मेरियोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Study of parts and the wholes they form}}
{{Short description|Study of parts and the wholes they form}}
{{Distinguish|मेरियोलॉजी}}[[गणितीय तर्क]], [[दर्शन]] और संबंधित क्षेत्रों में, मात्रिकी ({{etymology|ग्रीक|μέρος|भाग}} (मूल: {{lang|grc|μερε-}}, मात्र-, 'भाग') और प्रत्यय-विज्ञान, 'अध्ययन, चर्चा, विज्ञान') भागों और उनसे बनने वाले संपूर्ण का अध्ययन है। जबकि समुच्चय सिद्धांत [[सेट (गणित)|समुच्चय (गणित)]] और उसके [[तत्व (गणित)|अवयव (गणित)]] के बीच सदस्यता संबंध पर स्थापित किया गया है, मेरियोलॉजी इकाइयों के बीच [[मेरोनॉमी]] संबंध पर बल देती है, जो समुच्चय-सैद्धांतिक दृष्टिकोण से- समुच्चय के बीच [[समावेशन (सेट सिद्धांत)|समावेशन (समुच्चय सिद्धांत)]] की अवधारणा के निकट है।
{{Distinguish|मेरियोलॉजी}}'''[[गणितीय तर्क]], [[दर्शन]]''' और संबंधित क्षेत्रों में, '''मेरियोलॉजी''' ({{etymology|ग्रीक|μέρος|भाग}} (मूल: {{lang|grc|μερε-}}, मात्र-, 'भाग') और प्रत्यय-विज्ञान, 'अध्ययन, चर्चा, विज्ञान') भागों और उनसे बनने वाले संपूर्ण का अध्ययन है। जबकि समुच्चय सिद्धांत [[सेट (गणित)|समुच्चय (गणित)]] और उसके [[तत्व (गणित)|अवयव (गणित)]] के बीच सदस्यता संबंध पर स्थापित किया गया है, '''मेरियोलॉजी''' इकाइयों के बीच [[मेरोनॉमी]] संबंध पर बल देती है, जो समुच्चय-सैद्धांतिक दृष्टिकोण से- समुच्चय के बीच [[समावेशन (सेट सिद्धांत)|समावेशन (समुच्चय सिद्धांत)]] की अवधारणा के निकट है।


[[औपचारिक ऑन्टोलॉजी|औपचारिक तात्विकी]] में [[विधेय तर्क]] के अनुप्रयोगों के रूप में मेरियोलॉजी की विभिन्न विधियों से खोज की गई है, जिनमें से प्रत्येक में मेरियोलॉजी महत्वपूर्ण भाग है। इनमें से प्रत्येक क्षेत्र मेरियोलॉजी की अपनी [[स्वयंसिद्ध परिभाषा]] प्रदान करती है। इस प्रकार से ऐसी स्वयंसिद्ध प्रणाली का सामान्य अवयव स्वयंसिद्धीकरण यह धारणा है, जिसे समावेशन के साथ साझा किया जाता है, कि आंशिक-संपूर्ण संबंध अपने ब्रह्मांड को आंशिक रूप से व्यवस्थित करता है, जिसका अर्थ है कि सब कुछ स्वयं का भाग है (प्रतिवर्ती संबंध), जो कि संपूर्ण के भाग का भाग है स्वयं उस संपूर्ण ([[सकर्मक संबंध]]) का भाग है, और दो अलग-अलग संस्थाएं एक-दूसरे ([[एंटीसिमेट्रिक संबंध|प्रतिसममिति संबंध]]) का भाग नहीं हो सकती हैं, इस प्रकार [[पोसेट|क्रमित समुच्चय]] बनता है। इस स्वयंसिद्धीकरण का प्रकार इस बात से मना करता है कि सकर्मकता को स्वीकार करते समय कोई भी वस्तु कभी भी स्वयं का भाग (अप्रतिक्रियाशीलता) होती है, जिससे प्रतिसममिति स्वचालित रूप से अनुसरण करती है।
[[औपचारिक ऑन्टोलॉजी|औपचारिक तात्विकी]] में [[विधेय तर्क]] के अनुप्रयोगों के रूप में मेरियोलॉजी की विभिन्न विधियों से खोज की गई है, जिनमें से प्रत्येक में मेरियोलॉजी महत्वपूर्ण भाग है। इनमें से प्रत्येक क्षेत्र '''मेरियोलॉजी''' की अपनी [[स्वयंसिद्ध परिभाषा]] प्रदान करती है। इस प्रकार से ऐसी स्वयंसिद्ध प्रणाली का सामान्य अवयव स्वयंसिद्धीकरण यह धारणा है, जिसे समावेशन के साथ साझा किया जाता है, कि आंशिक-संपूर्ण संबंध अपने ब्रह्मांड को आंशिक रूप से व्यवस्थित करता है, जिसका अर्थ है कि सब कुछ स्वयं का भाग है (प्रतिवर्ती संबंध), जो कि संपूर्ण के भाग का भाग है स्वयं उस संपूर्ण ([[सकर्मक संबंध]]) का भाग है, और दो अलग-अलग संस्थाएं एक-दूसरे ([[एंटीसिमेट्रिक संबंध|प्रतिसममिति संबंध]]) का भाग नहीं हो सकती हैं, इस प्रकार [[पोसेट|क्रमित समुच्चय]] बनता है। इस स्वयंसिद्धीकरण का प्रकार इस बात से मना करता है कि सकर्मकता को स्वीकार करते समय कोई भी वस्तु कभी भी स्वयं का भाग (अप्रतिक्रियाशीलता) होती है, जिससे प्रतिसममिति स्वचालित रूप से अनुसरण करती है।


यद्यपि मेरियोलॉजी गणितीय तर्क का अनुप्रयोग है, जिसे प्रकार की आद्य-ज्यामिति माना जा सकता है, यह पूर्ण रूप से तर्कशास्त्रियों, [[ आंटलजी |तात्विकी]], भाषाविदों, इंजीनियरों और कंप्यूटर वैज्ञानिकों द्वारा विकसित किया गया है, विशेष रूप से कृत्रिम बुद्धिमत्ता में कार्य करने वालों द्वारा। विशेष रूप से, मेरियोलॉजी ज्यामिति की बिंदु-मुक्त नींव पर भी आधारित है (उदाहरण के लिए अल्फ्रेड टार्स्की का उद्धृत अग्रणी लेख और गेर्ला 1995 का समीक्षा लेख देखें)।
यद्यपि मेरियोलॉजी गणितीय तर्क का अनुप्रयोग है, जिसे प्रकार की आद्य-ज्यामिति माना जा सकता है, यह पूर्ण रूप से तर्कशास्त्रियों, [[ आंटलजी |तात्विकी]], भाषाविदों, इंजीनियरों और कंप्यूटर वैज्ञानिकों द्वारा विकसित किया गया है, विशेष रूप से कृत्रिम बुद्धिमत्ता में कार्य करने वालों द्वारा। विशेष रूप से, मेरियोलॉजी ज्यामिति की बिंदु-मुक्त नींव पर भी आधारित है (उदाहरण के लिए अल्फ्रेड टार्स्की का उद्धृत अग्रणी लेख और गेर्ला 1995 का समीक्षा लेख देखें)।


इस प्रकार से [[सामान्य सिस्टम सिद्धांत|सामान्य पद्धति सिद्धांत]] में, 'मेरियोलॉजी' पद्धति के अपघटन और भागों, संपूर्णताओं और सीमाओं पर औपचारिक कार्य को संदर्भित करता है (उदाहरण के लिए, मिहाजलो डी. मेसारोविक (1970), [[गेब्रियल क्रोन]] (1963), या मौरिस जेसल (बौडेन देखें (1989, 1998))) आदि। गेब्रियल क्रोन के नेटवर्क टियरिंग का श्रेणीबद्ध संस्करण कीथ बोडेन (1991) द्वारा प्रकाशित किया गया था, जो [[गंक (मेरियोलॉजी)]] पर डेविड लुईस के विचारों को दर्शाता है। ऐसे विचार सैद्धांतिक [[कंप्यूटर विज्ञान]] और [[सैद्धांतिक भौतिकी]] में दिखाई देते हैं, प्रायः शीफ सिद्धांत, [[टोपोस]] के संयोजन में, या [[श्रेणी सिद्धांत]] आदि। कंप्यूटर विज्ञान में विशिष्टताओं पर [[स्टीव विकर्स (कंप्यूटर वैज्ञानिक)]], भौतिक प्रणालियों पर [[जोसेफ गोगुएन]] और लिंक सिद्धांत और [[क्वांटम यांत्रिकी]] पर टॉम एटर (1996, 1998) का कार्य भी देखें।
इस प्रकार से [[सामान्य सिस्टम सिद्धांत|सामान्य पद्धति सिद्धांत]] में, 'मेरियोलॉजी' पद्धति के अपघटन और भागों, संपूर्णताओं और सीमाओं पर औपचारिक कार्य को संदर्भित करता है (उदाहरण के लिए, मिहाजलो डी. मेसारोविक (1970), [[गेब्रियल क्रोन]] (1963), या मौरिस जेसल (बौडेन देखें (1989, 1998))) आदि। अतः गेब्रियल क्रोन के नेटवर्क टियरिंग का श्रेणीबद्ध संस्करण कीथ बोडेन (1991) द्वारा प्रकाशित किया गया था, जो [[गंक (मेरियोलॉजी)]] पर डेविड लुईस के विचारों को दर्शाता है। ऐसे विचार सैद्धांतिक [[कंप्यूटर विज्ञान]] और [[सैद्धांतिक भौतिकी]] में दिखाई देते हैं, प्रायः शीफ सिद्धांत, [[टोपोस]] के संयोजन में, या [[श्रेणी सिद्धांत]] आदि। कंप्यूटर विज्ञान में विशिष्टताओं पर [[स्टीव विकर्स (कंप्यूटर वैज्ञानिक)]], भौतिक प्रणालियों पर [[जोसेफ गोगुएन]] और लिंक सिद्धांत और [[क्वांटम यांत्रिकी]] पर टॉम एटर (1996, 1998) का कार्य भी देखें।


==इतिहास==
==इतिहास==
Line 13: Line 13:
[[आइवर ग्राटन-गिनीज]] (2001) 19वीं और 20वीं शताब्दी के समय आंशिक-संपूर्ण तर्क पर बहुत प्रकाश डालता है, और समीक्षा करता है कि [[जॉर्ज कैंटर]] और [[पीनो]] ने समुच्चय सिद्धांत कैसे तैयार किया। ऐसा प्रतीत होता है कि वह भागों और पूर्ण के विषय में सचेत रूप से और विस्तार से तर्क करने वाले प्रथम व्यक्ति थे 1901 में [[एडमंड हसरल]] ने [[तार्किक जांच (हसरल)|तार्किक जांच]] हुसेरल) के दूसरे खंड में - तीसरी जांच: "ऑन द थ्योरी ऑफ होल्स एंड पार्ट्स" (हसेरल 1970 अंग्रेजी अनुवाद है) में कार्य किया था। यद्यपि, मेरियोलॉजी शब्द उनके लेखन से अनुपस्थित है, और उन्होंने गणित में डक्टर की उपाधि प्राप्त करने के अतिरिक्त कोई प्रतीकवाद का प्रयोग नहीं किया था।
[[आइवर ग्राटन-गिनीज]] (2001) 19वीं और 20वीं शताब्दी के समय आंशिक-संपूर्ण तर्क पर बहुत प्रकाश डालता है, और समीक्षा करता है कि [[जॉर्ज कैंटर]] और [[पीनो]] ने समुच्चय सिद्धांत कैसे तैयार किया। ऐसा प्रतीत होता है कि वह भागों और पूर्ण के विषय में सचेत रूप से और विस्तार से तर्क करने वाले प्रथम व्यक्ति थे 1901 में [[एडमंड हसरल]] ने [[तार्किक जांच (हसरल)|तार्किक जांच]] हुसेरल) के दूसरे खंड में - तीसरी जांच: "ऑन द थ्योरी ऑफ होल्स एंड पार्ट्स" (हसेरल 1970 अंग्रेजी अनुवाद है) में कार्य किया था। यद्यपि, मेरियोलॉजी शब्द उनके लेखन से अनुपस्थित है, और उन्होंने गणित में डक्टर की उपाधि प्राप्त करने के अतिरिक्त कोई प्रतीकवाद का प्रयोग नहीं किया था।


स्टैनिस्लाव लेस्निविस्की ने 1927 में ग्रीक शब्द μέρος (मेरोस, भाग) से मेरियोलॉजी गढ़ी, जो कि आंशिक-संपूर्ण के औपचारिक सिद्धांत को संदर्भित करता है, जिसे उन्होंने 1916 और 1931 के बीच प्रकाशित उच्च तकनीकी लेखों की श्रृंखला में तैयार किया था, और लेस्निविस्की (1992) में अनुवादित किया गया था। इस प्रकार से लेस्निविस्की के छात्र [[अल्फ्रेड टार्स्की]] ने वुडगर (1937) के अपने परिशिष्ट ई और टार्स्की (1984) के रूप में अनुवादित लेख में लेस्निविस्की की औपचारिकता को बहुत सरल बना दिया था। लेस्निविस्की के अन्य छात्रों (और छात्रों के छात्रों) ने 20वीं शताब्दी के समय इस पोलिश मेरियोलॉजी को विस्तृत किया। पोलिश मेरियोलॉजी पर साहित्य के ठीक चयन के लिए, श्रीज़ेडनिकी और रिकी (1984) देखें। पोलिश मेरियोलॉजी के सर्वेक्षण के लिए, सिमंस (1987) देखें। यद्यपि, 1980 या उसके बाद से, पोलिश मेरियोलॉजी पर शोध लगभग पूर्ण रूप से ऐतिहासिक प्रकृति का रहा है।
अतः स्टैनिस्लाव लेस्निविस्की ने 1927 में ग्रीक शब्द μέρος (मेरोस, भाग) से मेरियोलॉजी गढ़ी, जो कि आंशिक-संपूर्ण के औपचारिक सिद्धांत को संदर्भित करता है, जिसे उन्होंने 1916 और 1931 के बीच प्रकाशित उच्च तकनीकी लेखों की श्रृंखला में तैयार किया था, और लेस्निविस्की (1992) में अनुवादित किया गया था। इस प्रकार से लेस्निविस्की के छात्र [[अल्फ्रेड टार्स्की]] ने वुडगर (1937) के अपने परिशिष्ट ई और टार्स्की (1984) के रूप में अनुवादित लेख में लेस्निविस्की की औपचारिकता को बहुत सरल बना दिया था। अतः लेस्निविस्की के अन्य छात्रों (और छात्रों के छात्रों) ने 20वीं शताब्दी के समय इस पोलिश मेरियोलॉजी को विस्तृत किया। पोलिश मेरियोलॉजी पर साहित्य के ठीक चयन के लिए, श्रीज़ेडनिकी और रिकी (1984) देखें। पोलिश मेरियोलॉजी के सर्वेक्षण के लिए, सिमंस (1987) देखें। यद्यपि, 1980 या उसके बाद से, पोलिश मेरियोलॉजी पर शोध लगभग पूर्ण रूप से ऐतिहासिक प्रकृति का रहा है।


ए.एन. व्हाइटहेड ने [[ज्यामिति]] पर [[गणितीय सिद्धांत]] के चौथे खंड की योजना बनाई, परन्तु इसे कभी नहीं लिखा था। इस प्रकार से [[बर्ट्रेंड रसेल]] के साथ उनके 1914 के पत्राचार से ज्ञात होता है कि ज्यामिति के प्रति उनके इच्छित दृष्टिकोण को, दूरदर्शिता के लाभ के साथ, संक्षेप में मेरियोलॉजिकल के रूप में देखा जा सकता है। यह कार्य व्हाइटहेड (1916) और व्हाइटहेड के मेरियोलॉजिकल पद्धति (1919, 1920) में समाप्त हुआ था।
इस प्रकार से ए.एन. व्हाइटहेड ने [[ज्यामिति]] पर [[गणितीय सिद्धांत]] के चौथे खंड की योजना बनाई, परन्तु इसे कभी नहीं लिखा था। इस प्रकार से [[बर्ट्रेंड रसेल]] के साथ उनके 1914 के पत्राचार से ज्ञात होता है कि ज्यामिति के प्रति उनके इच्छित दृष्टिकोण को, दूरदर्शिता के लाभ के साथ, संक्षेप में मेरियोलॉजिकल के रूप में देखा जा सकता है। यह कार्य व्हाइटहेड (1916) और व्हाइटहेड के मेरियोलॉजिकल पद्धति (1919, 1920) में समाप्त हुआ था।


1930 में, हेनरी एस. लियोनार्ड ने हार्वर्ड पीएच.डी. पूर्ण की थी। दर्शनशास्त्र में शोध प्रबंध, भाग-संपूर्ण संबंध का औपचारिक सिद्धांत स्थापित करना। यह [[नेल्सन गुडमैन]] और लियोनार्ड (1940) के व्यक्तियों की गणना में विकसित हुआ। गुडमैन ने गुडमैन (1951) के तीन संस्करणों में इस गणना को संशोधित और विस्तृत किया। व्यक्तियों की गणना 1970 के पश्चात तर्कशास्त्रियों, तात्विकीविद् और कंप्यूटर वैज्ञानिकों के बीच मेरियोलॉजी के पुनरुद्धार के लिए प्रारंभिक बिंदु है, पुनरुद्धार जिसका सिमंस (1987), कासाती और वर्ज़ी (1999), और कॉटनॉयर और वर्ज़ी (2021) में ठीक रूप से सर्वेक्षण किया गया है।
अतः 1930 में, हेनरी एस. लियोनार्ड ने हार्वर्ड पीएच.डी. पूर्ण की थी। इस प्रकार से दर्शनशास्त्र में शोध प्रबंध, भाग-संपूर्ण संबंध का औपचारिक सिद्धांत स्थापित करना। यह [[नेल्सन गुडमैन]] और लियोनार्ड (1940) के व्यक्तियों की गणना में विकसित हुआ। गुडमैन ने गुडमैन (1951) के तीन संस्करणों में इस गणना को संशोधित और विस्तृत किया। व्यक्तियों की गणना 1970 के पश्चात तर्कशास्त्रियों, तात्विकीविद् और कंप्यूटर वैज्ञानिकों के बीच मेरियोलॉजी के पुनरुद्धार के लिए प्रारंभिक बिंदु है, पुनरुद्धार जिसका सिमंस (1987), कासाती और वर्ज़ी (1999), और कॉटनॉयर और वर्ज़ी (2021) में ठीक रूप से सर्वेक्षण किया गया है।


==स्वसिद्धांत और आदिम धारणाएँ==
==स्वसिद्धांत और आदिम धारणाएँ==


इस प्रकार से प्रतिवर्ती: मेरियोलॉजिकल पद्धति को परिभाषित करने में मूलभूत विकल्प यह है कि क्या वस्तुओं को स्वयं का भाग माना जाए। [[अनुभवहीन समुच्चय सिद्धांत]] में समान प्रश्न उठता है: क्या किसी समुच्चय को स्वयं का उपसमुच्चय माना जाना चाहिए। दोनों स्थितियों में, हाँ रसेल के विरोधाभास के अनुरूप विरोधाभासों को जन्म देता है: मान लीजिए कि वस्तु O है, जैसे कि प्रत्येक वस्तु जो स्वयं का उचित भाग नहीं है, वह O का उचित भाग है। क्या O स्वयं का उचित भाग है? नहीं, क्योंकि कोई भी वस्तु स्वयं का उचित भाग नहीं है; और हाँ, क्योंकि यह O के उचित भाग के रूप में सम्मिलित करने के लिए निर्दिष्ट आवश्यकता को पूर्ण करता है। समुच्चय सिद्धांत में, समुच्चय को प्रायः स्वयं का ''अनुचित'' उपसमुच्चय कहा जाता है। ऐसे विरोधाभासों को देखते हुए, मेरोलॉजी को स्वयंसिद्ध सूत्रीकरण की आवश्यकता होती है।
इस प्रकार से प्रतिवर्ती: मेरियोलॉजिकल पद्धति को परिभाषित करने में मूलभूत विकल्प यह है कि क्या वस्तुओं को स्वयं का भाग माना जाए। [[अनुभवहीन समुच्चय सिद्धांत]] में समान प्रश्न उठता है: क्या किसी समुच्चय को स्वयं का उपसमुच्चय माना जाना चाहिए। अतः दोनों स्थितियों में, हाँ रसेल के विरोधाभास के अनुरूप विरोधाभासों को जन्म देता है: मान लीजिए कि वस्तु O है, जैसे कि प्रत्येक वस्तु जो स्वयं का उचित भाग नहीं है, वह O का उचित भाग है। क्या O स्वयं का उचित भाग है? नहीं, क्योंकि कोई भी वस्तु स्वयं का उचित भाग नहीं है; और हाँ, क्योंकि यह O के उचित भाग के रूप में सम्मिलित करने के लिए निर्दिष्ट आवश्यकता को पूर्ण करता है। समुच्चय सिद्धांत में, समुच्चय को प्रायः स्वयं का ''अनुचित'' उपसमुच्चय कहा जाता है। ऐसे विरोधाभासों को देखते हुए, मेरोलॉजी को स्वयंसिद्ध सूत्रीकरण की आवश्यकता होती है।


मेरियोलॉजिकल प्रणाली [[प्रथम-क्रम तर्क]] सिद्धांत ([[पहचान (दर्शन)]] के साथ) है, जिसके [[प्रवचन के ब्रह्मांड|ब्रह्मांड]] में संपूर्ण और उनके संबंधित भाग होते हैं, जिन्हें सामूहिक रूप से ''वस्तु'' कहा जाता है। मेरियोलॉजी नीडित और गैर-नीडित स्वयंसिद्ध प्रणालियों का संग्रह है, जो [[मोडल तर्क]] की स्थिति से भिन्न नहीं है।
मेरियोलॉजिकल प्रणाली [[प्रथम-क्रम तर्क]] सिद्धांत ([[पहचान (दर्शन)]] के साथ) है, जिसके [[प्रवचन के ब्रह्मांड|ब्रह्मांड]] में संपूर्ण और उनके संबंधित भाग होते हैं, जिन्हें सामूहिक रूप से ''वस्तु'' कहा जाता है। मेरियोलॉजी नीडित और गैर-नीडित स्वयंसिद्ध प्रणालियों का संग्रह है, जो [[मोडल तर्क]] की स्थिति से भिन्न नहीं है।


निम्न दिया गया उपचार, शब्दावली और पदानुक्रमित संगठन कासाती और वर्ज़ी (1999: अध्याय 3) का स्पष्टता से अनुसरण करता है। कुछ मिथ्या धारणा को दूर करने वाले नवीनतम उपचार के लिए, होव्डा (2008) देखें। छोटे अक्षर वस्तुओं पर चर को दर्शाते हैं। प्रत्येक प्रतीकात्मक स्वयंसिद्ध या परिभाषा के पश्चात कासाती और वर्ज़ी में संबंधित सूत्र की संख्या बोल्ड में लिखी गई है।
अतः निम्न दिया गया उपचार, शब्दावली और पदानुक्रमित संगठन कासाती और वर्ज़ी (1999: अध्याय 3) का स्पष्टता से अनुसरण करता है। इस प्रकार से कुछ मिथ्या धारणा को दूर करने वाले नवीनतम उपचार के लिए, होव्डा (2008) देखें। छोटे अक्षर वस्तुओं पर चर को दर्शाते हैं। प्रत्येक प्रतीकात्मक स्वयंसिद्ध या परिभाषा के पश्चात कासाती और वर्ज़ी में संबंधित सूत्र की संख्या बोल्ड में लिखी गई है।


एक मेरियोलॉजिकल प्रणाली के लिए कम से कम आदिम बाइनरी संबंध (युग्मकीय विधेय (तर्क)) की आवश्यकता होती है। ऐसे संबंध के लिए सबसे पारंपरिक विकल्प भाग हुड (जिसे समावेशन भी कहा जाता है) है, ''x'' ''y'' का ''भाग'' है, जिसे ''Pxy'' लिखा जाता है। लगभग सभी प्रणालियों को ब्रह्मांड को आंशिक रूप से व्यवस्थित करने की आवश्यकता होती है। निम्नलिखित परिभाषित संबंध, नीचे दिए गए स्वयंसिद्धों के लिए आवश्यक हैं, अकेले भाग हुड से तुरंत अनुसरण करते हैं:
एक मेरियोलॉजिकल प्रणाली के लिए कम से कम आदिम बाइनरी संबंध (युग्मकीय विधेय (तर्क)) की आवश्यकता होती है। अतः ऐसे संबंध के लिए सबसे पारंपरिक विकल्प '''भाग हुड''' (जिसे समावेशन भी कहा जाता है) है, ''x'' ''y'' का ''भाग'' है, जिसे ''Pxy'' लिखा जाता है। लगभग सभी प्रणालियों को ब्रह्मांड को आंशिक रूप से व्यवस्थित करने की आवश्यकता होती है। निम्नलिखित परिभाषित संबंध, नीचे दिए गए स्वयंसिद्धों के लिए आवश्यक हैं, अकेले भाग हुड से तुरंत अनुसरण करते हैं:
*एक तत्काल परिभाषित [[विधेय (तर्क)]] है x ''y'' का उचित भाग है, जिसे ''PPxy'' लिखा गया है, जो मानता है (अर्थात, संतुष्ट है, सत्य निकलता है) यदि ''Pxy'' सत्य है और ' '''Pyx''<nowiki/>' असत्य है। भाग हुड (जो आंशिक क्रम है) की तुलना में, उचित भाग निश्चित आंशिक क्रम है।
*एक तत्काल परिभाषित [[विधेय (तर्क)]] है x ''y'' का '''उचित भाग''' है, जिसे ''PPxy'' लिखा गया है, जो मानता है (अर्थात, संतुष्ट है, सत्य निकलता है) यदि ''Pxy'' सत्य है और ' '''Pyx''<nowiki/>' असत्य है। भाग हुड (जो आंशिक क्रम है) की तुलना में, उचित भाग निश्चित आंशिक क्रम है।
:<math>PPxy \leftrightarrow (Pxy \land  \lnot Pyx).</math> 3.3
:<math>PPxy \leftrightarrow (Pxy \land  \lnot Pyx).</math> 3.3
:जिस वस्तु में उचित भागों का अभाव हो वह ''परमाणु'' है। मेरियोलॉजिकल ब्रह्मांड में वे सभी वस्तुएं सम्मिलित हैं जिनके विषय में हम सोचना चाहते हैं, और उनके सभी उचित भाग:
:जिस वस्तु में उचित भागों का अभाव हो वह ''परमाणु'' है। मेरियोलॉजिकल ब्रह्मांड में वे सभी वस्तुएं सम्मिलित हैं जिनके विषय में हम सोचना चाहते हैं, और उनके सभी उचित भाग:
Line 38: Line 38:
इस प्रकार से अतिव्यापत और निम्नव्यापत प्रतिवर्ती संबंध, [[सममित]] और असंक्रामी संबंध हैं।
इस प्रकार से अतिव्यापत और निम्नव्यापत प्रतिवर्ती संबंध, [[सममित]] और असंक्रामी संबंध हैं।


प्रणालियाँ इस बात में भिन्न होती हैं कि वे किन संबंधों को आदिम और परिभाषित मानते हैं। उदाहरण के लिए, विस्तारित मेरियोलॉजीज़ (नीचे परिभाषित) में, भाग हुड को अतिव्यापत से निम्नानुसार परिभाषित किया जा सकता है:
अतः प्रणालियाँ इस बात में भिन्न होती हैं कि वे किन संबंधों को आदिम और परिभाषित मानते हैं। इस प्रकार से उदाहरण के लिए, विस्तारित मेरियोलॉजीज़ (नीचे परिभाषित) में, भाग हुड को अतिव्यापत से निम्नानुसार परिभाषित किया जा सकता है:
:<math>Pxy \leftrightarrow \forall z[Ozx \rightarrow Ozy].</math> 3.31
:<math>Pxy \leftrightarrow \forall z[Ozx \rightarrow Ozy].</math> 3.31


अभिगृहीत हैं:
अतः अभिगृहीत हैं:
*भाग हुड [[ब्रह्मांड]] का आंशिक क्रम:
*भाग हुड [[ब्रह्मांड]] का आंशिक क्रम:
:M1, प्रतिवर्ती संबंध: वस्तु स्वयं का भाग है।
:M1, प्रतिवर्ती संबंध: वस्तु स्वयं का भाग है।
:<math>\ Pxx.</math> P1
:<math>\ Pxx.</math> P1
:M2, प्रतिसममिति संबंध: यदि ''Pxy'' और ''Pyx'' दोनों निर्धारित हैं, तो ''x'' और ''y'' ही वस्तु हैं।
:M2, प्रतिसममिति संबंध: यदि ''Pxy'' और ''Pyx'' दोनों निर्धारित हैं, तो ''x'' और ''y'' ही वस्तु हैं।
:<math>(Pxy \land  Pyx) \rightarrow x = y.</math> P .2
:<math>(Pxy \land  Pyx) \rightarrow x = y.</math> '''P .2'''
:M3, सकर्मक संबंध: यदि ''Pxy'' और ''Pyz'', तो ''Pxz''।
:M3, सकर्मक संबंध: यदि ''Pxy'' और ''Pyz'', तो ''Pxz''।
:<math>(Pxy \land Pyz) \rightarrow Pxz.</math> P 3
:<math>(Pxy \land Pyz) \rightarrow Pxz.</math> '''P 3'''
*M4, दुर्बल अनुपूरण: यदि ''PPxy'' धारण करता है, तो ''z'' स्थित होता है जैसे कि ''Pzy'' धारण करता है परन्तु ''Ozx'' नहीं करता है।
*M4, दुर्बल अनुपूरण: यदि ''PPxy'' धारण करता है, तो ''z'' स्थित होता है जैसे कि ''Pzy'' धारण करता है परन्तु ''Ozx'' नहीं करता है।
:<math>PPxy \rightarrow \exists z[Pzy \land \lnot Ozx].</math> P 4
:<math>PPxy \rightarrow \exists z[Pzy \land \lnot Ozx].</math> '''P 4'''


*M5, सशक्त अनुपूरक: यदि ''Pyx'' धारण नहीं करता है, तो ''z'' स्थित है जैसे कि ''Pzy'' धारण करता है परन्तु ''Ozx'' धारण नहीं करता है।
*M5, सशक्त अनुपूरक: यदि ''Pyx'' धारण नहीं करता है, तो ''z'' स्थित है जैसे कि ''Pzy'' धारण करता है परन्तु ''Ozx'' धारण नहीं करता है।
:<math>\lnot Pyx \rightarrow \exists z[Pzy \land \lnot Ozx].</math> P 5
:<math>\lnot Pyx \rightarrow \exists z[Pzy \land \lnot Ozx].</math> '''P 5'''


*M5', परमाणु अनुपूरक: यदि ''Pxy'' धारण नहीं करता है, तो परमाणु ''z'' स्थित है जैसे कि ''Pzx'' धारण करता है परन्तु ''Ozy'' नहीं रखता है।
*M5', परमाणु अनुपूरक: यदि ''Pxy'' धारण नहीं करता है, तो परमाणु ''z'' स्थित है जैसे कि ''Pzx'' धारण करता है परन्तु ''Ozy'' नहीं रखता है।
:<math>\lnot Pxy \rightarrow \exists z[Pzx \land \lnot Ozy \land \lnot \exists v [PPvz]].</math> P.5'
:<math>\lnot Pxy \rightarrow \exists z[Pzx \land \lnot Ozy \land \lnot \exists v [PPvz]].</math> '''P.5''''


*शीर्ष: सार्वभौमिक वस्तु स्थित है, जिसे ''W'' नामित किया गया है, जैसे कि ''PxW'' किसी भी ''x'' के लिए धारण करता है।
*शीर्ष: सार्वभौमिक वस्तु स्थित है, जिसे ''W'' नामित किया गया है, जैसे कि ''PxW'' किसी भी ''x'' के लिए धारण करता है।
Line 66: Line 66:


*M6, योग: यदि ''Uxy'' धारण करता है, तो ''z'' स्थित होता है, जिसे ''x'' और ''y'' का योग या संलयन कहा जाता है, जैसे कि वस्तुएं ''z'' को अतिव्यापत करती हैं ' मात्र वे वस्तुएं हैं जो ''x'' या ''y'' को अतिव्यापत करती हैं।
*M6, योग: यदि ''Uxy'' धारण करता है, तो ''z'' स्थित होता है, जिसे ''x'' और ''y'' का योग या संलयन कहा जाता है, जैसे कि वस्तुएं ''z'' को अतिव्यापत करती हैं ' मात्र वे वस्तुएं हैं जो ''x'' या ''y'' को अतिव्यापत करती हैं।
:<math>Uxy \rightarrow \exists z \forall v [Ovz \leftrightarrow (Ovx \lor Ovy)].</math> P 6
:<math>Uxy \rightarrow \exists z \forall v [Ovz \leftrightarrow (Ovx \lor Ovy)].</math> '''P 6'''
*M7, उत्पाद: यदि ''Oxy'' धारण करता है, तो ''z'' स्थित होता है, जिसे ''x'' और y का उत्पाद कहा जाता है, जैसे कि ''z'' के भाग मात्र होते हैं वे वस्तुएँ जो ''x'' और ''y'' दोनों के भाग हैं।
*M7, उत्पाद: यदि ''Oxy'' धारण करता है, तो ''z'' स्थित होता है, जिसे ''x'' और y का उत्पाद कहा जाता है, जैसे कि ''z'' के भाग मात्र होते हैं वे वस्तुएँ जो ''x'' और ''y'' दोनों के भाग हैं।
:<math>Oxy \rightarrow \exists z \forall v [Pvz \leftrightarrow (Pvx \land Pvy)].</math> P 7
:<math>Oxy \rightarrow \exists z \forall v [Pvz \leftrightarrow (Pvx \land Pvy)].</math> '''P 7'''
:यदि ''Oxy'' धारण नहीं करते है, तो ''x'' और ''y'' में कोई समान भाग नहीं है, और ''x'' और ''y'' का गुणनफल अपरिभाषित है।
:यदि ''Oxy'' धारण नहीं करते है, तो ''x'' और ''y'' में कोई समान भाग नहीं है, और ''x'' और ''y'' का गुणनफल अपरिभाषित है।
*M8, अप्रतिबंधित संलयन: मान लीजिए φ(''x'') प्रथम-क्रम तर्क सूत्र है, जिसमें ''x'' [[मुक्त चर]] है। तब φ को संतुष्ट करने वाली सभी वस्तुओं का संलयन स्थित होता है।
*M8, अप्रतिबंधित संलयन: मान लीजिए φ(''x'') प्रथम-क्रम तर्क सूत्र है, जिसमें ''x'' [[मुक्त चर]] है। तब φ को संतुष्ट करने वाली सभी वस्तुओं का संलयन स्थित होता है।
:<math>\exists x [\phi(x)] \to \exists z \forall y [Oyz \leftrightarrow \exists x[\phi (x) \land Oyx]].</math> P 8
:<math>\exists x [\phi(x)] \to \exists z \forall y [Oyz \leftrightarrow \exists x[\phi (x) \land Oyx]].</math> '''P 8'''
:M8 को सामान्य योग सिद्धांत, अप्रतिबंधित मेरियोलॉजिकल संरचना, या सार्वभौमिकता भी कहा जाता है। M8 अनुभवहीन समुच्चय सिद्धांत के [[ बिल्डर नोटेशन सेट करें |निर्माता अंकन समुच्चय]] से मेल खाता है, जो रसेल के विरोधाभास को जन्म देता है। इस विरोधाभास का कोई मात्रिक प्रतिरूप नहीं है क्योंकि ''भाग हुड'', समुच्चय सदस्यता के विपरीत, प्रतिवर्ती संबंध है।
:M8 को सामान्य योग सिद्धांत, अप्रतिबंधित मेरियोलॉजिकल संरचना, या सार्वभौमिकता भी कहा जाता है। M8 अनुभवहीन समुच्चय सिद्धांत के [[ बिल्डर नोटेशन सेट करें |निर्माता अंकन समुच्चय]] से मेल खाता है, जो रसेल के विरोधाभास को जन्म देता है। इस विरोधाभास का कोई मात्रिक प्रतिरूप नहीं है क्योंकि ''भाग हुड'', समुच्चय सदस्यता के विपरीत, प्रतिवर्ती संबंध है।


Line 79: Line 79:


==विभिन्न प्रणालियाँ==
==विभिन्न प्रणालियाँ==
इस प्रकार से सिमंस (1987), कैसाती और वर्ज़ी (1999) और होव्दा (2008) कई मेरियोलॉजिकल प्रणालियों का वर्णन करते हैं जिनके स्वयंसिद्ध उपरोक्त सूची से लिए गए हैं। हम कासाती और वर्ज़ी के बोल्डफेस नामकरण को अपनाते हैं। इस प्रकार की सबसे प्रसिद्ध प्रणाली वह है जिसे शास्त्रीय विस्तारक मेरियोलॉजी कहा जाता है, जिसे इसके पश्चात संक्षिप्त रूप में 'सीईएम' कहा जाएगा (अन्य संक्षिप्त रूपों को नीचे समझाया गया है)। 'सीईएम' में, 'P.1' से 'P.8' तक को स्वयंसिद्ध या प्रमेय के रूप में रखा जाता है। M9, ऊपर और नीचे वैकल्पिक हैं।
इस प्रकार से सिमंस (1987), कैसाती और वर्ज़ी (1999) और होव्दा (2008) कई मेरियोलॉजिकल प्रणालियों का वर्णन करते हैं जिनके स्वयंसिद्ध उपरोक्त सूची से लिए गए हैं। हम कासाती और वर्ज़ी के बोल्डफेस नामकरण को अपनाते हैं। इस प्रकार की सबसे प्रसिद्ध प्रणाली वह है जिसे शास्त्रीय विस्तारक मेरियोलॉजी कहा जाता है, जिसे इसके पश्चात संक्षिप्त रूप में ''''सीईएम'''<nowiki/>' कहा जाएगा (अन्य संक्षिप्त रूपों को नीचे समझाया गया है)। अतः 'सीईएम' में, 'P.1' से 'P.8' तक को स्वयंसिद्ध या प्रमेय के रूप में रखा जाता है। M9, ऊपर और नीचे वैकल्पिक हैं।


नीचे दी गई तालिका में पद्धति समावेशन (समुच्चय सिद्धांत) द्वारा आंशिक क्रम में हैं, इस अर्थ में कि, यदि पद्धति ए की सभी प्रमेय भी पद्धति बी की प्रमेय हैं, परन्तु बातचीत [[तार्किक सत्य]] नहीं है, तो बी में ए सम्मिलित है। परिणामी [[हस्से आरेख]] कासाती और वर्ज़ी (1999:48) में चित्र 3.2 के समान है।
इस प्रकार से नीचे दी गई तालिका में पद्धति समावेशन (समुच्चय सिद्धांत) द्वारा आंशिक क्रम में हैं, इस अर्थ में कि, यदि पद्धति ए की सभी प्रमेय भी पद्धति बी की प्रमेय हैं, परन्तु बातचीत [[तार्किक सत्य]] नहीं है, तो बी में ए सम्मिलित है। परिणामी [[हस्से आरेख]] कासाती और वर्ज़ी (1999:48) में चित्र 3.2 के समान है।


{| class=wikitable
{| class=wikitable
Line 113: Line 113:
| || ||'''Aजीईएम'''||'''M''', M5', M8
| || ||'''Aजीईएम'''||'''M''', M5', M8
|}
|}
यह अनुरोध करने की दो समान विधियाँ हैं कि ब्रह्मांड आंशिक क्रम है: या तो M 1-M 3 मान लें, या कि उचित भाग हुड सकर्मक संबंध और [[असममित संबंध]] है, इसलिए निश्चित आंशिक क्रम है। पद्धति M में या तो स्वयंसिद्धीकरण का परिणाम होता है। M 2 भाग हुड का उपयोग करके गठित संवृत पाशों को निरस्त कर देता है, ताकि भाग संबंध ठीक रूप से स्थापित हो। यदि नियमितता के सिद्धांत को मान लिया जाए तो समुच्चय ठीक रूप से स्थापित होते हैं। साहित्य में भाग हुड की परिवर्तनशीलता पर कभी-कभी दार्शनिक और सामान्य ज्ञान की आपत्तियां सम्मिलित होती हैं।
अतः यह अनुरोध करने की दो समान विधियाँ हैं कि ब्रह्मांड आंशिक क्रम है: या तो M 1-M 3 मान लें, या कि उचित भाग हुड सकर्मक संबंध और [[असममित संबंध]] है, इसलिए निश्चित आंशिक क्रम है। इस प्रकार से पद्धति M में या तो स्वयंसिद्धीकरण का परिणाम होता है। M 2 भाग हुड का उपयोग करके गठित संवृत पाशों को निरस्त कर देता है, ताकि भाग संबंध ठीक रूप से स्थापित हो। यदि नियमितता के सिद्धांत को मान लिया जाए तो समुच्चय ठीक रूप से स्थापित होते हैं। साहित्य में भाग हुड की परिवर्तनशीलता पर कभी-कभी दार्शनिक और सामान्य ज्ञान की आपत्तियां सम्मिलित होती हैं।


M4 और M5 पूरकता पर बल देने की दो विधियाँ हैं, समुच्चय [[पूरक (सेट सिद्धांत)|पूरक (समुच्चय सिद्धांत)]] एशन का मेरियोलॉजिकल एनालॉग, M5 निश्चित है क्योंकि M4 M5 से व्युत्पन्न है। M और M4 ''न्यूनतम'' मेरियोलॉजी, MM उत्पन्न करते हैं। उचित भाग के संदर्भ में पुनर्निर्मित, एमएम सिमंस (1987) की चयनित न्यूनतम प्रणाली है।
इस प्रकार से M4 और M5 पूरकता पर बल देने की दो विधियाँ हैं, समुच्चय [[पूरक (सेट सिद्धांत)|पूरक (समुच्चय सिद्धांत)]] एशन का मेरियोलॉजिकल एनालॉग, '''M5''' निश्चित है क्योंकि M4 M5 से व्युत्पन्न है। M और M4 ''न्यूनतम'' मेरियोलॉजी, '''MM''' उत्पन्न करते हैं। उचित भाग के संदर्भ में पुनर्निर्मित, एमएम सिमंस (1987) की चयनित न्यूनतम प्रणाली है।


किसी भी प्रणाली में जिसमें M5 या M5' माना जाता है या प्राप्त किया जा सकता है, तो यह सिद्ध किया जा सकता है कि समान उचित भागों वाली दो वस्तुएं समान हैं। इस गुण को ''विस्तारकता'' के रूप में जाना जाता है, समुच्चय सिद्धांत से ऋण लिया गया शब्द, जिसके लिए [[विस्तारशीलता]] का सिद्धांत परिभाषित स्वयंसिद्ध है। मेरियोलॉजिकल प्रणालियां जिनमें विस्तारात्मकता बनाए रखता है, उन्हें ''विस्तृत'' कहा जाता है, तथ्य जो उनके प्रतीकात्मक नामों में अक्षर ई को सम्मिलित करके दर्शाया गया है।
अतः किसी भी प्रणाली में जिसमें M5 या M5' माना जाता है या प्राप्त किया जा सकता है, तो यह सिद्ध किया जा सकता है कि समान उचित भागों वाली दो वस्तुएं समान हैं। इस गुण को ''विस्तारकता'' के रूप में जाना जाता है, समुच्चय सिद्धांत से ऋण लिया गया शब्द, जिसके लिए [[विस्तारशीलता]] का सिद्धांत परिभाषित स्वयंसिद्ध है। मेरियोलॉजिकल प्रणालियां जिनमें विस्तारात्मकता बनाए रखता है, उन्हें ''विस्तृत'' कहा जाता है, तथ्य जो उनके प्रतीकात्मक नामों में अक्षर ई को सम्मिलित करके दर्शाया गया है।


M6 का अनुरोध है कि किन्हीं दो निम्नव्यापतिंग वस्तुओं का अद्वितीय योग होता है; M7 का अनुरोध है कि किन्हीं दो अतिव्यापी वस्तुओं का अद्वितीय उत्पाद होता है। यदि ब्रह्माण्ड परिमित है या यदि ''शीर्ष'' मान लिया गया है, तो ब्रह्माण्ड ''योग'' के अंतर्गत संवृत है। ''उत्पाद'' के सार्वभौमिक अगम और ''डब्ल्यू'' के सापेक्ष पूरकता के लिए ''निम्न भाग'' की आवश्यकता होती है। ''डब्ल्यू'' और ''एन'', स्पष्ट रूप से, सार्वभौमिक समुच्चय और [[खाली सेट|रिक्त समुच्चय]] के मेरियोलॉजिकल एनालॉग हैं, और ''योग'' और ''उत्पाद'', इसी प्रकार, समुच्चय-सैद्धांतिक संघ (समुच्चय सिद्धांत) और प्रतिच्छेदन (समुच्चय सिद्धांत) के एनालॉग हैं। यदि M6 और M7 या तो कल्पित हैं या व्युत्पन्न हैं, तो परिणाम अगम के साथ मात्रविज्ञान है।
इस प्रकार से M6 का अनुरोध है कि किन्हीं दो निम्नव्यापतिंग वस्तुओं का अद्वितीय योग होता है; M7 का अनुरोध है कि किन्हीं दो अतिव्यापी वस्तुओं का अद्वितीय उत्पाद होता है। यदि ब्रह्माण्ड परिमित है या यदि ''शीर्ष'' मान लिया गया है, तो ब्रह्माण्ड ''योग'' के अंतर्गत संवृत है। अतः ''उत्पाद'' के सार्वभौमिक अगम और ''डब्ल्यू'' के सापेक्ष पूरकता के लिए ''निम्न भाग'' की आवश्यकता होती है। ''डब्ल्यू'' और ''एन'', स्पष्ट रूप से, सार्वभौमिक समुच्चय और [[खाली सेट|रिक्त समुच्चय]] के मेरियोलॉजिकल एनालॉग हैं, और ''योग'' और ''उत्पाद'', इसी प्रकार, समुच्चय-सैद्धांतिक संघ (समुच्चय सिद्धांत) और प्रतिच्छेदन (समुच्चय सिद्धांत) के एनालॉग हैं। यदि M6 और M7 या तो कल्पित हैं या व्युत्पन्न हैं, तो परिणाम अगम के साथ मात्रविज्ञान है।


चूँकि ''योग'' और ''उत्पाद'' बाइनरी संक्रिया हैं, M6 और M7 मात्र सीमित संख्या में वस्तुओं के योग और उत्पाद को स्वीकार करते हैं। ''अप्रतिबंधित संलयन'' अभिगृहीत, M8, अनंत रूप से कई वस्तुओं का योग लेने में सक्षम बनाता है। परिभाषित होने पर ''उत्पाद'' के लिए भी यही बात लागू होती है। इस बिंदु पर, मेरियोलॉजी [[प्रतिच्छेदन (सेट सिद्धांत)|प्रतिच्छेदन (समुच्चय सिद्धांत)]] का आह्वान करती है, परन्तु समुच्चय सिद्धांत का कोई भी पक्ष सूत्र को मुक्त चर के साथ योजनाबद्ध सूत्र द्वारा समुच्चय के ब्रह्मांड में [[परिमाणीकरण (तर्क)]] चर के साथ प्रतिस्थापित करके समाप्त किया जा सकता है। जब भी किसी वास्तु का नाम जो समुच्चय का अवयव (गणित) होता (यदि यह अस्तित्व में होता) मुक्त चर को प्रतिस्थापित करता है, तो सूत्र सत्य हो जाता है (संतुष्ट हो जाता है)। इसलिए समुच्चय वाले किसी भी स्वयंसिद्ध को एक अक परमाणु उपसूत्रों के साथ स्वयंसिद्ध स्कीमा द्वारा प्रतिस्थापित किया जा सकता है। '''M8''' और '''M8'''' इसी प्रकार के स्कीमा हैं। [[प्रथम-क्रम सिद्धांत]] का वाक्य-विन्यास मात्र असंख्य संख्या में समुच्चयों का वर्णन कर सकता है; इसलिए, इस प्रकार से मात्र संख्यात्मक रूप से कई समुच्चयों को हटाया जा सकता है, परन्तु यह सीमा यहां बताए गए गणित के प्रकार के लिए बाध्यकारी नहीं है।
चूँकि ''योग'' और ''उत्पाद'' बाइनरी संक्रिया हैं, '''M6''' और '''M7''' मात्र सीमित संख्या में वस्तुओं के योग और उत्पाद को स्वीकार करते हैं। ''अप्रतिबंधित संलयन'' अभिगृहीत, M8, अनंत रूप से कई वस्तुओं का योग लेने में सक्षम बनाता है। परिभाषित होने पर ''उत्पाद'' के लिए भी यही बात लागू होती है। इस बिंदु पर, मेरियोलॉजी [[प्रतिच्छेदन (सेट सिद्धांत)|प्रतिच्छेदन (समुच्चय सिद्धांत)]] का आह्वान करती है, परन्तु समुच्चय सिद्धांत का कोई भी पक्ष सूत्र को मुक्त चर के साथ योजनाबद्ध सूत्र द्वारा समुच्चय के ब्रह्मांड में [[परिमाणीकरण (तर्क)]] चर के साथ प्रतिस्थापित करके समाप्त किया जा सकता है। जब भी किसी वास्तु का नाम जो समुच्चय का अवयव (गणित) होता (यदि यह अस्तित्व में होता) मुक्त चर को प्रतिस्थापित करता है, तो सूत्र सत्य हो जाता है (संतुष्ट हो जाता है)। इसलिए समुच्चय वाले किसी भी स्वयंसिद्ध को एक अक परमाणु उपसूत्रों के साथ स्वयंसिद्ध स्कीमा द्वारा प्रतिस्थापित किया जा सकता है। '''M8''' और '''M8'''' इसी प्रकार के स्कीमा हैं। [[प्रथम-क्रम सिद्धांत]] का वाक्य-विन्यास मात्र असंख्य संख्या में समुच्चयों का वर्णन कर सकता है; इसलिए, इस प्रकार से मात्र संख्यात्मक रूप से कई समुच्चयों को हटाया जा सकता है, परन्तु यह सीमा यहां बताए गए गणित के प्रकार के लिए बाध्यकारी नहीं है।


यदि M8 निर्धारित है, तो ''डब्ल्यू'' अनंत ब्रह्मांडों के लिए स्थित है। इसलिए, ''शीर्ष'' को मात्र तभी मानने की आवश्यकता है जब ब्रह्मांड अनंत है और M8 निर्धारित नहीं है। ''शीर्ष'' (''डब्ल्यू'' का अनुमान लगाना) विवादास्पद नहीं है, परन्तु ''निम्न भाग'' (''एन'' का अनुमान लगाना) विवादास्पद है। लेस्निविस्की ने ''निम्न भाग'' को अस्वीकार कर दिया, और अधिकांश मेरियोलॉजिकल प्रणालियाँ उनके उदाहरण का अनुसरण करती हैं ([[रिचर्ड मिल्टन मार्टिन]] का कार्य अपवाद है)। इसलिए, जबकि ब्रह्मांड योग के तहत संवृत है, अतिव्यापत न होने वाली वस्तुओं का उत्पाद सामान्यतः अपरिभाषित होता है। प्रणाली जिसमें ''डब्ल्यू'' है परन्तु ''N'' नहीं है, वह समरूपी है:
यदि M8 निर्धारित है, तो ''डब्ल्यू'' अनंत ब्रह्मांडों के लिए स्थित है। इसलिए, ''शीर्ष'' को मात्र तभी मानने की आवश्यकता है जब ब्रह्मांड अनंत है और M8 निर्धारित नहीं है। ''शीर्ष'' (''डब्ल्यू'' का अनुमान लगाना) विवादास्पद नहीं है, परन्तु ''निम्न भाग'' (''एन'' का अनुमान लगाना) विवादास्पद है। अतः लेस्निविस्की ने ''निम्न भाग'' को अस्वीकार कर दिया, और अधिकांश मेरियोलॉजिकल प्रणालियाँ उनके उदाहरण का अनुसरण करती हैं ([[रिचर्ड मिल्टन मार्टिन]] का कार्य अपवाद है)। इसलिए, जबकि ब्रह्मांड योग के तहत संवृत है, अतिव्यापत न होने वाली वस्तुओं का उत्पाद सामान्यतः अपरिभाषित होता है। प्रणाली जिसमें ''डब्ल्यू'' है परन्तु ''N'' नहीं है, वह समरूपी है:
* एक [[बूलियन बीजगणित (संरचना)]] में 0 की कमी है;
* एक [[बूलियन बीजगणित (संरचना)]] में 0 की कमी है;
* एक संयुक्त (गणित) [[अर्ध-लेटेक्स|अर्द्ध जाली]] ऊपर से 1 से घिरा हुआ है। बाइनरी संलयन और ''डब्ल्यू'' क्रमशः संयुक्त और 1 की व्याख्या करते हैं।
* एक संयुक्त (गणित) [[अर्ध-लेटेक्स|अर्द्ध जाली]] ऊपर से 1 से घिरा हुआ है। बाइनरी संलयन और ''डब्ल्यू'' क्रमशः संयुक्त और 1 की व्याख्या करते हैं।
''एन'' को अभिधारणा करने से सभी संभावित उत्पाद निश्चित हो जाते हैं, परन्तु यह शास्त्रीय विस्तारक मेरियोलॉजी को [[बूलियन बीजगणित (तर्क)]] के समुच्चय-मुक्त [[मॉडल सिद्धांत]] में भी बदल देता है।
''एन'' को अभिधारणा करने से सभी संभावित उत्पाद निश्चित हो जाते हैं, परन्तु यह शास्त्रीय विस्तारक मेरियोलॉजी को [[बूलियन बीजगणित (तर्क)]] के समुच्चय-मुक्त [[मॉडल सिद्धांत]] में भी बदल देता है।


यदि समुच्चयों को स्वीकार किया जाता है, तो M8 किसी भी गैर-रिक्त समुच्चय के सभी सदस्यों के संलयन के अस्तित्व पर बल देता है। कोई भी मेरियोलॉजिकल प्रणाली जिसमें M8 निर्धारण को ''सामान्य'' कहा जाता है, और इसके नाम में जी भी सम्मिलित है। इस प्रकार से किसी भी सामान्य मापविज्ञान में, M6 और M7 सिद्ध करने योग्य हैं। विस्तृत मेरियोलॉजी में M8 जोड़ने पर ''सामान्य विस्तृत मेरियोलॉजी'', संक्षिप्त रूप में जीईएम प्राप्त होता है; इसके अतिरिक्त, विस्तारशीलता संलयन को अद्वितीय बनाती है। इसके विपरीत, यद्यपि, यदि M8 द्वारा अनुरोध किए गए संलयन को अद्वितीय माना जाता है, ताकि M8' M8 का स्थान ले, तो - जैसा कि टार्स्की (1929) ने दिखाया था - M3 और M8' जीईएम को स्वयंसिद्ध करने के लिए पर्याप्त हैं, जो उल्लेखनीय बहुमूल्य परिणाम है। सिमंस (1987: 38-41) कई जीईएम प्रमेयों को सूचीबद्ध करता है।
यदि समुच्चयों को स्वीकार किया जाता है, तो M8 किसी भी गैर-रिक्त समुच्चय के सभी सदस्यों के संलयन के अस्तित्व पर बल देता है। कोई भी मेरियोलॉजिकल प्रणाली जिसमें M8 निर्धारण को ''सामान्य'' कहा जाता है, और इसके नाम में जी भी सम्मिलित है। इस प्रकार से किसी भी सामान्य मापविज्ञान में, M6 और M7 सिद्ध करने योग्य हैं। विस्तृत मेरियोलॉजी में M8 जोड़ने पर ''सामान्य विस्तृत मेरियोलॉजी'', संक्षिप्त रूप में '''जीईएम''' प्राप्त होता है; इसके अतिरिक्त, विस्तारशीलता संलयन को अद्वितीय बनाती है। इसके विपरीत, यद्यपि, यदि M8 द्वारा अनुरोध किए गए संलयन को अद्वितीय माना जाता है, ताकि M8' M8 का स्थान ले, तो - जैसा कि टार्स्की (1929) ने दिखाया था - M3 और M8' '''जीईएम''' को स्वयंसिद्ध करने के लिए पर्याप्त हैं, जो उल्लेखनीय बहुमूल्य परिणाम है। सिमंस (1987: 38-41) कई जीईएम प्रमेयों को सूचीबद्ध करता है।


M2 और परिमित ब्रह्मांड आवश्यक रूप से ''परमाणुता'' को दर्शाते हैं, अर्थात प्रत्येक वस्तु या तो परमाणु है या उसके उचित भागों में परमाणु सम्मिलित हैं। यदि ब्रह्मांड अनंत है, तो ''परमाणुता'' के लिए M9 की आवश्यकता होती है। किसी भी मेरियोलॉजिकल पद्धति में M9 जोड़ने पर, X का परिणाम परमाणु संस्करण होता है, जिसे AX कहा जाता है। उदाहरण के लिए, ''परमाणुता'' अर्थव्यवस्थाओं को अनुमति देती है, यह मानते हुए कि M5'' ''परमाणुता'' और विस्तारशीलता को दर्शाता है, और एजीईएम का वैकल्पिक स्वयंसिद्धीकरण उत्पन्न करता है।''
M2 और परिमित ब्रह्मांड आवश्यक रूप से ''परमाणुता'' को दर्शाते हैं, अर्थात प्रत्येक वस्तु या तो परमाणु है या उसके उचित भागों में परमाणु सम्मिलित हैं। यदि ब्रह्मांड अनंत है, तो ''परमाणुता'' के लिए M9 की आवश्यकता होती है। इस प्रकार से किसी भी मेरियोलॉजिकल पद्धति में M9 जोड़ने पर, X का परिणाम परमाणु संस्करण होता है, जिसे AX कहा जाता है। उदाहरण के लिए, ''परमाणुता'' अर्थव्यवस्थाओं को अनुमति देती है, यह मानते हुए कि M5'' ''परमाणुता'' और विस्तारशीलता को दर्शाता है, और एजीईएम का वैकल्पिक स्वयंसिद्धीकरण उत्पन्न करता है।''


==समुच्चय सिद्धांत==
==समुच्चय सिद्धांत==
Line 143: Line 143:
इस प्रकार से समुच्चय सिद्धांत का उपयोग किए बिना गणित खोजने के प्रयासों के सर्वेक्षण के लिए, बर्गेस और रोसेन (1997) देखें।
इस प्रकार से समुच्चय सिद्धांत का उपयोग किए बिना गणित खोजने के प्रयासों के सर्वेक्षण के लिए, बर्गेस और रोसेन (1997) देखें।


1970 के दशक में, आंशिक रूप से एबरले (1970) के लिए धन्यवाद, यह धीरे-धीरे समझ में आने लगा कि कोई भी व्यक्ति समुच्चय के संबंध में अपने सत्तामूलक रूप से रुख का ध्यान दिए बिना मेरियोलॉजी को नियोजित कर सकता है। इस समझ को मेरियोलॉजी की सत्तामूलक रूप से निर्दोषिता कहा जाता है। यह निर्दोषिता मात्र दो समान विधियों से औपचारिक होने से उत्पन्न होती है:
अतः 1970 के दशक में, आंशिक रूप से एबरले (1970) के लिए धन्यवाद, यह धीरे-धीरे समझ में आने लगा कि कोई भी व्यक्ति समुच्चय के संबंध में अपने सत्तामूलक रूप से रुख का ध्यान दिए बिना मेरियोलॉजी को नियोजित कर सकता है। इस समझ को मेरियोलॉजी की सत्तामूलक रूप से निर्दोषिता कहा जाता है। इस प्रकार से यह निर्दोषिता मात्र दो समान विधियों से औपचारिक होने से उत्पन्न होती है:
*समुच्चयों के ब्रह्मांड में परिमाणित चर
*समुच्चयों के ब्रह्मांड में परिमाणित चर
* एकल मुक्त चर के साथ योजनाबद्ध [[विधेय (गणितीय तर्क)]]।
* एकल मुक्त चर के साथ योजनाबद्ध [[विधेय (गणितीय तर्क)]]।
एक बार जब यह स्पष्ट हो गया कि मात्रिकी समुच्चय सिद्धांत के खंडन के समान नहीं है, तो मात्रिकी को औपचारिक सत्तामूलक रूप से और तत्वमीमान्सा के लिए उपयोगी उपकरण के रूप में स्वीकार किया गया था।
एक बार जब यह स्पष्ट हो गया कि मात्रिकी समुच्चय सिद्धांत के खंडन के समान नहीं है, तो मात्रिकी को औपचारिक सत्तामूलक रूप से और तत्वमीमान्सा के लिए उपयोगी उपकरण के रूप में स्वीकार किया गया था।


समुच्चय सिद्धांत में, [[सिंगलटन (गणित)|एकल (गणित)]] ऐसे परमाणु होते हैं जिनमें कोई (गैर-रिक्त) उचित भाग नहीं होता है; कई लोग समुच्चय सिद्धांत को निकृष्ट या असंगत (ठीक रूप से स्थापित नहीं) मानते हैं यदि समुच्चय को इकाई समुच्चय से नहीं बनाया जा सकता है। ऐसा माना जाता था कि व्यक्तियों की गणना के लिए आवश्यक है कि किसी वस्तु में या तो कोई उचित भाग न हो, जिस स्थिति में यह परमाणु है, या परमाणुओं का मात्रिक योग हो। यद्यपि, एबरले (1970) ने दिखाया कि परमाणुवाद की कमी वाले व्यक्तियों की गणना कैसे बनाई जाए, अर्थात, जहां प्रत्येक वस्तु का उचित भाग हो (नीचे परिभाषित) ताकि ब्रह्मांड अनंत हो।
अतः समुच्चय सिद्धांत में, [[सिंगलटन (गणित)|एकल (गणित)]] ऐसे परमाणु होते हैं जिनमें कोई (गैर-रिक्त) उचित भाग नहीं होता है; कई लोग समुच्चय सिद्धांत को निकृष्ट या असंगत (ठीक रूप से स्थापित नहीं) मानते हैं यदि समुच्चय को इकाई समुच्चय से नहीं बनाया जा सकता है। ऐसा माना जाता था कि व्यक्तियों की गणना के लिए आवश्यक है कि किसी वस्तु में या तो कोई उचित भाग न हो, जिस स्थिति में यह परमाणु है, या परमाणुओं का मात्रिक योग हो। यद्यपि, एबरले (1970) ने दिखाया कि परमाणुवाद की कमी वाले व्यक्तियों की गणना कैसे बनाई जाए, अर्थात, जहां प्रत्येक वस्तु का उचित भाग हो (नीचे परिभाषित) ताकि ब्रह्मांड अनंत हो।


यदि भाग हुड को समुच्चय सिद्धांत में उपसमुच्चय के अनुरूप लिया जाता है, तो मेरियोलॉजी के सिद्धांतों और मानक ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफ) के बीच समानताएं हैं। मेरियोलॉजी और जेडएफ के संबंध पर, बंट (1985) भी देखें। मात्र विज्ञान पर चर्चा करने वाले बहुत कम समकालीन समुच्चय सिद्धांतकारों में से पॉटर (2004) हैं।
यदि भाग हुड को समुच्चय सिद्धांत में उपसमुच्चय के अनुरूप लिया जाता है, तो मेरियोलॉजी के सिद्धांतों और मानक ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफ) के बीच समानताएं हैं। मेरियोलॉजी और जेडएफ के संबंध पर, बंट (1985) भी देखें। मात्र विज्ञान पर चर्चा करने वाले बहुत कम समकालीन समुच्चय सिद्धांतकारों में से पॉटर (2004) हैं।
Line 154: Line 154:
इस प्रकार से [[डेविड लुईस (दार्शनिक)]] (1991) अनौपचारिक रूप से दिखाते हुए आगे बढ़े कि मात्रिक विज्ञान, कुछ सत्तामूलक रूप से मान्यताओं और [[बहुवचन परिमाणीकरण]] और एकल (गणित) के विषय में कुछ उपन्यास तर्क से संवर्धित, एक ऐसी प्रणाली उत्पन्न करता है जिसमें एक दिया गया व्यक्ति किसी अन्य व्यक्ति के भाग और उपसमूह दोनों हो सकते है। परिणामी प्रणालियों में विभिन्न प्रकार के समुच्चय सिद्धांत की व्याख्या की जा सकती है। उदाहरण के लिए, [[ZFC|जेडएफसी]] के सिद्धांतों को कुछ अतिरिक्त मात्रिक मान्यताओं के आधार पर सिद्ध किया जा सकता है।
इस प्रकार से [[डेविड लुईस (दार्शनिक)]] (1991) अनौपचारिक रूप से दिखाते हुए आगे बढ़े कि मात्रिक विज्ञान, कुछ सत्तामूलक रूप से मान्यताओं और [[बहुवचन परिमाणीकरण]] और एकल (गणित) के विषय में कुछ उपन्यास तर्क से संवर्धित, एक ऐसी प्रणाली उत्पन्न करता है जिसमें एक दिया गया व्यक्ति किसी अन्य व्यक्ति के भाग और उपसमूह दोनों हो सकते है। परिणामी प्रणालियों में विभिन्न प्रकार के समुच्चय सिद्धांत की व्याख्या की जा सकती है। उदाहरण के लिए, [[ZFC|जेडएफसी]] के सिद्धांतों को कुछ अतिरिक्त मात्रिक मान्यताओं के आधार पर सिद्ध किया जा सकता है।


फॉरेस्ट (2002) ने पूर्व 'सीईएम' का सामान्यीकरण तैयार करके लुईस के विश्लेषण को संशोधित किया, जिसे हेयटिंग मेरियोलॉजी कहा जाता है, जिसका एकमात्र गैर-वैज्ञानिक आदिम उचित भाग है, जो संक्रमणीय संबंध और [[प्रतिकर्मक]] है। काल्पनिक अशक्त व्यक्ति स्थित है जो प्रत्येक व्यक्ति का उचित भाग है। दो स्कीमा इस बात पर बल देती हैं कि प्रत्येक [[जाली (आदेश)|जाली (क्रम)]] जुड़ाव स्थित है (जाली एक [[पूर्ण जाली]] हैं) और यह जुड़ने पर वितरणात्मक गुण को पूर्ण करती है। इस हेयटिंग मेरियोलॉजी पर, फॉरेस्ट ने छद्म समुच्चयों का सिद्धांत खड़ा किया है, जो उन सभी उद्देश्यों के लिए पर्याप्त है जिनके लिए समुच्चय लगाए गए हैं।
अतः फॉरेस्ट (2002) ने पूर्व 'सीईएम' का सामान्यीकरण तैयार करके लुईस के विश्लेषण को संशोधित किया, जिसे हेयटिंग मेरियोलॉजी कहा जाता है, जिसका एकमात्र गैर-वैज्ञानिक आदिम उचित भाग है, जो संक्रमणीय संबंध और [[प्रतिकर्मक]] है। काल्पनिक अशक्त व्यक्ति स्थित है जो प्रत्येक व्यक्ति का उचित भाग है। दो स्कीमा इस बात पर बल देती हैं कि प्रत्येक [[जाली (आदेश)|जाली (क्रम)]] जुड़ाव स्थित है (जाली एक [[पूर्ण जाली]] हैं) और यह जुड़ने पर वितरणात्मक गुण को पूर्ण करती है। इस हेयटिंग मेरियोलॉजी पर, फॉरेस्ट ने छद्म समुच्चयों का सिद्धांत खड़ा किया है, जो उन सभी उद्देश्यों के लिए पर्याप्त है जिनके लिए समुच्चय लगाए गए हैं।


==गणित==
==गणित==
Line 162: Line 162:


==प्राकृतिक भाषा==
==प्राकृतिक भाषा==
अतः बंट (1985), प्राकृतिक भाषा के शब्दार्थ का अध्ययन, दिखाता है कि मात्रिक विज्ञान द्रव्यमान-गणना भेद और [[व्याकरणिक पहलू|व्याकरणिक गुण]] जैसी घटनाओं को समझने में कैसे सहायता कर सकता है। परन्तु निकोलस (2008) का तर्क है कि उस उद्देश्य के लिए बहुवचन परिमाणीकरण नामक अलग तार्किक संरचना का उपयोग किया जाना चाहिए। इसके अतिरिक्त, [[प्राकृतिक भाषा]] प्रायः अस्पष्ट विधियों से कार्य करती है (साइमन्स 1987 इस पर विस्तार से चर्चा करता है)। इसलिए, यह स्पष्ट नहीं है कि कैसे, यदि कोई हो, तो कुछ प्राकृतिक भाषा अभिव्यक्तियों को मात्रिक विधेय में अनुवादित किया जा सकता है। ऐसी कठिनाइयों से बचने के लिए मात्र विज्ञान की व्याख्या को गणित और [[प्राकृतिक विज्ञान]] तक सीमित करने की आवश्यकता हो सकती है। उदाहरण के लिए, कासाती और वर्ज़ी (1999), मात्रिकी के क्षेत्र को [[भौतिक वस्तु|भौतिक वस्तुओं]] तक सीमित करते हैं।
अतः बंट (1985), प्राकृतिक भाषा के शब्दार्थ का अध्ययन, दिखाता है कि मात्रिक विज्ञान द्रव्यमान-गणना भेद और [[व्याकरणिक पहलू|व्याकरणिक गुण]] जैसी घटनाओं को समझने में कैसे सहायता कर सकता है। परन्तु निकोलस (2008) का तर्क है कि उस उद्देश्य के लिए बहुवचन परिमाणीकरण नामक अलग तार्किक संरचना का उपयोग किया जाना चाहिए। इसके अतिरिक्त, [[प्राकृतिक भाषा]] प्रायः अस्पष्ट विधियों से कार्य करती है (साइमन्स 1987 इस पर विस्तार से चर्चा करता है)। इसलिए, यह स्पष्ट नहीं है कि कैसे, यदि कोई हो, तो कुछ प्राकृतिक भाषा अभिव्यक्तियों को मात्रिक विधेय में अनुवादित किया जा सकता है। ऐसी कठिनाइयों से बचने के लिए मात्र विज्ञान की व्याख्या को गणित और [[प्राकृतिक विज्ञान]] तक सीमित करने की आवश्यकता हो सकती है। इस प्रकार से उदाहरण के लिए, कासाती और वर्ज़ी (1999), मात्रिकी के क्षेत्र को [[भौतिक वस्तु|भौतिक वस्तुओं]] तक सीमित करते हैं।


== तत्वमीमान्सा ==
== तत्वमीमान्सा ==
Line 168: Line 168:


=== मेरियोलॉजिकल संविधान ===
=== मेरियोलॉजिकल संविधान ===
तत्वमीमान्सा में, मेरियोलॉजिकल संविधान की स्थितियों से संबंधित कई पहेलियां हैं, अर्थात, संपूर्ण क्या बनता है।<ref>{{cite SEP|url-id=material-constitution|title=मेरियोलॉजिकल संविधान|edition=Fall 2018|last=Wasserman|first=Ryan|date=5 July 2017}}</ref> भागों और पूर्ण को लेकर अभी भी चिंता है, परन्तु यह देखने के अतिरिक्त कि कौन से भाग मिलकर संपूर्ण बनाते हैं, बल इस बात पर है कि कोई वस्तु किस वस्तु से बनी है, जैसे कि उसके पदार्थ, जैसे, कांस्य प्रतिमा में कांस्य आदि। नीचे दो मुख्य पहेलियाँ दी गई हैं जिनका उपयोग दार्शनिक संविधान पर चर्चा करने के लिए करते हैं।
तत्वमीमान्सा में, मेरियोलॉजिकल संविधान की स्थितियों से संबंधित कई पहेलियां हैं, अर्थात, संपूर्ण क्या बनता है।<ref>{{cite SEP|url-id=material-constitution|title=मेरियोलॉजिकल संविधान|edition=Fall 2018|last=Wasserman|first=Ryan|date=5 July 2017}}</ref> भागों और पूर्ण को लेकर अभी भी चिंता है, परन्तु यह देखने के अतिरिक्त कि कौन से भाग मिलकर संपूर्ण बनाते हैं, बल इस बात पर है कि कोई वस्तु किस वस्तु से बनी है, जैसे कि उसके पदार्थ, जैसे, कांस्य प्रतिमा में कांस्य आदि। इस प्रकार से नीचे दो मुख्य पहेलियाँ दी गई हैं जिनका उपयोग दार्शनिक संविधान पर चर्चा करने के लिए करते हैं।


[[थिसस का जहाज]]: संक्षेप में, पहेली कुछ इस प्रकार है। एक जहाज़ है जिसका नाम है शिप ऑफ़ थिसियस। समय के साथ, बोर्ड सड़ने लगते हैं, इसलिए हम बोर्ड हटा देते हैं और उन्हें ढेर में रख देते हैं। प्रथम प्रश्न, क्या नवीन बोर्ड से बना जहाज उसी जहाज के जैसे है जिसमें सभी प्राचीन बोर्ड लगे थे? दूसरा, यदि हम शिप ऑफ थेसियस के सभी प्राचीन तख्तों आदि का उपयोग करके जहाज का पुनर्निर्माण करते हैं, और हमारे निकट जहाज भी है जो नवीन बोर्डों से बनाया गया है (प्रत्येक को प्राचीन क्षयकारी बोर्डों को बदलने के लिए समय के साथ एक-एक करके जोड़ा जाता है)), कौन सा जहाज़ वास्तविक शिप ऑफ़ थिसस है?
[[थिसस का जहाज]]: संक्षेप में, पहेली कुछ इस प्रकार है। एक जहाज़ है जिसका नाम है शिप ऑफ़ थिसियस। समय के साथ, बोर्ड सड़ने लगते हैं, इसलिए हम बोर्ड हटा देते हैं और उन्हें ढेर में रख देते हैं। प्रथम प्रश्न, क्या नवीन बोर्ड से बना जहाज उसी जहाज के जैसे है जिसमें सभी प्राचीन बोर्ड लगे थे? दूसरा, यदि हम शिप ऑफ थेसियस के सभी प्राचीन तख्तों आदि का उपयोग करके जहाज का पुनर्निर्माण करते हैं, और हमारे निकट जहाज भी है जो नवीन बोर्डों से बनाया गया है (प्रत्येक को प्राचीन क्षयकारी बोर्डों को बदलने के लिए समय के साथ एक-एक करके जोड़ा जाता है)), कौन सा जहाज़ वास्तविक शिप ऑफ़ थिसस है?

Revision as of 08:20, 6 July 2023

गणितीय तर्क, दर्शन और संबंधित क्षेत्रों में, मेरियोलॉजी (from ग्रीक μέρος 'भाग' (मूल: μερε-, मात्र-, 'भाग') और प्रत्यय-विज्ञान, 'अध्ययन, चर्चा, विज्ञान') भागों और उनसे बनने वाले संपूर्ण का अध्ययन है। जबकि समुच्चय सिद्धांत समुच्चय (गणित) और उसके अवयव (गणित) के बीच सदस्यता संबंध पर स्थापित किया गया है, मेरियोलॉजी इकाइयों के बीच मेरोनॉमी संबंध पर बल देती है, जो समुच्चय-सैद्धांतिक दृष्टिकोण से- समुच्चय के बीच समावेशन (समुच्चय सिद्धांत) की अवधारणा के निकट है।

औपचारिक तात्विकी में विधेय तर्क के अनुप्रयोगों के रूप में मेरियोलॉजी की विभिन्न विधियों से खोज की गई है, जिनमें से प्रत्येक में मेरियोलॉजी महत्वपूर्ण भाग है। इनमें से प्रत्येक क्षेत्र मेरियोलॉजी की अपनी स्वयंसिद्ध परिभाषा प्रदान करती है। इस प्रकार से ऐसी स्वयंसिद्ध प्रणाली का सामान्य अवयव स्वयंसिद्धीकरण यह धारणा है, जिसे समावेशन के साथ साझा किया जाता है, कि आंशिक-संपूर्ण संबंध अपने ब्रह्मांड को आंशिक रूप से व्यवस्थित करता है, जिसका अर्थ है कि सब कुछ स्वयं का भाग है (प्रतिवर्ती संबंध), जो कि संपूर्ण के भाग का भाग है स्वयं उस संपूर्ण (सकर्मक संबंध) का भाग है, और दो अलग-अलग संस्थाएं एक-दूसरे (प्रतिसममिति संबंध) का भाग नहीं हो सकती हैं, इस प्रकार क्रमित समुच्चय बनता है। इस स्वयंसिद्धीकरण का प्रकार इस बात से मना करता है कि सकर्मकता को स्वीकार करते समय कोई भी वस्तु कभी भी स्वयं का भाग (अप्रतिक्रियाशीलता) होती है, जिससे प्रतिसममिति स्वचालित रूप से अनुसरण करती है।

यद्यपि मेरियोलॉजी गणितीय तर्क का अनुप्रयोग है, जिसे प्रकार की आद्य-ज्यामिति माना जा सकता है, यह पूर्ण रूप से तर्कशास्त्रियों, तात्विकी, भाषाविदों, इंजीनियरों और कंप्यूटर वैज्ञानिकों द्वारा विकसित किया गया है, विशेष रूप से कृत्रिम बुद्धिमत्ता में कार्य करने वालों द्वारा। विशेष रूप से, मेरियोलॉजी ज्यामिति की बिंदु-मुक्त नींव पर भी आधारित है (उदाहरण के लिए अल्फ्रेड टार्स्की का उद्धृत अग्रणी लेख और गेर्ला 1995 का समीक्षा लेख देखें)।

इस प्रकार से सामान्य पद्धति सिद्धांत में, 'मेरियोलॉजी' पद्धति के अपघटन और भागों, संपूर्णताओं और सीमाओं पर औपचारिक कार्य को संदर्भित करता है (उदाहरण के लिए, मिहाजलो डी. मेसारोविक (1970), गेब्रियल क्रोन (1963), या मौरिस जेसल (बौडेन देखें (1989, 1998))) आदि। अतः गेब्रियल क्रोन के नेटवर्क टियरिंग का श्रेणीबद्ध संस्करण कीथ बोडेन (1991) द्वारा प्रकाशित किया गया था, जो गंक (मेरियोलॉजी) पर डेविड लुईस के विचारों को दर्शाता है। ऐसे विचार सैद्धांतिक कंप्यूटर विज्ञान और सैद्धांतिक भौतिकी में दिखाई देते हैं, प्रायः शीफ सिद्धांत, टोपोस के संयोजन में, या श्रेणी सिद्धांत आदि। कंप्यूटर विज्ञान में विशिष्टताओं पर स्टीव विकर्स (कंप्यूटर वैज्ञानिक), भौतिक प्रणालियों पर जोसेफ गोगुएन और लिंक सिद्धांत और क्वांटम यांत्रिकी पर टॉम एटर (1996, 1998) का कार्य भी देखें।

इतिहास

इस प्रकार से प्लेटो (विशेष रूप से, पारमेनाइड्स संवाद) के दूसरे भाग में) और अरस्तू के बाद से तत्वमीमान्सा और तात्विकी में अनौपचारिक आंशिक-संपूर्ण तर्क को सचेत रूप से लागू किया गया था, और 19 वीं शताब्दी के गणित में 1910 के निकट समुच्चय सिद्धांत की विजय तक कमोबेश अनजाने में था। इस युग के आध्यात्मिक विचार जो भागों और संपूर्ण की अवधारणाओं पर चर्चा करते हैं उनमें दिव्य सादगी और सौंदर्य शास्त्रीय सम्मिलित हैं।

आइवर ग्राटन-गिनीज (2001) 19वीं और 20वीं शताब्दी के समय आंशिक-संपूर्ण तर्क पर बहुत प्रकाश डालता है, और समीक्षा करता है कि जॉर्ज कैंटर और पीनो ने समुच्चय सिद्धांत कैसे तैयार किया। ऐसा प्रतीत होता है कि वह भागों और पूर्ण के विषय में सचेत रूप से और विस्तार से तर्क करने वाले प्रथम व्यक्ति थे 1901 में एडमंड हसरल ने तार्किक जांच हुसेरल) के दूसरे खंड में - तीसरी जांच: "ऑन द थ्योरी ऑफ होल्स एंड पार्ट्स" (हसेरल 1970 अंग्रेजी अनुवाद है) में कार्य किया था। यद्यपि, मेरियोलॉजी शब्द उनके लेखन से अनुपस्थित है, और उन्होंने गणित में डक्टर की उपाधि प्राप्त करने के अतिरिक्त कोई प्रतीकवाद का प्रयोग नहीं किया था।

अतः स्टैनिस्लाव लेस्निविस्की ने 1927 में ग्रीक शब्द μέρος (मेरोस, भाग) से मेरियोलॉजी गढ़ी, जो कि आंशिक-संपूर्ण के औपचारिक सिद्धांत को संदर्भित करता है, जिसे उन्होंने 1916 और 1931 के बीच प्रकाशित उच्च तकनीकी लेखों की श्रृंखला में तैयार किया था, और लेस्निविस्की (1992) में अनुवादित किया गया था। इस प्रकार से लेस्निविस्की के छात्र अल्फ्रेड टार्स्की ने वुडगर (1937) के अपने परिशिष्ट ई और टार्स्की (1984) के रूप में अनुवादित लेख में लेस्निविस्की की औपचारिकता को बहुत सरल बना दिया था। अतः लेस्निविस्की के अन्य छात्रों (और छात्रों के छात्रों) ने 20वीं शताब्दी के समय इस पोलिश मेरियोलॉजी को विस्तृत किया। पोलिश मेरियोलॉजी पर साहित्य के ठीक चयन के लिए, श्रीज़ेडनिकी और रिकी (1984) देखें। पोलिश मेरियोलॉजी के सर्वेक्षण के लिए, सिमंस (1987) देखें। यद्यपि, 1980 या उसके बाद से, पोलिश मेरियोलॉजी पर शोध लगभग पूर्ण रूप से ऐतिहासिक प्रकृति का रहा है।

इस प्रकार से ए.एन. व्हाइटहेड ने ज्यामिति पर गणितीय सिद्धांत के चौथे खंड की योजना बनाई, परन्तु इसे कभी नहीं लिखा था। इस प्रकार से बर्ट्रेंड रसेल के साथ उनके 1914 के पत्राचार से ज्ञात होता है कि ज्यामिति के प्रति उनके इच्छित दृष्टिकोण को, दूरदर्शिता के लाभ के साथ, संक्षेप में मेरियोलॉजिकल के रूप में देखा जा सकता है। यह कार्य व्हाइटहेड (1916) और व्हाइटहेड के मेरियोलॉजिकल पद्धति (1919, 1920) में समाप्त हुआ था।

अतः 1930 में, हेनरी एस. लियोनार्ड ने हार्वर्ड पीएच.डी. पूर्ण की थी। इस प्रकार से दर्शनशास्त्र में शोध प्रबंध, भाग-संपूर्ण संबंध का औपचारिक सिद्धांत स्थापित करना। यह नेल्सन गुडमैन और लियोनार्ड (1940) के व्यक्तियों की गणना में विकसित हुआ। गुडमैन ने गुडमैन (1951) के तीन संस्करणों में इस गणना को संशोधित और विस्तृत किया। व्यक्तियों की गणना 1970 के पश्चात तर्कशास्त्रियों, तात्विकीविद् और कंप्यूटर वैज्ञानिकों के बीच मेरियोलॉजी के पुनरुद्धार के लिए प्रारंभिक बिंदु है, पुनरुद्धार जिसका सिमंस (1987), कासाती और वर्ज़ी (1999), और कॉटनॉयर और वर्ज़ी (2021) में ठीक रूप से सर्वेक्षण किया गया है।

स्वसिद्धांत और आदिम धारणाएँ

इस प्रकार से प्रतिवर्ती: मेरियोलॉजिकल पद्धति को परिभाषित करने में मूलभूत विकल्प यह है कि क्या वस्तुओं को स्वयं का भाग माना जाए। अनुभवहीन समुच्चय सिद्धांत में समान प्रश्न उठता है: क्या किसी समुच्चय को स्वयं का उपसमुच्चय माना जाना चाहिए। अतः दोनों स्थितियों में, हाँ रसेल के विरोधाभास के अनुरूप विरोधाभासों को जन्म देता है: मान लीजिए कि वस्तु O है, जैसे कि प्रत्येक वस्तु जो स्वयं का उचित भाग नहीं है, वह O का उचित भाग है। क्या O स्वयं का उचित भाग है? नहीं, क्योंकि कोई भी वस्तु स्वयं का उचित भाग नहीं है; और हाँ, क्योंकि यह O के उचित भाग के रूप में सम्मिलित करने के लिए निर्दिष्ट आवश्यकता को पूर्ण करता है। समुच्चय सिद्धांत में, समुच्चय को प्रायः स्वयं का अनुचित उपसमुच्चय कहा जाता है। ऐसे विरोधाभासों को देखते हुए, मेरोलॉजी को स्वयंसिद्ध सूत्रीकरण की आवश्यकता होती है।

मेरियोलॉजिकल प्रणाली प्रथम-क्रम तर्क सिद्धांत (पहचान (दर्शन) के साथ) है, जिसके ब्रह्मांड में संपूर्ण और उनके संबंधित भाग होते हैं, जिन्हें सामूहिक रूप से वस्तु कहा जाता है। मेरियोलॉजी नीडित और गैर-नीडित स्वयंसिद्ध प्रणालियों का संग्रह है, जो मोडल तर्क की स्थिति से भिन्न नहीं है।

अतः निम्न दिया गया उपचार, शब्दावली और पदानुक्रमित संगठन कासाती और वर्ज़ी (1999: अध्याय 3) का स्पष्टता से अनुसरण करता है। इस प्रकार से कुछ मिथ्या धारणा को दूर करने वाले नवीनतम उपचार के लिए, होव्डा (2008) देखें। छोटे अक्षर वस्तुओं पर चर को दर्शाते हैं। प्रत्येक प्रतीकात्मक स्वयंसिद्ध या परिभाषा के पश्चात कासाती और वर्ज़ी में संबंधित सूत्र की संख्या बोल्ड में लिखी गई है।

एक मेरियोलॉजिकल प्रणाली के लिए कम से कम आदिम बाइनरी संबंध (युग्मकीय विधेय (तर्क)) की आवश्यकता होती है। अतः ऐसे संबंध के लिए सबसे पारंपरिक विकल्प भाग हुड (जिसे समावेशन भी कहा जाता है) है, x y का भाग है, जिसे Pxy लिखा जाता है। लगभग सभी प्रणालियों को ब्रह्मांड को आंशिक रूप से व्यवस्थित करने की आवश्यकता होती है। निम्नलिखित परिभाषित संबंध, नीचे दिए गए स्वयंसिद्धों के लिए आवश्यक हैं, अकेले भाग हुड से तुरंत अनुसरण करते हैं:

  • एक तत्काल परिभाषित विधेय (तर्क) है x y का उचित भाग' है, जिसे PPxy लिखा गया है, जो मानता है (अर्थात, संतुष्ट है, सत्य निकलता है) यदि Pxy सत्य है और ' Pyx' असत्य है। भाग हुड (जो आंशिक क्रम है) की तुलना में, उचित भाग निश्चित आंशिक क्रम है।
3.3
जिस वस्तु में उचित भागों का अभाव हो वह परमाणु है। मेरियोलॉजिकल ब्रह्मांड में वे सभी वस्तुएं सम्मिलित हैं जिनके विषय में हम सोचना चाहते हैं, और उनके सभी उचित भाग:
  • अतिव्यापत: x और y अतिव्यापत, Oxy लिखा जाता है, यदि कोई वास्तु z स्थित है जैसे कि Pzx और Pzy दोनों पकडे रखते हैं।
3.1
z के भाग, x और y का अतिव्यापत या उत्पाद, वस्तुतः वे वस्तुएं हैं जो x और y दोनों के भाग हैं।
  • निम्नव्यापत: x और y निम्नव्यापत, Uxy लिखा जाता है, यदि कोई वस्तु z स्थित है जैसे कि x और y दोनों z के भाग हैं।
3.2

इस प्रकार से अतिव्यापत और निम्नव्यापत प्रतिवर्ती संबंध, सममित और असंक्रामी संबंध हैं।

अतः प्रणालियाँ इस बात में भिन्न होती हैं कि वे किन संबंधों को आदिम और परिभाषित मानते हैं। इस प्रकार से उदाहरण के लिए, विस्तारित मेरियोलॉजीज़ (नीचे परिभाषित) में, भाग हुड को अतिव्यापत से निम्नानुसार परिभाषित किया जा सकता है:

3.31

अतः अभिगृहीत हैं:

M1, प्रतिवर्ती संबंध: वस्तु स्वयं का भाग है।
P1
M2, प्रतिसममिति संबंध: यदि Pxy और Pyx दोनों निर्धारित हैं, तो x और y ही वस्तु हैं।
P .2
M3, सकर्मक संबंध: यदि Pxy और Pyz, तो Pxz
P 3
  • M4, दुर्बल अनुपूरण: यदि PPxy धारण करता है, तो z स्थित होता है जैसे कि Pzy धारण करता है परन्तु Ozx नहीं करता है।
P 4
  • M5, सशक्त अनुपूरक: यदि Pyx धारण नहीं करता है, तो z स्थित है जैसे कि Pzy धारण करता है परन्तु Ozx धारण नहीं करता है।
P 5
  • M5', परमाणु अनुपूरक: यदि Pxy धारण नहीं करता है, तो परमाणु z स्थित है जैसे कि Pzx धारण करता है परन्तु Ozy नहीं रखता है।
P.5'
  • शीर्ष: सार्वभौमिक वस्तु स्थित है, जिसे W नामित किया गया है, जैसे कि PxW किसी भी x के लिए धारण करता है।
3.20
यदि M8 मान्य है तो शीर्ष प्रमेय है।
  • नीचे: परमाणु शून्य वस्तु स्थित है, जिसे N नामित किया गया है, जैसे कि PNx किसी भी x के लिए धारण करता है।
3.22
  • M6, योग: यदि Uxy धारण करता है, तो z स्थित होता है, जिसे x और y का योग या संलयन कहा जाता है, जैसे कि वस्तुएं z को अतिव्यापत करती हैं ' मात्र वे वस्तुएं हैं जो x या y को अतिव्यापत करती हैं।
P 6
  • M7, उत्पाद: यदि Oxy धारण करता है, तो z स्थित होता है, जिसे x और y का उत्पाद कहा जाता है, जैसे कि z के भाग मात्र होते हैं वे वस्तुएँ जो x और y दोनों के भाग हैं।
P 7
यदि Oxy धारण नहीं करते है, तो x और y में कोई समान भाग नहीं है, और x और y का गुणनफल अपरिभाषित है।
  • M8, अप्रतिबंधित संलयन: मान लीजिए φ(x) प्रथम-क्रम तर्क सूत्र है, जिसमें x मुक्त चर है। तब φ को संतुष्ट करने वाली सभी वस्तुओं का संलयन स्थित होता है।
P 8
M8 को सामान्य योग सिद्धांत, अप्रतिबंधित मेरियोलॉजिकल संरचना, या सार्वभौमिकता भी कहा जाता है। M8 अनुभवहीन समुच्चय सिद्धांत के निर्माता अंकन समुच्चय से मेल खाता है, जो रसेल के विरोधाभास को जन्म देता है। इस विरोधाभास का कोई मात्रिक प्रतिरूप नहीं है क्योंकि भाग हुड, समुच्चय सदस्यता के विपरीत, प्रतिवर्ती संबंध है।
  • M8', अद्वितीय संलयन: वे संलयन जिनके अस्तित्व पर M8 अनुरोध करता है, वे भी अद्वितीय हैं। P.8'
  • M9, परमाणुता: सभी वस्तुएँ या तो परमाणु हैं या परमाणुओं का संलयन हैं।
P10

विभिन्न प्रणालियाँ

इस प्रकार से सिमंस (1987), कैसाती और वर्ज़ी (1999) और होव्दा (2008) कई मेरियोलॉजिकल प्रणालियों का वर्णन करते हैं जिनके स्वयंसिद्ध उपरोक्त सूची से लिए गए हैं। हम कासाती और वर्ज़ी के बोल्डफेस नामकरण को अपनाते हैं। इस प्रकार की सबसे प्रसिद्ध प्रणाली वह है जिसे शास्त्रीय विस्तारक मेरियोलॉजी कहा जाता है, जिसे इसके पश्चात संक्षिप्त रूप में 'सीईएम' कहा जाएगा (अन्य संक्षिप्त रूपों को नीचे समझाया गया है)। अतः 'सीईएम' में, 'P.1' से 'P.8' तक को स्वयंसिद्ध या प्रमेय के रूप में रखा जाता है। M9, ऊपर और नीचे वैकल्पिक हैं।

इस प्रकार से नीचे दी गई तालिका में पद्धति समावेशन (समुच्चय सिद्धांत) द्वारा आंशिक क्रम में हैं, इस अर्थ में कि, यदि पद्धति ए की सभी प्रमेय भी पद्धति बी की प्रमेय हैं, परन्तु बातचीत तार्किक सत्य नहीं है, तो बी में ए सम्मिलित है। परिणामी हस्से आरेख कासाती और वर्ज़ी (1999:48) में चित्र 3.2 के समान है।

Label नाम पद्धति सम्मिलित स्वयंसिद्ध
M1 निजवाचकता
M2 प्रतिसममिति
M3 संक्रामिता M M1, M2, M3
M4 दुर्बल अनुपूरण MM M, M4
M5 दृढ अनुपूरण EM M, M5
M5' परमाणुवादी अनुपूरण
M6 योग
M7 उत्पाद CEM EM, M6, M7
M8 अप्रतिबंधित संलयन GM M, M8
जीईएम EM, M8
M8' अद्वितीय संलयन जीईएम EM, M8'
M9 परमाणुता Aजीईएम M2, M8, M9
Aजीईएम M, M5', M8

अतः यह अनुरोध करने की दो समान विधियाँ हैं कि ब्रह्मांड आंशिक क्रम है: या तो M 1-M 3 मान लें, या कि उचित भाग हुड सकर्मक संबंध और असममित संबंध है, इसलिए निश्चित आंशिक क्रम है। इस प्रकार से पद्धति M में या तो स्वयंसिद्धीकरण का परिणाम होता है। M 2 भाग हुड का उपयोग करके गठित संवृत पाशों को निरस्त कर देता है, ताकि भाग संबंध ठीक रूप से स्थापित हो। यदि नियमितता के सिद्धांत को मान लिया जाए तो समुच्चय ठीक रूप से स्थापित होते हैं। साहित्य में भाग हुड की परिवर्तनशीलता पर कभी-कभी दार्शनिक और सामान्य ज्ञान की आपत्तियां सम्मिलित होती हैं।

इस प्रकार से M4 और M5 पूरकता पर बल देने की दो विधियाँ हैं, समुच्चय पूरक (समुच्चय सिद्धांत) एशन का मेरियोलॉजिकल एनालॉग, M5 निश्चित है क्योंकि M4 M5 से व्युत्पन्न है। M और M4 न्यूनतम मेरियोलॉजी, MM उत्पन्न करते हैं। उचित भाग के संदर्भ में पुनर्निर्मित, एमएम सिमंस (1987) की चयनित न्यूनतम प्रणाली है।

अतः किसी भी प्रणाली में जिसमें M5 या M5' माना जाता है या प्राप्त किया जा सकता है, तो यह सिद्ध किया जा सकता है कि समान उचित भागों वाली दो वस्तुएं समान हैं। इस गुण को विस्तारकता के रूप में जाना जाता है, समुच्चय सिद्धांत से ऋण लिया गया शब्द, जिसके लिए विस्तारशीलता का सिद्धांत परिभाषित स्वयंसिद्ध है। मेरियोलॉजिकल प्रणालियां जिनमें विस्तारात्मकता बनाए रखता है, उन्हें विस्तृत कहा जाता है, तथ्य जो उनके प्रतीकात्मक नामों में अक्षर ई को सम्मिलित करके दर्शाया गया है।

इस प्रकार से M6 का अनुरोध है कि किन्हीं दो निम्नव्यापतिंग वस्तुओं का अद्वितीय योग होता है; M7 का अनुरोध है कि किन्हीं दो अतिव्यापी वस्तुओं का अद्वितीय उत्पाद होता है। यदि ब्रह्माण्ड परिमित है या यदि शीर्ष मान लिया गया है, तो ब्रह्माण्ड योग के अंतर्गत संवृत है। अतः उत्पाद के सार्वभौमिक अगम और डब्ल्यू के सापेक्ष पूरकता के लिए निम्न भाग की आवश्यकता होती है। डब्ल्यू और एन, स्पष्ट रूप से, सार्वभौमिक समुच्चय और रिक्त समुच्चय के मेरियोलॉजिकल एनालॉग हैं, और योग और उत्पाद, इसी प्रकार, समुच्चय-सैद्धांतिक संघ (समुच्चय सिद्धांत) और प्रतिच्छेदन (समुच्चय सिद्धांत) के एनालॉग हैं। यदि M6 और M7 या तो कल्पित हैं या व्युत्पन्न हैं, तो परिणाम अगम के साथ मात्रविज्ञान है।

चूँकि योग और उत्पाद बाइनरी संक्रिया हैं, M6 और M7 मात्र सीमित संख्या में वस्तुओं के योग और उत्पाद को स्वीकार करते हैं। अप्रतिबंधित संलयन अभिगृहीत, M8, अनंत रूप से कई वस्तुओं का योग लेने में सक्षम बनाता है। परिभाषित होने पर उत्पाद के लिए भी यही बात लागू होती है। इस बिंदु पर, मेरियोलॉजी प्रतिच्छेदन (समुच्चय सिद्धांत) का आह्वान करती है, परन्तु समुच्चय सिद्धांत का कोई भी पक्ष सूत्र को मुक्त चर के साथ योजनाबद्ध सूत्र द्वारा समुच्चय के ब्रह्मांड में परिमाणीकरण (तर्क) चर के साथ प्रतिस्थापित करके समाप्त किया जा सकता है। जब भी किसी वास्तु का नाम जो समुच्चय का अवयव (गणित) होता (यदि यह अस्तित्व में होता) मुक्त चर को प्रतिस्थापित करता है, तो सूत्र सत्य हो जाता है (संतुष्ट हो जाता है)। इसलिए समुच्चय वाले किसी भी स्वयंसिद्ध को एक अक परमाणु उपसूत्रों के साथ स्वयंसिद्ध स्कीमा द्वारा प्रतिस्थापित किया जा सकता है। M8 और M8' इसी प्रकार के स्कीमा हैं। प्रथम-क्रम सिद्धांत का वाक्य-विन्यास मात्र असंख्य संख्या में समुच्चयों का वर्णन कर सकता है; इसलिए, इस प्रकार से मात्र संख्यात्मक रूप से कई समुच्चयों को हटाया जा सकता है, परन्तु यह सीमा यहां बताए गए गणित के प्रकार के लिए बाध्यकारी नहीं है।

यदि M8 निर्धारित है, तो डब्ल्यू अनंत ब्रह्मांडों के लिए स्थित है। इसलिए, शीर्ष को मात्र तभी मानने की आवश्यकता है जब ब्रह्मांड अनंत है और M8 निर्धारित नहीं है। शीर्ष (डब्ल्यू का अनुमान लगाना) विवादास्पद नहीं है, परन्तु निम्न भाग (एन का अनुमान लगाना) विवादास्पद है। अतः लेस्निविस्की ने निम्न भाग को अस्वीकार कर दिया, और अधिकांश मेरियोलॉजिकल प्रणालियाँ उनके उदाहरण का अनुसरण करती हैं (रिचर्ड मिल्टन मार्टिन का कार्य अपवाद है)। इसलिए, जबकि ब्रह्मांड योग के तहत संवृत है, अतिव्यापत न होने वाली वस्तुओं का उत्पाद सामान्यतः अपरिभाषित होता है। प्रणाली जिसमें डब्ल्यू है परन्तु N नहीं है, वह समरूपी है:

एन को अभिधारणा करने से सभी संभावित उत्पाद निश्चित हो जाते हैं, परन्तु यह शास्त्रीय विस्तारक मेरियोलॉजी को बूलियन बीजगणित (तर्क) के समुच्चय-मुक्त मॉडल सिद्धांत में भी बदल देता है।

यदि समुच्चयों को स्वीकार किया जाता है, तो M8 किसी भी गैर-रिक्त समुच्चय के सभी सदस्यों के संलयन के अस्तित्व पर बल देता है। कोई भी मेरियोलॉजिकल प्रणाली जिसमें M8 निर्धारण को सामान्य कहा जाता है, और इसके नाम में जी भी सम्मिलित है। इस प्रकार से किसी भी सामान्य मापविज्ञान में, M6 और M7 सिद्ध करने योग्य हैं। विस्तृत मेरियोलॉजी में M8 जोड़ने पर सामान्य विस्तृत मेरियोलॉजी, संक्षिप्त रूप में जीईएम प्राप्त होता है; इसके अतिरिक्त, विस्तारशीलता संलयन को अद्वितीय बनाती है। इसके विपरीत, यद्यपि, यदि M8 द्वारा अनुरोध किए गए संलयन को अद्वितीय माना जाता है, ताकि M8' M8 का स्थान ले, तो - जैसा कि टार्स्की (1929) ने दिखाया था - M3 और M8' जीईएम को स्वयंसिद्ध करने के लिए पर्याप्त हैं, जो उल्लेखनीय बहुमूल्य परिणाम है। सिमंस (1987: 38-41) कई जीईएम प्रमेयों को सूचीबद्ध करता है।

M2 और परिमित ब्रह्मांड आवश्यक रूप से परमाणुता को दर्शाते हैं, अर्थात प्रत्येक वस्तु या तो परमाणु है या उसके उचित भागों में परमाणु सम्मिलित हैं। यदि ब्रह्मांड अनंत है, तो परमाणुता के लिए M9 की आवश्यकता होती है। इस प्रकार से किसी भी मेरियोलॉजिकल पद्धति में M9 जोड़ने पर, X का परिणाम परमाणु संस्करण होता है, जिसे AX कहा जाता है। उदाहरण के लिए, परमाणुता अर्थव्यवस्थाओं को अनुमति देती है, यह मानते हुए कि M5 परमाणुता और विस्तारशीलता को दर्शाता है, और एजीईएम का वैकल्पिक स्वयंसिद्धीकरण उत्पन्न करता है।

समुच्चय सिद्धांत

इस प्रकार से समुच्चय सिद्धांत में उपसमुच्चय की धारणा पूर्ण रूप से मेरोलॉजी में उपभाग की धारणा के समान नहीं है। स्टैनिस्लाव लेस्निविस्की ने समुच्चय सिद्धांत को नाममात्रवाद से संबंधित होने के रूप में निरस्त कर दिया, परन्तु उसके समान नहीं था।[1] लंबे समय तक, लगभग सभी दार्शनिकों और गणितज्ञों ने मात्रिकी से परिवर्जन किया, इसे समुच्चय सिद्धांत की अस्वीकृति के समान माना। गुडमैन भी नाममात्रवादी थे, और उनके साथी नाममात्रवादी रिचर्ड मिल्टन मार्टिन ने 1941 से प्रारंभ होकर, अपनी पूर्ण वृत्ति में व्यक्तियों की गणना के संस्करण का उपयोग किया था।

मेरियोलॉजी पर बहुत प्रारंभिक कार्य इस संदेह से प्रेरित था कि समुच्चय सिद्धांत सत्तामूलक रूप से संदिग्ध था, और ओकार्य के रेजर के लिए आवश्यक है कि व्यक्ति संसार और गणित के अपने सिद्धांत में अंकों की संख्या को कम से कम करे। मेरियोलॉजी वस्तुओं के समुच्चय की बात को वस्तुओं के योग की बात से परिवर्तित कर देती है, वस्तुएं उन विभिन्न वस्तुओं से अधिक कुछ नहीं हैं जो पूर्ण बनाती हैं।

अनेक तर्कशास्त्री एवं दार्शनिक इन प्रेरणाओं को निम्न आधारों पर अस्वीकार करें:

  • वे इस बात से मना करते हैं कि उपसमुच्चय किसी भी प्रकार से सत्तामूलक रूप से रूप से संदिग्ध हैं
  • ऑकैम का रेजर, जब समुच्चय जैसी अमूर्त वस्तुओं पर लागू किया जाता है, तो यह या तो संदिग्ध सिद्धांत है या निश्चित ही असत्य है
  • मेरियोलॉजी स्वयं संलयन जैसी नवीन और ऑटोलॉजिकल रूप से संदिग्ध संस्थाओं के प्रसार का दोषी है।

इस प्रकार से समुच्चय सिद्धांत का उपयोग किए बिना गणित खोजने के प्रयासों के सर्वेक्षण के लिए, बर्गेस और रोसेन (1997) देखें।

अतः 1970 के दशक में, आंशिक रूप से एबरले (1970) के लिए धन्यवाद, यह धीरे-धीरे समझ में आने लगा कि कोई भी व्यक्ति समुच्चय के संबंध में अपने सत्तामूलक रूप से रुख का ध्यान दिए बिना मेरियोलॉजी को नियोजित कर सकता है। इस समझ को मेरियोलॉजी की सत्तामूलक रूप से निर्दोषिता कहा जाता है। इस प्रकार से यह निर्दोषिता मात्र दो समान विधियों से औपचारिक होने से उत्पन्न होती है:

एक बार जब यह स्पष्ट हो गया कि मात्रिकी समुच्चय सिद्धांत के खंडन के समान नहीं है, तो मात्रिकी को औपचारिक सत्तामूलक रूप से और तत्वमीमान्सा के लिए उपयोगी उपकरण के रूप में स्वीकार किया गया था।

अतः समुच्चय सिद्धांत में, एकल (गणित) ऐसे परमाणु होते हैं जिनमें कोई (गैर-रिक्त) उचित भाग नहीं होता है; कई लोग समुच्चय सिद्धांत को निकृष्ट या असंगत (ठीक रूप से स्थापित नहीं) मानते हैं यदि समुच्चय को इकाई समुच्चय से नहीं बनाया जा सकता है। ऐसा माना जाता था कि व्यक्तियों की गणना के लिए आवश्यक है कि किसी वस्तु में या तो कोई उचित भाग न हो, जिस स्थिति में यह परमाणु है, या परमाणुओं का मात्रिक योग हो। यद्यपि, एबरले (1970) ने दिखाया कि परमाणुवाद की कमी वाले व्यक्तियों की गणना कैसे बनाई जाए, अर्थात, जहां प्रत्येक वस्तु का उचित भाग हो (नीचे परिभाषित) ताकि ब्रह्मांड अनंत हो।

यदि भाग हुड को समुच्चय सिद्धांत में उपसमुच्चय के अनुरूप लिया जाता है, तो मेरियोलॉजी के सिद्धांतों और मानक ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफ) के बीच समानताएं हैं। मेरियोलॉजी और जेडएफ के संबंध पर, बंट (1985) भी देखें। मात्र विज्ञान पर चर्चा करने वाले बहुत कम समकालीन समुच्चय सिद्धांतकारों में से पॉटर (2004) हैं।

इस प्रकार से डेविड लुईस (दार्शनिक) (1991) अनौपचारिक रूप से दिखाते हुए आगे बढ़े कि मात्रिक विज्ञान, कुछ सत्तामूलक रूप से मान्यताओं और बहुवचन परिमाणीकरण और एकल (गणित) के विषय में कुछ उपन्यास तर्क से संवर्धित, एक ऐसी प्रणाली उत्पन्न करता है जिसमें एक दिया गया व्यक्ति किसी अन्य व्यक्ति के भाग और उपसमूह दोनों हो सकते है। परिणामी प्रणालियों में विभिन्न प्रकार के समुच्चय सिद्धांत की व्याख्या की जा सकती है। उदाहरण के लिए, जेडएफसी के सिद्धांतों को कुछ अतिरिक्त मात्रिक मान्यताओं के आधार पर सिद्ध किया जा सकता है।

अतः फॉरेस्ट (2002) ने पूर्व 'सीईएम' का सामान्यीकरण तैयार करके लुईस के विश्लेषण को संशोधित किया, जिसे हेयटिंग मेरियोलॉजी कहा जाता है, जिसका एकमात्र गैर-वैज्ञानिक आदिम उचित भाग है, जो संक्रमणीय संबंध और प्रतिकर्मक है। काल्पनिक अशक्त व्यक्ति स्थित है जो प्रत्येक व्यक्ति का उचित भाग है। दो स्कीमा इस बात पर बल देती हैं कि प्रत्येक जाली (क्रम) जुड़ाव स्थित है (जाली एक पूर्ण जाली हैं) और यह जुड़ने पर वितरणात्मक गुण को पूर्ण करती है। इस हेयटिंग मेरियोलॉजी पर, फॉरेस्ट ने छद्म समुच्चयों का सिद्धांत खड़ा किया है, जो उन सभी उद्देश्यों के लिए पर्याप्त है जिनके लिए समुच्चय लगाए गए हैं।

गणित

इस प्रकार से हसरल ने कभी यह अनुरोध नहीं किया कि गणित को समुच्चय सिद्धांत के अतिरिक्त आंशिक-संपूर्ण पर आधारित किया जा सकता है या होना चाहिए। लेस्निविस्की ने विचार पूर्वक गणित की नींव के रूप में सिद्धांत को स्थापित करने के विकल्प के रूप में अपनी मात्रिकी निकाली, परन्तु विवरण पर कार्य नहीं किया। गुडमैन और डब्ल्यू.वी.ओ. क्वीन (1947) ने व्यक्तियों की गणना का उपयोग करके प्राकृतिक संख्याएं और वास्तविक संख्याएं विकसित करने का प्रयास किया, परन्तु अधिकांशतः असफल रहे; क्विन ने अपने चयनित तर्क लेख में उस लेख को दोबारा नहीं मुद्रित किया था। अपने जीवन के अंतिम दशक में प्रकाशित पुस्तकों के अध्यायों की श्रृंखला में, रिचर्ड मिल्टन मार्टिन ने वह कार्य करने का संकल्प किया जिसे गुडमैन और क्वीन ने 30 वर्ष पूर्व छोड़ दिया था। मात्रविज्ञान में गणित को आधार बनाने के प्रयासों के साथ आवर्ती समस्या यह है कि क्रमबद्ध जोड़ी की समुच्चय-सैद्धांतिक परिभाषाओं से संयम करते हुए संबंध (गणित) के सिद्धांत का निर्माण कैसे किया जाए। मार्टिन ने तर्क दिया कि एबरले (1970) के संबंधपरक व्यक्तियों के सिद्धांत ने इस समस्या का हल किया।

सीमा (टोपोलॉजी) और कनेक्शन की टोपोलॉजी धारणाओं को मेरियोलॉजी से जोड़ा जा सकता है, जिसके परिणामस्वरूप मेरोटोपोलॉजी हो सकती है; कासाती और वर्ज़ी देखें (1999: अध्याय 4,5)। व्हाइटहेड की 1929 प्रक्रिया और वास्तविकता में अनौपचारिक मेरोटोपोलॉजी का बड़ा भाग सम्मिलित है।

प्राकृतिक भाषा

अतः बंट (1985), प्राकृतिक भाषा के शब्दार्थ का अध्ययन, दिखाता है कि मात्रिक विज्ञान द्रव्यमान-गणना भेद और व्याकरणिक गुण जैसी घटनाओं को समझने में कैसे सहायता कर सकता है। परन्तु निकोलस (2008) का तर्क है कि उस उद्देश्य के लिए बहुवचन परिमाणीकरण नामक अलग तार्किक संरचना का उपयोग किया जाना चाहिए। इसके अतिरिक्त, प्राकृतिक भाषा प्रायः अस्पष्ट विधियों से कार्य करती है (साइमन्स 1987 इस पर विस्तार से चर्चा करता है)। इसलिए, यह स्पष्ट नहीं है कि कैसे, यदि कोई हो, तो कुछ प्राकृतिक भाषा अभिव्यक्तियों को मात्रिक विधेय में अनुवादित किया जा सकता है। ऐसी कठिनाइयों से बचने के लिए मात्र विज्ञान की व्याख्या को गणित और प्राकृतिक विज्ञान तक सीमित करने की आवश्यकता हो सकती है। इस प्रकार से उदाहरण के लिए, कासाती और वर्ज़ी (1999), मात्रिकी के क्षेत्र को भौतिक वस्तुओं तक सीमित करते हैं।

तत्वमीमान्सा

इस प्रकार से तत्वमीमान्सा में भागों और पूर्ण से संबंधित कई आकुल करने वाले प्रश्न हैं। प्रश्न संविधान और निरति को संबोधित करता है, दूसरा रचना के विषय में पूछता है।

मेरियोलॉजिकल संविधान

तत्वमीमान्सा में, मेरियोलॉजिकल संविधान की स्थितियों से संबंधित कई पहेलियां हैं, अर्थात, संपूर्ण क्या बनता है।[2] भागों और पूर्ण को लेकर अभी भी चिंता है, परन्तु यह देखने के अतिरिक्त कि कौन से भाग मिलकर संपूर्ण बनाते हैं, बल इस बात पर है कि कोई वस्तु किस वस्तु से बनी है, जैसे कि उसके पदार्थ, जैसे, कांस्य प्रतिमा में कांस्य आदि। इस प्रकार से नीचे दो मुख्य पहेलियाँ दी गई हैं जिनका उपयोग दार्शनिक संविधान पर चर्चा करने के लिए करते हैं।

थिसस का जहाज: संक्षेप में, पहेली कुछ इस प्रकार है। एक जहाज़ है जिसका नाम है शिप ऑफ़ थिसियस। समय के साथ, बोर्ड सड़ने लगते हैं, इसलिए हम बोर्ड हटा देते हैं और उन्हें ढेर में रख देते हैं। प्रथम प्रश्न, क्या नवीन बोर्ड से बना जहाज उसी जहाज के जैसे है जिसमें सभी प्राचीन बोर्ड लगे थे? दूसरा, यदि हम शिप ऑफ थेसियस के सभी प्राचीन तख्तों आदि का उपयोग करके जहाज का पुनर्निर्माण करते हैं, और हमारे निकट जहाज भी है जो नवीन बोर्डों से बनाया गया है (प्रत्येक को प्राचीन क्षयकारी बोर्डों को बदलने के लिए समय के साथ एक-एक करके जोड़ा जाता है)), कौन सा जहाज़ वास्तविक शिप ऑफ़ थिसस है?

इस प्रकार से मूर्ति और मिट्टी का ढेर: साधारणतया, मूर्तिकार मिट्टी के ढेर से मूर्ति बनाने का निर्णय लेता है। अतः समय 1 पर मूर्तिकार के निकट मिट्टी का ढेर होता है। समय t2 पर कई जोड़-तोड़ के पश्चात मूर्ति है। पूछा गया प्रश्न यह है कि क्या मिट्टी का ढेर और मूर्ति (संख्यात्मक रूप से) समान हैं? यदि ऐसा है, तो कैसे और क्यों?[3]

संविधान में सामान्यतः निरति पर विचारों के निहितार्थ होते हैं: कोई वस्तु समय के साथ कैसे बनी रहती है यदि उसका कोई भाग (पदार्थ) बदल जाता है या हटा दिया जाता है, जैसा कि मनुष्यों की स्थिति में होता है जो कोशिकाएं खो देते हैं, ऊंचाई, बालों का रंग, स्मृतियाँ बदल देते हैं, और फिर भी हम कहा जाता है कि हम आज भी वैसे ही व्यक्ति हैं जैसे हम पहली बार उत्पन्न हुए थे। उदाहरण के लिए, टेड साइडर आज भी वैसा ही है जैसा वह अपने जन्म के समय था—वह मात्र बदल गया है। परन्तु यह कैसे हो सकता है यदि टेड के आज के कई भाग तब अस्तित्व में नहीं थे जब टेड का जन्म हुआ था? क्या जीवों जैसी वस्तुों का बने रहना संभव है? और यदि हां, तो कैसे? ऐसे कई विचार हैं जो इस प्रश्न का उत्तर देने का प्रयास करते हैं। कुछ विचार इस प्रकार हैं (ध्यान दें, कई अन्य विचार भी हैं):[4][5]

(ए) संविधान का दृष्टिकोण। यह दृष्टिकोण सहवास को स्वीकार करता है। अर्थात्, दो वस्तुएँ निश्चित ही ही पदार्थ साझा करती हैं। यहाँ, यह इस प्रकार है, कि कोई अस्थायी भाग नहीं हैं।

(बी) मेरियोलॉजिकल अनिवार्यता, जो बताता है कि स्थित एकमात्र वस्तुएं पदार्थ की मात्राएं हैं, जो उनके भागों द्वारा परिभाषित वस्तुएं हैं। यदि पदार्थ हटा दिया जाए (या रूप बदल जाए) तो वस्तु बनी रहती है; परन्तु किसी पदार्थ के नष्ट हो जाने पर वस्तु का अस्तित्व समाप्त हो जाता है।

(सी) प्रमुख प्रकार। यह दृष्टिकोण है कि अनुरेखण इस बात से निर्धारित होती है कि कौन सा प्रकार प्रमुख है; वे सहवास को अस्वीकार करते हैं। उदाहरण के लिए, ढेर मूर्ति के बराबर नहीं है क्योंकि वे अलग-अलग प्रकार के होते हैं।

(डी) शून्यवाद - जो अनुरोध करता है कि साधारण वस्तुओं को छोड़कर कोई भी वस्तु स्थित नहीं है, इसलिए कोई निरति की समस्या नहीं है।

(ई) चार-आयामीवाद| या लौकिक भाग (अटलवाद या चार-आयामीवाद के नाम से भी जाना जा सकता है), जो साधारणतया बताता है कि लौकिक भागों के समुच्चय घनिष्ठ रूप से संबंधित हैं। उदाहरण के लिए, क्षणिक और स्थानिक रूप से विलीन होने वाली दो सड़कें अभी भी सड़क हैं, क्योंकि वे भाग साझा करती हैं।

(एफ) त्रि-आयामीवाद (इसे सहनशीलता नाम से भी जाना जा सकता है), जहां वस्तु पूर्ण रूप से स्थित है। अर्थात्, स्थायी वस्तु संख्यात्मक पहचान बनाए रखती है।

मात्रिक रचना

इस प्रकार से एक प्रश्न जो दार्शनिकों द्वारा संबोधित किया जाता है वह यह है कि कौन सा अधिक मौलिक है: भाग, पूर्ण, या कुछ भी नहीं?[6][7][8][9][10][11][12][13][14][15] अन्य महत्वपूर्ण प्रश्न को विशेष संरचना प्रश्न (एससीक्यू) कहा जाता है: किसी भी x के लिए, ऐसा कब होता है कि कोई y ऐसा होता है कि x y बनाता है?[4][16][17][18][19][20][21] इस प्रश्न ने दार्शनिकों को तीन अलग-अलग दिशाओं शून्यवाद, सार्वभौमिक रचना (यूसी), या उदारवादी दृष्टिकोण (सीमित रचना) में चलने के लिए प्रेरित किया है। पूर्व दो विचारों को चरम माना जाता है क्योंकि प्रथम रचना से मना करता है, और दूसरा किसी और सभी गैर-स्थानिक रूप से अतिव्यापी वस्तुओं को किसी अन्य वस्तु की रचना करने की अनुमति देता है। उदारवादी दृष्टिकोण में कई सिद्धांत सम्मिलित हैं जो रचना को 'नहीं' या अप्रतिबंधित रचना को 'हां' कहे बिना एससीक्यू को समझने की प्रयास करते हैं।

मौलिकता

अतः ऐसे दार्शनिक हैं जो मौलिकता के प्रश्न से चिंतित हैं। अर्थात्, जो भाग या उनके पूर्णांक अधिक मौलिक रूप से मौलिक हैं। इस प्रश्न पर कई प्रतिक्रियाएं हैं, यद्यपि व्यतिक्रम धारणाओं में से यह है कि भाग अधिक मौलिक हैं। अर्थात् संपूर्ण अपने भागों में भू संपर्कित हुई है। यह मुख्य धारा का दृष्टिकोण है। शेफ़र (2010) द्वारा खोजा गया अन्य दृष्टिकोण अद्वैतवाद है, जहां भाग पूर्ण में आधारित होते हैं। शेफ़र का अर्थ मात्र यह नहीं है कि, मान लीजिए, जो भाग मेरे शरीर को बनाते हैं वे मेरे शरीर में स्थित हैं। यद्यपि, शेफ़र का तर्क है कि संपूर्ण ब्रह्मांड अधिक मौलिक है और शेष सब कुछ ब्रह्मांड का भाग है। फिर, पहचान सिद्धांत है जो अनुरोध करता है कि भागों और संपूर्णों में कोई पदानुक्रम या मौलिकता नहीं है। इसके अतिरिक्त पूर्ण उनके भाग मात्र (या समकक्ष) हैं। दो-वस्तु दृष्टि भी हो सकता है जो कहता है कि पूर्ण भाग भागों के बराबर नहीं हैं - वे संख्यात्मक रूप से दूसरे से भिन्न हैं। इनमें से प्रत्येक सिद्धांत के लाभ और लागतें जुड़ी हुई हैं।[6][7][8][9]

विशेष रचना प्रश्न (एससीक्यू)

इस प्रकार से दार्शनिक यह जानना चाहते हैं कि कब कुछ X कुछ Y की रचना करते हैं। कई प्रकार की प्रतिक्रियाएँ होती हैं:

  • इस प्रश्न के उत्तर को शून्यवाद कहा जाता है। शून्यवाद कहता है कि कोई मात्रिक जटिल वस्तुएँ नहीं हैं (पढ़ें: मिश्रित वस्तुएँ); वहाँ मात्र सरल (दर्शन) हैं। शून्यवादी रचना को पूर्ण रूप से अस्वीकार नहीं करते हैं क्योंकि वे सोचते हैं कि सरल लोग स्वयं रचना करते हैं, परन्तु यह अलग बात है। अधिक औपचारिक रूप से शून्यवादी कहेंगे: आवश्यक रूप से, किसी भी गैर-अतिव्यापी Xs के लिए, Xs से बना वास्तु होता है यदि और मात्र यदि Xs में से मात्र ही होता है।[17][21][22] यद्यपि इस सिद्धांत की ठीक रूप से खोज की गई है, फिर भी इसकी अपनी समस्याएँ हैं। जिनमें से कुछ में सम्मिलित हैं, परन्तु इन्हीं तक सीमित नहीं हैं: अनुभव और सामान्य ज्ञान, परमाणु रहित गंक के साथ असंगत, और यह अंतरिक्ष-समय भौतिकी द्वारा समर्थित नहीं है।[17][21]
  • एक अन्य प्रमुख प्रतिक्रिया को सार्वभौमिक रचना (यूसी) कहा जाता है। यूसी का कहना है कि जब तक x स्थानिक रूप से अतिव्यापत नहीं होता है, तब तक x जटिल वस्तु बना सकता है। सार्वभौमिक रचनाकार वे भी माने जाते हैं जो अप्रतिबंधित रचना का समर्थन करते हैं। अधिक औपचारिक रूप से: आवश्यक रूप से, किसी भी गैर-अतिव्यापी Xs के लिए, Y होता है जैसे कि Y, Xs से बना होता है। उदाहरण के लिए, किसी का बायां अंगूठा, किसी अन्य व्यक्ति के दाहिने जूते का ऊपरी भाग और उनकी आकाशगंगा के केंद्र में क्वार्क सार्वभौमिक संरचना के अनुसार जटिल वस्तु की रचना कर सकता है। इसी प्रकार, इस सिद्धांत में भी कुछ समस्या हैं, उनमें से अधिकांश हमारे अनुभवों से संबंधित हैं कि ये निरुद्देश्यता से चुने गए भाग जटिल संपूर्ण बनाते हैं और हमारी सत्तामूलक रूप से में बहुत सारी वस्तुएं स्थित हैं।
  • तीसरी प्रतिक्रिया (संभवतः पूर्व दो की तुलना में कम खोजी गई) में प्रतिबंधित रचना दृश्यों की श्रृंखला सम्मिलित है। यद्यपि कई विचार हैं, वे सभी समान विचार साझा करते हैं: कि जटिल वस्तु के रूप में क्या गिना जाता है उस पर प्रतिबंध है: कुछ (परन्तु सभी नहीं) x जटिल y बनाने के लिए साथ आते हैं। इनमें से कुछ सिद्धांतों में सम्मिलित हैं:

(ए) संपर्क - x जटिल y बनाते हैं यदि और मात्र तभी जब x संपर्क में हों;

(बी) बन्धन - x जटिल y बनाते हैं यदि और मात्र यदि x को बांधा जाता है;

(सी) सामंजस्य - x जटिल y बनाते हैं यदि और मात्र यदि x साथ हों (बिना तोड़े दूसरे के संबंध में अलग नहीं किया जा सकता है या स्थानांतरित नहीं किया जा सकता है);

(डी) संलयन - x जटिल y बनाते हैं यदि और मात्र यदि x संयलित हो जाते हैं (संलयन तब होता है जब x साथ जुड़ जाते हैं जैसे कि कोई सीमा नहीं होती है);

(ई) जीववाद - x जटिल y की रचना करता है यदि और मात्र यदि x की गतिविधियों से जीवन बनता है या x में से मात्र ही है;[22]और

(एफ) क्रूर रचना- यह वस्तुएं ऐसी ही हैं। इसका कोई सत्य, गैर-तुच्छ और निश्चित रूप से लंबा उत्तर नहीं है।[23]

इस प्रकार से यह विस्तृत सूची नहीं है क्योंकि कई और परिकल्पनाओं की खोज जारी है। यद्यपि, इन सिद्धांतों के साथ सामान्य समस्या यह है कि वे अस्पष्ट हैं। उदाहरण के लिए, यह स्पष्ट नहीं है कि बन्धन या जीवन का क्या अर्थ है। परन्तु प्रतिबंधित रचना प्रतिक्रियाओं के भीतर कई अन्य समस्या भी हैं - यद्यपि उनमें से कई अतः इस विषय पर हैं कि किस सिद्धांत पर चर्चा की जा रही है।[17]

  • चौथी प्रतिक्रिया को अपस्फीतिवाद कहा जाता है। अपस्फीतिवाद बताता है कि अस्तित्व शब्द का उपयोग कैसे किया जाता है, इस पर भिन्नता है, और इस प्रकार एससीक्यू के उपरोक्त सभी उत्तर अस्तित्व के अनुकूल अर्थ में अनुक्रमित होने पर सत्य हो सकते हैं। इसके अतिरिक्त, ऐसी कोई विशेषाधिकार प्राप्त विधि नहीं है जिसमें अस्तित्व शब्द का उपयोग किया जाना चाहिए। इसलिए एससीक्यू का कोई विशेषाधिकार प्राप्त उत्तर नहीं है, क्योंकि जब इस प्रकार, एससीक्यू सामान्य सत्तामूलक यथार्थवाद और यथार्थवाद-विरोधी में बड़ी चर्चा का भाग है। जबकि अपस्फीतिवाद एससीक्यू से सफलतापूर्वक बचता है, यह समस्याओं से रहित नहीं है। यह सत्तामूलक रूप से प्रति-यथार्थवाद के मान के साथ आता है जैसे कि प्रकृति में कोई वस्तुनिष्ठ वास्तविकता नहीं है। क्योंकि, यदि वस्तुओं के अस्तित्व की निष्पक्ष पुष्टि करने की कोई विशेषाधिकार प्राप्त विधि नहीं है, तो प्रकृति में भी कोई निष्पक्षता नहीं होनी चाहिए।[24]

महत्वपूर्ण सर्वेक्षण

इस प्रकार से सिमंस (1987) और कासाती और वर्ज़ी (1999) की किताबें अपनी विशेषताओं में भिन्न हैं:

  • साइमन्स (1987) मेरियोलॉजी को मुख्य रूप से सत्तामूलक रूप से और तत्वमीमान्सा को औपचारिक बनाने की विधि के रूप में देखते हैं। उनकी शक्तियों में मेरियोलॉजी और के बीच संबंध सम्मिलित हैं:
    • स्टैनिस्लाव लेस्निविस्की और उनके वंशजों का कार्य
    • विभिन्न महाद्वीपीय दार्शनिक, विशेषकर एडमंड हुसरल
    • समकालीन अंग्रेजी वाचन वाले तकनीकी दार्शनिक जैसे किट ठीक है और रोडेरिक चिशोल्म
    • औपचारिक सत्तामूलक रूप से और तत्वमीमान्सा पर वर्तमान कार्य, जिसमें निरंतरता, घटना, वर्ग संज्ञा, द्रव्यमान संज्ञा और सत्तामूलक रूप से निर्भरता और अखंडता सम्मिलित है
    • पृष्ठभूमि तर्क के रूप में निःशुल्क तर्क
    • तनावपूर्ण तर्क और मोडल तर्क के साथ मेरियोलॉजी का विस्तार
    • बूलियन बीजगणित (संरचना) और जाली सिद्धांत
  • कासाती और वर्ज़ी (1999) मेरोलॉजी को मुख्य रूप से भौतिक संसार को समझने और मनुष्य इसके साथ कैसे परस्पर क्रिया करते हैं, इसे समझने की विधि के रूप में देखते हैं। उनकी शक्तियों में मेरियोलॉजी और के बीच संबंध सम्मिलित हैं:
    • भौतिक वस्तुओं के लिए आद्य-ज्यामिति
    • टोपोलॉजी और मेरियोटोपोलॉजी, विशेष रूप से सीमा (टोपोलॉजी), क्षेत्र और छिद्र
    • घटनाओं का औपचारिक सिद्धांत
    • सैद्धांतिक कंप्यूटर विज्ञान
    • अल्फ्रेड नॉर्थ व्हाइटहेड का लेखन, विशेष रूप से उनकी प्रक्रिया और वास्तविकता और कार्य उसी से उत्पन्न हुए हैं।[25]

इस प्रकार से सिमंस ऐतिहासिक संकेतन को स्पष्ट करने के लिए अत्यधिक प्रयास करते हैं। कासाती और वर्ज़ी के अंकन का प्रयोग प्रायः किया जाता है। दोनों पुस्तकों में उत्कृष्ट ग्रंथ सूची सम्मिलित है। इन कार्यों में होव्डा (2008) को जोड़ा जाना चाहिए, जो मेरियोलॉजी के स्वयंसिद्धीकरण पर कला की नवीनतम स्थिति प्रस्तुत करता है।

यह भी देखें

  • गंक (मेरियोलॉजी)
  • डेविड बोहम के अनुसार क्रम को लागू करें और व्याख्या करें
  • फॉर्म के नियम जी. स्पेंसर-ब्राउन द्वारा
  • मेरियोलॉजिकल अनिवार्यतावाद
  • मात्रिक शून्यवाद
  • मेरियोटोपोलॉजी
  • मेरोनॉमी
  • मेरोनिमी
  • मोनाड (दर्शन)
  • बहुवचन परिमाणीकरण
  • परिमाणक विचरण
  • सरल (दर्शन)
  • व्हाइटहेड की बिंदु-मुक्त ज्यामिति
  • रचना (वस्तुएँ)

संदर्भ

  1. Rodriguez-Pereyra, Gonzalo (1 April 2015). "तत्वमीमांसा में नाममात्रवाद". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy (Summer 2019 ed.).
  2. Wasserman, Ryan (5 July 2017). "मेरियोलॉजिकल संविधान". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy (Fall 2018 ed.).
  3. Rea, Michael (1995). "भौतिक संविधान की समस्या". The Philosophical Review. 104 (4): 525–552. doi:10.2307/2185816. JSTOR 2185816.
  4. 4.0 4.1 Ney, Alyssa (2014). Metaphysics: An Introduction. Routledge.
  5. In Theodore Sider, John Hawthorne & Dean W. Zimmerman (eds.), Contemporary Debates in Metaphysics. Blackwell Pub. 241--262 (2007).
  6. 6.0 6.1 Healey, Richard; Uffink, Jos (2013). "Part and Whole in Physics: An Introduction". Studies in History and Philosophy of Science Part B. 44 (1): 20–21. Bibcode:2013SHPMP..44...20H. doi:10.1016/j.shpsb.2011.11.004.
  7. 7.0 7.1 Healey, Richard (2013). "शारीरिक संरचना". Studies in History and Philosophy of Science Part B. 44 (1): 48–62. Bibcode:2013SHPMP..44...48H. doi:10.1016/j.shpsb.2011.05.001.
  8. 8.0 8.1 Kadanoff, Leo (2013). "पुनर्सामान्यीकरण के माध्यम से संबंधित सिद्धांत". Studies in History and Philosophy of Science Part B. 44 (1): 22–39. arXiv:1102.3705. Bibcode:2013SHPMP..44...22K. doi:10.1016/j.shpsb.2012.05.002. S2CID 52243933.
  9. 9.0 9.1 Ghirardi, GianCarlo (2013). "The Parts and the Whole: Collapse Theories and Systems with Identical Constituents". Studies in History and Philosophy of Science Part B. 44 (1): 40–47. Bibcode:2013SHPMP..44...40G. doi:10.1016/j.shpsb.2011.06.002.
  10. Shaffer, Jonathan (2010). "Monism: The Priority of the Whole". Philosophical Review. 119 (1): 31–76. doi:10.1215/00318108-2009-025.
  11. Cameron, Ross (2014). "Parts Generate the Whole but they are not Identical to it". In Aaron Cotnoir; Donald Baxter (eds.). पहचान के रूप में रचना. Oxford University Press.
  12. Loss, Roberto (2016). "हिस्से पूरी तरह से जमीन पर हैं और इसके समान हैं". Australasian Journal of Philosophy. 94 (3): 489–498. doi:10.1080/00048402.2015.1119864. S2CID 170812833.
  13. Cotnoir, Aaron (2014). Cotnoir, Aaron J; Baxter, Donald L. M (eds.). Composition as Identity: Framing the Debate. Oxford University Press. doi:10.1093/acprof:oso/9780199669615.001.0001. ISBN 9780199669615.
  14. Sider, Ted (2015). "ऊपर और ऊपर कुछ भी नहीं". Grazer Philosophische Studien. 91: 191–216. doi:10.1163/9789004302273_009.
  15. Wallace, Megan (2011). "Composition as Identity: Pt. I & II". Philosophy Compass. 6 (11): 804–827. doi:10.1111/j.1747-9991.2011.00431.x.
  16. James van Cleve (2008). "The Moon and Sixpence: A Defense of Mereological Universalism". In Sider, Ted (ed.). तत्वमीमांसा में समसामयिक बहसें. Blackwell Publishing.
  17. 17.0 17.1 17.2 17.3 Ned Markosian (2008). "Restricted Composition". In Sider, Ted (ed.). तत्वमीमांसा में समसामयिक बहसें. Blackwell Publishing. pp. 341–363.
  18. McDaniel, Kris (2010). "भाग और पूर्ण". Philosophy Compass. 5 (5): 412–425. doi:10.1111/j.1747-9991.2009.00238.x.
  19. Korman, Daniel; Carmichael, Chad (2016). "Composition (Draft: 9/29/15)". Oxford Handbooks Online. 1. doi:10.1093/oxfordhb/9780199935314.013.9.
  20. Varzi, Achille (2019). मेरियोलॉजी. Metaphysics Research Lab, Stanford University.
  21. 21.0 21.1 21.2 Sider, Ted (2013). "अगेंस्ट परतूद". Oxford Studies in Metaphysics. 8: 237–293.
  22. 22.0 22.1 van Inwagen, Peter (1990). भौतिक प्राणी. Cornell University Press.
  23. Markosian, Ned (1998). "क्रूर रचना". Philosophical Studies. 92 (3): 211–249. doi:10.1023/a:1004267523392. S2CID 2174065.
  24. Hirsch, Eli (2005). "फिजिकल-ऑब्जेक्ट ओन्टोलॉजी, मौखिक विवाद और सामान्य ज्ञान". Philosophy and Phenomenological Research. 70 (1): 67–97. doi:10.1111/j.1933-1592.2005.tb00506.x.
  25. Cf. Peter Simons, "Whitehead and Mereology", in Guillaume Durand et Michel Weber (éditeurs), Les principes de la connaissance naturelle d’Alfred North Whitehead — Alfred North Whitehead’s Principles of Natural Knowledge, Frankfurt / Paris / Lancaster, ontos verlag, 2007. See also the relevant entries of Michel Weber and Will Desmond, (eds.), Handbook of Whiteheadian Process Thought, Frankfurt / Lancaster, ontos verlag, Process Thought X1 & X2, 2008.


स्रोत

  • बोडेन, कीथ, 1991। पदानुक्रमिक टियरिंग: पद्धति अपघटन के लिए कुशल होलोग्राफिक एल्गोरिदम, इंट। जे. जनरल पद्धति्स, वॉल्यूम. 24(1), पीपी 23-38।
  • बोडेन, कीथ, 1998. ह्यूजेन्स सिद्धांत, भौतिकी और कंप्यूटर। इंट. जे. जनरल पद्धति्स, वॉल्यूम. 27(1-3), P 9-32.
  • बंट, हैरी, 1985। मास टर्म्स और मॉडल-सैद्धांतिक शब्दार्थ। कैम्ब्रिज विश्वविद्यालय. प्रेस।
  • जॉन पी. बर्गेस|बर्गेस, जॉन पी., और गिदोन रोसेन|रोसेन, गिदोन, 1997। बिना किसी वस्तु वाला विषय। ऑक्सफ़ोर्ड विश्वविद्यालय. प्रेस।
  • बर्कहार्ट, एच., और डुफोर, सी.ए., 1991, भाग/संपूर्ण I: बर्कहार्ट, एच., और स्मिथ, बी., संस्करण में इतिहास, मेटाफिजिक्स और ओन्टोलॉजी की हैंडबुक। मुएनचेन: फिलोसोफिया वेरलाग।
  • कैसाती, रॉबर्टो, और अकिल वरजी (दार्शनिक)|वरजी, अकिल सी., 1999। भाग और स्थान: स्थानिक प्रतिनिधित्व की संरचनाएं। एमआईटी प्रेस.
  • कोटनोइर, ए. जे., और अचिल वर्ज़ी (दार्शनिक)|वरज़ी, अचिल सी., 2021, मेरियोलॉजी, ऑक्सफ़ोर्ड यूनिवर्सिटी प्रेस।
  • एबरले, रॉल्फ, 1970. नाममात्र प्रणाली। क्लूवर.
  • एटर, टॉम, 1996। टोफोली टी. एट अल में मेरियोलॉजी की शाखा के रूप में क्वांटम मैकेनिक्स, PHYSCOMP96, भौतिकी और संगणना पर चौथी कार्यशाला की कार्यवाही, न्यू इंग्लैंड कॉम्प्लेक्स पद्धति इंस्टीट्यूट।
  • एटर, टॉम, 1998. प्रक्रिया, प्रणाली, कारणता और क्वांटम यांत्रिकी। एसएलएसी-पब-7890, स्टैनफोर्ड लीनियर एक्सेलेरेटर सेंटर।
  • पीटर फॉरेस्ट (दार्शनिक)|फॉरेस्ट, पीटर, 2002, गैरशास्त्रीय मेरियोलॉजी और समुच्चय पर इसका अनुप्रयोग, नोट्रे डेम जर्नल ऑफ़ फॉर्मल तर्क 43: 79-94।
  • गेर्ला, जियानगियाकोमो, (1995)। पॉइंटलेस ज्योमेट्रीज़, ब्यूकेनहौट, एफ. में, कांटोर, डब्ल्यू. एड., हैंडबुक ऑफ़ इंसीडेंस ज्योमेट्री: बिल्डिंग्स एंड फ़ाउंडेशन्स। उत्तर-हॉलैंड: 1015-31।
  • नेल्सन गुडमैन|गुडमैन, नेल्सन, 1977 (1951)। उपस्थिति की संरचना. क्लूवर.
  • नेल्सन गुडमैन|गुडमैन, नेल्सन, और विलार्ड क्विन|क्विन, विलार्ड, 1947, रचनात्मक नाममात्रवाद की ओर कदम, जर्नल ऑफ सिम्बोलिक तर्क 12: 97-122।
  • ग्रुस्ज़्ज़िंस्की, आर., और पिएट्रस्ज़कज़क, ए., 2008, टार्स्की की ठोसों की ज्यामिति का पूर्ण विकास, बुलेटिन ऑफ़ प्रतीकात्मक तर्क 14: 481-540। लेस्निविस्की की मेरियोलॉजी पर आधारित ज्यामिति की प्रणाली, मेरियोलॉजिकल संरचनाओं के मूलभूत गुणों के साथ।
  • होव्डा, पॉल, 2008, शास्त्रीय मेरियोलॉजी क्या है? जर्नल ऑफ फिलॉसॉफिकल तर्क 38(1): 55-82।
  • एडमंड हुसेरल|हुसेरल, एडमंड, 1970. तार्किक जांच, वॉल्यूम। 2. फाइंडले, जे.एन., ट्रांस। रूटलेज।
  • क्रोन, गेब्रियल, 1963, डायकोप्टिक्स: द पीसवाइज़ सॉल्यूशन ऑफ़ लार्ज स्केल पद्धति्स। मैकडोनाल्ड, लंदन।
  • डेविड लुईस (दार्शनिक)|लुईस, डेविड के., 1991। कक्षाओं के भाग। ब्लैकवेल.
  • लियोनार्ड, एच.एस., और नेल्सन गुडमैन|गुडमैन, नेल्सन, 1940, व्यक्तियों की गणना और इसके उपयोग, जर्नल ऑफ़ सिम्बोलिक तर्क 5: 45-55।
  • स्टैनिस्लाव लेस्निविस्की|लेस्निविस्की, स्टैनिस्लाव, 1992. एकत्रित कार्य। सूरमा, एस.जे., श्रीज़ेडनिकी, जे.टी., बार्नेट, डी.आई., और रिकी, वी.एफ., संपादक और अनुवादक। क्लूवर.
  • जॉन लुकास (दार्शनिक)|लुकास, जे.आर., 2000. गणित की संकल्पनात्मक जड़ें। रूटलेज। चौ. 9.12 और 10 मेरियोलॉजी, मेरियोटोपोलॉजी और ए.एन. के संबंधित सिद्धांतों पर चर्चा करते हैं। व्हाइटहेड, सभी डेविड बोस्टॉक (दार्शनिक) के अप्रकाशित लेखन से अत्यधिक प्रभावित थे।
  • मेसारोविक, एम.डी., मैको, डी., और ताकाहारा, वाई., 1970, मल्टीलेवल, पदानुक्रमित प्रणालियों का सिद्धांत। अकादमिक प्रेस.
  • निकोलस, डेविड, 2008, द्रव्यवाचक संज्ञा और बहुवचन तर्क, भाषा विज्ञान और दर्शन 31(2): 211-44।
  • पिएत्रुस्ज़क, आंद्रेज, 1996, वितरण वर्गों के मेरियोलॉजिकल समुच्चय, तर्क और तार्किक दर्शन 4: 105-22। मेरोलॉजी का उपयोग करके निर्माण करता है,निर्धारित सैद्धांतिक कक्षाओं से गणितीय इकाइयाँ।
  • पिएत्रुस्ज़क, आंद्रेज, 2005, मेरियोलॉजी के टुकड़े, तर्क और तार्किक दर्शन 14: 211-34। लेस्निविस्की की मेरियोलॉजी के मूलभूत गणितीय गुण।
  • पिएत्रुस्ज़क, आंद्रेज, 2018, मेटामेरोलॉजी, निकोलस कोपरनिकस यूनिवर्सिटी साइंटिफिक पब्लिशिंग हाउस।
  • पॉटर, माइकल, 2004. समुच्चय थ्योरी एंड इट्स फिलॉसफी। ऑक्सफ़ोर्ड विश्वविद्यालय. प्रेस।
  • पीटर सिमंस (अकादमिक)|साइमन, पीटर, 1987 (पुनःमुद्रित 2000)। भाग: तात्विकी में अध्ययन। ऑक्सफ़ोर्ड विश्वविद्यालय. प्रेस।
  • श्रीज़ेडनिकी, जे. टी. जे., और रिकी, वी. एफ., संस्करण, 1984. लेस्निविस्की पद्धति: ओन्टोलॉजी और मेरोलॉजी। क्लूवर.
  • अल्फ्रेड टार्स्की|टार्स्की, अल्फ्रेड, 1984 (1956), फ़ाउंडेशन ऑफ़ द ज्योमेट्री ऑफ़ सॉलिड्स इन हिज़ तर्क, सिमेंटिक्स, मेटामैथेमेटिक्स: लेख 1923-38। वुडगर, जे., और कोरकोरन, जे., सं. और ट्रांस. हैकेट.
  • अकिल वरजी (दार्शनिक) | वरजी, अकिल सी., 2007, स्थानिक तर्क और तात्विकी: भाग, संपूर्ण और स्थान ऐएलो, एम में और अन्य, संपा., स्थानिक तर्कशास्त्र की पुस्तिका। स्प्रिंगर-वेरलाग: 945-1038।
  • ए.एन. व्हाइटहेड|व्हाइटहेड, ए.एन., 1916, ला थियोरी रिलेशनिस्ट डे ल'एस्पेस, रिव्यू डी मेटाफिजिक एट डी मोराले 23: 423-454। हर्ले, पी.जे., 1979 के रूप में अनुवादित, अंतरिक्ष का संबंधपरक सिद्धांत, दर्शन अनुसंधान अभिलेखागार 5: 712-741।
  • ------, 1919. प्राकृतिक ज्ञान के सिद्धांतों के संबंध में जांच। कैम्ब्रिज विश्वविद्यालय. प्रेस। दूसरा संस्करण, 1925।
  • ------, 1920. प्रकृति की अवधारणा। कैम्ब्रिज विश्वविद्यालय. प्रेस। 2004 लेखबैक, प्रोमेथियस बुक्स। 1919 में कैम्ब्रिज के ट्रिनिटी कॉलेज में टार्नर व्याख्यान दिया गया।
  • ------, 1978 (1929)। प्रक्रिया और वास्तविकता. फ़ी प्रेस।
  • जोसेफ हेनरी वुडगर|वुडगर, जे.एच., 1937। जीव विज्ञान में स्वयंसिद्ध विधि। कैम्ब्रिज विश्वविद्यालय. प्रेस।

बाहरी संबंध