तंग अवधि: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Short description|Notion in metric geometry}}
{{Short description|Notion in metric geometry}}
[[मीट्रिक ज्यामिति]] में, [[मीट्रिक स्थान|मीट्रिक स्पेस]] ''M'' का मीट्रिक लिफ़ाफ़ा या तंग अवधि एक [[इंजेक्शन मीट्रिक स्थान|इंजेक्शन मीट्रिक स्पेस]] है जिसमें ''M को'' एम्बेड किया जा सकता है। कुछ अर्थों में इसमें ''M'' के बिंदुओं के मध्य के प्रत्येक बिंदु होते हैं, जो [[यूक्लिडियन अंतरिक्ष]] में स्थापित बिंदु के उत्तल हल के समान होते हैं। तंग अवधि को कभी-कभी 'M' के इंजेक्शन एनवेलप या हाइपरकोनवेक्स हल के रूप में भी जाना जाता है। इसे [[इंजेक्शन पतवार]] भी कहा जाता है, परंतु [[बीजगणित]] में एक [[मॉड्यूल (गणित)|मॉड्यूल]] के इंजेक्शन हल के सापेक्ष भ्रमित नहीं होना चाहिए, एक अवधारणा जिसमें मीट्रिक रिक्त स्पेस के अतिरिक्त 'R '-मॉड्यूल की [[श्रेणी (गणित)|श्रेणी]] के सापेक्ष समान विवरण होता है ।
[[मीट्रिक ज्यामिति]] में, [[मीट्रिक स्थान|मीट्रिक स्पेस]] ''M'' का मीट्रिक लिफ़ाफ़ा या तंग अवधि एक [[इंजेक्शन मीट्रिक स्थान|इंजेक्शन मीट्रिक स्पेस]] है जिसमें ''M को'' जोड़ा जा सकता है। माना कुछ अर्थों में इस ''M'' के बिंदुओं के मध्य में प्रत्येक बिंदु होते हैं, जो [[यूक्लिडियन अंतरिक्ष]] में स्थापित बिंदु के उत्तल हल के समान होते हैं। तंग अवधि को कभी-कभी 'M' के इंजेक्शन एनवेलप या हाइपरकोनवेक्स हल के रूप में भी जाना जाता है। इसे [[इंजेक्शन पतवार]] भी कहा जाता है, परंतु [[बीजगणित]] में एक [[मॉड्यूल (गणित)|मॉड्यूल]] के इंजेक्शन हल के सापेक्ष भ्रमित नहीं होना चाहिए, तथा एक अवधारणा जिसमें मीट्रिक रिक्त स्पेस के अतिरिक्त 'R '-मॉड्यूल की [[श्रेणी (गणित)|श्रेणी]] के सापेक्ष समान विवरण होता है ।


तंग अवधि का वर्णन सबसे पहले {{harvtxt|इसबेल|1964}} द्वारा वर्णित किया गया था , और  इसका अध्ययन 1960 के दशक में होल्स्ज़्Tस्की द्वारा प्रारंभ किया गया था। इसके उपरांत में {{harvtxt|ड्रेस|1984}} और {{harvtxt|क्रोबक और |लारमोर|1994}}  स्वतंत्र रूप से पुनः से खोजा गया  था  इस इतिहास के लिए {{harvtxt|चेपोई|1997}} को देखें। तंग अवधि T-सिद्धांत के केंद्रीय निर्माणों में से एक है।
तंग अवधि का वर्णन सबसे पहले {{harvtxt|इसबेल|1964}} द्वारा वर्णित किया गया था , और  इसका अध्ययन 1960 के दशक में होल्स्ज़्Tस्की द्वारा प्रारंभ किया गया था। इसके उपरांत में {{harvtxt|ड्रेस|1984}} और {{harvtxt|क्रोबक और |लारमोर|1994}}  स्वतंत्र रूप से पुनः खोजा था  इस इतिहास के लिए {{harvtxt|चेपोई|1997}} ने दर्शाया कि तंग अवधि T-सिद्धांत के केंद्रीय निर्माणों में से एक है।


== परिभाषा ==
== परिभाषा ==
एक मीट्रिक स्पेस की तंग अवधि को निम्नानुसार परिभाषित किया जा सकता है। माना (X,d) एक मीट्रिक स्पेस हैं, और T(X) को X पर 'चरम फलन' का सेट बनने दे, जहां हम X को 'एक्सट्रीमल फलन' कहते हैं, जिसका अर्थ X से 'R ' तक एक फलन f है जैसे कि
एक मीट्रिक स्पेस की तंग अवधि को निम्नानुसार परिभाषित किया जा सकता है। माना (X,d) एक मीट्रिक स्पेस हैं, और T(X) को X पर 'चरम फलन' का सेट बनाया जाता हैं, तथा हम X को 'एक्सट्रीमल फलन' कहते हैं, जिसका अर्थ X से 'R ' तक एक फलन f है जैसे कि
# X में किसी x, y के लिए, d(x,y) ≤ f(x) + f(y), और
# X में किसी x, y के लिए, d(x,y) ≤ f(x) + f(y), और
# X में प्रत्येक x के लिए, f(x) = sup{d(x,y) - f(y):y in X}.<ref>{{harvtxt|Dress|Huber|Moulton|2001}}.</ref>{{rp|124}}
# X में प्रत्येक x के लिए, f(x) = sup{d(x,y) - f(y):y in X}.<ref>{{harvtxt|Dress|Huber|Moulton|2001}}.</ref>हैं।
विशेष रूप से (ऊपर विशेषता1 में x = y लेने पर) प्रत्येक x के लिए f(x) ≥ 0। ऊपर दी गई पहली आवश्यकता की व्याख्या करने की एक विधि यह है कि f कुछ नए बिंदु से X के बिंदुओं तक संभावित दूरी के एक सेट को परिभाषित करता है जो कि (X, d) में दूरियों के सापेक्ष त्रिकोण असमानता को पूरा करना चाहता है। दूसरी आवश्यकता बताती है कि त्रिभुज असमानता का उल्लंघन किए बिना इनमें से किसी भी दूरी को न्यूनतम नहीं किया जा सकता है।
विशेष रूप से (ऊपर विशेषता 1 में x = y लेने पर) प्रत्येक x के लिए f(x) ≥ 0। ऊपर दी गई पहली आवश्यकता की व्याख्या करने की एक विधि यह है कि f कुछ नए बिंदु से X के बिंदुओं तक संभावित दूरी के एक सेट को परिभाषित करता है जो कि (X, d) में दूरियों के सापेक्ष त्रिकोण असमानता को पूरा करना चाहता है। दूसरी आवश्यकता बताती है कि त्रिभुज असमानता का उल्लंघन किए बिना इनमें से किसी भी दूरी को न्यूनतम नहीं किया जा सकता है।


(X, d) का 'तंग अवधि' मीट्रिक स्पेस (T (X), δ) है, जहां
(X, d) का 'तंग अवधि' मीट्रिक स्पेस (T (X), δ) है, जहां
<math display=block>\delta=(\inf\{C\in\mathbb R_{\ge0}:|g(x)-f(x)|\le C\text{ for all }x\in X\})_{f,g\in T(X)}=(\|g-f\|_\infty)_{f,g\in T(X)}</math>
<math display=block>\delta=(\inf\{C\in\mathbb R_{\ge0}:|g(x)-f(x)|\le C\text{ for all }x\in X\})_{f,g\in T(X)}=(\|g-f\|_\infty)_{f,g\in T(X)}</math>
{{math|''ℓ''{{i sup|∞}}}} मानदंड से प्रेरित मीट्रिक के अनुरूप है। (यदि d बाध्य है, तो δ {{math|''ℓ''{{i sup|∞}}}} मानदंड से प्रेरित मीट्रिक द्वारा प्रेरित उप-मीट्रिक मीट्रिक होता है। यदि d बाध्य नहीं है, तो X पर प्रत्येक चरम फलन असीमित होता है और इसलिए <math>T(X)\not\subseteq\ell^\infty(X).</math> भले ही, यह सच होगा कि T(X) में किसी भी f,g के लिए, अंतर <math>g-f</math> का है <math>\ell^\infty(X)</math> अर्थात बाउंडेड है।  
{{math|''ℓ''{{i sup|∞}}}} मानदंड से प्रेरित मीट्रिक के अनुरूप है। (यदि d बाध्य है, तो δ {{math|''ℓ''{{i sup|∞}}}} मानदंड से प्रेरित मीट्रिक द्वारा प्रेरित उप-मीट्रिक मीट्रिक होता है। यदि d बाध्य नहीं है, तो X पर प्रत्येक चरम फलन असीमित होता है और इसलिए <math>T(X)\not\subseteq\ell^\infty(X).</math> यह सच होगा कि T(X) में किसी भी f,g के लिए, अंतर <math>g-f</math> का है अर्थात <math>\ell^\infty(X)</math> बाउंडेड है।  


== चरम फलनों की समतुल्य परिभाषाएँ ==
== चरम फलनों की समतुल्य परिभाषाएँ ==
X से 'R ' तक एक फलन f के लिए पहली आवश्यकता को पूरा करने के लिए, दूसरी आवश्यकता के निम्नलिखित संस्करण समतुल्य हैं:
X से 'R ' तक एक फलन f के लिए पहली आवश्यकता को पूरा करने के लिए, दूसरी आवश्यकता के निम्नलिखित संस्करण समतुल्य हैं:
* X में प्रत्येक x के लिए, f(x) = sup{d(x,y) - f(y):y in X}.होता हैं
* X में प्रत्येक x के लिए, f(x) = sup{d(x,y) - f(y):y में X}.होता हैं
* f पूर्वोक्त पहली आवश्यकता के संबंध में बिंदुवार न्यूनतम है, अर्थात, X से 'R' तक किसी भी फलन g के लिए ऐसा है कि d(x,y) ≤ g(x) + g(y) प्रत्येक x,y के लिए X में , अगर g≤f बिन्दुवार, तो f=g होता है.<ref name=KK>{{cite book |last1=Khamsi |first1=Mohamed A. |author1-link=Mohamed Amine Khamsi |last2=Kirk |first2=William A. |author2-link=William Arthur Kirk |title=मेट्रिक स्पेस और फिक्स्ड पॉइंट थ्योरी का परिचय|date=2001 |publisher=Wiley}}</ref>
* f पूर्वोक्त पहली आवश्यकता के संबंध में बिंदुवार न्यूनतम है, अर्थात, X से 'R' तक किसी भी फलन g के लिए ऐसा है कि d(x,y) ≤ g(x) + g(y) प्रत्येक x,y के लिए X में , अगर g≤f बिन्दुवार, तो f=g होता है.<ref name=KK>{{cite book |last1=Khamsi |first1=Mohamed A. |author1-link=Mohamed Amine Khamsi |last2=Kirk |first2=William A. |author2-link=William Arthur Kirk |title=मेट्रिक स्पेस और फिक्स्ड पॉइंट थ्योरी का परिचय|date=2001 |publisher=Wiley}}</ref>
* X = ∅ या X में उपस्थित है जैसे X में प्रत्येक X के लिए, f (X) ≤ d (a, X) उपस्थित होता है।<ref>{{cite book |last1=Kirk |first1=William |author1-link=William Arthur Kirk |last2=Shahzad |first2=Naseer |title=डिस्टेंस स्पेस में फिक्स्ड पॉइंट थ्योरी|date=2014 |publisher=Springer |isbn=978-3-319-10926-8 |page=24}}</ref><br />
* X = ∅ या X में उपस्थित है जैसे X में प्रत्येक X के लिए, f (X) ≤ d (a, X) उपस्थित होता है।<ref>{{cite book |last1=Kirk |first1=William |author1-link=William Arthur Kirk |last2=Shahzad |first2=Naseer |title=डिस्टेंस स्पेस में फिक्स्ड पॉइंट थ्योरी|date=2014 |publisher=Springer |isbn=978-3-319-10926-8 |page=24}}</ref><br />
Line 32: Line 32:
* T(X)⊆ C(X) (लिप्सचिट्ज़ फलन निरंतर करता हैं।)
* T(X)⊆ C(X) (लिप्सचिट्ज़ फलन निरंतर करता हैं।)
* T (X) समान है। (X के 1-लिप्सचिट्ज़ होने पर प्रत्येक चरम फलन से अनुसरण करता है।)
* T (X) समान है। (X के 1-लिप्सचिट्ज़ होने पर प्रत्येक चरम फलन से अनुसरण करता है।)
* X पर प्रत्येक केटोव फलन चरम नहीं होता है। उदाहरण के लिए, a, b को अलग होने दें, X = {a, b}, d = ([x≠y]) दें<sub>''x,y'' in ''X''</sub> X पर [[असतत मीट्रिक]] बनें, और f = {(, 1), (बी, 2)} दें। पुनः f कातेतोव है परंतु चरम फलन नहीं है। (यह लगभग तत्काल है कि f कटेटोव है। f चरम नहीं है क्योंकि यह इस खंड की तीसरी बुलेट में विशेषता को विफल करता है।)
* X पर प्रत्येक केटोव फलन चरम नहीं होता है। उदाहरण के लिए, a, b को पृथक होने दें, और X = {a, b}, d = ([x≠y]) <sub>''x,y'' में ''X''</sub> तथा X पर [[असतत मीट्रिक]] बनाये, और f = {(a, 1), (b, 2)} दें। पुनः f कातेतोव है परंतु चरम फलन नहीं है। (यह लगभग तत्काल है कि f कटेटोव है। f चरम नहीं है क्योंकि यह इस खंड की तीसरी बुलेट में विशेषता को विफल करता है।)
* यदि d परिबद्ध है, तो T(X) में प्रत्येक f परिबद्ध है। वास्तव में, T(X) में प्रत्येक f के लिए, <math>\|f\|_\infty\le\|d\|_\infty.</math> (टिप्पणी <math>d\in\ell^\infty(X\times X).</math>) उपर्युक्त खंड में तीसरे समकक्ष विशेषता से अनुसरण करता है।
* यदि d परिबद्ध है, तो T(X) में प्रत्येक f परिबद्ध है। वास्तव में, T(X) में प्रत्येक f के लिए, <math>\|f\|_\infty\le\|d\|_\infty.</math> (टिप्पणी <math>d\in\ell^\infty(X\times X).</math>) उपर्युक्त खंड में तीसरे समकक्ष विशेषता से अनुसरण करता है।) हैं।
* यदि d अपरिबद्ध है, तो T(X) में प्रत्येक f अपरिबद्ध है।  
* यदि d अपरिबद्ध है, तो T(X) में प्रत्येक f अपरिबद्ध है।  
* <math>T(X)</math> बिंदुवार सीमा के अंतर्गत बंद है। किसी भी बिंदुवार अभिसरण के लिए <math>f\in (T(X))^\omega,</math> <math>\lim f\in T(X).</math> होता हैं
* <math>T(X)</math> बिंदुवार सीमा के अंतर्गत बंद है। किसी भी बिंदुवार अभिसरण के लिए <math>f\in (T(X))^\omega,</math> <math>\lim f\in T(X).</math> होता हैं।अगर (X, d) कॉम्पैक्ट है, तो (T (X), δ) कॉम्पैक्ट है।<ref>{{cite book |last1=Benyamini |first1=Yoav |author1-link=Yoav Benjamini |last2=Lindenstrauss |first2=Joram |author2-link=Joram Lindenstrauss |title=ज्यामितीय गैर रेखीय कार्यात्मक विश्लेषण|date=2000 |publisher=American Mathematical Society |isbn=978-0-8218-0835-1 |page=32}}</ref><ref name="KK" /> (प्रमाण: एक्ट्रीम-मूल्य प्रमेय का अर्थ है कि d, एक फलन के रूप में निरंतर है मैट्रिक और सांस्थितिक स्पेस का सामान्यीकरण करते है| एक्ट्रीम-वैल्यू प्रमेय का तात्पर्य है कि d, एक फलन के रूप में निरंतर होना <math>X\times X\to\mathbb R,</math> घिरा हुआ है, इसलिए  <math>T(X)\subseteq\{f\in C(X):\|f\|_\infty\le\|d\|_\infty\}</math> C(X) का परिबद्ध उपसमुच्चय है। हमने दर्शया है कि T (X) समान है, इसलिए अर्जेला-एस्कोली प्रमेय का अर्थ है कि T (X) [[अपेक्षाकृत कॉम्पैक्ट]] है। यद्यपि, पिछली बुलेट का तात्पर्य T(X) के अंतर्गत बंद है <math>\ell^\infty</math> मानदंड, क्योंकी <math>\ell^\infty</math> अभिसरण का अर्थ बिंदुवार अभिसरण है। इस प्रकार T (X) कॉम्पैक्ट है।)
* अगर (X, d) कॉम्पैक्ट है, तो (T (X), δ) कॉम्पैक्ट है।<ref>{{cite book |last1=Benyamini |first1=Yoav |author1-link=Yoav Benjamini |last2=Lindenstrauss |first2=Joram |author2-link=Joram Lindenstrauss |title=ज्यामितीय गैर रेखीय कार्यात्मक विश्लेषण|date=2000 |publisher=American Mathematical Society |isbn=978-0-8218-0835-1 |page=32}}</ref><ref name="KK" /> (प्रमाण: चरम-मूल्य प्रमेय का अर्थ है कि d, एक फलन के रूप में निरंतर है मैट्रिक और टोपोलॉजिकल स्पेस का सामान्यीकरण|Xट्रीम-वैल्यू प्रमेय का मतलब है कि d, एक फलन के रूप में निरंतर होना <math>X\times X\to\mathbb R,</math> घिरा हुआ है, इसलिए  <math>T(X)\subseteq\{f\in C(X):\|f\|_\infty\le\|d\|_\infty\}</math> C(X) का परिबद्ध उपसमुच्चय है। हमने दिखाया है कि T (X) समान है, इसलिए अर्जेला-एस्कोली प्रमेय का अर्थ है कि T (X) [[अपेक्षाकृत कॉम्पैक्ट]] है। यद्यपि, पिछली बुलेट का तात्पर्य T(X) के अंतर्गत बंद है <math>\ell^\infty</math> मानदंड, क्योंकी <math>\ell^\infty</math> अभिसरण का अर्थ बिंदुवार अभिसरण है। इस प्रकार T (X) कॉम्पैक्ट है।)
* X से 'R' तक के किसी भी फलन g के लिए जो पहली आवश्यकता को पूरा करता है, T(X) में f जैसे कि f≤g बिंदुवार उपस्थित है।<ref name="KK" />
* X से 'R' तक के किसी भी फलन g के लिए जो पहली आवश्यकता को पूरा करता है, T(X) में f जैसे कि f≤g बिंदुवार उपस्थित है।<ref name="KK" />
* X पर किसी भी चरम फलन f के लिए, <math>\forall x\in X\quad f(x)=\sup\{|f(y)-d(x,y)|:y\in X\}.</math><ref name="KK" /> हैं
* X पर किसी भी चरम फलन f के लिए, <math>\forall x\in X\quad f(x)=\sup\{|f(y)-d(x,y)|:y\in X\}.</math><ref name="KK" /> हैं
Line 47: Line 46:
* (T(X),δ) और <math display=block>\left(X\cup(T(X)\setminus\operatorname{range}e),\delta_{(T(X)\setminus\operatorname{range}e)\times(T(X)\setminus\operatorname{range}e)}\cup(\delta(e(x),e(y)))_{x,y\in X}\cup(\delta(e(x),g))_{x\in X,g\in T(X)\setminus\operatorname{range}e}\cup(\delta(f,e(y))_{f\in T(X)\setminus\operatorname{range}e,y\in X}\right)</math> दोनों इंजेक्शन मेट्रिक स्पेस हैं।<ref name=KK/>
* (T(X),δ) और <math display=block>\left(X\cup(T(X)\setminus\operatorname{range}e),\delta_{(T(X)\setminus\operatorname{range}e)\times(T(X)\setminus\operatorname{range}e)}\cup(\delta(e(x),e(y)))_{x,y\in X}\cup(\delta(e(x),g))_{x\in X,g\in T(X)\setminus\operatorname{range}e}\cup(\delta(f,e(y))_{f\in T(X)\setminus\operatorname{range}e,y\in X}\right)</math> दोनों इंजेक्शन मेट्रिक स्पेस हैं।<ref name=KK/>
* किसी भी y के लिए  <math>\operatorname{range}e\subseteq Y\subsetneq X\cup(T(X)\setminus\operatorname{range}e),</math> <math display=block>\left(X\cup(Y\setminus\operatorname{range}e),\delta_{(Y\setminus\operatorname{range}e)\times(Y\setminus\operatorname{range}e)}\cup(\delta(e(x),e(y)))_{x,y\in X}\cup(\delta(e(x),g))_{x\in X,g\in Y\setminus\operatorname{range}e}\cup(\delta(f,e(y))_{f\in Y\setminus\operatorname{range}e,y\in X}\right)</math> अतिउत्तल नहीं होता है।<ref name=KK/> ((T (X), δ) (X, d) का एक अतिउत्तल पतवार है।)
* किसी भी y के लिए  <math>\operatorname{range}e\subseteq Y\subsetneq X\cup(T(X)\setminus\operatorname{range}e),</math> <math display=block>\left(X\cup(Y\setminus\operatorname{range}e),\delta_{(Y\setminus\operatorname{range}e)\times(Y\setminus\operatorname{range}e)}\cup(\delta(e(x),e(y)))_{x,y\in X}\cup(\delta(e(x),g))_{x\in X,g\in Y\setminus\operatorname{range}e}\cup(\delta(f,e(y))_{f\in Y\setminus\operatorname{range}e,y\in X}\right)</math> अतिउत्तल नहीं होता है।<ref name=KK/> ((T (X), δ) (X, d) का एक अतिउत्तल पतवार है।)
* मन <math>(H,\varepsilon)</math> के सापेक्ष एक अतिउत्तल मीट्रिक स्पेस हो <math>X\subseteq H</math> और <math>\varepsilon|_{X\times X}=\delta</math>. अगर प्रत्येक के लिए मैं सापेक्ष <math>X\subseteq I\subsetneq H,</math> <math>(I,\varepsilon|_{I\times I})</math> तब अतिउत्तल नहीं है तो <math>(H,\varepsilon)</math> और (T(X),δ)  वो आइसोमेट्री की परिभाषा हैं।<ref name=KK/>((X, d) का प्रत्येक हाइपरकॉन्वेक्स हल (T (X), δ) के सापेक्ष आइसोमेट्रिक होता है।)
* मन <math>(H,\varepsilon)</math> के सापेक्ष एक अतिउत्तल मीट्रिक स्पेस <math>X\subseteq H</math> और <math>\varepsilon|_{X\times X}=\delta</math> होता हैं. अगर प्रत्येक के लिए मैं सापेक्ष <math>X\subseteq I\subsetneq H,</math> <math>(I,\varepsilon|_{I\times I})</math> तब अतिउत्तल नहीं है तो <math>(H,\varepsilon)</math> और (T(X),δ)  वो आइसोमेट्री की परिभाषा हैं।<ref name=KK/>((X, d) का प्रत्येक हाइपरकॉन्वेक्स हल (T (X), δ) के सापेक्ष आइसोमेट्रिक होता है।)


== उदाहरण ==
== उदाहरण ==
Line 84: Line 83:


== यह भी देखें ==
== यह भी देखें ==
*कुराटोव्स्की एंबेडिंग, किसी भी मीट्रिक स्पेस को बनच स्पेस में एम्बेड करना, जिसे कुराटोव्स्की मैप के समान परिभाषित किया गया है
*कुराटोव्स्की एंबेडिंग, किसी भी मीट्रिक स्पेस को बनच स्पेस में जोड़ा करना, जिसे कुराटोव्स्की मैप के समान परिभाषित किया गया है
* इंजेक्शन मीट्रिक स्पेस
* इंजेक्शन मीट्रिक स्पेस



Revision as of 12:50, 28 April 2023

मीट्रिक ज्यामिति में, मीट्रिक स्पेस M का मीट्रिक लिफ़ाफ़ा या तंग अवधि एक इंजेक्शन मीट्रिक स्पेस है जिसमें M को जोड़ा जा सकता है। माना कुछ अर्थों में इस M के बिंदुओं के मध्य में प्रत्येक बिंदु होते हैं, जो यूक्लिडियन अंतरिक्ष में स्थापित बिंदु के उत्तल हल के समान होते हैं। तंग अवधि को कभी-कभी 'M' के इंजेक्शन एनवेलप या हाइपरकोनवेक्स हल के रूप में भी जाना जाता है। इसे इंजेक्शन पतवार भी कहा जाता है, परंतु बीजगणित में एक मॉड्यूल के इंजेक्शन हल के सापेक्ष भ्रमित नहीं होना चाहिए, तथा एक अवधारणा जिसमें मीट्रिक रिक्त स्पेस के अतिरिक्त 'R '-मॉड्यूल की श्रेणी के सापेक्ष समान विवरण होता है ।

तंग अवधि का वर्णन सबसे पहले इसबेल (1964) द्वारा वर्णित किया गया था , और इसका अध्ययन 1960 के दशक में होल्स्ज़्Tस्की द्वारा प्रारंभ किया गया था। इसके उपरांत में ड्रेस (1984) और क्रोबक और & लारमोर (1994) स्वतंत्र रूप से पुनः खोजा था इस इतिहास के लिए चेपोई (1997) ने दर्शाया कि तंग अवधि T-सिद्धांत के केंद्रीय निर्माणों में से एक है।

परिभाषा

एक मीट्रिक स्पेस की तंग अवधि को निम्नानुसार परिभाषित किया जा सकता है। माना (X,d) एक मीट्रिक स्पेस हैं, और T(X) को X पर 'चरम फलन' का सेट बनाया जाता हैं, तथा हम X को 'एक्सट्रीमल फलन' कहते हैं, जिसका अर्थ X से 'R ' तक एक फलन f है जैसे कि

  1. X में किसी x, y के लिए, d(x,y) ≤ f(x) + f(y), और
  2. X में प्रत्येक x के लिए, f(x) = sup{d(x,y) - f(y):y in X}.[1]हैं।

विशेष रूप से (ऊपर विशेषता 1 में x = y लेने पर) प्रत्येक x के लिए f(x) ≥ 0। ऊपर दी गई पहली आवश्यकता की व्याख्या करने की एक विधि यह है कि f कुछ नए बिंदु से X के बिंदुओं तक संभावित दूरी के एक सेट को परिभाषित करता है जो कि (X, d) में दूरियों के सापेक्ष त्रिकोण असमानता को पूरा करना चाहता है। दूसरी आवश्यकता बताती है कि त्रिभुज असमानता का उल्लंघन किए बिना इनमें से किसी भी दूरी को न्यूनतम नहीं किया जा सकता है।

(X, d) का 'तंग अवधि' मीट्रिक स्पेस (T (X), δ) है, जहां

मानदंड से प्रेरित मीट्रिक के अनुरूप है। (यदि d बाध्य है, तो δ मानदंड से प्रेरित मीट्रिक द्वारा प्रेरित उप-मीट्रिक मीट्रिक होता है। यदि d बाध्य नहीं है, तो X पर प्रत्येक चरम फलन असीमित होता है और इसलिए यह सच होगा कि T(X) में किसी भी f,g के लिए, अंतर का है अर्थात बाउंडेड है।

चरम फलनों की समतुल्य परिभाषाएँ

X से 'R ' तक एक फलन f के लिए पहली आवश्यकता को पूरा करने के लिए, दूसरी आवश्यकता के निम्नलिखित संस्करण समतुल्य हैं:

  • X में प्रत्येक x के लिए, f(x) = sup{d(x,y) - f(y):y में X}.होता हैं
  • f पूर्वोक्त पहली आवश्यकता के संबंध में बिंदुवार न्यूनतम है, अर्थात, X से 'R' तक किसी भी फलन g के लिए ऐसा है कि d(x,y) ≤ g(x) + g(y) प्रत्येक x,y के लिए X में , अगर g≤f बिन्दुवार, तो f=g होता है.[2]
  • X = ∅ या X में उपस्थित है जैसे X में प्रत्येक X के लिए, f (X) ≤ d (a, X) उपस्थित होता है।[3]

मूल गुण और उदाहरण

  • X में प्रत्येक X के लिए, होता हैं।
  • X में प्रत्येक X के लिए, अतिवादी होता है। (प्रमाण: समरूपता और त्रिभुज असमानता मेट्रिक स्पेस का उपयोग करते हैं।)
  • यदि X परिमित है, तो X से 'R' तक किसी भी फलन f के लिए जो पहली आवश्यकता को पूरा करता है,तथा दूसरी और आवश्यकता में इस शर्त के समान है कि X में प्रत्येक x के लिए, X में y उपस्थित है जैसे कि f(x) + f (y) = d (X, y) होता है। (अगर तो दोनों स्थितियाँ सत्य हैं। अगर तब श्रेष्ठता ग्रहण की जाती है, और पहली आवश्यकता तुल्यता को दर्शाती है।)
  • माना |X|=2, और विशिष्ट a, b चुनें जैसे कि X={a, b} चुनते हैं। तब का उत्तल पतवार है{{(a,1),(b,0)},{(a,0),(b,1)}}. [ शीर्षक: यदि X = {0,1}, तो {(0,1),(1,0)} का उत्तल पतवार है।][4]
  • X पर प्रत्येक चरम फलन f कातेतोव होता है:[5][6] f पहली आवश्यकता को संतुष्ट करता है और

या समकक्ष, f पहली आवश्यकता को पूरा करता है और

(1-लिप्सचिट्ज़ निरंतरता है), और

[2]या समकक्ष, f पहली आवश्यकता को संतुष्ट करता है

  • T(X)⊆ C(X) (लिप्सचिट्ज़ फलन निरंतर करता हैं।)
  • T (X) समान है। (X के 1-लिप्सचिट्ज़ होने पर प्रत्येक चरम फलन से अनुसरण करता है।)
  • X पर प्रत्येक केटोव फलन चरम नहीं होता है। उदाहरण के लिए, a, b को पृथक होने दें, और X = {a, b}, d = ([x≠y]) x,y में X तथा X पर असतत मीट्रिक बनाये, और f = {(a, 1), (b, 2)} दें। पुनः f कातेतोव है परंतु चरम फलन नहीं है। (यह लगभग तत्काल है कि f कटेटोव है। f चरम नहीं है क्योंकि यह इस खंड की तीसरी बुलेट में विशेषता को विफल करता है।)
  • यदि d परिबद्ध है, तो T(X) में प्रत्येक f परिबद्ध है। वास्तव में, T(X) में प्रत्येक f के लिए, (टिप्पणी ) उपर्युक्त खंड में तीसरे समकक्ष विशेषता से अनुसरण करता है।) हैं।
  • यदि d अपरिबद्ध है, तो T(X) में प्रत्येक f अपरिबद्ध है।
  • बिंदुवार सीमा के अंतर्गत बंद है। किसी भी बिंदुवार अभिसरण के लिए होता हैं।अगर (X, d) कॉम्पैक्ट है, तो (T (X), δ) कॉम्पैक्ट है।[7][2] (प्रमाण: एक्ट्रीम-मूल्य प्रमेय का अर्थ है कि d, एक फलन के रूप में निरंतर है मैट्रिक और सांस्थितिक स्पेस का सामान्यीकरण करते है| एक्ट्रीम-वैल्यू प्रमेय का तात्पर्य है कि d, एक फलन के रूप में निरंतर होना घिरा हुआ है, इसलिए C(X) का परिबद्ध उपसमुच्चय है। हमने दर्शया है कि T (X) समान है, इसलिए अर्जेला-एस्कोली प्रमेय का अर्थ है कि T (X) अपेक्षाकृत कॉम्पैक्ट है। यद्यपि, पिछली बुलेट का तात्पर्य T(X) के अंतर्गत बंद है मानदंड, क्योंकी अभिसरण का अर्थ बिंदुवार अभिसरण है। इस प्रकार T (X) कॉम्पैक्ट है।)
  • X से 'R' तक के किसी भी फलन g के लिए जो पहली आवश्यकता को पूरा करता है, T(X) में f जैसे कि f≤g बिंदुवार उपस्थित है।[2]
  • X पर किसी भी चरम फलन f के लिए, [2] हैं
  • T(X) में किसी भी f,g के लिए अंतर से संबंधित , अर्थात, बंधा हुआ है।
  • कुराटोव्स्की मानचित्र[4]: 125  एक आइसोमेट्री है। (जब X=∅, परिणाम स्पष्ट होता है। जब X≠∅, विपरीत त्रिकोण असमानता का अर्थ परिणाम होता है।)
  • मान लीजिए कि T(X) में f है। X में किसी a के लिए, यदि f(a)=0, तो f=e(a).[8](X में प्रत्येक X के लिए हमारे पास है f की न्यूनतमता (उपरोक्त खंड में दूसरा समकक्ष लक्षण वर्णन) और तथ्य यह है कि इसके उपरांत की पहली आवश्यकता को पूरा करता है )
  • (X,d) हाइपरबॉलिक है यदि और केवल यदि (T(X),δ) हाइपरबॉलिक है।[8]

हाइपरकोन्वेक्सि गुण

  • (T(X),δ) और
    दोनों इंजेक्शन मेट्रिक स्पेस हैं।[2]
  • किसी भी y के लिए
    अतिउत्तल नहीं होता है।[2] ((T (X), δ) (X, d) का एक अतिउत्तल पतवार है।)
  • मन के सापेक्ष एक अतिउत्तल मीट्रिक स्पेस और होता हैं. अगर प्रत्येक के लिए मैं सापेक्ष तब अतिउत्तल नहीं है तो और (T(X),δ) वो आइसोमेट्री की परिभाषा हैं।[2]((X, d) का प्रत्येक हाइपरकॉन्वेक्स हल (T (X), δ) के सापेक्ष आइसोमेट्रिक होता है।)

उदाहरण

  • |X|=3, विशिष्ट a, b, c चुनें जैसे कि X={a,b,c}, और मान लीजिए कि i=d(a,b), j=d(a,c), k=d (b,c) हैं। तब