मॉडल श्रेणी: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Short description|Mathematical category with weak equivalences, fibrations and cofibrations}}
{{Short description|Mathematical category with weak equivalences, fibrations and cofibrations}}
गणित में, विशेष रूप से समस्थेयता (होमोटॉपी) सिद्धांत में, '''मॉडल श्रेणी''' एक ऐसी श्रेणी है जिसमें आकारिकी ('तीर') के विशिष्ट वर्ग होते हैं जिन्हें 'दुर्बल समतुल्यता', 'फाइब्रेशन' और 'सह-संयोजन' कहा जाता है जो उनसे संबंधित कुछ सिद्धांतों को पूरा करते हैं। ये सांस्थितिक समष्टि या श्रृंखला सम्मिश्र (व्युत्पन्न श्रेणी सिद्धांत) की श्रेणी से अमूर्त हैं। यह अवधारणा डेनियल जी. क्विलेन (1967) द्वारा प्रस्तुत की गई थी।
गणित में, विशेष रूप से समस्थेयता (होमोटॉपी) सिद्धांत में, '''मॉडल श्रेणी''' एक ऐसी श्रेणी है जिसमें आकारिकी ('तीर') के विशिष्ट वर्ग होते हैं जिन्हें 'दुर्बल समतुल्यता', 'फाइब्रेशन' और 'सह-संयोजन' कहा जाता है जो उनसे संबंधित कुछ सिद्धांतों को पूरा करते हैं। ये सांस्थितिक समष्टि या श्रृंखला सम्मिश्र (व्युत्पन्न श्रेणी सिद्धांत) की श्रेणी से अमूर्त हैं। यह अवधारणा डेनियल जी. क्विलेन (1967) द्वारा प्रस्तुत की गई थी।


हाल के दशकों में, मॉडल श्रेणियों की भाषा का उपयोग बीजगणितीय K-सिद्धांत और बीजगणितीय ज्यामिति के कुछ भागों में किया गया है, जहां समस्थेयता-सैद्धांतिक दृष्टिकोण ने स्थायी परिणाम दिए हैं।
हाल के दशकों में, मॉडल श्रेणियों की भाषा का उपयोग बीजगणितीय K-सिद्धांत और बीजगणितीय ज्यामिति के कुछ भागों में किया गया है, जहां समस्थेयता-सैद्धांतिक दृष्टिकोण ने स्थायी परिणाम दिए हैं।
Line 8: Line 8:
मॉडल श्रेणियां समस्थेयता सिद्धांत के लिए एक प्राकृतिक समायोजन प्रदान कर सकती हैं: सांस्थितिक समष्टि की श्रेणी एक मॉडल श्रेणी है जिसमें समस्थेयता सामान्य सिद्धांत के अनुरूप है। इसी तरह, जिन वस्तुओं को समष्टि के रूप में माना जाता है, वे प्रायः एक मॉडल श्रेणी संरचना को स्वीकार करते हैं, जैसे कि साधारण समुच्चय की श्रेणी है।
मॉडल श्रेणियां समस्थेयता सिद्धांत के लिए एक प्राकृतिक समायोजन प्रदान कर सकती हैं: सांस्थितिक समष्टि की श्रेणी एक मॉडल श्रेणी है जिसमें समस्थेयता सामान्य सिद्धांत के अनुरूप है। इसी तरह, जिन वस्तुओं को समष्टि के रूप में माना जाता है, वे प्रायः एक मॉडल श्रेणी संरचना को स्वीकार करते हैं, जैसे कि साधारण समुच्चय की श्रेणी है।


अन्य मॉडल श्रेणी क्रमविनिमेय वलय R के लिए R-मापांक की श्रृंखला सम्मिश्र की श्रेणी है। इस संदर्भ में समस्थेयता सिद्धांत समजातीय बीजगणित है। समरूपता को तब एक प्रकार के समस्थेयता के रूप में देखा जा सकता है, जो अन्य वस्तुओं, जैसे कि [[समूह (गणित)]] और R-बीजगणित, सिद्धांत के पहले प्रमुख अनुप्रयोगों में से एक के लिए समरूपता के सामान्यीकरण की स्वीकृति देता है। समरूपता के संबंध में उपरोक्त उदाहरण के कारण, संवृत मॉडल श्रेणियों के अध्ययन को कभी-कभी समप्ररूपी बीजगणित के रूप में माना जाता है।
अन्य मॉडल श्रेणी क्रमविनिमेय वलय R के लिए R-मापांक की श्रृंखला सम्मिश्र की श्रेणी है। इस संदर्भ में समस्थेयता सिद्धांत समजातीय बीजगणित है। समरूपता को तब एक प्रकार के समस्थेयता के रूप में देखा जा सकता है, जो अन्य वस्तुओं, जैसे कि [[समूह (गणित)]] और R-बीजगणित, सिद्धांत के पहले प्रमुख अनुप्रयोगों में से एक के लिए समरूपता के सामान्यीकरण की स्वीकृति देता है। समरूपता के संबंध में उपरोक्त उदाहरण के कारण, संवृत मॉडल श्रेणियों के अध्ययन को कभी-कभी समप्ररूपी बीजगणित के रूप में माना जाता है।


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==
Line 21: Line 21:
''विखंडन'' :
''विखंडन'' :


# यदि ''g'' विशिष्ट वर्गों में से एक से संबंधित आकारिकी है, और ''f,g'' का एक खंडन (श्रेणी सिद्धांत) है (तीर श्रेणी <math>C^2</math> में वस्तुओं के रूप में जहां 2 2-अवयव क्रमित समुच्चय है), तो f उसी विशिष्ट वर्ग से संबंधित है। स्पष्ट रूप से, आवश्यकता है कि f, g का एक व्युत्क्रम है इसका तात्पर्य है कि वहां i, j, r, और s सम्मिलित है जैसे कि निम्न आरेख रूपांतरण करता है:
# यदि ''g'' विशिष्ट वर्गों में से एक से संबंधित आकारिकी है, और ''f,g'' का एक खंडन (श्रेणी सिद्धांत) है (तीर श्रेणी <math>C^2</math> में वस्तुओं के रूप में जहां 2 2-अवयव क्रमित समुच्चय है), तो f उसी विशिष्ट वर्ग से संबंधित है। स्पष्ट रूप से, आवश्यकता है कि f, g का एक व्युत्क्रम है इसका तात्पर्य है कि वहां i, j, r, और s सम्मिलित है जैसे कि निम्न आरेख रूपांतरण करता है:
# 2 का 3: यदि f और g C में मानचित्र हैं जैसे कि fg परिभाषित है और इनमें से कोई भी दो दुर्बल समकक्ष हैं तो तीसरा भी समतुल्य है।[[Image:Model category retract.png|155x155px]]
# 2 का 3: यदि f और g C में मानचित्र हैं जैसे कि fg परिभाषित है और इनमें से कोई भी दो दुर्बल समकक्ष हैं तो तीसरा भी समतुल्य है।[[Image:Model category retract.png|155x155px]]
# उत्थापन: अनावर्ती सह-संयोजन में फाइब्रेशन के संबंध में वाम उत्थापन गुण होती है, और सह-संयोजन में अनावर्ती फाइब्रेशन के संबंध में वाम उत्थापन गुण होती है। स्पष्ट रूप से, यदि निम्नलिखित आरेख का बाहरी वर्ग विनिमय करता है, जहां i एक सहसंरचना है और p एक फ़िब्रेशन है, और i या p अनावर्ती है, तो आरेख को पूरा करने वाला h सम्मिलित है।
# उत्थापन: अनावर्ती सह-संयोजन में फाइब्रेशन के संबंध में वाम उत्थापन गुण होती है, और सह-संयोजन में अनावर्ती फाइब्रेशन के संबंध में वाम उत्थापन गुण होती है। स्पष्ट रूप से, यदि निम्नलिखित आरेख का बाहरी वर्ग विनिमय करता है, जहां i एक सहसंरचना है और p एक फ़िब्रेशन है, और i या p अनावर्ती है, तो आरेख को पूरा करने वाला h सम्मिलित है।
# गुणनखंडन:[[Image:Model category lifting.png|110x110px]]
# गुणनखंडन:[[Image:Model category lifting.png|110x110px]]
#* C में प्रत्येक आकारिकी f को फ़िब्रेशन p और चक्रीय सहसंरचना i के लिए <math>p\circ i</math>   के रूप मे लिखा जा सकता है;
#* C में प्रत्येक आकारिकी f को फ़िब्रेशन p और चक्रीय सहसंरचना i के लिए <math>p\circ i</math> के रूप मे लिखा जा सकता है;
#* C में प्रत्येक आकारिकी f अनावर्ती फाइब्रेशन p और सह-संयोजन i के लिए <math>p\circ i</math> के रूप में लिखा जा सकता है।
#* C में प्रत्येक आकारिकी f अनावर्ती फाइब्रेशन p और सह-संयोजन i के लिए <math>p\circ i</math> के रूप में लिखा जा सकता है।


'मॉडल श्रेणी' एक ऐसी श्रेणी है जिसमें एक मॉडल संरचना होती है और सभी (छोटी) [[सीमा (श्रेणी सिद्धांत)|सीमाएँ (श्रेणी सिद्धांत)]] और सह-सीमाएँ होती हैं अर्थात एक मॉडल संरचना के साथ एक पूर्ण और सह-पूर्ण श्रेणी होती है।
'मॉडल श्रेणी' एक ऐसी श्रेणी है जिसमें एक मॉडल संरचना होती है और सभी (छोटी) [[सीमा (श्रेणी सिद्धांत)|सीमाएँ (श्रेणी सिद्धांत)]] और सह-सीमाएँ होती हैं अर्थात एक मॉडल संरचना के साथ एक पूर्ण और सह-पूर्ण श्रेणी होती है।
Line 32: Line 32:
=== दुर्बल गुणनखंड प्रणाली के माध्यम से परिभाषा ===
=== दुर्बल गुणनखंड प्रणाली के माध्यम से परिभाषा ===


उपरोक्त परिभाषा को संक्षेप में निम्नलिखित समतुल्य परिभाषा द्वारा व्यक्त किया जा सकता है: मॉडल श्रेणी एक श्रेणी C है और तीन वर्ग (तथाकथित) दुर्बल समतुल्यता ''W'', फाइब्रेशन ''F'' और सह-संयोजन ''C'' हैं। ताकि
उपरोक्त परिभाषा को संक्षेप में निम्नलिखित समतुल्य परिभाषा द्वारा व्यक्त किया जा सकता है: मॉडल श्रेणी एक श्रेणी C है और तीन वर्ग (तथाकथित) दुर्बल समतुल्यता ''W'', फाइब्रेशन ''F'' और सह-संयोजन ''C'' हैं। ताकि


* C की सभी सीमाएँ और सह-सीमाएँ हैं,
* C की सभी सीमाएँ और सह-सीमाएँ हैं,


* <math>(C \cap W, F)</math> दुर्बल गुणनखंड प्रणाली है,
* <math>(C \cap W, F)</math> दुर्बल गुणनखंड प्रणाली है,


* <math>(C, F \cap W)</math> दुर्बल गुणनखंड प्रणाली है
* <math>(C, F \cap W)</math> दुर्बल गुणनखंड प्रणाली है
* <math>W</math> 3 में से 2 गुण को संतुष्ट करता है।<ref>{{harvtxt|Riehl|2014|loc=§11.3}}</ref>
* <math>W</math> 3 में से 2 गुण को संतुष्ट करता है।<ref>{{harvtxt|Riehl|2014|loc=§11.3}}</ref>


Line 56: Line 56:
R-मापांक की (गैर-ऋणात्मक रूप से वर्गीकृत) श्रृंखला सम्मिश्र की श्रेणी में कम से कम दो मॉडल संरचनाएं होती हैं, जो दोनों समान बीजगणित में प्रमुख रूप से प्रदर्शित होती हैं:
R-मापांक की (गैर-ऋणात्मक रूप से वर्गीकृत) श्रृंखला सम्मिश्र की श्रेणी में कम से कम दो मॉडल संरचनाएं होती हैं, जो दोनों समान बीजगणित में प्रमुख रूप से प्रदर्शित होती हैं:
*दुर्बल समतुल्यता ऐसे मानचित्र हैं जो समाकारिकता में समरूपता को प्रेरित करते हैं;
*दुर्बल समतुल्यता ऐसे मानचित्र हैं जो समाकारिकता में समरूपता को प्रेरित करते हैं;
*सह-संयोजन वे मानचित्र होते हैं जो प्रक्षेपीय [[cokernel|कोकर्नेल]] के साथ प्रत्येक स्थिति में [[समाकृतिकता|एकैक समाकारिता]] होते हैं; और
*सह-संयोजन वे मानचित्र होते हैं जो प्रक्षेपीय [[cokernel|कोकर्नेल]] के साथ प्रत्येक स्थिति में [[समाकृतिकता|एकैक समाकारिता]] होते हैं; और
*फाइब्रेशन ऐसे मानचित्र हैं जो प्रत्येक गैर-शून्य वर्ग में आच्छादक समाकारिता हैं
*फाइब्रेशन ऐसे मानचित्र हैं जो प्रत्येक गैर-शून्य वर्ग में आच्छादक समाकारिता हैं


या
या
*दुर्बल समतुल्यता ऐसे मानचित्र हैं जो समाकारिकता में समरूपता को प्रेरित करते हैं;
*दुर्बल समतुल्यता ऐसे मानचित्र हैं जो समाकारिकता में समरूपता को प्रेरित करते हैं;
*फाइब्रेशन वे मानचित्र हैं जो अन्तः क्षेप [[कर्नेल (श्रेणी सिद्धांत)]] के साथ प्रत्येक वर्ग में [[अधिरूपता|आच्छादक समाकारिता]] हैं; और
*फाइब्रेशन वे मानचित्र हैं जो अन्तः क्षेप [[कर्नेल (श्रेणी सिद्धांत)]] के साथ प्रत्येक वर्ग में [[अधिरूपता|आच्छादक समाकारिता]] हैं; और
*सह-संयोजन वे मानचित्र होते हैं जो प्रत्येक अशून्य वर्ग में [[एकरूपता|एकैक समाकारिता]] होते हैं।
*सह-संयोजन वे मानचित्र होते हैं जो प्रत्येक अशून्य वर्ग में [[एकरूपता|एकैक समाकारिता]] होते हैं।


यह बताता है कि क्यों R-मापांक के बाहरी समूह की गणना या तो स्रोत को अनुमानित रूप से हल करके या नियत अन्तः क्षेप करके की जा सकती है। ये संबंधित मॉडल संरचनाओं में सह-तंतुमय या तंतुमय प्रतिस्थापन हैं।
यह बताता है कि क्यों R-मापांक के बाहरी समूह की गणना या तो स्रोत को अनुमानित रूप से हल करके या नियत अन्तः क्षेप करके की जा सकती है। ये संबंधित मॉडल संरचनाओं में कोफ़िब्रेंट या फ़ाइब्रेंट प्रतिस्थापन हैं।


R-मापांक की मनमानी श्रृंखला-सम्मिश्र की श्रेणी में एक मॉडल संरचना होती है जिसे परिभाषित किया जाता है
R-मापांक की मनमानी श्रृंखला-सम्मिश्र की श्रेणी में एक मॉडल संरचना होती है जिसे परिभाषित किया जाता है
Line 79: Line 79:
एक साधारण मॉडल श्रेणी एक सरलीकृत श्रेणी है जिसमें एक मॉडल संरचना होती है जो सरलीकृत संरचना के अनुकूल होती है।<ref>Definition 2.1. of [https://arxiv.org/abs/math/0101162].</ref>
एक साधारण मॉडल श्रेणी एक सरलीकृत श्रेणी है जिसमें एक मॉडल संरचना होती है जो सरलीकृत संरचना के अनुकूल होती है।<ref>Definition 2.1. of [https://arxiv.org/abs/math/0101162].</ref>


किसी भी श्रेणी सी और एक मॉडल श्रेणी एम को देखते हुए, कुछ अतिरिक्त परिकल्पनाओं के अंतर्गत फलननिर्धारक फन (C, ) (M में C-आरेख भी कहा जाता है) की श्रेणी भी एक मॉडल श्रेणी है। वास्तव में, अलग-अलग मॉडल संरचनाओं के लिए सदैव दो पदान्वेषी होते हैं: एक में, तथाकथित प्रक्षेपी मॉडल संरचना, फ़िब्रेशन और दुर्बल समतुल्यताएं [[ऑपरेटर|संक्रिया]] के वे मानचित्र हैं जो C के प्रत्येक वस्तु पर मूल्यांकन किए जाने पर फ़िब्रेशन और दुर्बल समकक्ष हैं। अंतःक्षेपक मॉडल संरचना इसके अतिरिक्त सह-संयोजन और दुर्बल समकक्षों के समान है। दोनों ही स्थितियों में आकारिकी का तीसरा वर्ग उत्थापन की स्थिति (नीचे देखें) द्वारा दिया जाता है। कुछ स्थितियों में, जब श्रेणी एक रीडी [[रेडी श्रेणी|श्रेणी]] है, तो प्रक्षेपीय और अन्तः क्षेप के बीच एक तीसरी मॉडल संरचना होती है।
किसी भी श्रेणी सी और एक मॉडल श्रेणी एम को देखते हुए, कुछ अतिरिक्त परिकल्पनाओं के अंतर्गत फलननिर्धारक फन (C, ) (M में C-आरेख भी कहा जाता है) की श्रेणी भी एक मॉडल श्रेणी है। वास्तव में, अलग-अलग मॉडल संरचनाओं के लिए सदैव दो पदान्वेषी होते हैं: एक में, तथाकथित प्रक्षेपी मॉडल संरचना, फ़िब्रेशन और दुर्बल समतुल्यताएं [[ऑपरेटर|संक्रिया]] के वे मानचित्र हैं जो C के प्रत्येक वस्तु पर मूल्यांकन किए जाने पर फ़िब्रेशन और दुर्बल समकक्ष हैं। अंतःक्षेपक मॉडल संरचना इसके अतिरिक्त सह-संयोजन और दुर्बल समकक्षों के समान है। दोनों ही स्थितियों में आकारिकी का तीसरा वर्ग उत्थापन की स्थिति (नीचे देखें) द्वारा दिया जाता है। कुछ स्थितियों में, जब श्रेणी एक रीडी [[रेडी श्रेणी|श्रेणी]] है, तो प्रक्षेपीय और अन्तः क्षेप के बीच एक तीसरी मॉडल संरचना होती है।


समान अंतर्निहित श्रेणी पर एक नई मॉडल श्रेणी संरचना में कुछ मानचित्रों को दुर्बल समतुल्यता बनने के लिए प्रणोदन करने की प्रक्रिया को बोसफील्ड स्थानीयकरण के रूप में जाना जाता है। उदाहरण के लिए, साधारण [[शीफ (गणित)]] की श्रेणी को साधारण [[presheaf|प्रेक्षण]] के मॉडल श्रेणी के बोसफील्ड स्थानीयकरण के रूप में प्राप्त किया जा सकता है।
समान अंतर्निहित श्रेणी पर एक नई मॉडल श्रेणी संरचना में कुछ मानचित्रों को दुर्बल समतुल्यता बनने के लिए प्रणोदन करने की प्रक्रिया को बोसफील्ड स्थानीयकरण के रूप में जाना जाता है। उदाहरण के लिए, साधारण [[शीफ (गणित)]] की श्रेणी को साधारण [[presheaf|प्रेक्षण]] के मॉडल श्रेणी के बोसफील्ड स्थानीयकरण के रूप में प्राप्त किया जा सकता है।
Line 85: Line 85:
डेनिस-चार्ल्स सिसिंस्की ने<ref>Cisinski, Denis-Charles. Les préfaisceaux comme modèles des types d'homotopie. (French) [Presheaves as models for homotopy types] Astérisque No. 308 (2006), xxiv+390 pp. {{isbn|978-2-85629-225-9}} {{MR|2294028}}</ref> प्रीशेफ श्रेणियों पर मॉडल संरचनाओं का एक सामान्य सिद्धांत विकसित किया है सरलीकृत समुच्चय का सामान्यीकरण, जो सरलीकृत श्रेणी पर प्रेक्षण हैं।
डेनिस-चार्ल्स सिसिंस्की ने<ref>Cisinski, Denis-Charles. Les préfaisceaux comme modèles des types d'homotopie. (French) [Presheaves as models for homotopy types] Astérisque No. 308 (2006), xxiv+390 pp. {{isbn|978-2-85629-225-9}} {{MR|2294028}}</ref> प्रीशेफ श्रेणियों पर मॉडल संरचनाओं का एक सामान्य सिद्धांत विकसित किया है सरलीकृत समुच्चय का सामान्यीकरण, जो सरलीकृत श्रेणी पर प्रेक्षण हैं।


यदि C एक मॉडल श्रेणी है, तो C में [[ समर्थक वस्तु | प्रथम आक्षेप]] की श्रेणी Pro(''C'') भी है। हालांकि, Pro(''C'') पर एक मॉडल संरचना भी C के अभिगृहीत के एक दुर्बल समुच्चय को प्रयुक्त करके बनाई जा सकती है।<ref>{{citation|
यदि C एक मॉडल श्रेणी है, तो C में [[ समर्थक वस्तु |प्रथम आक्षेप]] की श्रेणी Pro(''C'') भी है। हालांकि, Pro(''C'') पर एक मॉडल संरचना भी C के अभिगृहीत के एक दुर्बल समुच्चय को प्रयुक्त करके बनाई जा सकती है।<ref>{{citation|
mr=3459031|author1=Barnea, Ilan|author2=Schlank, Tomer M.|title=A projective model structure on pro-simplicial sheaves, and the relative étale homotopy type |journal= [[Advances in Mathematics]]|volume=291|year=2016|pages=784–858|arxiv=1109.5477|bibcode=2011arXiv1109.5477B|doi=10.1016/j.aim.2015.11.014|doi-access=free}}</ref>
mr=3459031|author1=Barnea, Ilan|author2=Schlank, Tomer M.|title=A projective model structure on pro-simplicial sheaves, and the relative étale homotopy type |journal= [[Advances in Mathematics]]|volume=291|year=2016|pages=784–858|arxiv=1109.5477|bibcode=2011arXiv1109.5477B|doi=10.1016/j.aim.2015.11.014|doi-access=free}}</ref>


Line 92: Line 92:
== कुछ निर्माण ==
== कुछ निर्माण ==


प्रत्येक संवृत मॉडल श्रेणी में पूर्णता से एक [[टर्मिनल वस्तु]] और सह-पूर्णता द्वारा एक [[प्रारंभिक वस्तु]] होती है, क्योंकि ये वस्तुएं खाली आरेख की क्रमशः सीमा और कोलिमिट हैं। मॉडल श्रेणी में किसी वस्तु X को देखते हुए, यदि प्रारंभिक वस्तु से X तक का अद्वितीय मानचित्र एक सह-संयोजन है, तो X को 'कोफ़िब्रेंट' कहा जाता है। अनुरूप रूप से, यदि एक्स से टर्मिनल ऑब्जेक्ट का अद्वितीय नक्शा एक फ़िब्रेशन है तो एक्स को 'फ़ाइब्रेंट' कहा जाता है।
प्रत्येक संवृत मॉडल श्रेणी में पूर्णता से एक [[टर्मिनल वस्तु|अंतिम वस्तु]] और सह-पूर्णता द्वारा एक [[प्रारंभिक वस्तु]] होती है, क्योंकि ये वस्तुएं रिक्त आरेख की क्रमशः सीमा और सह-सीमाएं हैं। मॉडल श्रेणी में किसी वस्तु X को देखते हुए, यदि प्रारंभिक वस्तु से X तक का अद्वितीय मानचित्र एक सह-संयोजन है, तो X को 'कोफ़िब्रेंट' कहा जाता है। अनुरूप रूप से, यदि X से अंतिम वस्तु का अद्वितीय मानचित्र एक फ़िब्रेशन है तो X को 'फ़ाइब्रेंट' कहा जाता है।


यदि Z और X एक मॉडल श्रेणी की वस्तुएँ हैं जैसे कि Z कोफ़िब्रेंट है और Z से X तक एक दुर्बल समतुल्यता है तो Z को X के लिए एक 'कॉफ़िब्रेंट प्रतिस्थापन' कहा जाता है। इसी तरह, यदि Z फ़िब्रेंट है और एक दुर्बल है X से Z तक समतुल्यता तब Z को X के लिए एक 'तंतुमय रिप्लेसमेंट' कहा जाता है। सामान्य तौर पर, सभी वस्तुएं रेशेदार या सह-तंतुमय नहीं होती हैं, हालांकि यह कभी-कभी मामला होता है। उदाहरण के लिए, सभी ऑब्जेक्ट सरलीकृत सेट के मानक मॉडल श्रेणी में कोफ़ाइब्रेंट हैं और सभी ऑब्जेक्ट सांस्थितिक समष्टि के लिए ऊपर दी गई मानक मॉडल श्रेणी संरचना के लिए फ़िब्रेंट हैं।
यदि Z और X एक मॉडल श्रेणी की वस्तुएँ हैं जैसे कि Z कोफ़िब्रेंट है और Z से X तक एक दुर्बल समतुल्यता है तो Z को X के लिए एक 'कॉफ़िब्रेंट प्रतिस्थापन' कहा जाता है। इसी तरह, यदि Z फ़िब्रेंट है और एक दुर्बल है X से Z तक समतुल्यता तब Z को X के लिए एक 'फ़ाइब्रेंट प्रतिस्थापन' कहा जाता है। सामान्य रूप से, सभी वस्तुएं फ़ाइब्रेंट या कोफ़िब्रेंट नहीं होती हैं, हालांकि यह कभी-कभी स्थिति होती है। उदाहरण के लिए, सभी वस्तु सरलीकृत समुच्चय के मानक मॉडल श्रेणी में कोफ़ाइब्रेंट हैं और सभी वस्तु सांस्थितिक समष्टि के लिए ऊपर दी गई मानक मॉडल श्रेणी संरचना के लिए फ़िब्रेंट हैं।


लेफ्ट होमोटोपी को [http://ncatlab.org/nlab/show/Cylinder+object सिलिंडर ऑब्जेक्ट्स] के संबंध में परिभाषित किया गया है और राइट समस्थेयता को [http://ncatlab.org/nlab/show/path+space] के संबंध में परिभाषित किया गया है + वस्तु पथ अंतरिक्ष वस्तुओं]। ये धारणाएं मेल खाती हैं जब डोमेन कॉफिब्रेंट होता है और कोडोमेन तंतुमय होता है। उस स्थिति में, समस्थेयता मॉडल श्रेणी में होम सेट पर समतुल्य संबंध को परिभाषित करता है जिससे समस्थेयता क्लासेस को जन्म मिलता है।
वाम समस्थेयता को [http://ncatlab.org/nlab/show/Cylinder+object वेलनीय वस्तु] के संबंध में परिभाषित किया गया है और दायें समस्थेयता को [http://ncatlab.org/nlab/show/path+space] पाथ समष्टि ऑब्जेक्ट्स के संबंध में परिभाषित किया गया है। ये धारणाएं समान हैं जब प्रक्षेत्र कॉफिब्रेंट होता है और सह-प्रक्षेत्र फ़ाइब्रेंट होता है। उस स्थिति में, समस्थेयता मॉडल श्रेणी में समाकारिता समुच्चय पर समतुल्य संबंध को परिभाषित करता है जिससे समस्थेयता वर्ग को उत्पन्न करता है।


== गुणों को उत्थापन से फाइब्रेशन और सह-संयोजन के लक्षण ==
== गुणों को उत्थापन से फाइब्रेशन और सह-संयोजन के लक्षण ==


सहसंरचना को उन मानचित्रों के रूप में चित्रित किया जा सकता है, जिनमें अनावर्ती फ़ाइब्रेशन के संबंध में बाईं ओर उत्थापन वाली गुण होती है, और अनावर्ती सहसंरचना को उन मानचित्रों के रूप में चित्रित किया जाता है, जिनमें फ़िब्रेशन के संबंध में लेफ्ट उत्थापन गुण होती है। इसी तरह, फ़िब्रेशन को उन मानचित्रों के रूप में चित्रित किया जा सकता है जिनके पास अनावर्ती सहसंरचना के संबंध में सही उत्थापन वाली गुण है, और अनावर्ती फ़िब्रेशन को उन मानचित्रों के रूप में चित्रित किया जाता है जिनके पास सहसंरचना के संबंध में [[सही उठाने की संपत्ति|सही उत्थापन की गुण]] है।
सहसंरचना को उन मानचित्रों के रूप में चित्रित किया जा सकता है, जिनमें अनावर्ती फ़ाइब्रेशन के संबंध में बाईं ओर उत्थापन गुण होते है, और अनावर्ती सहसंरचना को उन मानचित्रों के रूप में चित्रित किया जाता है, जिनमें फ़िब्रेशन के संबंध में वाम उत्थापन गुण होती है। इसी तरह, फ़िब्रेशन को उन मानचित्रों के रूप में चित्रित किया जा सकता है जिनके पास अनावर्ती सहसंरचना के संबंध में सही उत्थापन गुण है, और अनावर्ती फ़िब्रेशन को उन मानचित्रों के रूप में चित्रित किया जाता है जिनके पास सहसंरचना के संबंध में [[सही उठाने की संपत्ति|दायें उत्थापन के गुण]] है।


== समरूपता और समरूपता श्रेणी ==
== समस्थेयता और समस्थेयता श्रेणी ==


एक मॉडल श्रेणी C की होमोटोपी श्रेणी दुर्बल समतुल्यता के वर्ग के संबंध में C की श्रेणी का स्थानीयकरण है। समस्थेयता श्रेणी की यह परिभाषा फ़िब्रेशन और सह-संयोजन की पसंद पर निर्भर नहीं करती है। हालांकि, फ़िब्रेशन और सह-संयोजन की कक्षाएं एक अलग तरीके से होमोटोपी श्रेणी का वर्णन करने और विशेष रूप से श्रेणियों के सामान्य स्थानीयकरणों में उत्पन्न होने वाले सेट-सैद्धांतिक मुद्दों से बचने में उपयोगी होती हैं। अधिक सटीक रूप से, मॉडल श्रेणियों के मौलिक प्रमेय में कहा गया है कि C की होमोटोपी श्रेणी उस श्रेणी के समतुल्य है, जिसकी वस्तुएं C की वस्तुएं हैं, जो कि रेशेदार और कोफिब्रेंट दोनों हैं, और जिनके आकारिकी मानचित्रों के समस्थेयता वर्ग हैं (समकक्ष रूप से, सही समस्थेयता वर्ग) मानचित्रों का) जैसा कि ऊपर परिभाषित किया गया है। (उदाहरण के लिए होवी द्वारा मॉडल श्रेणियाँ देखें, Thm 1.2.10)
मॉडल श्रेणी C की समस्थेयता श्रेणी दुर्बल समतुल्यता के वर्ग के संबंध में C की श्रेणी का स्थानीयकरण है। समस्थेयता श्रेणी की यह परिभाषा फ़िब्रेशन और सह-संयोजन के चयन पर निर्भर नहीं करती है। हालांकि, फ़िब्रेशन और सह-संयोजन की कक्षाएं एक अलग तरीके से समस्थेयता श्रेणी का वर्णन करने और विशेष रूप से श्रेणियों के सामान्य स्थानीयकरणों में उत्पन्न होने वाले समुच्चय-सैद्धांतिक समस्याओ से संरक्षित करने में उपयोगी होती हैं। अधिक परिशुद्ध रूप से, मॉडल श्रेणियों के मौलिक प्रमेय में कहा गया है कि C की समस्थेयता श्रेणी उस श्रेणी के समतुल्य है, जिसकी वस्तुएं C की वस्तुएं हैं, जो कि और कोफिब्रेंट दोनों हैं, और जिनकी आकृतियाँ मानचित्रों के समरूप वर्गों को छोड़ देती हैं (समतुल्य, मानचित्रों के सही समस्थेयता वर्ग) जैसा कि ऊपर परिभाषित किया गया है। उदाहरण के लिए होवी द्वारा, टीएचएम 1.2.10 मॉडल श्रेणियाँ देखें।


इसे ऊपर दिए गए मॉडल संरचना के साथ सांस्थितिक समष्टि की श्रेणी में प्रयुक्त करना, परिणामी समस्थेयता श्रेणी सीडब्ल्यू सम्मिश्र की श्रेणी और निरंतर मानचित्रों के होमोटोपी वर्गों के बराबर है, जहां से नाम है।
इसे ऊपर दिए गए मॉडल संरचना के साथ सांस्थितिक समष्टि की श्रेणी में प्रयुक्त करना, परिणामी समस्थेयता श्रेणी CW सम्मिश्र की श्रेणी और सतत मानचित्रों के समस्थेयता वर्गों के बराबर है, जहां से नाम है।


=== क्विलन एडजंक्शन ===
=== क्विलन संयोजन ===
आसन्न फलननिर्धारक की एक जोड़ी
सहसम्युक्त फलननिर्धारक की एक युग्म
:<math>F: C \leftrightarrows D : G</math>
:<math>F: C \leftrightarrows D : G</math>
दो मॉडल श्रेणियों सी और डी के बीच एक [[ क्विलन संयोजन ]] कहा जाता है यदि एफ सह-संयोजन और अनावर्ती सह-संयोजन को संरक्षित करता है या, समकक्ष रूप से संवृत मॉडल स्वयंसिद्धों द्वारा, जैसे कि जी फाइब्रेशन और अनावर्ती फाइब्रेशन को संरक्षित करता है। इस मामले में एफ और जी एक संयोजन को प्रेरित करते हैं
दो मॉडल श्रेणियों C और D के बीच एक [[ क्विलन संयोजन |क्विलन संयोजन]] कहा जाता है यदि F सह-संयोजन और अनावर्ती सह-संयोजन को संरक्षित करता है या, समकक्ष रूप से संवृत मॉडल अभिगृहीत द्वारा, जैसे कि G फाइब्रेशन और अनावर्ती फाइब्रेशन को संरक्षित करता है। इस मामले में F और G एक संयोजन को प्रेरित करते हैं
:<math>LF: Ho(C) \leftrightarrows Ho(D) : RG</math>
:<math>LF: Ho(C) \leftrightarrows Ho(D) : RG</math>
समस्थेयता श्रेणियों के बीच। उत्तरार्द्ध के लिए एक समानता होने के लिए एक स्पष्ट मानदंड भी है (फिर एफ और जी को क्विलन समकक्ष कहा जाता है)।
समस्थेयता श्रेणियों के बीच उत्तरार्द्ध के लिए एक समानता होने के लिए (फिर F और G को क्विलन समकक्ष कहा जाता है) एक स्पष्ट मानदंड भी है


एक विशिष्ट उदाहरण साधारण सेट और सांस्थितिक समष्टि के बीच मानक संयोजन है:
विशिष्ट उदाहरण साधारण समुच्चय और सांस्थितिक समष्टि के बीच मानक संयोजन है:
:<math>|-|: \mathbf{sSet} \leftrightarrows \mathbf{Top} : Sing</math>
:<math>|-|: \mathbf{sSet} \leftrightarrows \mathbf{Top} : Sing</math>
कुछ सामयिक स्थान में एक साधारण सेट और एकवचन श्रृंखला के ज्यामितीय अहसास को सम्मिलित करना। श्रेणियाँ sSet और Top समतुल्य नहीं हैं, लेकिन उनकी समस्थेयता श्रेणियां हैं। इसलिए, समस्थेयता श्रेणियों की इस समानता के कारण सरल सेटों को प्रायः सांस्थितिक समष्टि के लिए मॉडल के रूप में उपयोग किया जाता है।
कुछ सांस्थितिक समष्टि में एक साधारण समुच्चय और विशिष्ट श्रृंखला के ज्यामितीय प्रतिफलन को सम्मिलित करना। श्रेणियाँ sSet और Top समतुल्य नहीं हैं, लेकिन उनकी समस्थेयता श्रेणियां हैं। इसलिए, समस्थेयता श्रेणियों की इस समानता के कारण सरल समुच्चय को प्रायः सांस्थितिक समष्टि के लिए मॉडल के रूप में उपयोग किया जाता है।


== यह भी देखें ==
== यह भी देखें ==
*(∞,1)-श्रेणी
*(∞,1)-श्रेणी
*कोसायकल श्रेणी
*सह-चक्र श्रेणी
* [[स्थिर मॉडल श्रेणी]]
* [[स्थिर मॉडल श्रेणी]]



Revision as of 14:23, 7 May 2023

गणित में, विशेष रूप से समस्थेयता (होमोटॉपी) सिद्धांत में, मॉडल श्रेणी एक ऐसी श्रेणी है जिसमें आकारिकी ('तीर') के विशिष्ट वर्ग होते हैं जिन्हें 'दुर्बल समतुल्यता', 'फाइब्रेशन' और 'सह-संयोजन' कहा जाता है जो उनसे संबंधित कुछ सिद्धांतों को पूरा करते हैं। ये सांस्थितिक समष्टि या श्रृंखला सम्मिश्र (व्युत्पन्न श्रेणी सिद्धांत) की श्रेणी से अमूर्त हैं। यह अवधारणा डेनियल जी. क्विलेन (1967) द्वारा प्रस्तुत की गई थी।

हाल के दशकों में, मॉडल श्रेणियों की भाषा का उपयोग बीजगणितीय K-सिद्धांत और बीजगणितीय ज्यामिति के कुछ भागों में किया गया है, जहां समस्थेयता-सैद्धांतिक दृष्टिकोण ने स्थायी परिणाम दिए हैं।

कारण

मॉडल श्रेणियां समस्थेयता सिद्धांत के लिए एक प्राकृतिक समायोजन प्रदान कर सकती हैं: सांस्थितिक समष्टि की श्रेणी एक मॉडल श्रेणी है जिसमें समस्थेयता सामान्य सिद्धांत के अनुरूप है। इसी तरह, जिन वस्तुओं को समष्टि के रूप में माना जाता है, वे प्रायः एक मॉडल श्रेणी संरचना को स्वीकार करते हैं, जैसे कि साधारण समुच्चय की श्रेणी है।

अन्य मॉडल श्रेणी क्रमविनिमेय वलय R के लिए R-मापांक की श्रृंखला सम्मिश्र की श्रेणी है। इस संदर्भ में समस्थेयता सिद्धांत समजातीय बीजगणित है। समरूपता को तब एक प्रकार के समस्थेयता के रूप में देखा जा सकता है, जो अन्य वस्तुओं, जैसे कि समूह (गणित) और R-बीजगणित, सिद्धांत के पहले प्रमुख अनुप्रयोगों में से एक के लिए समरूपता के सामान्यीकरण की स्वीकृति देता है। समरूपता के संबंध में उपरोक्त उदाहरण के कारण, संवृत मॉडल श्रेणियों के अध्ययन को कभी-कभी समप्ररूपी बीजगणित के रूप में माना जाता है।

औपचारिक परिभाषा

क्विलेन द्वारा प्रारंभ में दी गई परिभाषा एक संवृत मॉडल श्रेणी की थी, जिसकी धारणा उस समय प्रबल लग रही थी, दूसरों को एक मॉडल श्रेणी को परिभाषित करने के लिए कुछ धारणाओं को दुर्बल करने के लिए प्रेरित कर रही थी। व्यवहार में यह अंतर महत्वपूर्ण प्रमाणित नहीं हुआ है और सबसे हाल के लेखक (जैसे, मार्क होवे और फिलिप हिर्शहॉर्न) संवृत मॉडल श्रेणियों के साथ कार्य करते हैं और केवल 'संवृत' विशेषण को छोड़ देते हैं।

परिभाषा को एक श्रेणी पर एक मॉडल संरचना के रूप में अलग किया गया है और फिर उस श्रेणी पर आगे की श्रेणीबद्ध शर्तें, जिसकी आवश्यकता पहले अप्रचलित लग सकती है लेकिन बाद में महत्वपूर्ण हो जाती है। निम्नलिखित परिभाषा इस प्रकार है जो होवी द्वारा दी गई है।

श्रेणी 'C' पर एक मॉडल संरचना में आकारिकी के तीन विशिष्ट वर्ग होते हैं (समान रूप से उपश्रेणियाँ) दुर्बल समतुल्यता (समस्थेयता सिद्धांत), फ़िब्रेशन, और सह-संयोजन, और दो कार्यात्मक कारक और निम्नलिखित अभिगृहीत के अधीन होते है। फ़िब्रेशन जो एक दुर्बल समतुल्यता भी है, उसे अनावर्ती (या सामान्य) फ़िब्रेशन कहा जाता है[1] और एक सह-संयोजन जो एक दुर्बल समतुल्यता भी है, उसे अनावर्ती (या सामान्य) सह-संयोजन (या कभी-कभी एनोडीन आकारिकी कहा जाता है) कहा जाता है।

अभिगृहीत:

विखंडन :

  1. यदि g विशिष्ट वर्गों में से एक से संबंधित आकारिकी है, और f,g का एक खंडन (श्रेणी सिद्धांत) है (तीर श्रेणी में वस्तुओं के रूप में जहां 2 2-अवयव क्रमित समुच्चय है), तो f उसी विशिष्ट वर्ग से संबंधित है। स्पष्ट रूप से, आवश्यकता है कि f, g का एक व्युत्क्रम है इसका तात्पर्य है कि वहां i, j, r, और s सम्मिलित है जैसे कि निम्न आरेख रूपांतरण करता है:
  2. 2 का 3: यदि f और g C में मानचित्र हैं जैसे कि fg परिभाषित है और इनमें से कोई भी दो दुर्बल समकक्ष हैं तो तीसरा भी समतुल्य है।File:Model category retract.png
  3. उत्थापन: अनावर्ती सह-संयोजन में फाइब्रेशन के संबंध में वाम उत्थापन गुण होती है, और सह-संयोजन में अनावर्ती फाइब्रेशन के संबंध में वाम उत्थापन गुण होती है। स्पष्ट रूप से, यदि निम्नलिखित आरेख का बाहरी वर्ग विनिमय करता है, जहां i एक सहसंरचना है और p एक फ़िब्रेशन है, और i या p अनावर्ती है, तो आरेख को पूरा करने वाला h सम्मिलित है।
  4. गुणनखंडन:File:Model category lifting.png
    • C में प्रत्येक आकारिकी f को फ़िब्रेशन p और चक्रीय सहसंरचना i के लिए के रूप मे लिखा जा सकता है;
    • C में प्रत्येक आकारिकी f अनावर्ती फाइब्रेशन p और सह-संयोजन i के लिए के रूप में लिखा जा सकता है।

'मॉडल श्रेणी' एक ऐसी श्रेणी है जिसमें एक मॉडल संरचना होती है और सभी (छोटी) सीमाएँ (श्रेणी सिद्धांत) और सह-सीमाएँ होती हैं अर्थात एक मॉडल संरचना के साथ एक पूर्ण और सह-पूर्ण श्रेणी होती है।

दुर्बल गुणनखंड प्रणाली के माध्यम से परिभाषा

उपरोक्त परिभाषा को संक्षेप में निम्नलिखित समतुल्य परिभाषा द्वारा व्यक्त किया जा सकता है: मॉडल श्रेणी एक श्रेणी C है और तीन वर्ग (तथाकथित) दुर्बल समतुल्यता W, फाइब्रेशन F और सह-संयोजन C हैं। ताकि

  • C की सभी सीमाएँ और सह-सीमाएँ हैं,
  • दुर्बल गुणनखंड प्रणाली है,
  • दुर्बल गुणनखंड प्रणाली है
  • 3 में से 2 गुण को संतुष्ट करता है।[2]


परिभाषा का पहला परिणाम

अभिगृहीत का अर्थ है कि मानचित्रों के तीन वर्गों में से कोई भी दो तीसरे का निर्धारण करते हैं उदाहरण के लिए, सह-संयोजन और दुर्बल समतुल्य संरचना निर्धारित करते हैं।

इसके अतिरिक्त, परिभाषा स्व-द्वैत है: यदि C एक मॉडल श्रेणी है, तो इसकी विपरीत श्रेणी एक मॉडल संरचना को भी स्वीकार करता है ताकि दुर्बल तुल्यताएं उनके विपरीत फाइब्रेशन (तंतुओं) के अनुरूप हों, सह-संयोजन के विपरीत और फाइब्रेशन के विपरीत हों।

उदाहरण

सांस्थितिक समष्टि

सांस्थितिक समष्टि की श्रेणी शीर्ष सामान्य (सेरे) फ़िब्रेशन के साथ एक मानक मॉडल श्रेणी संरचना को स्वीकार करता है और दुर्बल समरूपता के साथ दुर्बल समस्थेयता के रूप में होता है। सहसंरचना यहां पाई जाने वाली सामान्य धारणा नहीं है, बल्कि मानचित्रों का संकुचित वर्ग होता है, जिसमें अनावर्ती सेरे फ़िब्रेशन के संबंध में वाम उत्थापन गुण होती है। समान रूप से, वे आपेक्षिक सेल सम्मिश्र के प्रतिकर्षक हैं, जैसा कि उदाहरण के लिए होवी के मॉडल श्रेणियाँ में बताया गया है। यह संरचना अद्वितीय नहीं है; सामान्य रूप से दी गई श्रेणी पर कई मॉडल श्रेणी संरचनाएँ हो सकती हैं। सांस्थितिक समष्टि की श्रेणी के लिए, इस तरह की एक अन्य संरचना ह्यूरेविक्ज़ फ़िब्रेशन और मानक सह-संयोजन द्वारा दी गई है, और दुर्बल समानताएँ (प्रबल) समस्थेयता समतुल्यता हैं।

श्रृंखला सम्मिश्र

R-मापांक की (गैर-ऋणात्मक रूप से वर्गीकृत) श्रृंखला सम्मिश्र की श्रेणी में कम से कम दो मॉडल संरचनाएं होती हैं, जो दोनों समान बीजगणित में प्रमुख रूप से प्रदर्शित होती हैं:

  • दुर्बल समतुल्यता ऐसे मानचित्र हैं जो समाकारिकता में समरूपता को प्रेरित करते हैं;
  • सह-संयोजन वे मानचित्र होते हैं जो प्रक्षेपीय कोकर्नेल के साथ प्रत्येक स्थिति में एकैक समाकारिता होते हैं; और
  • फाइब्रेशन ऐसे मानचित्र हैं जो प्रत्येक गैर-शून्य वर्ग में आच्छादक समाकारिता हैं

या

यह बताता है कि क्यों R-मापांक के बाहरी समूह की गणना या तो स्रोत को अनुमानित रूप से हल करके या नियत अन्तः क्षेप करके की जा सकती है। ये संबंधित मॉडल संरचनाओं में कोफ़िब्रेंट या फ़ाइब्रेंट प्रतिस्थापन हैं।

R-मापांक की मनमानी श्रृंखला-सम्मिश्र की श्रेणी में एक मॉडल संरचना होती है जिसे परिभाषित किया जाता है

  • दुर्बल तुल्यताएं श्रृंखला-सम्मिश्र की श्रृंखला समरूपताएं हैं;
  • सह-संयोजन एकैक समाकारिता हैं जो अंतर्निहित R-मापांक के आकारिकी के रूप में विभाजित हैं; और
  • फाइब्रेशन आच्छादक समाकारिता हैं जो अंतर्निहित R-मापांक के आकारिकी के रूप में विभाजित हैं।

अन्य उदाहरण

मॉडल संरचनाओं को स्वीकार करने वाली श्रेणियों के अन्य उदाहरणों में सभी छोटी श्रेणियों की श्रेणी, किसी भी छोटे ग्रोथेंडिक स्थिति पर प्रसमुच्चयी समूह या प्रसमुच्चयी प्रेक्षण की श्रेणी, सांस्थितिक स्पेक्ट्रम की श्रेणी और सामान्य स्पेक्ट्रम की श्रेणियां या छोटे ग्रोथेंडिक स्थल पर सामान्य स्पेक्ट्रम की श्रेणियां सम्मिलित हैं।

किसी श्रेणी में साधारण वस्तुएँ मॉडल श्रेणियों का सतत स्रोत हैं; उदाहरण के लिए, साधारण क्रमविनिमेय वलय या साधारण R-मापांक प्राकृतिक मॉडल संरचनाओं को स्वीकार करते हैं। यह इस प्रकार है क्योंकि साधारण समुच्चय और साधारण क्रमविनिमेय वलय (अनवहित और मुक्त फलननिर्धारक द्वारा दिए गए) के बीच एक संयोजन है, और कठिन स्थितियों में कोई एक संयोजन के अंतर्गत मॉडल संरचनाओं को उठा सकता है।

एक साधारण मॉडल श्रेणी एक सरलीकृत श्रेणी है जिसमें एक मॉडल संरचना होती है जो सरलीकृत संरचना के अनुकूल होती है।[3]

किसी भी श्रेणी सी और एक मॉडल श्रेणी एम को देखते हुए, कुछ अतिरिक्त परिकल्पनाओं के अंतर्गत फलननिर्धारक फन (C, ) (M में C-आरेख भी कहा जाता है) की श्रेणी भी एक मॉडल श्रेणी है। वास्तव में, अलग-अलग मॉडल संरचनाओं के लिए सदैव दो पदान्वेषी होते हैं: एक में, तथाकथित प्रक्षेपी मॉडल संरचना, फ़िब्रेशन और दुर्बल समतुल्यताएं संक्रिया के वे मानचित्र हैं जो C के प्रत्येक वस्तु पर मूल्यांकन किए जाने पर फ़िब्रेशन और दुर्बल समकक्ष हैं। अंतःक्षेपक मॉडल संरचना इसके अतिरिक्त सह-संयोजन और दुर्बल समकक्षों के समान है। दोनों ही स्थितियों में आकारिकी का तीसरा वर्ग उत्थापन की स्थिति (नीचे देखें) द्वारा दिया जाता है। कुछ स्थितियों में, जब श्रेणी एक रीडी श्रेणी है, तो प्रक्षेपीय और अन्तः क्षेप के बीच एक तीसरी मॉडल संरचना होती है।

समान अंतर्निहित श्रेणी पर एक नई मॉडल श्रेणी संरचना में कुछ मानचित्रों को दुर्बल समतुल्यता बनने के लिए प्रणोदन करने की प्रक्रिया को बोसफील्ड स्थानीयकरण के रूप में जाना जाता है। उदाहरण के लिए, साधारण शीफ (गणित) की श्रेणी को साधारण प्रेक्षण के मॉडल श्रेणी के बोसफील्ड स्थानीयकरण के रूप में प्राप्त किया जा सकता है।

डेनिस-चार्ल्स सिसिंस्की ने[4] प्रीशेफ श्रेणियों पर मॉडल संरचनाओं का एक सामान्य सिद्धांत विकसित किया है सरलीकृत समुच्चय का सामान्यीकरण, जो सरलीकृत श्रेणी पर प्रेक्षण हैं।

यदि C एक मॉडल श्रेणी है, तो C में प्रथम आक्षेप की श्रेणी Pro(C) भी है। हालांकि, Pro(C) पर एक मॉडल संरचना भी C के अभिगृहीत के एक दुर्बल समुच्चय को प्रयुक्त करके बनाई जा सकती है।[5]


कुछ निर्माण

प्रत्येक संवृत मॉडल श्रेणी में पूर्णता से एक अंतिम वस्तु और सह-पूर्णता द्वारा एक प्रारंभिक वस्तु होती है, क्योंकि ये वस्तुएं रिक्त आरेख की क्रमशः सीमा और सह-सीमाएं हैं। मॉडल श्रेणी में किसी वस्तु X को देखते हुए, यदि प्रारंभिक वस्तु से X तक का अद्वितीय मानचित्र एक सह-संयोजन है, तो X को 'कोफ़िब्रेंट' कहा जाता है। अनुरूप रूप से, यदि X से अंतिम वस्तु का अद्वितीय मानचित्र एक फ़िब्रेशन है तो X को 'फ़ाइब्रेंट' कहा जाता है।

यदि Z और X एक मॉडल श्रेणी की वस्तुएँ हैं जैसे कि Z कोफ़िब्रेंट है और Z से X तक एक दुर्बल समतुल्यता है तो Z को X के लिए एक 'कॉफ़िब्रेंट प्रतिस्थापन' कहा जाता है। इसी तरह, यदि Z फ़िब्रेंट है और एक दुर्बल है X से Z तक समतुल्यता तब Z को X के लिए एक 'फ़ाइब्रेंट प्रतिस्थापन' कहा जाता है। सामान्य रूप से, सभी वस्तुएं फ़ाइब्रेंट या कोफ़िब्रेंट नहीं होती हैं, हालांकि यह कभी-कभी स्थिति होती है। उदाहरण के लिए, सभी वस्तु सरलीकृत समुच्चय के मानक मॉडल श्रेणी में कोफ़ाइब्रेंट हैं और सभी वस्तु सांस्थितिक समष्टि के लिए ऊपर दी गई मानक मॉडल श्रेणी संरचना के लिए फ़िब्रेंट हैं।

वाम समस्थेयता को वेलनीय वस्तु के संबंध में परिभाषित किया गया है और दायें समस्थेयता को [2] पाथ समष्टि ऑब्जेक्ट्स के संबंध में परिभाषित किया गया है। ये धारणाएं समान हैं जब प्रक्षेत्र कॉफिब्रेंट होता है और सह-प्रक्षेत्र फ़ाइब्रेंट होता है। उस स्थिति में, समस्थेयता मॉडल श्रेणी में समाकारिता समुच्चय पर समतुल्य संबंध को परिभाषित करता है जिससे समस्थेयता वर्ग को उत्पन्न करता है।

गुणों को उत्थापन से फाइब्रेशन और सह-संयोजन के लक्षण

सहसंरचना को उन मानचित्रों के रूप में चित्रित किया जा सकता है, जिनमें अनावर्ती फ़ाइब्रेशन के संबंध में बाईं ओर उत्थापन गुण होते है, और अनावर्ती सहसंरचना को उन मानचित्रों के रूप में चित्रित किया जाता है, जिनमें फ़िब्रेशन के संबंध में वाम उत्थापन गुण होती है। इसी तरह, फ़िब्रेशन को उन मानचित्रों के रूप में चित्रित किया जा सकता है जिनके पास अनावर्ती सहसंरचना के संबंध में सही उत्थापन गुण है, और अनावर्ती फ़िब्रेशन को उन मानचित्रों के रूप में चित्रित किया जाता है जिनके पास सहसंरचना के संबंध में दायें उत्थापन के गुण है।

समस्थेयता और समस्थेयता श्रेणी

मॉडल श्रेणी C की समस्थेयता श्रेणी दुर्बल समतुल्यता के वर्ग के संबंध में C की श्रेणी का स्थानीयकरण है। समस्थेयता श्रेणी की यह परिभाषा फ़िब्रेशन और सह-संयोजन के चयन पर निर्भर नहीं करती है। हालांकि, फ़िब्रेशन और सह-संयोजन की कक्षाएं एक अलग तरीके से समस्थेयता श्रेणी का वर्णन करने और विशेष रूप से श्रेणियों के सामान्य स्थानीयकरणों में उत्पन्न होने वाले समुच्चय-सैद्धांतिक समस्याओ से संरक्षित करने में उपयोगी होती हैं। अधिक परिशुद्ध रूप से, मॉडल श्रेणियों के मौलिक प्रमेय में कहा गया है कि C की समस्थेयता श्रेणी उस श्रेणी के समतुल्य है, जिसकी वस्तुएं C की वस्तुएं हैं, जो कि और कोफिब्रेंट दोनों हैं, और जिनकी आकृतियाँ मानचित्रों के समरूप वर्गों को छोड़ देती हैं (समतुल्य, मानचित्रों के सही समस्थेयता वर्ग) जैसा कि ऊपर परिभाषित किया गया है। उदाहरण के लिए होवी द्वारा, टीएचएम 1.2.10 मॉडल श्रेणियाँ देखें।

इसे ऊपर दिए गए मॉडल संरचना के साथ सांस्थितिक समष्टि की श्रेणी में प्रयुक्त करना, परिणामी समस्थेयता श्रेणी CW सम्मिश्र की श्रेणी और सतत मानचित्रों के समस्थेयता वर्गों के बराबर है, जहां से नाम है।

क्विलन संयोजन

सहसम्युक्त फलननिर्धारक की एक युग्म

दो मॉडल श्रेणियों C और D के बीच एक क्विलन संयोजन कहा जाता है यदि F सह-संयोजन और अनावर्ती सह-संयोजन को संरक्षित करता है या, समकक्ष रूप से संवृत मॉडल अभिगृहीत द्वारा, जैसे कि G फाइब्रेशन और अनावर्ती फाइब्रेशन को संरक्षित करता है। इस मामले में F और G एक संयोजन को प्रेरित करते हैं

समस्थेयता श्रेणियों के बीच उत्तरार्द्ध के लिए एक समानता होने के लिए (फिर F और G को क्विलन समकक्ष कहा जाता है) एक स्पष्ट मानदंड भी है ।

विशिष्ट उदाहरण साधारण समुच्चय और सांस्थितिक समष्टि के बीच मानक संयोजन है:

कुछ सांस्थितिक समष्टि में एक साधारण समुच्चय और विशिष्ट श्रृंखला के ज्यामितीय प्रतिफलन को सम्मिलित करना। श्रेणियाँ sSet और Top समतुल्य नहीं हैं, लेकिन उनकी समस्थेयता श्रेणियां हैं। इसलिए, समस्थेयता श्रेणियों की इस समानता के कारण सरल समुच्चय को प्रायः सांस्थितिक समष्टि के लिए मॉडल के रूप में उपयोग किया जाता है।

यह भी देखें

टिप्पणियाँ

  1. Some readers find the term "trivial" ambiguous and so prefer to use "acyclic".
  2. Riehl (2014, §11.3)
  3. Definition 2.1. of [1].
  4. Cisinski, Denis-Charles. Les préfaisceaux comme modèles des types d'homotopie. (French) [Presheaves as models for homotopy types] Astérisque No. 308 (2006), xxiv+390 pp. ISBN 978-2-85629-225-9 MR2294028
  5. Barnea, Ilan; Schlank, Tomer M. (2016), "A projective model structure on pro-simplicial sheaves, and the relative étale homotopy type", Advances in Mathematics, 291: 784–858, arXiv:1109.5477, Bibcode:2011arXiv1109.5477B, doi:10.1016/j.aim.2015.11.014, MR 3459031


संदर्भ


अग्रिम पठन


बाहरी संबंध