धारिता: Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 16: Line 16:
}}
}}
{{Electromagnetism |Network}}
{{Electromagnetism |Network}}
'''''कैपेसिटेंस [[ विद्युत कंडक्टर |विद्युत कंडक्टर]]''' (''इलेक्ट्रिक चालक) पर संग्रहीत [[ आवेश |आवेश]] की मात्रा और विद्युत क्षमता में अंतर का अनुपात है। धारिता के दो प्रकार है जो आपस में एक दूसरे से सम्बंधित है: ''सेल्फ कैपेसिटेंस (स्व धारिता) ''और ''म्यूचुअल कैपेसिटेंस (पारस्परिक धारिता)''।<ref name=Harrington_2003>{{cite book |last=Harrington |first=Roger F. |author-link=Roger F. Harrington |title=Introduction to Electromagnetic Engineering |publisher=Dover Publications |year=2003 |edition=1st |page=43 |isbn=0-486-43241-6}}</ref>{{rp|237–238}} कोई भी वस्तु जिसे विद्युत रूप से आवेशित किया जा सकता है वह आत्म धारिता प्रदर्शित करता है। इस मामले में वस्तु और जमीन के बीच[[ संभावित अंतर | संभावित विद्युत अंतर]] मापा जाता है। पारस्परिक धारिता को दो चालकों के बीच मापा जाता है,और यह संधारित्र के संचालन में विशेष रूप से महत्वपूर्ण है, (प्रतिरोधों और  [[Index.php?title=प्रारंभ करने वालों|प्रारंभ करने वालों]] के साथ) इस उद्देश्य के लिए एक प्राथमिक रैखिक इलेक्ट्रॉनिक घटक के रूप में उपकरण डिज़ाइन किया गया है। [[ संधारित्र |संधारित्र]] के संचालन को समझने के लिए पारस्परिक धारिता की धारणा विशेष रूप से महत्वपूर्ण है। एक विशिष्ट संधारित्र में, दो चालक का उपयोग इलेक्ट्रिक आवेश को अलग करने के लिए किया जाता है, जिसमें एक चालक को धनात्मक रूप से आवेशित किया जाता है और दूसरा ऋणात्मक रूप से आवेशित किया जाता है, लेकिन तंत्र का कुल आवेश शून्य होता है।  
'''''कैपेसिटेंस, [[ विद्युत कंडक्टर |विद्युत कंडक्टर]]''' (''इलेक्ट्रिक चालक) पर संग्रहीत [[ आवेश |आवेश]] की मात्रा और विद्युत क्षमता में अंतर का अनुपात है। धारिता के दो प्रकार है जो आपस में एक दूसरे से सम्बंधित है: ''सेल्फ कैपेसिटेंस (स्व धारिता) ''और ''म्यूचुअल कैपेसिटेंस (पारस्परिक धारिता)''।<ref name=Harrington_2003>{{cite book |last=Harrington |first=Roger F. |author-link=Roger F. Harrington |title=Introduction to Electromagnetic Engineering |publisher=Dover Publications |year=2003 |edition=1st |page=43 |isbn=0-486-43241-6}}</ref>{{rp|237–238}} कोई भी वस्तु जिसे विद्युत रूप से आवेशित किया जा सकता है वह आत्म धारिता प्रदर्शित करता है। इस मामले में वस्तु और जमीन के बीच[[ संभावित अंतर | संभावित विद्युत अंतर]] मापा जाता है। पारस्परिक धारिता को दो चालकों के बीच मापा जाता है,और यह संधारित्र के संचालन में विशेष रूप से महत्वपूर्ण है, (प्रतिरोधों और  [[Index.php?title=प्रारंभ करने वालों|प्रारंभ करने वालों]] के साथ) इस उद्देश्य के लिए एक प्राथमिक रैखिक इलेक्ट्रॉनिक घटक के रूप में उपकरण डिज़ाइन किया गया है। [[ संधारित्र |संधारित्र]] के संचालन को समझने के लिए पारस्परिक धारिता की धारणा विशेष रूप से महत्वपूर्ण है। एक विशिष्ट संधारित्र में, दो चालक का उपयोग इलेक्ट्रिक आवेश को अलग करने के लिए किया जाता है, जिसमें एक चालक को धनात्मक रूप से आवेशित किया जाता है और दूसरा ऋणात्मक रूप से आवेशित किया जाता है, लेकिन तंत्र का कुल आवेश शून्य होता है।  


धारिता केवल संधारित्र के रूपरेखा की ज्यामिति का एक कार्य है, उदाहरण के लिए, प्लेटों का विरोधी सतह क्षेत्र और उनके बीच की दूरी, और प्लेटों के बीच परावैद्युत पदार्थ की पारगम्यता। कई परावैद्युत पदार्थ के लिए, पारगम्यता और धारिता,चालकों के बीच [[ संभावित अंतर |संभावित विद्युत अंतर]] और उन पर उपस्थित कुल आवेश से स्वतंत्र है।  
धारिता केवल संधारित्र के रूपरेखा की ज्यामिति का एक कार्य है, उदाहरण के लिए, प्लेटों का विरोधी सतह क्षेत्र और उनके बीच की दूरी, और प्लेटों के बीच परावैद्युत पदार्थ की पारगम्यता। कई परावैद्युत पदार्थ के लिए, पारगम्यता और धारिता,चालकों के बीच [[ संभावित अंतर |संभावित विद्युत अंतर]] और उन पर उपस्थित कुल आवेश से स्वतंत्र है।  


धारिता की एसआई इकाई अंग्रेजी भौतिक वैज्ञानिक[[ माइकल फैराडे ]]के नाम पर फैराड (प्रतीक: एफ) है।1 फैराड संधारित्र, जब 1[[ कूलम्ब | कूलम्ब]] विद्युत आवेश के साथ आरोपित किया जाता है, तो इसकी प्लेटों के बीच 1[[ वाल्ट |वोल्ट]] का संभावित अंतर होता है।<ref>{{cite web |url=http://www.collinsdictionary.com/dictionary/english/farad |title=Definition of 'farad' |publisher=Collins}}</ref> धारिता के वुत्पन्न को [[ इलास्टेंस |इलास्टेंस]] कहा जाता है।   
धारिता की एसआई इकाई अंग्रेजी भौतिक वैज्ञानिक[[ माइकल फैराडे ]]के नाम पर फैराड (प्रतीक: एफ) है।1 फैराड संधारित्र, जब 1[[ कूलम्ब | कूलम्ब]] विद्युत आवेश के साथ आरोपित किया जाता है, तो इसकी प्लेटों के बीच 1[[ वाल्ट |वोल्ट]] का संभावित अंतर होता है।<ref>{{cite web |url=http://www.collinsdictionary.com/dictionary/english/farad |title=Definition of 'farad' |publisher=Collins}}</ref> धारिता के वुत्पन्न को [[ इलास्टेंस |इलास्टेंस]] कहा जाता है।   


== स्व समाई (आत्म धारिता) ==
== स्व समाई (आत्म धारिता) ==
Line 57: Line 57:
== कैपेसिटेंस मैट्रिक्स (धारिता मैट्रिक्स) ==
== कैपेसिटेंस मैट्रिक्स (धारिता मैट्रिक्स) ==


उपरोक्त चर्चा दो संचालन प्लेटों के मामले तक सीमित है, हालांकि मनमानी आकार और आकृति की है। ये परिभाषा <math>C = Q/V</math> तब लागू नहीं है जब दो से अधिक आवेशित की गयी प्लेटें होती हैं , या जब दो प्लेटों पर नेट आवेश शून्य नहीं होता है। इस मामले को संभालने के लिए, मैक्सवेल ने अपने संभावित गुणांक पेश किए। यदि तीन (लगभग आदर्श) कंडक्टरों को आवेश <math>Q_1, Q_2, Q_3</math>, दिया जाता है तो कंडक्टर 1 पर दिया गया वोल्टेज है:
उपरोक्त चर्चा दो संचालन प्लेटों के मामले तक सीमित है, हालांकि मनमानी आकार और आकृति की है। ये परिभाषा <math>C = Q/V</math> तब लागू नहीं है जब दो से अधिक आवेशित की गयी प्लेटें होती हैं , या जब दो प्लेटों पर नेट आवेश शून्य नहीं होता है। इस मामले को संभालने के लिए, मैक्सवेल ने अपने संभावित गुणांक पेश किए। यदि तीन (लगभग आदर्श) कंडक्टरों को आवेश <math>Q_1, Q_2, Q_3</math>, दिया जाता है तो कंडक्टर 1 पर दिया गया वोल्टेज है:
<math display="block">V_1 = P_{11}Q_1 + P_{12} Q_2 + P_{13}Q_3, </math>
<math display="block">V_1 = P_{11}Q_1 + P_{12} Q_2 + P_{13}Q_3, </math>
और इसी तरह अन्य वोल्टेज के लिये [[ हरमन वॉन हेल्महोल्त्ज़ |हरमन वॉन हेल्महोल्त्ज़]] और[[ सर विलियम थॉमसन | सर विलियम थॉमसन]] ने प्रदिर्शित किया कि क्षमता के गुणांक सममित हैं,और इसलिए <math>P_{12} = P_{21}</math> होगा। इस प्रकार प्रणाली को इलास्टेंस मैट्रिक्स या पारस्परिक धारिता मैट्रिक्स के रूप में ज्ञात गुणांक के संग्रह द्वारा वर्णित किया जा सकता है, जिसे इस प्रकार परिभाषित किया गया है:
और इसी तरह अन्य वोल्टेज के लिये [[ हरमन वॉन हेल्महोल्त्ज़ |हरमन वॉन हेल्महोल्त्ज़]] और[[ सर विलियम थॉमसन | सर विलियम थॉमसन]] ने प्रदिर्शित किया कि क्षमता के गुणांक सममित हैं,और इसलिए <math>P_{12} = P_{21}</math> होगा। इस प्रकार प्रणाली को इलास्टेंस मैट्रिक्स या पारस्परिक धारिता मैट्रिक्स के रूप में ज्ञात गुणांक के संग्रह द्वारा वर्णित किया जा सकता है, जिसे इस प्रकार परिभाषित किया गया है:
Line 69: Line 69:


== कैपेसिटर (संधारित्र) ==
== कैपेसिटर (संधारित्र) ==
विद्युत परिपथ में उपयोग किए जाने वाले ज्‍यादातर संधारित्र की धारिता आम तौर पर फैराड की तुलना में बहुत छोटी है। आज सबसे ज्यादा आम उपयोग में आने वाली धारिता की उपइकाई [[ सूक्ष्म |सूक्ष्म]] फ़ारड (µf), [[ नैनो |नैनो]] फ़ारड (nf), [[ पिको- |पिको-]] फराड (pf), सूक्ष्मपरिपथऔर [[ स्त्री |स्त्री]] फारड (Ff) मे हैं। हालांकि, विशेष रूप से बनाए गए [[ सुपरकैपेसिटर |सुपर धारिता]] बहुत बड़े हो सकते हैं (जितना सैकड़ों फैराड्स), और परजीवी कैपेसिटिव तत्व एक फेमटोफराड से कम हो सकते हैं। अतीत में, पुराने ऐतिहासिक पाठ में वैकल्पिक उपइकाई का उपयोग किया गया था; माइक्रोफारड के लिए (एमएफ) और (एमएफडी); "mmf", "mmfd", [[ पिको- |पिको-]] फराड "pfd", (PF) के लिए; लेकिन अब यह अप्रचलित माना जाता है।<ref>{{cite web |url=http://www.justradios.com/MFMMFD.html |title=Capacitor MF-MMFD Conversion Chart |website=Just Radios}}</ref><ref>{{cite book |url=https://archive.org/details/FundamentalsOfElectronics93400A1b |title=Fundamentals of Electronics |volume=1b — Basic Electricity — Alternating Current |publisher=Bureau of Naval Personnel |year=1965 |page=[https://archive.org/details/FundamentalsOfElectronics93400A1b/page/n58 197]}}</ref>
विद्युत परिपथ में उपयोग किए जाने वाले ज्‍यादातर संधारित्र की धारिता आम तौर पर फैराड की तुलना में बहुत छोटी है। आज सबसे ज्यादा आम उपयोग में आने वाली धारिता की उपइकाई [[ सूक्ष्म |सूक्ष्म]] फ़ारड (µf), [[ नैनो |नैनो]] फ़ारड (nf), [[ पिको- |पिको-]] फराड (pf), सूक्ष्मपरिपथ और [[ स्त्री |स्त्री]] फारड (Ff) मे हैं। हालांकि, विशेष रूप से बनाए गए [[ सुपरकैपेसिटर |सुपर संधारित्र]] बहुत बड़े हो सकते हैं (जितना सैकड़ों फैराड्स), और परजीवी संधारित्र तत्व एक फेमटोफराड से कम हो सकते हैं। अतीत में, पुराने ऐतिहासिक पाठ में वैकल्पिक उपइकाई का उपयोग किया गया था; माइक्रोफारड के लिए (एमएफ) और (एमएफडी); "mmf", "mmfd", [[ पिको- |पिको-]] फराड "pfd", (PF) के लिए; लेकिन अब यह अप्रचलित माना जाता है।<ref>{{cite web |url=http://www.justradios.com/MFMMFD.html |title=Capacitor MF-MMFD Conversion Chart |website=Just Radios}}</ref><ref>{{cite book |url=https://archive.org/details/FundamentalsOfElectronics93400A1b |title=Fundamentals of Electronics |volume=1b — Basic Electricity — Alternating Current |publisher=Bureau of Naval Personnel |year=1965 |page=[https://archive.org/details/FundamentalsOfElectronics93400A1b/page/n58 197]}}</ref>


यदि संधारित्र की ज्यामिति और संधारित्रों के बीच इन्सुलेटर के परावैद्युत गुण ज्ञात हों तो धारिता की गणना की जा सकती है। <br>
यदि संधारित्र की ज्यामिति और संधारित्रों के बीच इन्सुलेटर के परावैद्युत गुण ज्ञात हों तो धारिता की गणना की जा सकती है। <br>
Line 81: Line 81:
*A दो प्लेटों के ओवरलैप का क्षेत्र है, वर्ग मीटर में;
*A दो प्लेटों के ओवरलैप का क्षेत्र है, वर्ग मीटर में;
*ε<sub>0</sub> वैक्यूम पारगम्यता है (ε<sub>0</sub> ≈ {{val|8.854|e=-12|u=F.m-1}});
*ε<sub>0</sub> वैक्यूम पारगम्यता है (ε<sub>0</sub> ≈ {{val|8.854|e=-12|u=F.m-1}});
*''ε''<sub>r</sub> प्लेटों के बीच सामग्री के [[ सापेक्ष पारगम्यता |सापेक्ष पारगम्यता]] (परावैद्युत नियतांक) ''ε''<sub>r</sub>  = 1 हवा के लिए);तथा
*''ε''<sub>r</sub> प्लेटों के बीच सामग्री के [[ सापेक्ष पारगम्यता |सापेक्ष पारगम्यता]] (परावैद्युत नियतांक) ''ε''<sub>r</sub>  = 1 हवा के लिए); तथा
*D प्लेटों के बीच बीच की दूरी है,मीटर में;
*D प्लेटों के बीच बीच की दूरी है,मीटर में;


Line 95: Line 95:
कोई भी दो पास के चालक एक संधारित्र के रूप में कार्य कर सकते हैं, हालांकि धारिता तब तक छोटा होता है जब तक कि लंबी दूरी के लिए या एक बड़े क्षेत्र में एक साथ करीब न हों। इस (अक्सर अवांछित) धारिता को परजीवी या आवारा (पथभ्रष्ट) कहा जाता है। आवारा धारिता संकेतों को अन्यथा पृथक परिपथ [[ क्रॉसस्टॉक (इलेक्ट्रॉनिक्स) |क्रॉसस्टॉक (इलेक्ट्रॉनिक्स)]] नामक एक प्रभाव) के बीच लीक करने की अनुमति दे सकता है, और यह [[ उच्च आवृत्ति |उच्च आवृत्ति]] पर परिपथ के उचित कामकाज के लिए एक सीमित कारक हो सकता है।   
कोई भी दो पास के चालक एक संधारित्र के रूप में कार्य कर सकते हैं, हालांकि धारिता तब तक छोटा होता है जब तक कि लंबी दूरी के लिए या एक बड़े क्षेत्र में एक साथ करीब न हों। इस (अक्सर अवांछित) धारिता को परजीवी या आवारा (पथभ्रष्ट) कहा जाता है। आवारा धारिता संकेतों को अन्यथा पृथक परिपथ [[ क्रॉसस्टॉक (इलेक्ट्रॉनिक्स) |क्रॉसस्टॉक (इलेक्ट्रॉनिक्स)]] नामक एक प्रभाव) के बीच लीक करने की अनुमति दे सकता है, और यह [[ उच्च आवृत्ति |उच्च आवृत्ति]] पर परिपथ के उचित कामकाज के लिए एक सीमित कारक हो सकता है।   


एम्पलीफायर परिपथ में इनपुट और आउटपुट के बीच आवारा धारिता परेशानी भरा हो सकता है क्योंकि यह फीडबैक के लिए एक पथ बना सकता है, जिससे एम्पलीफायर में अस्थिरता और [[ परजीवी दोलन |परजीवी दोलन]] हो सकता है। यह अक्सर विश्लेषणात्मक उद्देश्यों के लिए एक इनपुट-टू-ग्राउंड कैपेसिटेंस और एक आउटपुट-टू-ग्राउंड कैपेसिटेंस के संयोजन के साथ इस धारिता को बदलने के लिए सुविधाजनक होता है; मूल कॉन्फ़िगरेशन-इनपुट-टू-आउटपुट धारिता को अक्सर (pi-) पीआई-कॉन्फ़िगरेशन के रूप में संदर्भित किया जाता है। इस प्रतिस्थापन को प्रभावित करने के लिए मिलर के प्रमेय का उपयोग किया जा सकता है: यह बताता है कि, यदि दो नोड्स का लाभ अनुपात 1/k है, तो दो नोड्स को जोड़ने के लिए एक विद्युत प्रतिबाधा Z, को ''Z''/(1 − ''K'') के साथ बदला जा सकता है;  पहले नोड और ग्राउंड नोड के बीच प्रतिबाधा ''Z''/(1 − ''K'') दूसरे नोड और ग्राउंड नोड के बीच प्रतिबाधा ''KZ''/(''K'' − 1)। चूंकि धारिता प्रतिबाधा के साथ विपरीत रूप से भिन्न होती है, इंटर्नोड धारिता, C, को KC की एक धारिता द्वारा इनपुट से ग्राउंड तक और धारिता (''K'' − 1)''C''/''K'' आउटपुट से ग्राउंड तक। जब इनपुट-टू-आउटपुट लाभ बहुत बड़ा होता है, तो समतुल्य इनपुट-टू-ग्राउंड प्रतिबाधा बहुत कम होता है जबकि आउटपुट-टू-ग्राउंड प्रतिबाधा अनिवार्य रूप से मूल (इनपुट-टू-आउटपुट) प्रतिबाधा के बराबर होता है।  
एम्पलीफायर परिपथ में इनपुट और आउटपुट के बीच आवारा धारिता परेशानी भरा हो सकता है क्योंकि यह फीडबैक के लिए एक पथ बना सकता है, जिससे एम्पलीफायर में अस्थिरता और [[ परजीवी दोलन |परजीवी दोलन]] हो सकता है। यह अक्सर विश्लेषणात्मक उद्देश्यों के लिए एक इनपुट-टू-ग्राउंड धारिता और एक आउटपुट-टू-ग्राउंड धारिता के संयोजन के साथ इस धारिता को बदलने के लिए सुविधाजनक होता है; मूल कॉन्फ़िगरेशन-इनपुट-टू-आउटपुट धारिता को अक्सर (pi-) पीआई-कॉन्फ़िगरेशन के रूप में संदर्भित किया जाता है। इस प्रतिस्थापन को प्रभावित करने के लिए मिलर के प्रमेय का उपयोग किया जा सकता है: यह बताता है कि, यदि दो नोड्स का लाभ अनुपात 1/k है, तो दो नोड्स को जोड़ने के लिए एक विद्युत प्रतिबाधा Z, को ''Z''/(1 − ''K'') के साथ बदला जा सकता है;  पहले नोड और ग्राउंड नोड के बीच प्रतिबाधा ''Z''/(1 − ''K'') दूसरे नोड और ग्राउंड नोड के बीच प्रतिबाधा ''KZ''/(''K'' − 1)। चूंकि धारिता प्रतिबाधा के साथ विपरीत रूप से भिन्न होती है, इंटर्नोड धारिता, C, को KC की एक धारिता द्वारा इनपुट से ग्राउंड तक और धारिता (''K'' − 1)''C''/''K'' आउटपुट से ग्राउंड तक। जब इनपुट-टू-आउटपुट लाभ बहुत बड़ा होता है, तो समतुल्य इनपुट-टू-ग्राउंड प्रतिबाधा बहुत कम होता है जबकि आउटपुट-टू-ग्राउंड प्रतिबाधा अनिवार्य रूप से मूल (इनपुट-टू-आउटपुट) प्रतिबाधा के बराबर होता है।  


== साधारण आकृतियों के साथ कंडक्टरों की धारिता ==
== साधारण आकृतियों के साथ कंडक्टरों की धारिता ==
Line 183: Line 183:
नैनोस्केल डाइइलेक्ट्रिक संधारित्र जैसे[[ क्वांटम डॉट्स ]]बड़े संधारित्र की धारिता के पारंपरिक योगों से भिन्न हो सकती है। विशेष रूप से, पारंपरिक संधारित्र में इलेक्ट्रॉनों द्वारा अनुभव किए गए इलेक्ट्रोस्टैटिक संभावित अंतर को पारंपरिक संधारित्र में मौजूद इलेक्ट्रॉनों की सांख्यिकीय रूप से बड़ी संख्या के अलावा धातु इलेक्ट्रोड के आकार और आकृति द्वारा स्थायी रूप से अच्छी तरह से परिभाषित और तय किया जाता है। नैनोस्केल संधारित्र में, हालांकि, इलेक्ट्रॉनों द्वारा अनुभव की जाने वाली इलेक्ट्रोस्टैटिक क्षमता सभी इलेक्ट्रॉनों की संख्या और स्थानों द्वारा निर्धारित की जाती है जो डिवाइस के इलेक्ट्रॉनिक गुणों में योगदान करते हैं। ऐसे उपकरणों में, इलेक्ट्रॉनों की संख्या बहुत कम हो सकती है, इसलिए डिवाइस के भीतर समविभव सतहों का परिणामी स्थानिक वितरण अत्यधिक जटिल है।  
नैनोस्केल डाइइलेक्ट्रिक संधारित्र जैसे[[ क्वांटम डॉट्स ]]बड़े संधारित्र की धारिता के पारंपरिक योगों से भिन्न हो सकती है। विशेष रूप से, पारंपरिक संधारित्र में इलेक्ट्रॉनों द्वारा अनुभव किए गए इलेक्ट्रोस्टैटिक संभावित अंतर को पारंपरिक संधारित्र में मौजूद इलेक्ट्रॉनों की सांख्यिकीय रूप से बड़ी संख्या के अलावा धातु इलेक्ट्रोड के आकार और आकृति द्वारा स्थायी रूप से अच्छी तरह से परिभाषित और तय किया जाता है। नैनोस्केल संधारित्र में, हालांकि, इलेक्ट्रॉनों द्वारा अनुभव की जाने वाली इलेक्ट्रोस्टैटिक क्षमता सभी इलेक्ट्रॉनों की संख्या और स्थानों द्वारा निर्धारित की जाती है जो डिवाइस के इलेक्ट्रॉनिक गुणों में योगदान करते हैं। ऐसे उपकरणों में, इलेक्ट्रॉनों की संख्या बहुत कम हो सकती है, इसलिए डिवाइस के भीतर समविभव सतहों का परिणामी स्थानिक वितरण अत्यधिक जटिल है।  


=== सिंगल-इलेक्ट्रॉन डिवाइस ===
=== सिंगल-इलेक्ट्रॉन डिवाइस (एकल इलेक्ट्रॉन उपकरण) ===
एक जुड़े, या बंद, एकल-इलेक्ट्रॉन डिवाइस की धारिता एक असंबद्ध, या खुले, एकल-इलेक्ट्रॉन डिवाइस की धारिता से दोगुनी है।<ref name= Tsu>{{Cite book | pages=312–315 | title=Superlattice to Nanoelectronics | isbn = 978-0-08-096813-1 | author=Raphael Tsu | publisher=Elsevier | year=2011 }}</ref> इस तथ्य को एकल-इलेक्ट्रॉन डिवाइस में संग्रहीत ऊर्जा के लिए अधिक मौलिक रूप से पता लगाया जा सकता है, जिनके "प्रत्यक्ष ध्रुवीकरण" अंतःक्रियात्मक ऊर्जा को इलेक्ट्रॉन की उपस्थिति के कारण डिवाइस पर ध्रुवीकृत आवेश बनाने के लिए आवश्यक संभावित ऊर्जा को (इलेक्ट्रॉन के कारण विभव के साथ डिवाइस की डाईइलेक्ट्रिक, इन्सुलेट सामग्री में आवेशों की परस्पर क्रिया)।<ref name="LaFave-DCD">{{Cite journal | author=T. LaFave Jr. | title=Discrete charge dielectric model of electrostatic energy | arxiv=1203.3798|journal=J. Electrostatics | year=2011 | volume=69 | issue=6 | pages=414–418 | doi=10.1016/j.elstat.2011.06.006 | s2cid=94822190 }}</ref> डिवाइस पर ध्रुवीकृत आवेश के साथ इलेक्ट्रॉन की पारस्परिक क्रिया में समान रूप से विभाजित किया जा सकता है।   
एक जुड़े, या बंद, एकल-इलेक्ट्रॉन उपकरण की धारिता एक असंबद्ध, या खुले, एकल-इलेक्ट्रॉन उपकरण की धारिता से दोगुनी है।<ref name= Tsu>{{Cite book | pages=312–315 | title=Superlattice to Nanoelectronics | isbn = 978-0-08-096813-1 | author=Raphael Tsu | publisher=Elsevier | year=2011 }}</ref> इस तथ्य को एकल-इलेक्ट्रॉन उपकरण में संग्रहीत ऊर्जा के लिए अधिक मौलिक रूप से पता लगाया जा सकता है, जिनके "प्रत्यक्ष ध्रुवीकरण" अंतःक्रियात्मक ऊर्जा को इलेक्ट्रॉन की उपस्थिति के कारण उपकरण पर ध्रुवीकृत आवेश बनाने के लिए आवश्यक संभावित ऊर्जा को (इलेक्ट्रॉन के कारण विभव के साथ उपकरण की डाईइलेक्ट्रिक, इन्सुलेट सामग्री में आवेशों की परस्पर क्रिया)।<ref name="LaFave-DCD">{{Cite journal | author=T. LaFave Jr. | title=Discrete charge dielectric model of electrostatic energy | arxiv=1203.3798|journal=J. Electrostatics | year=2011 | volume=69 | issue=6 | pages=414–418 | doi=10.1016/j.elstat.2011.06.006 | s2cid=94822190 }}</ref> उपकरण पर ध्रुवीकृत आवेश के साथ इलेक्ट्रॉन की पारस्परिक क्रिया में समान रूप से विभाजित किया जा सकता है।   


=== कुछ-इलेक्ट्रॉन डिवाइस ===
=== कुछ-इलेक्ट्रॉन डिवाइस (कुछ-इलेक्ट्रॉन उपकरण) ===
कुछ-इलेक्ट्रॉन डिवाइस के एक क्वांटम धारिता की व्युत्पत्ति में N कण प्रणाली की थर्मोडायनामिक रासायनिक क्षमता शामिल है   
कुछ-इलेक्ट्रॉन उपकरण के एक क्वांटम धारिता की व्युत्पत्ति में N कण प्रणाली की थर्मोडायनामिक रासायनिक क्षमता शामिल है   
<math display="block">\mu(N) = U(N) - U(N-1)</math>                                                                                                                                                                                                                                                                                                     
<math display="block">\mu(N) = U(N) - U(N-1)</math>                                                                                                                                                                                                                                                                                                     


Line 195: Line 195:
अलग -अलग इलेक्ट्रॉनों को जोड़ने या हटाने के साथ डिवाइस पर लागू किया जा सकता है ,
अलग -अलग इलेक्ट्रॉनों को जोड़ने या हटाने के साथ डिवाइस पर लागू किया जा सकता है ,
<math display="block">\Delta N = 1</math> तथा <math display="block">\Delta Q = e.</math>
<math display="block">\Delta N = 1</math> तथा <math display="block">\Delta Q = e.</math>
फिर डिवाइस की क्वांटम धारिता है।<ref>{{cite journal
फिर उपकरण की क्वांटम धारिता है।<ref>{{cite journal
  |author1=G. J. Iafrate |author2=K. Hess |author3=J. B. Krieger |author4=M. Macucci |year=1995
  |author1=G. J. Iafrate |author2=K. Hess |author3=J. B. Krieger |author4=M. Macucci |year=1995
  |title=Capacitive nature of atomic-sized structures
  |title=Capacitive nature of atomic-sized structures
Line 227: Line 227:
  |doi        = 10.1016/j.mejo.2007.07.105
  |doi        = 10.1016/j.mejo.2007.07.105
  |url-status  = dead
  |url-status  = dead
  |archive-url = https://web.archive.org/web/20140222131652/http://www.pagesofmind.com/FullTextPubs/La08-LaFave-2008-capacitance-a-property-of-nanoscale-materials.pdf | archive-date = 22 February 2014}}</ref> जो क्वांटम धारिता के समान है। विशेष रूप से, डिवाइस के भीतर स्थानिक रूप से जटिल सुसंगत सतहों की गणितीय चुनौतियों से बचने के लिए, प्रत्येक इलेक्ट्रॉन द्वारा अनुभव की जाने वाली एक औसत इलेक्ट्रोस्टैटिक विभव का व्युत्पत्ति में उपयोग किया जाता है।   
  |archive-url = https://web.archive.org/web/20140222131652/http://www.pagesofmind.com/FullTextPubs/La08-LaFave-2008-capacitance-a-property-of-nanoscale-materials.pdf | archive-date = 22 February 2014}}</ref> जो क्वांटम धारिता के समान है। विशेष रूप से, उपकरण के भीतर स्थानिक रूप से जटिल सुसंगत सतहों की गणितीय चुनौतियों से बचने के लिए, प्रत्येक इलेक्ट्रॉन द्वारा अनुभव की जाने वाली एक औसत इलेक्ट्रोस्टैटिक विभव का व्युत्पत्ति में उपयोग किया जाता है।   


स्पष्ट गणितीय अंतर को संभावित ऊर्जा के रूप में अधिक मौलिक रूप से समझा जाता है, <math>U(N)</math>,कम सीमा n = 1 में एक जुड़े डिवाइस में संग्रहीत संभावित ऊर्जा, एक पृथक डिवाइस (सेल्फ-कैपेसिटेंस/ आत्म धारिता) का दो गुना है। जैसे -जैसे n बढ़ता है, <math>U(N)\to U</math>.<ref name=LaFave-DCD/> इस प्रकार, धारिता को सामान्य रूप से प्रदर्शित किया जाता है     
स्पष्ट गणितीय अंतर को संभावित ऊर्जा के रूप में अधिक मौलिक रूप से समझा जाता है, <math>U(N)</math>,कम सीमा n = 1 में एक जुड़े उपकरण में संग्रहीत संभावित ऊर्जा, एक पृथक उपकरण (सेल्फ-कैपेसिटेंस/ आत्म धारिता) का दो गुना है। जैसे -जैसे n बढ़ता है, <math>U(N)\to U</math>.<ref name=LaFave-DCD/> इस प्रकार, धारिता को सामान्य रूप से प्रदर्शित किया जाता है     
<math display="block">C(N) = {(Ne)^2 \over U(N)}.</math>
<math display="block">C(N) = {(Ne)^2 \over U(N)}.</math>
नैनोस्केल उपकरणों में जैसे क्वांटम डॉट्स, संधारित्र अक्सर डिवाइस के भीतर एक पृथक, या आंशिक रूप से पृथक, घटक होता है। नैनोस्केल संधारित्र और मैक्रोस्कोपिक (पारंपरिक) संधारित्र के बीच प्राथमिक अंतर अतिरिक्त इलेक्ट्रॉनों की संख्या ( जो डिवाइस के इलेक्ट्रॉनिक व्यवहार में योगदान करते हैं, चार्ज वाहक, या इलेक्ट्रॉन) और धातु इलेक्ट्रोड के आकार और आकृति हैं। नैनोस्केल उपकरणों में, धातु परमाणुओं से युक्त [[ नैनोवायर |नैनोवायर]] आमतौर पर उनके मैक्रोस्कोपिक, या विस्तृत सामग्री में समान चालक गुणों का प्रदर्शन नहीं करते हैं।   
नैनोस्केल उपकरणों में जैसे क्वांटम डॉट्स, संधारित्र अक्सर उपकरण के भीतर एक पृथक, या आंशिक रूप से पृथक, घटक होता है। नैनोस्केल संधारित्र और मैक्रोस्कोपिक (पारंपरिक) संधारित्र के बीच प्राथमिक अंतर अतिरिक्त इलेक्ट्रॉनों की संख्या ( जो डिवाइस के इलेक्ट्रॉनिक व्यवहार में योगदान करते हैं, चार्ज वाहक, या इलेक्ट्रॉन) और धातु इलेक्ट्रोड के आकार और आकृति हैं। नैनोस्केल उपकरणों में, धातु परमाणुओं से युक्त [[ नैनोवायर |नैनोवायर]] आमतौर पर उनके मैक्रोस्कोपिक, या विस्तृत सामग्री में समान चालक गुणों का प्रदर्शन नहीं करते हैं।   


== इलेक्ट्रॉनिक और अर्धचालक उपकरणों में धारिता ==
== इलेक्ट्रॉनिक और अर्धचालक उपकरणों में धारिता ==


इलेक्ट्रॉनिक और अर्धचालक उपकरणों में, टर्मिनलों के बीच क्षणिक या आवृत्ति-निर्भर धारा में चालन और विस्थापन दोनों घटक होते हैं। वाहक धारा आवेश वाहक आयन (इलेक्ट्रॉनों, होल या कोटर, आयनों, आदि) से संबंधित है, जबकि विस्थापन धारा, समय के साथ परिवर्तित हो रहे विद्युत क्षेत्र के कारण होता है। वाहक परिवहन विद्युत क्षेत्रों से और कई भौतिक घटनाओं से प्रभावित होता है-जैसे कि वाहक बहाव और प्रसार, ट्रैपिंग, इंजेक्शन, संपर्क-संबंधित प्रभाव, आयनीकरण आदि। परिणामस्वरूप, डिवाइस [[ प्रवेश |प्रवेश]] आवृत्ति-निर्भर है, और और धारिता के लिए एक साधारण इलेक्ट्रोस्टैटिक सूत्र <math>C = q/V,</math> लागू नहीं है। धारिता की एक अधिक सामान्य परिभाषा, इलेक्ट्रोस्टैटिक फॉर्मूला को शामिल करना, है:<ref name=LauxCapacitance>{{cite journal |first=S.E. |last=Laux |title=Techniques for small-signal analysis of semiconductor devices |journal=IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems |volume=4 |issue=4 |pages=472–481 |doi=10.1109/TCAD.1985.1270145 |date=Oct 1985|s2cid=13058472 }}</ref>   
इलेक्ट्रॉनिक और अर्धचालक उपकरणों में, टर्मिनलों के बीच क्षणिक या आवृत्ति-निर्भर धारा में चालन और विस्थापन दोनों घटक होते हैं। वाहक धारा आवेश वाहक आयन (इलेक्ट्रॉनों, होल या कोटर, आयनों, आदि) से संबंधित है, जबकि विस्थापन धारा, समय के साथ परिवर्तित हो रहे विद्युत क्षेत्र के कारण होता है। वाहक परिवहन विद्युत क्षेत्रों से और कई भौतिक घटनाओं से प्रभावित होता है-जैसे कि वाहक बहाव और प्रसार, ट्रैपिंग, इंजेक्शन, संपर्क-संबंधित प्रभाव, आयनीकरण आदि। परिणामस्वरूप,उपकरण [[ प्रवेश |प्रवेश]] आवृत्ति-निर्भर है,और धारिता के लिए एक साधारण इलेक्ट्रोस्टैटिक सूत्र <math>C = q/V,</math> लागू नहीं है। धारिता की एक अधिक सामान्य परिभाषा, इलेक्ट्रोस्टैटिक फॉर्मूला को शामिल करना, है:<ref name=LauxCapacitance>{{cite journal |first=S.E. |last=Laux |title=Techniques for small-signal analysis of semiconductor devices |journal=IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems |volume=4 |issue=4 |pages=472–481 |doi=10.1109/TCAD.1985.1270145 |date=Oct 1985|s2cid=13058472 }}</ref>   
<math display="block">C =  \frac{\operatorname{Im}(Y(\omega))}{\omega} ,</math>
<math display="block">C =  \frac{\operatorname{Im}(Y(\omega))}{\omega} ,</math>
कहाँ पे <math>Y(\omega)</math> डिवाइस एडमिटेंस है, और <math>\omega</math> कोणीय आवृत्ति है।
कहाँ पे <math>Y(\omega)</math> उपकरण एडमिटेंस है, और <math>\omega</math> कोणीय आवृत्ति है।


सामान्य तौर पर, धारिता आवृत्ति का एक फलन है। उच्च आवृत्तियों पर, धारिता, एक निरंतर मान ज्यामितीय धारिता के बराबर तक पहुंचता है, डिवाइस में  धारिता, टर्मिनलों की ज्यामिति और परावैद्युत पदार्थ द्वारा निर्धारित किया जाता है।
सामान्य तौर पर, धारिता आवृत्ति का एक फलन है। उच्च आवृत्तियों पर, धारिता, एक निरंतर मान ज्यामितीय धारिता के बराबर तक पहुंचता है, डिवाइस में  धारिता, टर्मिनलों की ज्यामिति और परावैद्युत पदार्थ द्वारा निर्धारित किया जाता है।
Line 249: Line 249:
== कैपेसिटेंस (धारिता) क मापन ==
== कैपेसिटेंस (धारिता) क मापन ==
{{Main|Capacitance meter}}
{{Main|Capacitance meter}}
एक [[ कैपेसिटेंस मीटर |धारिता मीटर]] इलेक्ट्रॉनिक परीक्षण उपकरणों का एक टुकड़ा है जिसका उपयोग धारिता को मापने के लिए किया जाता है, मुख्य रूप से असतत धारिता का। अधिकांश उद्देश्यों के लिए और ज्यादातर मामलों में संधारित्र को[[ विद्युत सर्किट | विद्युत सर्किट (परिपथ)]] से डिस्कनेक्ट किया जाना चाहिए।
एक [[ कैपेसिटेंस मीटर |धारिता मीटर]] इलेक्ट्रॉनिक परीक्षण उपकरणों का एक टुकड़ा है जिसका उपयोग धारिता को मापने के लिए किया जाता है, मुख्य रूप से असतत धारिता का। अधिकांश उद्देश्यों के लिए और ज्यादातर मामलों में संधारित्र को[[ विद्युत सर्किट | विद्युत सर्किट (परिपथ)]] से डिस्कनेक्ट (अलग करना) किया जाना चाहिए।


कई डीवीएम ([[ वाल्टमीटर |डिजिटल वोल्टमीटर]]) में एक धारिता मापने वाला फ़ंक्शन होता है। ये आमतौर पर एक ज्ञात विद्युत प्रवाह के साथ परीक्षण के तहत डिवाइस को आवेशित और निरावेशित करके और परिणामस्वरूप वोल्टेज की वृद्धि दर को मापते हैं; धारिता जितनी ज्यादा होगी वृद्धि की दर उतनी कम होगी। डीवीएम आमतौर पर फैराड से कुछ सौ माइक्रोफारड्स तक धारिता को माप सकते हैं, लेकिन व्यापक सीमाएं असामान्य नहीं हैं। परीक्षण के तहत डिवाइस के माध्यम से एक ज्ञात उच्च-आवृत्ति प्रत्यावर्ती धारा को भेज करके और इसके पार परिणामी वोल्टेज को मापने के लिए धारिता को मापना भी संभव है (ध्रुवीकृत धारिता के लिए काम नहीं करता है)।  
कई डीवीएम ([[ वाल्टमीटर |डिजिटल वोल्टमीटर]]) में एक धारिता मापने वाला फ़ंक्शन होता है। ये आमतौर पर एक ज्ञात विद्युत प्रवाह के साथ परीक्षण के तहत उपकरण को आवेशित और निरावेशित करके और परिणामस्वरूप वोल्टेज की वृद्धि दर को मापते हैं; धारिता जितनी ज्यादा होगी वृद्धि की दर उतनी कम होगी। डीवीएम आमतौर पर फैराड से कुछ सौ माइक्रोफारड्स तक धारिता को माप सकते हैं, लेकिन व्यापक सीमाएं असामान्य नहीं हैं। परीक्षण के तहत उपकरण के माध्यम से एक ज्ञात उच्च-आवृत्ति प्रत्यावर्ती धारा को भेज करके और इसके पार परिणामी वोल्टेज को मापने के लिए धारिता को मापना भी संभव है (ध्रुवीकृत धारिता के लिए काम नहीं करता है)।  


[[Image:AH2700 cap br.jpg|thumb|right|एक [http://www.andeen-hagerling.com andeen-hagerling] 2700A कैपेसिटेंस ब्रिज]]
[[Image:AH2700 cap br.jpg|thumb|right|एक [http://www.andeen-hagerling.com andeen-hagerling] 2700A कैपेसिटेंस ब्रिज]]
अधिक परिष्कृत उपकरण अन्य तकनीकों का उपयोग करते हैं जैसे कि धारिता-अंडर-टेस्ट को [[ पुल परिपथ |पुल परिपथ]] में सम्मिलित करना। पुल में अलग अलग मान लेकर (ताकि पुल को संतुलन में लाया जा सके),अज्ञात संधारित्र का मान निर्धारित किया जाता है। धारिता को मापने के अप्रत्यक्ष उपयोग की यह विधि अधिक सटीकता सुनिश्चित करती है। [[ चार टर्मिनल सेंसिंग |चार टर्मिनल सेंसिंग]] और अन्य सावधान डिजाइन तकनीकों के उपयोग के माध्यम से, आमतौर पर पिकोफारड्स से लेकर फैराड तक की सीमा से अधिक वाले संधारित्र को ये उपकरण माप सकते हैं।   
अधिक परिष्कृत उपकरण अन्य तकनीकों का उपयोग करते हैं जैसे कि धारिता-अंडर-टेस्ट को [[ पुल परिपथ |पुल परिपथ]] में सम्मिलित करना। पुल में अलग अलग मान लेकर (ताकि पुल को संतुलन में लाया जा सके), अज्ञात संधारित्र का मान निर्धारित किया जाता है। धारिता को मापने के अप्रत्यक्ष उपयोग की यह विधि अधिक सटीकता सुनिश्चित करती है। [[ चार टर्मिनल सेंसिंग |चार टर्मिनल सेंसिंग]] और अन्य सावधान डिजाइन तकनीकों के उपयोग के माध्यम से, आमतौर पर पिकोफारड्स से लेकर फैराड तक की सीमा से अधिक वाले संधारित्र को ये उपकरण माप सकते हैं।   


== यह भी देखें ==
== यह भी देखें ==

Revision as of 15:12, 19 October 2022

सामान्य प्रतीक
C
Si   इकाईfarad
अन्य इकाइयां
μF, nF, pF
SI आधार इकाइयाँ मेंF = A2 s4 kg−1 m−2
अन्य मात्राओं से
व्युत्पत्तियां
C = charge / voltage
आयामM−1 L−2 T4 I2

कैपेसिटेंस, विद्युत कंडक्टर (इलेक्ट्रिक चालक) पर संग्रहीत आवेश की मात्रा और विद्युत क्षमता में अंतर का अनुपात है। धारिता के दो प्रकार है जो आपस में एक दूसरे से सम्बंधित है: सेल्फ कैपेसिटेंस (स्व धारिता) और म्यूचुअल कैपेसिटेंस (पारस्परिक धारिता)[1]: 237–238  कोई भी वस्तु जिसे विद्युत रूप से आवेशित किया जा सकता है वह आत्म धारिता प्रदर्शित करता है। इस मामले में वस्तु और जमीन के बीच संभावित विद्युत अंतर मापा जाता है। पारस्परिक धारिता को दो चालकों के बीच मापा जाता है,और यह संधारित्र के संचालन में विशेष रूप से महत्वपूर्ण है, (प्रतिरोधों और प्रारंभ करने वालों के साथ) इस उद्देश्य के लिए एक प्राथमिक रैखिक इलेक्ट्रॉनिक घटक के रूप में उपकरण डिज़ाइन किया गया है। संधारित्र के संचालन को समझने के लिए पारस्परिक धारिता की धारणा विशेष रूप से महत्वपूर्ण है। एक विशिष्ट संधारित्र में, दो चालक का उपयोग इलेक्ट्रिक आवेश को अलग करने के लिए किया जाता है, जिसमें एक चालक को धनात्मक रूप से आवेशित किया जाता है और दूसरा ऋणात्मक रूप से आवेशित किया जाता है, लेकिन तंत्र का कुल आवेश शून्य होता है।

धारिता केवल संधारित्र के रूपरेखा की ज्यामिति का एक कार्य है, उदाहरण के लिए, प्लेटों का विरोधी सतह क्षेत्र और उनके बीच की दूरी, और प्लेटों के बीच परावैद्युत पदार्थ की पारगम्यता। कई परावैद्युत पदार्थ के लिए, पारगम्यता और धारिता,चालकों के बीच संभावित विद्युत अंतर और उन पर उपस्थित कुल आवेश से स्वतंत्र है।

धारिता की एसआई इकाई अंग्रेजी भौतिक वैज्ञानिकमाइकल फैराडे के नाम पर फैराड (प्रतीक: एफ) है।1 फैराड संधारित्र, जब 1 कूलम्ब विद्युत आवेश के साथ आरोपित किया जाता है, तो इसकी प्लेटों के बीच 1वोल्ट का संभावित अंतर होता है।[2] धारिता के वुत्पन्न को इलास्टेंस कहा जाता है।

स्व समाई (आत्म धारिता)

विद्युत परिपथ में, धारिता शब्द आमतौर पर दो आसन्न चालकों के बीच पारस्परिक धारिता के लिए एक आशुलिपि (शॉर्टहैंड) है, जैसे कि एक संधारित्र की दो प्लेटें। हालांकि, एक पृथक संधारित्र के लिए, सेल्फ कैपेसिटेंस (आत्म धारिता) नामक एक संपत्ति भी मौजूद है, जो कि विद्युत आवेश की मात्रा है जिसे एक अलग संधारित्र में जोड़ा जाना चाहिए ताकि इसकी विद्युत क्षमता को एक इकाई (यानी एक वोल्ट, अधिकांश माप प्रणालियों में) तक बढ़ाया जा सके।[3] इस विभव के लिए संदर्भ बिंदु, इस क्षेत्र के अंदर केंद्रित संधारित्र के साथ अनंत त्रिज्या का एक सैद्धांतिक खोखला क्षेत्र है।

गणितीय रूप से, एक संधारित्र की सेल्फ कैपेसिटेंस (आत्म धारिता) को परिभाषित किया गया है

जहाँ पे

  • q चालक पर आयोजित शुल्क है,
  • विद्युत क्षमता है,
  • σ सतह आवेश घनत्व है।
  • dS चालक की सतह पर क्षेत्र का एक असीम तत्व है,
  • r चालक पर एक निश्चित बिंदु m से ds तक लंबाई है
  • वैक्यूम पारगम्यता है


इस पद्धति का उपयोग करते हुए, सेल्फ कैपेसिटेंस (आत्म धारिता) के एक संचालन क्षेत्र की त्रिज्या R है:[4]

आत्म धारिता के उदाहरण मान हैं:

  • एक वैन डी ग्राफ जनरेटर की शीर्ष प्लेट के लिए,आमतौर पर एक वृत्त त्रिज्या में 20 सेमी: 22.24 पीएफ,
  • ग्रह पृथ्वी: लगभग 710 µf।[5]

एक विद्युत चुम्बकीय कुंडल की अंतर-घुमावदार धारिता को कभी-कभी आत्म धारिता कहा जाता है,[6] लेकिन यह एक अलग घटना है।यह वास्तव में कॉइल के अलग-अलग मोड़ के बीच पारस्परिक धारिता है और आवारा,या परजीवी धारिता का एक रूप है। यह आत्म धारिता उच्च आवृत्तियों के लिए महत्वपूर्ण विचार है: यह कॉइल के विद्युत प्रतिबाधा को बदलता है और समानांतर विद्युत अनुनाद को जन्म देता है। कई अनुप्रयोगों में यह एक अवांछनीय प्रभाव है और परिपथ के सही संचालन के लिए एक ऊपरी आवृत्ति सीमा निर्धारित करता है।[citation needed]

म्यूचुअल कैपेसिटेंस (पारस्परिक धारिता)

ये ,सामान्य रूप एक समानांतर-प्लेट संधारित्र है, जिसमें दो प्रवाहकीय प्लेटें होती हैं,और ये दोनों प्लेट एक दूसरे के ऊपर रखीं होती हैं,आमतौर पर प्लेट एक दूसरे के ऊपर ऐसे रखीं होती है जैसे डाइइलेक्ट्रिक सामग्री उन दोनों प्लेट के बीच में रखा हो। एक समानांतर प्लेट संधारित्र में, धारिता संधारित्र प्लेटों के सतह क्षेत्र के समानुपाती और और दो प्लेट के बीच की दूरी के व्युत्क्रमानुपाती होता है।

यदि प्लेटों पर आवेश +Q और, -Q हैं, और V प्लेटों के बीच वोल्टेज देता है, तो धारिता को C द्वारा प्रदर्शित किया जाता है।

जो वोल्टेज और विद्युत धारा में सम्बन्ध प्रदर्शित करता है
जहां पर dv(t)/dt वोल्टेज परिवर्तन की तात्कालिक दर है।

एक संधारित्र में संग्रहीत ऊर्जा W के समाकलन द्वारा प्राप्त किया जाता है:


कैपेसिटेंस मैट्रिक्स (धारिता मैट्रिक्स)

उपरोक्त चर्चा दो संचालन प्लेटों के मामले तक सीमित है, हालांकि मनमानी आकार और आकृति की है। ये परिभाषा तब लागू नहीं है जब दो से अधिक आवेशित की गयी प्लेटें होती हैं , या जब दो प्लेटों पर नेट आवेश शून्य नहीं होता है। इस मामले को संभालने के लिए, मैक्सवेल ने अपने संभावित गुणांक पेश किए। यदि तीन (लगभग आदर्श) कंडक्टरों को आवेश , दिया जाता है तो कंडक्टर 1 पर दिया गया वोल्टेज है:

और इसी तरह अन्य वोल्टेज के लिये हरमन वॉन हेल्महोल्त्ज़ और सर विलियम थॉमसन ने प्रदिर्शित किया कि क्षमता के गुणांक सममित हैं,और इसलिए होगा। इस प्रकार प्रणाली को इलास्टेंस मैट्रिक्स या पारस्परिक धारिता मैट्रिक्स के रूप में ज्ञात गुणांक के संग्रह द्वारा वर्णित किया जा सकता है, जिसे इस प्रकार परिभाषित किया गया है:
इससे दो वस्तुओं के बीच, पारस्परिक धारिता को दो वस्तुओं के बीच कुल आवेश Q के लिए हल करके और उपयोग करके परिभाषित किया जा सकता है[7]

चूंकि कोई भी वास्तविक उपकरण दो प्लेटों में से प्रत्येक पर पूरी तरह से समान और विपरीत आवेश नहीं रखता है, यह पारस्परिक धारिता है जो संधारित्र पर वर्णित की जाती है।

गुणांकों का संग्रह धारिता मैट्रिक्स के रूप में जाना जाता है,[8][9][10] और यह इलास्टेंस मैट्रिक्स का उलटा है।

कैपेसिटर (संधारित्र)

विद्युत परिपथ में उपयोग किए जाने वाले ज्‍यादातर संधारित्र की धारिता आम तौर पर फैराड की तुलना में बहुत छोटी है। आज सबसे ज्यादा आम उपयोग में आने वाली धारिता की उपइकाई सूक्ष्म फ़ारड (µf), नैनो फ़ारड (nf), पिको- फराड (pf), सूक्ष्मपरिपथ और स्त्री फारड (Ff) मे हैं। हालांकि, विशेष रूप से बनाए गए सुपर संधारित्र बहुत बड़े हो सकते हैं (जितना सैकड़ों फैराड्स), और परजीवी संधारित्र तत्व एक फेमटोफराड से कम हो सकते हैं। अतीत में, पुराने ऐतिहासिक पाठ में वैकल्पिक उपइकाई का उपयोग किया गया था; माइक्रोफारड के लिए (एमएफ) और (एमएफडी); "mmf", "mmfd", पिको- फराड "pfd", (PF) के लिए; लेकिन अब यह अप्रचलित माना जाता है।[11][12]

यदि संधारित्र की ज्यामिति और संधारित्रों के बीच इन्सुलेटर के परावैद्युत गुण ज्ञात हों तो धारिता की गणना की जा सकती है।
जब एक धनात्मक आवेश एक सुचालक को दिया जाता है, यह आवेश एक विद्युत क्षेत्र बनाता है, जोकि सुचालक पर स्थानांतरित किए जाने वाले किसी भी अन्य धनात्मक आवेश को प्रतिकर्षित करता है; यानी,आवश्यक वोल्टेज बढ़ाता है। लेकिन अगर पास में एक अन्य सुचालक है,और अगर उस पर एक ऋणात्मक आवेश है, दूसरे धनात्मक आवेश को प्रतिकर्षित करने वाले धनात्मक चालक का विद्युत क्षेत्र कमजोर हो जाता है (दूसरा धनात्मक आवेश भी ऋणात्मक आवेश के आकर्षण बल को महसूस करता है)। इसलिए एक ऋणात्मक आवेश वाले दूसरे सुचालक के साथ दूसरे के कारण, पहले से ही धनात्मक आवेश किए गए पहले चालक पर धनात्मक आवेश करना आसान हो जाता है,और इसके विपरीत; जिससे आवश्यक वोल्टेज को कम किया जा सके।
एक मात्रात्मक उदाहरण के रूप में दो समानांतर प्लेटों से निर्मित एक संधारित्र की धारिता पर विचार करें, जब दोनों प्लेटों का क्षेत्रफल A है जो कि एक दूरी d द्वारा अलग किए गए हैं। यदि d पर्याप्त रूप से A के सबसे छोटे कॉर्ड के संबंध में छोटा है, तो सटीकता के उच्च स्तर के लिए:

ध्यान दें कि

जहाँ पे

  • C धारिता है, फैराड्स में;
  • A दो प्लेटों के ओवरलैप का क्षेत्र है, वर्ग मीटर में;
  • ε0 वैक्यूम पारगम्यता है (ε08.854×10−12 F⋅m−1);
  • εr प्लेटों के बीच सामग्री के सापेक्ष पारगम्यता (परावैद्युत नियतांक) εr = 1 हवा के लिए); तथा
  • D प्लेटों के बीच बीच की दूरी है,मीटर में;

धारिता अतिव्यापन के क्षेत्र के लिए समानुपाती है और संवाहक शीट के बीच के अंतर के व्युत्क्रमानुपाती है। धारिता जितनी अधिक होती है शीट एक दूसरे के उतनी करीब होती हैं। समीकरण एक अच्छा सन्निकटन है यदि D प्लेटों के अन्य आयामों की तुलना में छोटा है, ताकि संधारित्र क्षेत्र में विद्युत क्षेत्र समान हो, और परिधि के चारों ओर तथाकथित फ्रिंजिंग क्षेत्र धारिता में केवल एक छोटा योगदान प्रदान करता है।

उपरोक्त समीकरण के लिए समीकरण का संयोजन, एक फ्लैट-प्लेट संधारित्र के लिए संग्रहीत ऊर्जा है:

जहां W ऊर्जा है, जूल्स में; C धारिता है, फैराड्स में;और V वोल्ट में वोल्टेज है।

आवारा धारिता

कोई भी दो पास के चालक एक संधारित्र के रूप में कार्य कर सकते हैं, हालांकि धारिता तब तक छोटा होता है जब तक कि लंबी दूरी के लिए या एक बड़े क्षेत्र में एक साथ करीब न हों। इस (अक्सर अवांछित) धारिता को परजीवी या आवारा (पथभ्रष्ट) कहा जाता है। आवारा धारिता संकेतों को अन्यथा पृथक परिपथ क्रॉसस्टॉक (इलेक्ट्रॉनिक्स) नामक एक प्रभाव) के बीच लीक करने की अनुमति दे सकता है, और यह उच्च आवृत्ति पर परिपथ के उचित कामकाज के लिए एक सीमित कारक हो सकता है।

एम्पलीफायर परिपथ में इनपुट और आउटपुट के बीच आवारा धारिता परेशानी भरा हो सकता है क्योंकि यह फीडबैक के लिए एक पथ बना सकता है, जिससे एम्पलीफायर में अस्थिरता और परजीवी दोलन हो सकता है। यह अक्सर विश्लेषणात्मक उद्देश्यों के लिए एक इनपुट-टू-ग्राउंड धारिता और एक आउटपुट-टू-ग्राउंड धारिता के संयोजन के साथ इस धारिता को बदलने के लिए सुविधाजनक होता है; मूल कॉन्फ़िगरेशन-इनपुट-टू-आउटपुट धारिता को अक्सर (pi-) पीआई-कॉन्फ़िगरेशन के रूप में संदर्भित किया जाता है। इस प्रतिस्थापन को प्रभावित करने के लिए मिलर के प्रमेय का उपयोग किया जा सकता है: यह बताता है कि, यदि दो नोड्स का लाभ अनुपात 1/k है, तो दो नोड्स को जोड़ने के लिए एक विद्युत प्रतिबाधा Z, को Z/(1 − K) के साथ बदला जा सकता है; पहले नोड और ग्राउंड नोड के बीच प्रतिबाधा Z/(1 − K) दूसरे नोड और ग्राउंड नोड के बीच प्रतिबाधा KZ/(K − 1)। चूंकि धारिता प्रतिबाधा के साथ विपरीत रूप से भिन्न होती है, इंटर्नोड धारिता, C, को KC की एक धारिता द्वारा इनपुट से ग्राउंड तक और धारिता (K − 1)C/K आउटपुट से ग्राउंड तक। जब इनपुट-टू-आउटपुट लाभ बहुत बड़ा होता है, तो समतुल्य इनपुट-टू-ग्राउंड प्रतिबाधा बहुत कम होता है जबकि आउटपुट-टू-ग्राउंड प्रतिबाधा अनिवार्य रूप से मूल (इनपुट-टू-आउटपुट) प्रतिबाधा के बराबर होता है।

साधारण आकृतियों के साथ कंडक्टरों की धारिता

Laplace समीकरण ∇2φ = 0 को हल करने के लिए एक निरन्तर विभव (constant potential)φ 0 3-स्पेस में एम्बेडेड चालकों की 2-आयामी सतह पर एक सिस्टम मात्रा की धारिता की गणना2 की  जाती है। यह समरूपता द्वारा सरल किया गया है।अधिक जटिल मामलों में एलीमेंट्री फंक्शन के संदर्भ में कोईव्याख्या नहीं है।

सामान्य स्थितियों के लिए, विश्लेषणात्मक कार्यों का उपयोग एक दूसरे को विभिन्न ज्यामिति को मैप करने के लिए किया जा सकता है। श्वार्ज़ -क्रिस्टोफेल मैपिंग (Schwarz–Christoffel mapping भी देखें।

Capacitance of simple systems
Type Capacitance Comment
समांतर प्लेट संधारित्र File:Plate CapacitorII.svg

ε: Permittivity

संकेंद्रित सिलेंडर File:Cylindrical CapacitorII.svg

ε: Permittivity

उत्केन्द्र सिलेंडर[13] Eccentric capacitor.svg

ε: Permittivity
R1: Outer radius
R2: Inner radius
d: Distance between center
: Wire length

समांतर तारों का जोड़ा[14] File:Parallel Wire Capacitance.svg
दीवार के समानांतर तार[14] a: Wire radius
d: Distance, d > a
: Wire length
दो समांतर

समतलीय पट्टियां[15]

d: Distance
w1, w2: Strip width
km: d/(2wm+d)

k2: k1k2
K: Complete elliptic integral of the first kind
: Length

संकेंद्रित वृत्त File:Spherical Capacitor.svg

ε: Permittivity

दो वृत्त,

बराबर त्रिज्या[16][17]

a: Radius
d: Distance, d > 2a
D = d/2a, D > 1
γ: Euler's constant
दीवार के सामने वृत्त[16] : Radius
: Distance,
वृत्त : Radius
वृत्ताकार डिस्क[18] : Radius
पतला सीधा तार,

परिमित लंबाई[19][20][21]

: Wire radius
: Length


ऊर्जा भंडारण

संधारित्र में संग्रहीत ऊर्जा (जूल में) संधारित्र को आवेशित करने के लिए, उपुयक्त आवेश देने में,आवश्यक कार्य के बराबर है। एक संधारित्र जिसकी धारिता C है, उसकी एक प्लेट पर आवेश +Q दूसरे पर -Q है। तो एक प्लेट से दूसरी प्लेट में आवेश dq (जोकि बहुत कम है) संभावित विभवान्तर V = q/C के विरुद्ध dW कार्य की आवश्यकता है:


जहां W जूल में मापा गया काम है, Q कूलम्ब्स में मापा गया आवेश है और C धारिता है, जो कि फैराड्स में मापा जाता है।

एक संधारित्र में संग्रहीत ऊर्जा इस समीकरण के समाकलन द्वारा पाई जाती है। एक निरावेशित धारिता (q = 0) के साथ शुरू करके एक प्लेट से दूसरी प्लेट को तब तक आवेशित किया जाये जब तक कि प्लेटों पर +Q और −Q आवेश न हो जाए को आवश्यक कार्य W:


नैनोस्केल सिस्टम

नैनोस्केल डाइइलेक्ट्रिक संधारित्र जैसेक्वांटम डॉट्स बड़े संधारित्र की धारिता के पारंपरिक योगों से भिन्न हो सकती है। विशेष रूप से, पारंपरिक संधारित्र में इलेक्ट्रॉनों द्वारा अनुभव किए गए इलेक्ट्रोस्टैटिक संभावित अंतर को पारंपरिक संधारित्र में मौजूद इलेक्ट्रॉनों की सांख्यिकीय रूप से बड़ी संख्या के अलावा धातु इलेक्ट्रोड के आकार और आकृति द्वारा स्थायी रूप से अच्छी तरह से परिभाषित और तय किया जाता है। नैनोस्केल संधारित्र में, हालांकि, इलेक्ट्रॉनों द्वारा अनुभव की जाने वाली इलेक्ट्रोस्टैटिक क्षमता सभी इलेक्ट्रॉनों की संख्या और स्थानों द्वारा निर्धारित की जाती है जो डिवाइस के इलेक्ट्रॉनिक गुणों में योगदान करते हैं। ऐसे उपकरणों में, इलेक्ट्रॉनों की संख्या बहुत कम हो सकती है, इसलिए डिवाइस के भीतर समविभव सतहों का परिणामी स्थानिक वितरण अत्यधिक जटिल है।

सिंगल-इलेक्ट्रॉन डिवाइस (एकल इलेक्ट्रॉन उपकरण)

एक जुड़े, या बंद, एकल-इलेक्ट्रॉन उपकरण की धारिता एक असंबद्ध, या खुले, एकल-इलेक्ट्रॉन उपकरण की धारिता से दोगुनी है।[22] इस तथ्य को एकल-इलेक्ट्रॉन उपकरण में संग्रहीत ऊर्जा के लिए अधिक मौलिक रूप से पता लगाया जा सकता है, जिनके "प्रत्यक्ष ध्रुवीकरण" अंतःक्रियात्मक ऊर्जा को इलेक्ट्रॉन की उपस्थिति के कारण उपकरण पर ध्रुवीकृत आवेश बनाने के लिए आवश्यक संभावित ऊर्जा को (इलेक्ट्रॉन के कारण विभव के साथ उपकरण की डाईइलेक्ट्रिक, इन्सुलेट सामग्री में आवेशों की परस्पर क्रिया)।[23] उपकरण पर ध्रुवीकृत आवेश के साथ इलेक्ट्रॉन की पारस्परिक क्रिया में समान रूप से विभाजित किया जा सकता है।

कुछ-इलेक्ट्रॉन डिवाइस (कुछ-इलेक्ट्रॉन उपकरण)

कुछ-इलेक्ट्रॉन उपकरण के एक क्वांटम धारिता की व्युत्पत्ति में N कण प्रणाली की थर्मोडायनामिक रासायनिक क्षमता शामिल है

संभावित अंतर के साथ
अलग -अलग इलेक्ट्रॉनों को जोड़ने या हटाने के साथ डिवाइस पर लागू किया जा सकता है ,
तथा
फिर उपकरण की क्वांटम धारिता है।[24]
क्वांटम धारिता को प्रदर्शित किया जा सकता है
जो परिचय में वर्णित पारंपरिक अभिव्यक्ति (conventional expression) से भिन्न होता है , संग्रहीत इलेक्ट्रोस्टैटिक संभावित ऊर्जा,
1/2 के एक कारक द्वारा

हालांकि, विशुद्ध रूप से क्लासिकल इलेक्ट्रोस्टैटिक इंटरैक्शन के ढांचे के भीतर, 1/2 के कारक की उपस्थिति पारंपरिक सूत्रीकरण में एकीकरण का परिणाम है,

कई इलेक्ट्रॉनों या धातु इलेक्ट्रोड को शामिल करने वाली प्रणालियों के लिए, जो उचित है, लेकिन कुछ-इलेक्ट्रॉन सिस्टम में, । धारिता का व्यंजक कुछ ऐसे समयोजित किया जा सकता है,
तथा इलेक्ट्रोस्टैटिक इंटरैक्शन ऊर्जा,
क्रमशः, प्राप्त करने के लिए,
भौतिक शास्र में एक अधिक कठोर व्युत्पत्ति बताई गई है।[25] जो क्वांटम धारिता के समान है। विशेष रूप से, उपकरण के भीतर स्थानिक रूप से जटिल सुसंगत सतहों की गणितीय चुनौतियों से बचने के लिए, प्रत्येक इलेक्ट्रॉन द्वारा अनुभव की जाने वाली एक औसत इलेक्ट्रोस्टैटिक विभव का व्युत्पत्ति में उपयोग किया जाता है।

स्पष्ट गणितीय अंतर को संभावित ऊर्जा के रूप में अधिक मौलिक रूप से समझा जाता है, ,कम सीमा n = 1 में एक जुड़े उपकरण में संग्रहीत संभावित ऊर्जा, एक पृथक उपकरण (सेल्फ-कैपेसिटेंस/ आत्म धारिता) का दो गुना है। जैसे -जैसे n बढ़ता है, .[23] इस प्रकार, धारिता को सामान्य रूप से प्रदर्शित किया जाता है

नैनोस्केल उपकरणों में जैसे क्वांटम डॉट्स, संधारित्र अक्सर उपकरण के भीतर एक पृथक, या आंशिक रूप से पृथक, घटक होता है। नैनोस्केल संधारित्र और मैक्रोस्कोपिक (पारंपरिक) संधारित्र के बीच प्राथमिक अंतर अतिरिक्त इलेक्ट्रॉनों की संख्या ( जो डिवाइस के इलेक्ट्रॉनिक व्यवहार में योगदान करते हैं, चार्ज वाहक, या इलेक्ट्रॉन) और धातु इलेक्ट्रोड के आकार और आकृति हैं। नैनोस्केल उपकरणों में, धातु परमाणुओं से युक्त नैनोवायर आमतौर पर उनके मैक्रोस्कोपिक, या विस्तृत सामग्री में समान चालक गुणों का प्रदर्शन नहीं करते हैं।

इलेक्ट्रॉनिक और अर्धचालक उपकरणों में धारिता

इलेक्ट्रॉनिक और अर्धचालक उपकरणों में, टर्मिनलों के बीच क्षणिक या आवृत्ति-निर्भर धारा में चालन और विस्थापन दोनों घटक होते हैं। वाहक धारा आवेश वाहक आयन (इलेक्ट्रॉनों, होल या कोटर, आयनों, आदि) से संबंधित है, जबकि विस्थापन धारा, समय के साथ परिवर्तित हो रहे विद्युत क्षेत्र के कारण होता है। वाहक परिवहन विद्युत क्षेत्रों से और कई भौतिक घटनाओं से प्रभावित होता है-जैसे कि वाहक बहाव और प्रसार, ट्रैपिंग, इंजेक्शन, संपर्क-संबंधित प्रभाव, आयनीकरण आदि। परिणामस्वरूप,उपकरण प्रवेश आवृत्ति-निर्भर है,और धारिता के लिए एक साधारण इलेक्ट्रोस्टैटिक सूत्र लागू नहीं है। धारिता की एक अधिक सामान्य परिभाषा, इलेक्ट्रोस्टैटिक फॉर्मूला को शामिल करना, है:[26]

कहाँ पे उपकरण एडमिटेंस है, और कोणीय आवृत्ति है।

सामान्य तौर पर, धारिता आवृत्ति का एक फलन है। उच्च आवृत्तियों पर, धारिता, एक निरंतर मान ज्यामितीय धारिता के बराबर तक पहुंचता है, डिवाइस में धारिता, टर्मिनलों की ज्यामिति और परावैद्युत पदार्थ द्वारा निर्धारित किया जाता है। स्टीवन लक्स द्वारा प्रस्तुत एक पेपर[26] धारिता गणना के लिए संख्यात्मक तकनीकों की समीक्षा प्रस्तुत करता है। विशेष रूप से,धारिता की गणना एक चरण-जैसे वोल्टेज उत्तेजना के जवाब में एक क्षणिक धारा के फूरियर रूपांतरण द्वारा की जा सकती है:


अर्धचालक उपकरणों में ऋणात्मक धारिता

आमतौर पर, अर्धचालक उपकरणों में धारिता धनात्मक है। हालांकि, कुछ उपकरणों में और कुछ शर्तों (तापमान, लागू वोल्टेज,आवृत्ति,आदि) के तहत, धारिता ऋणात्मक हो सकती है। एक चरण-समान उत्तेजना के जवाब में क्षणिक धारा के गैर-मोनोटोनिक व्यवहार को ऋणात्मक धारिता के तंत्र के रूप में प्रस्तावित किया गया है।[27] कई अलग -अलग प्रकार के अर्धचालक उपकरणों में ऋणात्मक धारिता का प्रदर्शन और पता लगाया गया है।[28]

कैपेसिटेंस (धारिता) क मापन

एक धारिता मीटर इलेक्ट्रॉनिक परीक्षण उपकरणों का एक टुकड़ा है जिसका उपयोग धारिता को मापने के लिए किया जाता है, मुख्य रूप से असतत धारिता का। अधिकांश उद्देश्यों के लिए और ज्यादातर मामलों में संधारित्र को विद्युत सर्किट (परिपथ) से डिस्कनेक्ट (अलग करना) किया जाना चाहिए।

कई डीवीएम (डिजिटल वोल्टमीटर) में एक धारिता मापने वाला फ़ंक्शन होता है। ये आमतौर पर एक ज्ञात विद्युत प्रवाह के साथ परीक्षण के तहत उपकरण को आवेशित और निरावेशित करके और परिणामस्वरूप वोल्टेज की वृद्धि दर को मापते हैं; धारिता जितनी ज्यादा होगी वृद्धि की दर उतनी कम होगी। डीवीएम आमतौर पर फैराड से कुछ सौ माइक्रोफारड्स तक धारिता को माप सकते हैं, लेकिन व्यापक सीमाएं असामान्य नहीं हैं। परीक्षण के तहत उपकरण के माध्यम से एक ज्ञात उच्च-आवृत्ति प्रत्यावर्ती धारा को भेज करके और इसके पार परिणामी वोल्टेज को मापने के लिए धारिता को मापना भी संभव है (ध्रुवीकृत धारिता के लिए काम नहीं करता है)।

File:AH2700 cap br.jpg
एक andeen-hagerling 2700A कैपेसिटेंस ब्रिज

अधिक परिष्कृत उपकरण अन्य तकनीकों का उपयोग करते हैं जैसे कि धारिता-अंडर-टेस्ट को पुल परिपथ में सम्मिलित करना। पुल में अलग अलग मान लेकर (ताकि पुल को संतुलन में लाया जा सके), अज्ञात संधारित्र का मान निर्धारित किया जाता है। धारिता को मापने के अप्रत्यक्ष उपयोग की यह विधि अधिक सटीकता सुनिश्चित करती है। चार टर्मिनल सेंसिंग और अन्य सावधान डिजाइन तकनीकों के उपयोग के माध्यम से, आमतौर पर पिकोफारड्स से लेकर फैराड तक की सीमा से अधिक वाले संधारित्र को ये उपकरण माप सकते हैं।

यह भी देखें

संदर्भ

  1. Harrington, Roger F. (2003). Introduction to Electromagnetic Engineering (1st ed.). Dover Publications. p. 43. ISBN 0-486-43241-6.
  2. "Definition of 'farad'". Collins.
  3. William D. Greason (1992). Electrostatic discharge in electronics. Research Studies Press. p. 48. ISBN 978-0-86380-136-5.
  4. Lecture notes; University of New South Wales
  5. Tipler, Paul; Mosca, Gene (2004). Physics for Scientists and Engineers (5th ed.). Macmillan. p. 752. ISBN 978-0-7167-0810-0.
  6. Massarini, A.; Kazimierczuk, M.K. (1997). "Self capacitance of inductors". IEEE Transactions on Power Electronics. 12 (4): 671–676. Bibcode:1997ITPE...12..671M. CiteSeerX 10.1.1.205.7356. doi:10.1109/63.602562: example of the use of the term 'self capacitance'.{{cite journal}}: CS1 maint: postscript (link)
  7. Jackson, John David (1999). Classical Electrodynamic (3rd ed.). John Wiley & Sons. p. 43. ISBN 978-0-471-30932-1.
  8. Maxwell, James (1873). "3". A treatise on electricity and magnetism. Vol. 1. Clarendon Press. p. 88ff.
  9. "Capacitance : Charge as a Function of Voltage". Av8n.com. Retrieved 20 September 2010.
  10. Smolić, Ivica; Klajn, Bruno (2021). "Capacitance matrix revisited". Progress in Electromagnetics Research B. 92: 1–18. arXiv:2007.10251. doi:10.2528/PIERB21011501. Retrieved 4 May 2021.
  11. "Capacitor MF-MMFD Conversion Chart". Just Radios.
  12. Fundamentals of Electronics. Vol. 1b — Basic Electricity — Alternating Current. Bureau of Naval Personnel. 1965. p. 197.
  13. Dawes, Chester L. (1973). "Capacitance and Potential Gradients of Eccentric Cylindrical Condensers". Physics. 4 (2): 81–85. doi:10.1063/1.1745162.
  14. 14.0 14.1 Jackson, J. D. (1975). Classical Electrodynamics. Wiley. p. 80.
  15. Binns; Lawrenson (1973). Analysis and computation of electric and magnetic field problems. Pergamon Press. ISBN 978-0-08-016638-4.
  16. 16.0 16.1 Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism. Dover. p. 266ff. ISBN 978-0-486-60637-8.
  17. Rawlins, A. D. (1985). "Note on the Capacitance of Two Closely Separated Spheres". IMA Journal of Applied Mathematics. 34 (1): 119–120. doi:10.1093/imamat/34.1.119.
  18. Jackson, J. D. (1975). Classical Electrodynamics. Wiley. p. 128, problem 3.3.{{cite book}}: CS1 maint: postscript (link)
  19. Maxwell, J. C. (1878). "On the electrical capacity of a long narrow cylinder and of a disk of sensible thickness". Proc. London Math. Soc. IX: 94–101. doi:10.1112/plms/s1-9.1.94.
  20. Vainshtein, L. A. (1962). "Static boundary problems for a hollow cylinder of finite length. III Approximate formulas". Zh. Tekh. Fiz. 32: 1165–1173.
  21. Jackson, J. D. (2000). "Charge density on thin straight wire, revisited". Am. J. Phys. 68 (9): 789–799. Bibcode:2000AmJPh..68..789J. doi:10.1119/1.1302908.
  22. Raphael Tsu (2011). Superlattice to Nanoelectronics. Elsevier. pp. 312–315. ISBN 978-0-08-096813-1.
  23. 23.0 23.1 T. LaFave Jr. (2011). "Discrete charge dielectric model of electrostatic energy". J. Electrostatics. 69 (6): 414–418. arXiv:1203.3798. doi:10.1016/j.elstat.2011.06.006. S2CID 94822190.
  24. G. J. Iafrate; K. Hess; J. B. Krieger; M. Macucci (1995). "Capacitive nature of atomic-sized structures". Phys. Rev. B. 52 (15): 10737–10739. Bibcode:1995PhRvB..5210737I. doi:10.1103/physrevb.52.10737. PMID 9980157.
  25. T. LaFave Jr; R. Tsu (March–April 2008). "Capacitance: A property of nanoscale materials based on spatial symmetry of discrete electrons" (PDF). Microelectronics Journal. 39 (3–4): 617–623. doi:10.1016/j.mejo.2007.07.105. Archived from the original (PDF) on 22 February 2014. Retrieved 12 February 2014.
  26. 26.0 26.1 Laux, S.E. (October 1985). "Techniques for small-signal analysis of semiconductor devices". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 4 (4): 472–481. doi:10.1109/TCAD.1985.1270145. S2CID 13058472.
  27. Jonscher, A.K. (1986). "The physical origin of negative capacitance". J. Chem. Soc. Faraday Trans. II. 82: 75–81. doi:10.1039/F29868200075.
  28. Ershov, M.; Liu, H.C.; Li, L.; Buchanan, M.; Wasilewski, Z.R.; Jonscher, A.K. (October 1998). "Negative capacitance effect in semiconductor devices". IEEE Trans. Electron Devices. 45 (10): 2196–2206. arXiv:cond-mat/9806145. Bibcode:1998ITED...45.2196E. doi:10.1109/16.725254. S2CID 204925581.


इस पृष्ठ में गुम आंतरिक लिंक की सूची

  • विद्युतीय संभाव्यता
  • अंगुली की छाप
  • रैखिक परिपथ
  • तथा
  • अवरोध
  • परावैद्युतांक
  • धरती
  • विद्युत चुम्बकीय कॉइल
  • विद्युत प्रतिध्वनि
  • विद्युत प्रवाह
  • क्षमता के गुणांक
  • लाप्लास समीकरण
  • जौल
  • प्रत्यावर्ती धारा
  • इलेक्ट्रॉनिक परीक्षण उपस्कर
  • परीक्षण के अंतर्गत उपकरण
  • उच्च आवृत्ति
  • एलसीआर मीटर

अग्रिम पठन

  • Tipler, Paul (1998). Physics for Scientists and Engineers: Vol. 2: Electricity and Magnetism, Light (4th ed.). W. H. Freeman. ISBN 1-57259-492-6
  • Serway, Raymond; Jewett, John (2003). Physics for Scientists and Engineers (6th ed.). Brooks Cole. ISBN 0-534-40842-7
  • Saslow, Wayne M.(2002). Electricity, Magnetism, and Light. Thomson Learning. ISBN 0-12-619455-6. See Chapter 8, and especially pp. 255–259 for coefficients of potential.

]