से बाहर 180 डिग्री होते हैं, तो पावर फैक्टर नेगेटिव होता है, और लोड ऊर्जा को स्रोत में फीड कर रहा है (एक उदाहरण छत पर सौर कोशिकाओं वाला एक घर होगा जो पावर ग्रिड में पावर फीड करता है जब सूरज चमक रहा है)। विभवान्तर के संबंध में धारा के चरण कोण के संकेत को दिखाने के लिए पावर कारकों को आमतौर पर "अग्रणी" या "पिछड़ने" के रूप में कहा जाता है। विभवान्तर को उस आधार के रूप में नामित किया जाता है जिससे धारा कोण की तुलना की जाती है, जिसका अर्थ है कि धारा को "अग्रणी" या "पिछड़ने" विभवान्तर के रूप में माना जाता है। जहां वेवफॉर्म विशुद्ध रूप से ज्यावक्रीय होते हैं, पावर फैक्टर चरण कोण का कोसाइन होता है (<math>\varphi</math>) करंट और विभवान्तर ज्यावक्रीय वेवफॉर्म के बीच। उपकरण डेटा शीट और नेमप्लेट अक्सर पावर फैक्टर को "के रूप में संक्षिप्त करेंगे"<math>\cos \phi</math>" इस कारण से। | ||
उदाहरण: सक्रिय शक्ति 700 W है और | उदाहरण: सक्रिय शक्ति 700 W है और विभवान्तर और करंट के बीच का चरण कोण 45.6 ° है। पावर फैक्टर cos(45.6°) = 0.700 है। आभासी शक्ति तब है: 700 W / cos(45.6°) = 1000 VA। एसी परिपथ में बिजली अपव्यय की अवधारणा को उदाहरण के साथ समझाया और समझाया गया है। | ||
उदाहरण के लिए, 0.68 के एक शक्ति कारक का मतलब है कि कुल आपूर्ति (परिमाण में) का केवल 68 प्रतिशत वास्तव में काम कर रहा है; शेष करंट लोड पर कोई काम नहीं करता है। | उदाहरण के लिए, 0.68 के एक शक्ति कारक का मतलब है कि कुल आपूर्ति (परिमाण में) का केवल 68 प्रतिशत वास्तव में काम कर रहा है; शेष करंट लोड पर कोई काम नहीं करता है। | ||
== | == प्रतिघाती शक्ति == | ||
प्रत्यक्ष | प्रत्यक्ष धारा परिपथ में, भार में प्रवाहित होने वाली शक्ति लोड के माध्यम से धारा के उत्पाद और भार में संभावित गिरावट के समानुपाती होती है। स्रोत से लोड तक ऊर्जा एक दिशा में प्रवाहित होती है। एसी पावर में, विभवान्तर और करंट दोनों लगभग साइनसॉइड रूप से भिन्न होते हैं। जब परिपथ में इंडक्शन या कैपेसिटेंस होता है, तो विभवान्तर और करंट वेवफॉर्म पूरी तरह से लाइन में नहीं आते हैं। विद्युत प्रवाह के दो घटक होते हैं - एक घटक स्रोत से लोड की ओर प्रवाहित होता है और लोड पर कार्य कर सकता है; अन्य भाग, जिसे "प्रतिघाती शक्ति" के रूप में जाना जाता है, विभवान्तर और करंट के बीच देरी के कारण होता है, जिसे चरण कोण के रूप में जाना जाता है, और लोड पर उपयोगी कार्य नहीं कर सकता है। इसे धारा के रूप में माना जा सकता है जो गलत समय पर आ रहा है (बहुत देर या बहुत जल्दी)। प्रतिघाती शक्ति को सक्रिय शक्ति से अलग करने के लिए, इसे "[[वोल्ट-एम्पीयर प्रतिक्रियाशील|वोल्ट-एम्पीयर प्रतिघाती]]" या वर की इकाइयों में मापा जाता है। ये इकाइयां वाट्स को सरल कर सकती हैं लेकिन यह दर्शाने के लिए var के रूप में छोड़ दी जाती हैं कि वे वास्तविक कार्य आउटपुट का प्रतिनिधित्व नहीं करते हैं। | ||
नेटवर्क के कैपेसिटिव या आगमनात्मक तत्वों में संग्रहीत ऊर्जा | नेटवर्क के कैपेसिटिव या आगमनात्मक तत्वों में संग्रहीत ऊर्जा प्रतिघाती शक्ति प्रवाह को जन्म देती है। प्रतिघाती शक्ति प्रवाह पूरे नेटवर्क में विभवान्तर के स्तर को दृढ़ता से प्रभावित करता है। स्वीकार्य सीमा के भीतर बिजली प्रणाली को संचालित करने की अनुमति देने के लिए विभवान्तर स्तर और प्रतिघाती शक्ति प्रवाह को सावधानीपूर्वक नियंत्रित किया जाना चाहिए। [[लचीला एसी संचरण प्रणाली|प्रतिघाती क्षतिपूर्ति]] के रूप में जानी जाने वाली तकनीक का उपयोग पारेषण लाइनों से आपूर्ति की जाने वाली प्रतिघाती शक्ति को कम करके और इसे स्थानीय रूप से प्रदान करके लोड में आभासी शक्ति प्रवाह को कम करने के लिए किया जाता है। उदाहरण के लिए, आगमनात्मक भार की क्षतिपूर्ति करने के लिए, लोड के पास ही एक शंट कैपेसिटर स्थापित किया जाता है। यह कैपेसिटर द्वारा आपूर्ति की जाने वाली लोड द्वारा आवश्यक सभी प्रतिघाती शक्ति की अनुमति देता है और इसे ट्रांसमिशन लाइनों पर स्थानांतरित नहीं करना पड़ता है। इस अभ्यास से ऊर्जा की बचत होती है क्योंकि यह उस ऊर्जा की मात्रा को कम कर देता है जिसे समान कार्य करने के लिए उपयोगिता द्वारा उत्पादित किया जाना आवश्यक है। इसके अतिरिक्त, यह छोटे कंडक्टर या कम बंडल कंडक्टर का उपयोग करके और ट्रांसमिशन टावरों के डिजाइन को अनुकूलित करने के लिए अधिक कुशल ट्रांसमिशन लाइन डिज़ाइन की अनुमति देता है। | ||
=== कैपेसिटिव बनाम इंडक्टिव लोड === | === कैपेसिटिव बनाम इंडक्टिव लोड === | ||
लोड डिवाइस के चुंबकीय या विद्युत क्षेत्र में संग्रहीत ऊर्जा, जैसे मोटर या कैपेसिटर, | लोड डिवाइस के चुंबकीय या विद्युत क्षेत्र में संग्रहीत ऊर्जा, जैसे मोटर या कैपेसिटर, धारा और विभवान्तर तरंगों के बीच ऑफसेट का कारण बनता है। कैपेसिटर एक उपकरण है जो ऊर्जा को विद्युत क्षेत्र के रूप में संग्रहीत करता है। जैसा कि धारा को संधारित्र के माध्यम से संचालित किया जाता है, चार्ज बिल्ड-अप के कारण संधारित्र में एक विरोधी विभवान्तर विकसित होता है। यह विभवान्तर तब तक बढ़ता है जब तक कि कैपेसिटर संरचना द्वारा अधिकतम निर्धारित नहीं किया जाता है। एक एसी नेटवर्क में, कैपेसिटर में विभवान्तर लगातार बदल रहा है। कैपेसिटर इस परिवर्तन का विरोध करता है, जिससे धारा चरण में विभवान्तर का नेतृत्व करती है। कैपेसिटर को "स्रोत" प्रतिघाती शक्ति कहा जाता है, और इस प्रकार एक प्रमुख शक्ति कारक का कारण बनता है। | ||
इंडक्शन मशीनें आज इलेक्ट्रिक पावर सिस्टम में सबसे सामान्य प्रकार के भार हैं। ये मशीनें चुंबकीय क्षेत्र के रूप में ऊर्जा को संग्रहित करने के लिए [[कुचालक|इंडक्टर्स]] या तार के बड़े कॉइल का उपयोग करती हैं। जब एक | इंडक्शन मशीनें आज इलेक्ट्रिक पावर सिस्टम में सबसे सामान्य प्रकार के भार हैं। ये मशीनें चुंबकीय क्षेत्र के रूप में ऊर्जा को संग्रहित करने के लिए [[कुचालक|इंडक्टर्स]] या तार के बड़े कॉइल का उपयोग करती हैं। जब एक विभवान्तर शुरू में कॉइल में रखा जाता है, तो प्रारंभ करनेवाला धारा और चुंबकीय क्षेत्र में इस परिवर्तन का दृढ़ता से विरोध करता है, जिससे करंट को अपने अधिकतम मूल्य तक पहुंचने में समय लगता है। यह करंट को फेज में विभवान्तर से पिछड़ने का कारण बनता है। इंडक्टर्स को प्रतिघाती शक्ति को "सिंक" करने के लिए कहा जाता है, और इस प्रकार एक कमजोर शक्ति कारक का कारण बनता है। [[प्रेरण जनरेटर]] प्रतिघाती शक्ति का स्रोत या सिंक कर सकते हैं, और प्रतिघाती शक्ति प्रवाह और इस प्रकार विभवान्तर पर सिस्टम ऑपरेटरों को नियंत्रण का एक उपाय प्रदान करते हैं।<ref>{{cite web|url=http://web.media.mit.edu/~dolguin/mas961/loads.html |title=Load differentiation |access-date=2015-04-29 |url-status=dead |archive-url=https://web.archive.org/web/20151025015726/http://web.media.mit.edu/~dolguin/mas961/loads.html |archive-date=2015-10-25 }}</ref> क्योंकि इन उपकरणों का विभवान्तर और करंट के बीच के चरण कोण पर विपरीत प्रभाव पड़ता है, इसलिए इनका उपयोग एक दूसरे के प्रभावों को "रद्द" करने के लिए किया जा सकता है। यह आमतौर पर कैपेसिटर बैंकों का रूप लेता है जिसका उपयोग इंडक्शन मोटर्स के कारण होने वाले लैगिंग पावर फैक्टर का प्रतिकार करने के लिए किया जाता है। | ||
=== | === प्रतिघाती शक्ति नियंत्रण === | ||
{{main|विभवान्तर नियंत्रण और प्रतिक्रियाशील शक्ति प्रबंधन}} | {{main|विभवान्तर नियंत्रण और प्रतिक्रियाशील शक्ति प्रबंधन}} | ||
ट्रांसमिशन से जुड़े जनरेटर आमतौर पर | ट्रांसमिशन से जुड़े जनरेटर आमतौर पर प्रतिघाती शक्ति प्रवाह का समर्थन करने के लिए आवश्यक होते हैं। उदाहरण के लिए, यूनाइटेड किंगडम ट्रांसमिशन सिस्टम पर, जनरेटर को ग्रिड कोड आवश्यकताएँ द्वारा 0.85 पावर फैक्टर लैगिंग और 0.90 पावर फैक्टर की सीमा के बीच नामित टर्मिनलों पर अग्रणी करने की आवश्यकता होती है। प्रतिघाती शक्ति संतुलन समीकरण को बनाए रखते हुए सिस्टम ऑपरेटर एक सुरक्षित और किफायती विभवान्तर प्रोफ़ाइल बनाए रखने के लिए स्विचिंग क्रियाएं करेगा: | ||
: <math>\mathrm{Generator\ MVARs + System\ gain + Shunt\ capacitors = MVAR\ Demand + Reactive\ losses + Shunt\ reactors}</math> | : <math>\mathrm{Generator\ MVARs + System\ gain + Shunt\ capacitors = MVAR\ Demand + Reactive\ losses + Shunt\ reactors}</math> | ||
उपरोक्त शक्ति संतुलन समीकरण में "सिस्टम गेन" | उपरोक्त शक्ति संतुलन समीकरण में "सिस्टम गेन" प्रतिघाती शक्ति का एक महत्वपूर्ण स्रोत है, जो कि ट्रांसमिशन नेटवर्क की कैपेसिटिव प्रकृति द्वारा ही उत्पन्न होता है। मांग बढ़ने से पहले सुबह-सुबह निर्णायक स्विचिंग क्रियाएं करके, पूरे दिन के लिए सिस्टम को सुरक्षित रखने में मदद करते हुए, सिस्टम लाभ को जल्दी अधिकतम किया जा सकता है। समीकरण को संतुलित करने के लिए कुछ पूर्व-दोष प्रतिघाती जनरेटर उपयोग की आवश्यकता होगी। प्रतिघाती शक्ति के अन्य स्रोतों का भी उपयोग किया जाएगा जिसमें शंट कैपेसिटर, शंट रिएक्टर, स्थिर VAR कम्पेसाटर और विभवान्तर नियंत्रण परिपथ शामिल हैं। | ||
== असंतुलित | == असंतुलित ज्यावक्रीय पॉलीफ़ेज़ सिस्टम == | ||
जबकि सक्रिय शक्ति और | जबकि सक्रिय शक्ति और प्रतिघाती शक्ति किसी भी प्रणाली में अच्छी तरह से परिभाषित हैं, असंतुलित पॉलीपेज़ सिस्टम के लिए आभासी शक्ति की परिभाषा को पावर इंजीनियरिंग में सबसे विवादास्पद विषयों में से एक माना जाता है। मूल रूप से, आभासी शक्ति केवल योग्यता के रूप में उत्पन्न हुई। इस अवधारणा के प्रमुख चित्रण का श्रेय स्टैनले की फेनोमेना ऑफ रिटार्डेशन इन द इंडक्शन कॉइल (1888) और [[चार्ल्स प्रोटियस स्टेनमेट्ज़]] के थ्योरेटिकल एलिमेंट्स ऑफ इंजीनियरिंग (1915) को दिया जाता है। हालांकि, तीन चरण बिजली वितरण के विकास के साथ, यह आभासी हो गया कि आभासी शक्ति और शक्ति कारक की परिभाषा असंतुलित [[पॉलीफ़ेज़ सिस्टम]] पर लागू नहीं की जा सकती। 1920 में, इस मुद्दे को हल करने के लिए "एआईईई और नेशनल इलेक्ट्रिक लाइट एसोसिएशन की विशेष संयुक्त समिति" की बैठक हुई। उन्होंने दो परिभाषाओं पर विचार किया। | ||
: <math>S_A = |S_\mathrm{a}| + |S_\mathrm{b}| + |S_\mathrm{c}|</math> : <math>\mathrm{pf}_A = {P_\mathrm{a} + P_\mathrm{b} + P_\mathrm{c} \over S_A}</math>, | : <math>S_A = |S_\mathrm{a}| + |S_\mathrm{b}| + |S_\mathrm{c}|</math> : <math>\mathrm{pf}_A = {P_\mathrm{a} + P_\mathrm{b} + P_\mathrm{c} \over S_A}</math>, | ||
अर्थात्, चरण | अर्थात्, चरण आभासी शक्तियों का अंकगणितीय योग; और | ||
: <math>S_V = |P_\mathrm{a} + P_\mathrm{b} + P_\mathrm{c} + j(Q_\mathrm{a} + Q_\mathrm{b} + Q_\mathrm{c})|</math> | : <math>S_V = |P_\mathrm{a} + P_\mathrm{b} + P_\mathrm{c} + j(Q_\mathrm{a} + Q_\mathrm{b} + Q_\mathrm{c})|</math> | ||
: <math>\mathrm{pf}_V = {P_\mathrm{a} + P_\mathrm{b} + P_\mathrm{c} \over S_V}</math>, | : <math>\mathrm{pf}_V = {P_\mathrm{a} + P_\mathrm{b} + P_\mathrm{c} \over S_V}</math>, | ||
| Line 111: | Line 111: | ||
1920 की समिति को कोई आम सहमति नहीं मिली और विषय चर्चाओं पर हावी रहा। 1930 में, एक और समिति बनी और एक बार फिर इस प्रश्न को हल करने में विफल रही। उनकी चर्चाओं का प्रतिलेख एआईईई द्वारा प्रकाशित अब तक का सबसे लंबा और सबसे विवादास्पद है।<ref name="Emanuel_1993">{{cite journal |last1=Emanuel |first1=Alexander |title=साइनसॉइडल वोल्टेज और धाराओं के साथ असंतुलित पॉलीफ़ेज़ सर्किट में पावर फैक्टर और स्पष्ट शक्ति की परिभाषा पर|journal=IEEE Transactions on Power Delivery |date=July 1993 |volume=8 |issue=3 |pages=841–852 |doi=10.1109/61.252612 |ref=Emanuel_1993}}</ref> इस बहस का आगे का समाधान 1990 के दशक के अंत तक नहीं आया। | 1920 की समिति को कोई आम सहमति नहीं मिली और विषय चर्चाओं पर हावी रहा। 1930 में, एक और समिति बनी और एक बार फिर इस प्रश्न को हल करने में विफल रही। उनकी चर्चाओं का प्रतिलेख एआईईई द्वारा प्रकाशित अब तक का सबसे लंबा और सबसे विवादास्पद है।<ref name="Emanuel_1993">{{cite journal |last1=Emanuel |first1=Alexander |title=साइनसॉइडल वोल्टेज और धाराओं के साथ असंतुलित पॉलीफ़ेज़ सर्किट में पावर फैक्टर और स्पष्ट शक्ति की परिभाषा पर|journal=IEEE Transactions on Power Delivery |date=July 1993 |volume=8 |issue=3 |pages=841–852 |doi=10.1109/61.252612 |ref=Emanuel_1993}}</ref> इस बहस का आगे का समाधान 1990 के दशक के अंत तक नहीं आया। | ||
[[सममित घटक]] सिद्धांत पर आधारित एक नई परिभाषा 1993 में अलेक्जेंडर इमानुएल द्वारा असंतुलित रेखीय भार के लिए प्रस्तावित की गई थी जो विषम | [[सममित घटक]] सिद्धांत पर आधारित एक नई परिभाषा 1993 में अलेक्जेंडर इमानुएल द्वारा असंतुलित रेखीय भार के लिए प्रस्तावित की गई थी जो विषम ज्यावक्रीय विभवान्तर के साथ आपूर्ति की गई थी: | ||
: <math>S = \sqrt{ \left( |V_\mathrm{a}^2| + |V_\mathrm{b}^2| + |V_\mathrm{c}^2| \right ) \left ( |I_\mathrm{a}^2| + |I_\mathrm{b}^2| + |I_\mathrm{c}^2| \right )}</math> | : <math>S = \sqrt{ \left( |V_\mathrm{a}^2| + |V_\mathrm{b}^2| + |V_\mathrm{c}^2| \right ) \left ( |I_\mathrm{a}^2| + |I_\mathrm{b}^2| + |I_\mathrm{c}^2| \right )}</math> | ||
: <math>\mathrm{pf} = {P^+ \over S}</math>, | : <math>\mathrm{pf} = {P^+ \over S}</math>, | ||
अर्थात्, लाइन | अर्थात्, लाइन विभवान्तर के वर्ग योग की जड़ को लाइन धाराओं के वर्ग योग की जड़ से गुणा किया जाता है। <math>P^+</math> सकारात्मक अनुक्रम शक्ति को दर्शाता है: | ||
:<math>P^+ = 3 |V^+| |I^+| \cos{(\arg{(V^+)} - \arg{(I^+)})}</math> | :<math>P^+ = 3 |V^+| |I^+| \cos{(\arg{(V^+)} - \arg{(I^+)})}</math> | ||
<math>V^+</math> सकारात्मक अनुक्रम | <math>V^+</math> सकारात्मक अनुक्रम विभवान्तर फेजर को दर्शाता है, और <math>I^+</math> सकारात्मक अनुक्रम धारा चरण को दर्शाता है।<ref name="Emanuel_1993" /> | ||
== वास्तविक संख्या सूत्र == | == वास्तविक संख्या सूत्र == | ||
एक पूर्ण अवरोधक कोई ऊर्जा संग्रहीत नहीं करता है; इसलिए करंट और | एक पूर्ण अवरोधक कोई ऊर्जा संग्रहीत नहीं करता है; इसलिए करंट और विभवान्तर फेज में हैं। इसलिए, कोई प्रतिघाती शक्ति नहीं है और <math>P=S</math> ([[निष्क्रिय साइन कन्वेंशन]] का उपयोग करके)। इसलिए, एक पूर्ण अवरोधक के लिए | ||
:<math>P = S = V_\mathrm{RMS} I_\mathrm{RMS} = I_\mathrm{RMS}^2 R = \frac{V_\mathrm{RMS}^2} {R}\,\!</math>. | :<math>P = S = V_\mathrm{RMS} I_\mathrm{RMS} = I_\mathrm{RMS}^2 R = \frac{V_\mathrm{RMS}^2} {R}\,\!</math>. | ||
एक पूर्ण संधारित्र या प्रारंभ करनेवाला के लिए, कोई शुद्ध शक्ति हस्तांतरण नहीं होता है; इसलिए सारी शक्ति | एक पूर्ण संधारित्र या प्रारंभ करनेवाला के लिए, कोई शुद्ध शक्ति हस्तांतरण नहीं होता है; इसलिए सारी शक्ति प्रतिघाती है। इसलिए, एक पूर्ण संधारित्र या प्रारंभ करनेवाला के लिए: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
P &= 0 \\ | P &= 0 \\ | ||
| Line 134: | Line 134: | ||
:<math>Q = I_\mathrm{RMS}^2 X = \frac{V_\mathrm{RMS}^2} {X}</math>. | :<math>Q = I_\mathrm{RMS}^2 X = \frac{V_\mathrm{RMS}^2} {X}</math>. | ||
तात्क्षणिक शक्ति को इस प्रकार परिभाषित किया गया है: | |||
:<math>p(t) = v(t) \, i(t)</math>, | :<math>p(t) = v(t) \, i(t)</math>, | ||
कहाँ पे <math>v(t)</math> और <math>i(t)</math> समय-भिन्न | कहाँ पे <math>v(t)</math> और <math>i(t)</math> समय-भिन्न विभवान्तर और धारा तरंग हैं। | ||
यह परिभाषा उपयोगी है क्योंकि यह सभी तरंगों पर लागू होती है, चाहे वे ज्यावक्रीय हों या नहीं। यह पावर इलेक्ट्रॉनिक्स में विशेष रूप से उपयोगी है, जहां गैर-साइनसॉइडल वेवफॉर्म आम हैं। | यह परिभाषा उपयोगी है क्योंकि यह सभी तरंगों पर लागू होती है, चाहे वे ज्यावक्रीय हों या नहीं। यह पावर इलेक्ट्रॉनिक्स में विशेष रूप से उपयोगी है, जहां गैर-साइनसॉइडल वेवफॉर्म आम हैं। | ||
सामान्य तौर पर, इंजीनियर समय की अवधि में औसतन सक्रिय शक्ति में रुचि रखते हैं, चाहे वह कम आवृत्ति लाइन चक्र हो या उच्च आवृत्ति पावर कन्वर्टर स्विचिंग अवधि। उस परिणाम को प्राप्त करने का सबसे आसान तरीका वांछित अवधि में | सामान्य तौर पर, इंजीनियर समय की अवधि में औसतन सक्रिय शक्ति में रुचि रखते हैं, चाहे वह कम आवृत्ति लाइन चक्र हो या उच्च आवृत्ति पावर कन्वर्टर स्विचिंग अवधि। उस परिणाम को प्राप्त करने का सबसे आसान तरीका वांछित अवधि में तात्क्षणिक गणना का अभिन्न अंग लेना है: | ||
:<math>P_\text{avg} = \frac{1}{t_2 - t_1}\int_{t_1}^{t_2} v(t) \, i(t) \, \mathrm dt</math>. | :<math>P_\text{avg} = \frac{1}{t_2 - t_1}\int_{t_1}^{t_2} v(t) \, i(t) \, \mathrm dt</math>. | ||
| Line 148: | Line 148: | ||
== एकाधिक आवृत्ति प्रणाली == | == एकाधिक आवृत्ति प्रणाली == | ||
चूँकि किसी भी तरंग के लिए RMS मान की गणना की जा सकती है, इससे | चूँकि किसी भी तरंग के लिए RMS मान की गणना की जा सकती है, इससे आभासी शक्ति की गणना की जा सकती है। सक्रिय शक्ति के लिए सबसे पहले यह प्रतीत होगा कि कई उत्पाद शर्तों की गणना करना और उन सभी का औसत करना आवश्यक होगा। हालांकि, इन उत्पाद शर्तों में से किसी एक को अधिक विस्तार से देखने से एक बहुत ही रोचक परिणाम उत्पन्न होता है। | ||
:<math>\begin{align} | :<math>\begin{align} | ||
&A\cos(\omega_1t+k_1)\cos(\omega_2t + k_2) \\ | &A\cos(\omega_1t+k_1)\cos(\omega_2t + k_2) \\ | ||
| Line 154: | Line 154: | ||
= {} &\frac{A}{2}\cos\left[\left(\omega_1 + \omega_2\right)t + k_1 + k_2\right] + \frac{A}{2}\cos\left[\left(\omega_1 - \omega_2\right)t + k_1 - k_2\right] | = {} &\frac{A}{2}\cos\left[\left(\omega_1 + \omega_2\right)t + k_1 + k_2\right] + \frac{A}{2}\cos\left[\left(\omega_1 - \omega_2\right)t + k_1 - k_2\right] | ||
\end{align}</math> | \end{align}</math> | ||
हालांकि, {{nowrap|cos(''ωt'' + ''k'')}} के रूप के एक फ़ंक्शन का समय औसत शून्य है, बशर्ते कि ω शून्येतर हो। इसलिए, एकमात्र उत्पाद शब्द जिनका औसत शून्य नहीं है, वे हैं जहां | हालांकि, {{nowrap|cos(''ωt'' + ''k'')}} के रूप के एक फ़ंक्शन का समय औसत शून्य है, बशर्ते कि ω शून्येतर हो। इसलिए, एकमात्र उत्पाद शब्द जिनका औसत शून्य नहीं है, वे हैं जहां विभवान्तर और करंट की आवृत्ति मेल खाती है। दूसरे शब्दों में, प्रत्येक आवृत्ति को अलग-अलग व्यवहार करके और उत्तरों को जोड़कर सक्रिय (औसत) शक्ति की गणना करना संभव है। इसके अलावा, यदि मुख्य आपूर्ति के विभवान्तर को एकल आवृत्ति माना जाता है (जो आमतौर पर होता है), तो यह दर्शाता है कि [[हार्मोनिक्स (विद्युत शक्ति)|हार्मोनिक धाराएं]] एक बुरी चीज हैं। वे आरएमएस करंट को बढ़ाएंगे (चूंकि इसमें गैर-शून्य शर्तें जोड़ी जाएंगी) और इसलिए आभासी शक्ति, लेकिन हस्तांतरित सक्रिय शक्ति पर उनका कोई प्रभाव नहीं पड़ेगा। इसलिए, हार्मोनिक धाराएं शक्ति कारक को कम कर देंगी। डिवाइस के इनपुट पर लगाए गए फ़िल्टर द्वारा हार्मोनिक धाराओं को कम किया जा सकता है। आमतौर पर इसमें या तो केवल एक संधारित्र (परजीवी प्रतिरोध और आपूर्ति में अधिष्ठापन पर निर्भर) या एक संधारित्र-प्रारंभ करनेवाला नेटवर्क शामिल होगा। इनपुट पर एक सक्रिय [[शक्ति का कारक सुधार]] परिपथ आम तौर पर हार्मोनिक धाराओं को और कम कर देगा और पावर फैक्टर को एकता के करीब बनाए रखेगा। | ||
== यह भी देखें == | == यह भी देखें == | ||
Revision as of 12:05, 9 February 2023
एक विद्युत परिपथ में, तात्क्षणिक शक्ति परिपथ के एक दिए गए बिंदु से ऊर्जा के प्रवाह की समय दर है। प्रत्यावर्ती धारा परिपथों में, प्रेरक और संधारित्र जैसे ऊर्जा भंडारण तत्व ऊर्जा प्रवाह की दिशा के आवधिक उत्क्रमण में परिणत हो सकते हैं। इसका एसआई मात्रक वाट है।
एसी तरंगरूप के एक पूर्ण चक्र पर औसत तात्क्षणिक शक्ति के एक ऐसे भाग को तात्क्षणिक सक्रिय शक्ति के रूप में जाना जाता है, जिसके परिणामस्वरूप एक दिशा में ऊर्जा का शुद्ध हस्तांतरण होता है, और इसके समय औसत को सक्रिय शक्ति या वास्तविक शक्ति के रूप में जाना जाता है।[1]: 3 तात्क्षणिक शक्ति का उस भाग को तात्क्षणिक प्रतिघाती शक्ति के रूप में जाना जाता है, जिसके परिणामस्वरूप ऊर्जा का कोई शुद्ध हस्तांतरण नहीं होता है, बल्कि संग्रहित ऊर्जा के कारण प्रत्येक चक्र में स्रोत और भार के बीच दोलन होता है, और इसका आयाम प्रतिघाती शक्ति का निरपेक्ष मान है।[2]
ज्यावक्रीय स्थिर-अवस्था में सक्रिय, प्रतिघाती, आभासी और जटिल शक्ति
साधारण प्रत्यावर्ती धारा (एसी) परिपथ में एक स्रोत और एक रैखिक समय-अपरिवर्तनीय भार होता है, धारा और विभवान्तर दोनों एक ही आवृत्ति पर ज्यावक्रीय होते हैं।[3] यदि भार विशुद्ध रूप से प्रतिरोधी है, तो दो राशियाँ एक ही समय में अपनी ध्रुवीयता को उलट देती हैं। हर पल विभवान्तर और करंट का गुणनफल धनात्मक या शून्य होता है, जिसका परिणाम यह होता है कि ऊर्जा प्रवाह की दिशा उलटी नहीं होती है। इस मामले में, केवल सक्रिय शक्ति स्थानांतरित की जाती है।
यदि लोड विशुद्ध रूप से प्रतिघाती है, तो विभवान्तर और करंट 90 डिग्री चरण से बाहर हैं। प्रत्येक चक्र के दो तिमाहियों के लिए, विभवान्तर और करंट का गुणनफल धनात्मक होता है, लेकिन अन्य दो तिमाहियों के लिए, उत्पाद ऋणात्मक होता है, जो यह दर्शाता है कि औसतन उतनी ही ऊर्जा भार में प्रवाहित होती है जितनी कि वापस बाहर प्रवाहित होती है। प्रत्येक आधे चक्र में कोई शुद्ध ऊर्जा प्रवाह नहीं होता है। इस मामले में, केवल प्रतिघाती शक्ति प्रवाहित होती है: भार में ऊर्जा का कोई शुद्ध हस्तांतरण नहीं होता है; हालाँकि, विद्युत शक्ति तारों के साथ प्रवाहित होती है और उसी तारों के साथ विपरीत दिशा में प्रवाहित होकर लौटती है। इस प्रतिघाती शक्ति प्रवाह के लिए आवश्यक धारा लाइन प्रतिरोध में ऊर्जा का प्रसार करती है, भले ही आदर्श लोड डिवाइस स्वयं ऊर्जा का उपभोग न करे। व्यावहारिक भार में प्रतिरोध के साथ-साथ अधिष्ठापन, या धारिता भी होती है, इसलिए सक्रिय और प्रतिघाती दोनों शक्तियाँ सामान्य भार में प्रवाहित होंगी।
आभासी शक्ति विभवान्तर और करंट के मूल-माध्य-वर्ग मानों का गुणनफल है। पावर सिस्टम को डिजाइन और संचालित करते समय आभासी शक्ति को ध्यान में रखा जाता है, क्योंकि हालांकि प्रतिघाती शक्ति से जुड़ा करंट लोड पर काम नहीं करता है, फिर भी इसे पावर स्रोत द्वारा आपूर्ति की जानी चाहिए। कंडक्टर, ट्रांसफॉर्मर और जनरेटर को कुल करंट को ले जाने के लिए आकार देना चाहिए, न कि केवल उस करंट को जो उपयोगी कार्य करता है। विद्युत ग्रिडों में पर्याप्त प्रतिघाती शक्ति की आपूर्ति प्रदान करने में विफलता से विभवान्तर का स्तर कम हो सकता है और, कुछ परिचालन स्थितियों के तहत, नेटवर्क या ब्लैकआउट का पूर्ण पतन हो सकता है। एक अन्य परिणाम यह है कि दो भारों के लिए आभासी शक्ति जोड़ने से कुल शक्ति तब तक सही नहीं होगी जब तक कि उनके पास धारा और विभवान्तर (समान शक्ति कारक) के बीच समान चरण अंतर न हो।
परंपरागत रूप से, कैपेसिटर के साथ ऐसा व्यवहार किया जाता है जैसे कि वे प्रतिघाती शक्ति उत्पन्न करते हैं, और इंडिकेटर्स के साथ ऐसा व्यवहार किया जाता है जैसे कि वे इसका उपभोग करते हैं। यदि एक संधारित्र और एक प्रारंभ करनेवाला को समानांतर में रखा जाता है, तो संधारित्र और प्रारंभ करनेवाला के माध्यम से बहने वाली धाराएँ जोड़ने के बजाय रद्द हो जाती हैं। विद्युत शक्ति संचरण में शक्ति कारक को नियंत्रित करने के लिए यह मूलभूत तंत्र है; कैपेसिटर (या इंडक्टर्स) लोड द्वारा 'खपत' ('जेनरेट') की प्रतिघाती शक्ति के लिए आंशिक रूप से क्षतिपूर्ति करने के लिए परिपथ में डाले जाते हैं। विशुद्ध रूप से कैपेसिटिव परिपथ धारा तरंग के साथ प्रतिघाती शक्ति की आपूर्ति करते हैं, जो विभवान्तर तरंग को 90 डिग्री तक ले जाते हैं, जबकि विशुद्ध रूप से आगमनात्मक परिपथ धारा तरंग के साथ प्रतिघाती शक्ति को अवशोषित करते हैं, विभवान्तर तरंग को 90 डिग्री से पीछे कर देते हैं। इसका परिणाम यह है कि कैपेसिटिव और इंडक्टिव परिपथ तत्व एक दूसरे को रद्द कर देते हैं।[4]
एक सिस्टम में ऊर्जा प्रवाह का वर्णन करने के लिए इंजीनियर निम्नलिखित शब्दों का उपयोग करते हैं (और उनमें से प्रत्येक को उनके बीच अंतर करने के लिए एक अलग इकाई असाइन करते हैं):
- सक्रिय शक्ति,[3] पी, या 'वास्तविक शक्ति':[4] वाट (डब्ल्यू);
- प्रतिघाती शक्ति, Q: वोल्ट-एम्पीयर प्रतिघाती (वार);
- कॉम्प्लेक्स पावर, S: वोल्ट-एम्पीयर (VA);
- आभासी शक्ति, |S|: जटिल शक्ति S का परिमाण (वेक्टर): वोल्ट-एम्पीयर (VA);
- करंट के सापेक्ष विभवान्तर का चरण, φ: करंट और विभवान्तर के बीच अंतर का कोण (डिग्री में); . करंट लैगिंग विभवान्तर (क्वाड्रंट (प्लेन ज्योमेट्री) I वेक्टर), करंट लीडिंग विभवान्तर (क्वाड्रेंट IV वेक्टर)।
इन सभी को आसन्न आरेख (जिसे शक्ति त्रिकोण कहा जाता है) में दर्शाया गया है।
आरेख में, पी सक्रिय शक्ति है, क्यू प्रतिघाती शक्ति है (इस मामले में सकारात्मक), एस जटिल शक्ति है और एस की लंबाई आभासी शक्ति है। प्रतिघाती शक्ति कोई कार्य नहीं करती है, इसलिए इसे वेक्टर आरेख के काल्पनिक अक्ष के रूप में दर्शाया जाता है। सक्रिय शक्ति काम करती है, इसलिए वह वास्तविक धुरी है।
शक्ति की इकाई वाट (प्रतीक: डब्ल्यू) है। आभासी शक्ति अक्सर वोल्ट-एम्पीयर (VA) में व्यक्त की जाती है क्योंकि यह RMS विभवान्तर और RMS विद्युत प्रवाह का उत्पाद है। प्रतिघाती शक्ति की इकाई var है, जो वोल्ट-एम्पीयर प्रतिघाती के लिए है। चूंकि प्रतिघाती शक्ति भार में कोई शुद्ध ऊर्जा स्थानांतरित नहीं करती है, इसे कभी-कभी "वाटलेस" शक्ति कहा जाता है। हालांकि, यह विद्युत ग्रिड में एक महत्वपूर्ण कार्य करता है और इसकी कमी को 2003 के पूर्वोत्तर ब्लैकआउट में एक महत्वपूर्ण कारक के रूप में उद्धृत किया गया है।[5] इन तीन राशियों के बीच संबंध को समझना पावर इंजीनियरिंग को समझने के केंद्र में है। उनके बीच गणितीय संबंध को वैक्टर द्वारा दर्शाया जा सकता है या जटिल संख्याओं का उपयोग करके व्यक्त किया जा सकता है, S = P + j Q (जहाँ j काल्पनिक इकाई है)।
ज्यावक्रीय स्थिर-अवस्था में गणना और समीकरण
चरणबद्ध रूप में जटिल शक्ति (इकाइयां: VA) का सूत्र है:
- ,
जहाँ V चरण रूप में विभवान्तर को RMS के रूप में आयाम के साथ दर्शाता है, और I चरण रूप में धारा को RMS के रूप में आयाम के साथ दर्शाता है। साथ ही परिपाटी द्वारा, I के जटिल संयुग्म का उपयोग किया जाता है, जिसे निरूपित किया जाता है (या ), स्वयं I के बजाय। ऐसा इसलिए किया जाता है क्योंकि अन्यथा S को परिभाषित करने के लिए उत्पाद VI का उपयोग करने से ऐसी मात्रा प्राप्त होगी जो V या I के लिए चुने गए संदर्भ कोण पर निर्भर करती है, लेकिन S को V I* के रूप में परिभाषित करने से ऐसी मात्रा प्राप्त होती है जो संदर्भ कोण पर निर्भर नहीं करती है और अनुमति देती है S को P और Q से संबंधित करने के लिए।[6]
जटिल शक्ति के अन्य रूप (वोल्ट-एम्प्स, VA में इकाइयाँ) Z, भार प्रतिबाधा (ओम, Ω में इकाइयाँ) से प्राप्त होते हैं।
- .
नतीजतन, शक्ति त्रिकोण के संदर्भ में, वास्तविक शक्ति (वाट, डब्ल्यू में इकाइयां) के रूप में प्राप्त की जाती है:
- .
विशुद्ध रूप से प्रतिरोधक भार के लिए, वास्तविक शक्ति को सरल बनाया जा सकता है:
- .
आर लोड के प्रतिरोध (ओम, Ω में इकाइयां) को दर्शाता है।
प्रतिघाती शक्ति (वोल्ट-एम्प्स-प्रतिघाती, var में इकाइयाँ) इस प्रकार प्राप्त होती हैं:
- .
विशुद्ध रूप से प्रतिघाती भार के लिए, प्रतिघाती शक्ति को सरल बनाया जा सकता है:
- ,
जहां X भार के विद्युत मुक़ाबले (ओम में इकाइयां, Ω) को दर्शाता है।
संयोजन, जटिल शक्ति (वोल्ट-एम्प्स, VA में इकाइयाँ) के रूप में वापस व्युत्पन्न है
- ,
और आभासी शक्ति (वोल्ट-एम्प्स, VA में इकाइयाँ) के रूप में
- .
इन्हें शक्ति त्रिकोण द्वारा आरेखीय रूप से सरलीकृत किया गया है।
शक्ति गुणांक
एक परिपथ में सक्रिय शक्ति और आभासी शक्ति के अनुपात को शक्ति कारक कहा जाता है। समान मात्रा में सक्रिय शक्ति संचारित करने वाली दो प्रणालियों के लिए, कम शक्ति कारक वाली प्रणाली में ऊर्जा के कारण उच्च परिसंचारी धाराएँ होंगी जो लोड में ऊर्जा भंडारण से स्रोत पर लौटती हैं। ये उच्च धाराएँ उच्च नुकसान उत्पन्न करती हैं और समग्र संचरण दक्षता को कम करती हैं। कम शक्ति कारक परिपथ में सक्रिय शक्ति की समान मात्रा के लिए उच्च आभासी शक्ति और उच्च हानि होगी। पावर फैक्टर 1.0 है जब विभवान्तर और करंट फेज में होते हैं। यह शून्य है जब करंट विभवान्तर को 90 डिग्री से आगे या पीछे करता है। जब विभवान्तर और करंट फेज से बाहर 180 डिग्री होते हैं, तो पावर फैक्टर नेगेटिव होता है, और लोड ऊर्जा को स्रोत में फीड कर रहा है (एक उदाहरण छत पर सौर कोशिकाओं वाला एक घर होगा जो पावर ग्रिड में पावर फीड करता है जब सूरज चमक रहा है)। विभवान्तर के संबंध में धारा के चरण कोण के संकेत को दिखाने के लिए पावर कारकों को आमतौर पर "अग्रणी" या "पिछड़ने" के रूप में कहा जाता है। विभवान्तर को उस आधार के रूप में नामित किया जाता है जिससे धारा कोण की तुलना की जाती है, जिसका अर्थ है कि धारा को "अग्रणी" या "पिछड़ने" विभवान्तर के रूप में माना जाता है। जहां वेवफॉर्म विशुद्ध रूप से ज्यावक्रीय होते हैं, पावर फैक्टर चरण कोण का कोसाइन होता है () करंट और विभवान्तर ज्यावक्रीय वेवफॉर्म के बीच। उपकरण डेटा शीट और नेमप्लेट अक्सर पावर फैक्टर को "के रूप में संक्षिप्त करेंगे"" इस कारण से।
उदाहरण: सक्रिय शक्ति 700 W है और विभवान्तर और करंट के बीच का चरण कोण 45.6 ° है। पावर फैक्टर cos(45.6°) = 0.700 है। आभासी शक्ति तब है: 700 W / cos(45.6°) = 1000 VA। एसी परिपथ में बिजली अपव्यय की अवधारणा को उदाहरण के साथ समझाया और समझाया गया है।
उदाहरण के लिए, 0.68 के एक शक्ति कारक का मतलब है कि कुल आपूर्ति (परिमाण में) का केवल 68 प्रतिशत वास्तव में काम कर रहा है; शेष करंट लोड पर कोई काम नहीं करता है।
प्रतिघाती शक्ति
प्रत्यक्ष धारा परिपथ में, भार में प्रवाहित होने वाली शक्ति लोड के माध्यम से धारा के उत्पाद और भार में संभावित गिरावट के समानुपाती होती है। स्रोत से लोड तक ऊर्जा एक दिशा में प्रवाहित होती है। एसी पावर में, विभवान्तर और करंट दोनों लगभग साइनसॉइड रूप से भिन्न होते हैं। जब परिपथ में इंडक्शन या कैपेसिटेंस होता है, तो विभवान्तर और करंट वेवफॉर्म पूरी तरह से लाइन में नहीं आते हैं। विद्युत प्रवाह के दो घटक होते हैं - एक घटक स्रोत से लोड की ओर प्रवाहित होता है और लोड पर कार्य कर सकता है; अन्य भाग, जिसे "प्रतिघाती शक्ति" के रूप में जाना जाता है, विभवान्तर और करंट के बीच देरी के कारण होता है, जिसे चरण कोण के रूप में जाना जाता है, और लोड पर उपयोगी कार्य नहीं कर सकता है। इसे धारा के रूप में माना जा सकता है जो गलत समय पर आ रहा है (बहुत देर या बहुत जल्दी)। प्रतिघाती शक्ति को सक्रिय शक्ति से अलग करने के लिए, इसे "वोल्ट-एम्पीयर प्रतिघाती" या वर की इकाइयों में मापा जाता है। ये इकाइयां वाट्स को सरल कर सकती हैं लेकिन यह दर्शाने के लिए var के रूप में छोड़ दी जाती हैं कि वे वास्तविक कार्य आउटपुट का प्रतिनिधित्व नहीं करते हैं।
नेटवर्क के कैपेसिटिव या आगमनात्मक तत्वों में संग्रहीत ऊर्जा प्रतिघाती शक्ति प्रवाह को जन्म देती है। प्रतिघाती शक्ति प्रवाह पूरे नेटवर्क में विभवान्तर के स्तर को दृढ़ता से प्रभावित करता है। स्वीकार्य सीमा के भीतर बिजली प्रणाली को संचालित करने की अनुमति देने के लिए विभवान्तर स्तर और प्रतिघाती शक्ति प्रवाह को सावधानीपूर्वक नियंत्रित किया जाना चाहिए। प्रतिघाती क्षतिपूर्ति के रूप में जानी जाने वाली तकनीक का उपयोग पारेषण लाइनों से आपूर्ति की जाने वाली प्रतिघाती शक्ति को कम करके और इसे स्थानीय रूप से प्रदान करके लोड में आभासी शक्ति प्रवाह को कम करने के लिए किया जाता है। उदाहरण के लिए, आगमनात्मक भार की क्षतिपूर्ति करने के लिए, लोड के पास ही एक शंट कैपेसिटर स्थापित किया जाता है। यह कैपेसिटर द्वारा आपूर्ति की जाने वाली लोड द्वारा आवश्यक सभी प्रतिघाती शक्ति की अनुमति देता है और इसे ट्रांसमिशन लाइनों पर स्थानांतरित नहीं करना पड़ता है। इस अभ्यास से ऊर्जा की बचत होती है क्योंकि यह उस ऊर्जा की मात्रा को कम कर देता है जिसे समान कार्य करने के लिए उपयोगिता द्वारा उत्पादित किया जाना आवश्यक है। इसके अतिरिक्त, यह छोटे कंडक्टर या कम बंडल कंडक्टर का उपयोग करके और ट्रांसमिशन टावरों के डिजाइन को अनुकूलित करने के लिए अधिक कुशल ट्रांसमिशन लाइन डिज़ाइन की अनुमति देता है।
कैपेसिटिव बनाम इंडक्टिव लोड
लोड डिवाइस के चुंबकीय या विद्युत क्षेत्र में संग्रहीत ऊर्जा, जैसे मोटर या कैपेसिटर, धारा और विभवान्तर तरंगों के बीच ऑफसेट का कारण बनता है। कैपेसिटर एक उपकरण है जो ऊर्जा को विद्युत क्षेत्र के रूप में संग्रहीत करता है। जैसा कि धारा को संधारित्र के माध्यम से संचालित किया जाता है, चार्ज बिल्ड-अप के कारण संधारित्र में एक विरोधी विभवान्तर विकसित होता है। यह विभवान्तर तब तक बढ़ता है जब तक कि कैपेसिटर संरचना द्वारा अधिकतम निर्धारित नहीं किया जाता है। एक एसी नेटवर्क में, कैपेसिटर में विभवान्तर लगातार बदल रहा है। कैपेसिटर इस परिवर्तन का विरोध करता है, जिससे धारा चरण में विभवान्तर का नेतृत्व करती है। कैपेसिटर को "स्रोत" प्रतिघाती शक्ति कहा जाता है, और इस प्रकार एक प्रमुख शक्ति कारक का कारण बनता है।
इंडक्शन मशीनें आज इलेक्ट्रिक पावर सिस्टम में सबसे सामान्य प्रकार के भार हैं। ये मशीनें चुंबकीय क्षेत्र के रूप में ऊर्जा को संग्रहित करने के लिए इंडक्टर्स या तार के बड़े कॉइल का उपयोग करती हैं। जब एक विभवान्तर शुरू में कॉइल में रखा जाता है, तो प्रारंभ करनेवाला धारा और चुंबकीय क्षेत्र में इस परिवर्तन का दृढ़ता से विरोध करता है, जिससे करंट को अपने अधिकतम मूल्य तक पहुंचने में समय लगता है। यह करंट को फेज में विभवान्तर से पिछड़ने का कारण बनता है। इंडक्टर्स को प्रतिघाती शक्ति को "सिंक" करने के लिए कहा जाता है, और इस प्रकार एक कमजोर शक्ति कारक का कारण बनता है। प्रेरण जनरेटर प्रतिघाती शक्ति का स्रोत या सिंक कर सकते हैं, और प्रतिघाती शक्ति प्रवाह और इस प्रकार विभवान्तर पर सिस्टम ऑपरेटरों को नियंत्रण का एक उपाय प्रदान करते हैं।[7] क्योंकि इन उपकरणों का विभवान्तर और करंट के बीच के चरण कोण पर विपरीत प्रभाव पड़ता है, इसलिए इनका उपयोग एक दूसरे के प्रभावों को "रद्द" करने के लिए किया जा सकता है। यह आमतौर पर कैपेसिटर बैंकों का रूप लेता है जिसका उपयोग इंडक्शन मोटर्स के कारण होने वाले लैगिंग पावर फैक्टर का प्रतिकार करने के लिए किया जाता है।
प्रतिघाती शक्ति नियंत्रण
ट्रांसमिशन से जुड़े जनरेटर आमतौर पर प्रतिघाती शक्ति प्रवाह का समर्थन करने के लिए आवश्यक होते हैं। उदाहरण के लिए, यूनाइटेड किंगडम ट्रांसमिशन सिस्टम पर, जनरेटर को ग्रिड कोड आवश्यकताएँ द्वारा 0.85 पावर फैक्टर लैगिंग और 0.90 पावर फैक्टर की सीमा के बीच नामित टर्मिनलों पर अग्रणी करने की आवश्यकता होती है। प्रतिघाती शक्ति संतुलन समीकरण को बनाए रखते हुए सिस्टम ऑपरेटर एक सुरक्षित और किफायती विभवान्तर प्रोफ़ाइल बनाए रखने के लिए स्विचिंग क्रियाएं करेगा:
उपरोक्त शक्ति संतुलन समीकरण में "सिस्टम गेन" प्रतिघाती शक्ति का एक महत्वपूर्ण स्रोत है, जो कि ट्रांसमिशन नेटवर्क की कैपेसिटिव प्रकृति द्वारा ही उत्पन्न होता है। मांग बढ़ने से पहले सुबह-सुबह निर्णायक स्विचिंग क्रियाएं करके, पूरे दिन के लिए सिस्टम को सुरक्षित रखने में मदद करते हुए, सिस्टम लाभ को जल्दी अधिकतम किया जा सकता है। समीकरण को संतुलित करने के लिए कुछ पूर्व-दोष प्रतिघाती जनरेटर उपयोग की आवश्यकता होगी। प्रतिघाती शक्ति के अन्य स्रोतों का भी उपयोग किया जाएगा जिसमें शंट कैपेसिटर, शंट रिएक्टर, स्थिर VAR कम्पेसाटर और विभवान्तर नियंत्रण परिपथ शामिल हैं।
असंतुलित ज्यावक्रीय पॉलीफ़ेज़ सिस्टम
जबकि सक्रिय शक्ति और प्रतिघाती शक्ति किसी भी प्रणाली में अच्छी तरह से परिभाषित हैं, असंतुलित पॉलीपेज़ सिस्टम के लिए आभासी शक्ति की परिभाषा को पावर इंजीनियरिंग में सबसे विवादास्पद विषयों में से एक माना जाता है। मूल रूप से, आभासी शक्ति केवल योग्यता के रूप में उत्पन्न हुई। इस अवधारणा के प्रमुख चित्रण का श्रेय स्टैनले की फेनोमेना ऑफ रिटार्डेशन इन द इंडक्शन कॉइल (1888) और चार्ल्स प्रोटियस स्टेनमेट्ज़ के थ्योरेटिकल एलिमेंट्स ऑफ इंजीनियरिंग (1915) को दिया जाता है। हालांकि, तीन चरण बिजली वितरण के विकास के साथ, यह आभासी हो गया कि आभासी शक्ति और शक्ति कारक की परिभाषा असंतुलित पॉलीफ़ेज़ सिस्टम पर लागू नहीं की जा सकती। 1920 में, इस मुद्दे को हल करने के लिए "एआईईई और नेशनल इलेक्ट्रिक लाइट एसोसिएशन की विशेष संयुक्त समिति" की बैठक हुई। उन्होंने दो परिभाषाओं पर विचार किया।
- : ,
अर्थात्, चरण आभासी शक्तियों का अंकगणितीय योग; और
- ,
वह है, तीन चरण की कुल जटिल शक्ति का परिमाण।
1920 की समिति को कोई आम सहमति नहीं मिली और विषय चर्चाओं पर हावी रहा। 1930 में, एक और समिति बनी और एक बार फिर इस प्रश्न को हल करने में विफल रही। उनकी चर्चाओं का प्रतिलेख एआईईई द्वारा प्रकाशित अब तक का सबसे लंबा और सबसे विवादास्पद है।[8] इस बहस का आगे का समाधान 1990 के दशक के अंत तक नहीं आया।
सममित घटक सिद्धांत पर आधारित एक नई परिभाषा 1993 में अलेक्जेंडर इमानुएल द्वारा असंतुलित रेखीय भार के लिए प्रस्तावित की गई थी जो विषम ज्यावक्रीय विभवान्तर के साथ आपूर्ति की गई थी:
- ,
अर्थात्, लाइन विभवान्तर के वर्ग योग की जड़ को लाइन धाराओं के वर्ग योग की जड़ से गुणा किया जाता है। सकारात्मक अनुक्रम शक्ति को दर्शाता है:
सकारात्मक अनुक्रम विभवान्तर फेजर को दर्शाता है, और सकारात्मक अनुक्रम धारा चरण को दर्शाता है।[8]
वास्तविक संख्या सूत्र
एक पूर्ण अवरोधक कोई ऊर्जा संग्रहीत नहीं करता है; इसलिए करंट और विभवान्तर फेज में हैं। इसलिए, कोई प्रतिघाती शक्ति नहीं है और (निष्क्रिय साइन कन्वेंशन का उपयोग करके)। इसलिए, एक पूर्ण अवरोधक के लिए
- .
एक पूर्ण संधारित्र या प्रारंभ करनेवाला के लिए, कोई शुद्ध शक्ति हस्तांतरण नहीं होता है; इसलिए सारी शक्ति प्रतिघाती है। इसलिए, एक पूर्ण संधारित्र या प्रारंभ करनेवाला के लिए:
- .
कहाँसंधारित्र या प्रारंभ करनेवाला का विद्युत प्रतिघात है।
यदि को एक प्रारंभ करनेवाला के लिए धनात्मक और संधारित्र के लिए ऋणात्मक होने के रूप में परिभाषित किया गया है, तो मापांक चिह्नों को S और X से हटाया जा सकता है और प्राप्त किया जा सकता है
- .
तात्क्षणिक शक्ति को इस प्रकार परिभाषित किया गया है:
- ,
कहाँ पे और समय-भिन्न विभवान्तर और धारा तरंग हैं।
यह परिभाषा उपयोगी है क्योंकि यह सभी तरंगों पर लागू होती है, चाहे वे ज्यावक्रीय हों या नहीं। यह पावर इलेक्ट्रॉनिक्स में विशेष रूप से उपयोगी है, जहां गैर-साइनसॉइडल वेवफॉर्म आम हैं।
सामान्य तौर पर, इंजीनियर समय की अवधि में औसतन सक्रिय शक्ति में रुचि रखते हैं, चाहे वह कम आवृत्ति लाइन चक्र हो या उच्च आवृत्ति पावर कन्वर्टर स्विचिंग अवधि। उस परिणाम को प्राप्त करने का सबसे आसान तरीका वांछित अवधि में तात्क्षणिक गणना का अभिन्न अंग लेना है:
- .
तरंग की हार्मोनिक सामग्री की परवाह किए बिना औसत शक्ति की गणना करने की यह विधि सक्रिय शक्ति देती है। व्यावहारिक अनुप्रयोगों में, यह डिजिटल डोमेन में किया जाएगा, जहां सक्रिय शक्ति निर्धारित करने के लिए आरएमएस और चरण के उपयोग की तुलना में गणना तुच्छ हो जाती है:
- .
एकाधिक आवृत्ति प्रणाली
चूँकि किसी भी तरंग के लिए RMS मान की गणना की जा सकती है, इससे आभासी शक्ति की गणना की जा सकती है। सक्रिय शक्ति के लिए सबसे पहले यह प्रतीत होगा कि कई उत्पाद शर्तों की गणना करना और उन सभी का औसत करना आवश्यक होगा। हालांकि, इन उत्पाद शर्तों में से किसी एक को अधिक विस्तार से देखने से एक बहुत ही रोचक परिणाम उत्पन्न होता है।
हालांकि, cos(ωt + k) के रूप के एक फ़ंक्शन का समय औसत शून्य है, बशर्ते कि ω शून्येतर हो। इसलिए, एकमात्र उत्पाद शब्द जिनका औसत शून्य नहीं है, वे हैं जहां विभवान्तर और करंट की आवृत्ति मेल खाती है। दूसरे शब्दों में, प्रत्येक आवृत्ति को अलग-अलग व्यवहार करके और उत्तरों को जोड़कर सक्रिय (औसत) शक्ति की गणना करना संभव है। इसके अलावा, यदि मुख्य आपूर्ति के विभवान्तर को एकल आवृत्ति माना जाता है (जो आमतौर पर होता है), तो यह दर्शाता है कि हार्मोनिक धाराएं एक बुरी चीज हैं। वे आरएमएस करंट को बढ़ाएंगे (चूंकि इसमें गैर-शून्य शर्तें जोड़ी जाएंगी) और इसलिए आभासी शक्ति, लेकिन हस्तांतरित सक्रिय शक्ति पर उनका कोई प्रभाव नहीं पड़ेगा। इसलिए, हार्मोनिक धाराएं शक्ति कारक को कम कर देंगी। डिवाइस के इनपुट पर लगाए गए फ़िल्टर द्वारा हार्मोनिक धाराओं को कम किया जा सकता है। आमतौर पर इसमें या तो केवल एक संधारित्र (परजीवी प्रतिरोध और आपूर्ति में अधिष्ठापन पर निर्भर) या एक संधारित्र-प्रारंभ करनेवाला नेटवर्क शामिल होगा। इनपुट पर एक सक्रिय शक्ति का कारक सुधार परिपथ आम तौर पर हार्मोनिक धाराओं को और कम कर देगा और पावर फैक्टर को एकता के करीब बनाए रखेगा।
यह भी देखें
संदर्भ
- ↑ Cite error: Invalid
<ref>tag; no text was provided for refs namedIEEE_1459 - ↑ Thomas, Roland E.; Rosa, Albert J.; Toussaint, Gregory J. (2016). रैखिक सर्किट का विश्लेषण और डिजाइन (8 ed.). Wiley. pp. 812–813. ISBN 978-1-119-23538-5.</रेफरी><ref name="IEEE_1459">साइनसॉइडल, नॉनसाइनसॉइडल, संतुलित, या असंतुलित स्थितियों के तहत इलेक्ट्रिक पावर मात्रा के मापन के लिए आईईईई मानक परिभाषाएं. IEEE. 2010. doi:10.1109/IEEESTD.2010.5439063. ISBN 978-0-7381-6058-0.</रेफरी>: 4
==साइनसोइडल स्थिर-अवस्था == में सक्रिय, प्रतिक्रियाशील, स्पष्ट और जटिल शक्ति
एक साधारण प्रत्यावर्ती धारा (AC) सर्किट में एक स्रोत और एक रैखिक सर्किट समय-अपरिवर्तनीय प्रणाली | टाइम-इनवेरिएंट लोड होता है, जिसमें करंट और वोल्टेज दोनों समान आवृत्ति पर साइन लहर होते हैं।<ref name="Das_2015">Das, J. C. (2015). पावर सिस्टम हार्मोनिक्स और पैसिव फ़िल्टर डिज़ाइन. Wiley, IEEE Press. p. 2. ISBN 978-1-118-86162-2.
रैखिक और अरेखीय भार के बीच अंतर करने के लिए, हम कह सकते हैं कि रैखिक समय-अपरिवर्तनीय भार की विशेषता है ताकि एक साइनसोइडल वोल्टेज के एक आवेदन के परिणामस्वरूप वर्तमान का एक साइनसोइडल प्रवाह हो।
- ↑ Definition of Active Power in the International Electrotechnical Vocabulary Archived April 23, 2015, at the Wayback Machine
- ↑ IEEE 100 : the authoritative dictionary of IEEE standards terms.-7th ed. ISBN 0-7381-2601-2, page 23
- ↑ "August 14, 2003 Outage – Sequence of Events" (PDF). FERC. 2003-09-12. Archived from the original (PDF) on 2007-10-20. Retrieved 2008-02-18.
- ↑ Close, Charles M. The Analysis of Linear Circuits. pp. 398 (section 8.3).
- ↑ "Load differentiation". Archived from the original on 2015-10-25. Retrieved 2015-04-29.
- ↑ 8.0 8.1 Emanuel, Alexander (July 1993). "साइनसॉइडल वोल्टेज और धाराओं के साथ असंतुलित पॉलीफ़ेज़ सर्किट में पावर फैक्टर और स्पष्ट शक्ति की परिभाषा पर". IEEE Transactions on Power Delivery. 8 (3): 841–852. doi:10.1109/61.252612.