चरण वेग: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Short description|Rate at which the phase of the wave propagates in space}}
{{Short description|Rate at which the phase of the wave propagates in space}}
[[Image:Wave group.gif|frame|गहरे पानी की सतह पर [[गुरुत्वाकर्षण तरंग]] के समूहों में फैलाव (जल तरंगें)।  लाल वर्ग चरण वेग के साथ चलता है, और {{colorbull|#77ac30|circle|size=150}} हरे घेरे [[समूह वेग]] के साथ फैलते हैं। इस गहरे पानी के मामले में, चरण वेग समूह वेग का दोगुना है। आकृति के बाएँ से दाएँ जाने पर लाल वर्ग दो हरे वृत्तों से आगे निकल जाता है।{{paragraph}}
[[Image:Wave group.gif|frame|गहरे पानी की सतह पर [[गुरुत्वाकर्षण तरंग]] के समूहों में फैलाव (जल तरंगें)।  लाल वर्ग चरण वेग के साथ चलता है, और {{colorbull|#77ac30|circle|size=150}} हरे घेरे [[समूह वेग]] के साथ फैलते हैं। इस गहरे पानी के मामले में, चरण वेग समूह वेग का दोगुना है। आकृति के बाएँ से दाएँ जाने पर लाल वर्ग दो हरे वृत्तों से आगे निकल जाता है।
ऐसा लगता है कि नई तरंगें एक तरंग समूह के पीछे उभरती हैं, आयाम में तब तक बढ़ती हैं जब तक कि वे समूह के केंद्र में न हों, और लहर समूह के मोर्चे पर गायब हो जाती हैं।{{paragraph}}
 
सतह गुरुत्वाकर्षण तरंगों के लिए, पानी के कण वेग ज्यादातर मामलों में चरण वेग से बहुत छोटे होते हैं।]]
ऐसा लगता है कि नई तरंगें एक तरंग समूह के पीछे उभरती हैं, आयाम में तब तक बढ़ती हैं जब तक कि वे समूह के केंद्र में न हों, और लहर समूह के मोर्चे पर गायब हो जाती हैं।सतह गुरुत्वाकर्षण तरंगों के लिए, पानी के कण वेग ज्यादातर मामलों में चरण वेग से बहुत छोटे होते हैं।]]


[[File:Wave packet propagation (phase faster than group, nondispersive).gif|thumb|फैलाव के बिना समूह वेग से अधिक चरण वेग का प्रदर्शन करने वाले एक तरंग पैकेट का प्रचार।]]
[[File:Wave packet propagation (phase faster than group, nondispersive).gif|thumb|फैलाव के बिना समूह वेग से अधिक चरण वेग का प्रदर्शन करने वाले एक तरंग पैकेट का प्रचार।]]
Line 16: Line 16:


:<math> \frac{\partial x}{\partial t} = -\frac{ \partial \phi }{\partial t} \frac{\partial x}{\partial \phi} = \frac{\omega}{k}.</math>
:<math> \frac{\partial x}{\partial t} = -\frac{ \partial \phi }{\partial t} \frac{\partial x}{\partial \phi} = \frac{\omega}{k}.</math>
परिणामस्वरूप हम कोणीय आवृत्ति और वेववेक्टर के बीच व्युत्क्रम संबंध देखते हैं। यदि तरंग में उच्च आवृत्ति दोलन हैं, तो चरण वेग स्थिर रहने के लिए तरंग वेक्टर को छोटा किया जाना चाहिए।<ref name="mathpages1">{{cite web|url=http://www.mathpages.com/home/kmath210/kmath210.htm |title=चरण, समूह और सिग्नल वेग|publisher=Mathpages.com |access-date=2011-07-24}}</ref> इसके अतिरिक्त, [[विद्युत चुम्बकीय विकिरण]] का चरण वेग - कुछ परिस्थितियों में (उदाहरण के लिए [[विषम फैलाव]]) - निर्वात में [[प्रकाश की गति]] से अधिक हो सकता है, लेकिन यह किसी भी अतिसूक्ष्म सूचना या ऊर्जा हस्तांतरण का संकेत नहीं देता है।{{cn|date=April 2020}} यह सैद्धांतिक रूप से [[अर्नोल्ड सोमरफेल्ड]] और लियोन ब्रिलौइन जैसे भौतिकविदों द्वारा वर्णित किया गया था।
परिणामस्वरूप, हम कोणीय आवृत्ति और तरंगवेक्टर के बीच व्युत्क्रम संबंध देखते हैं। यदि तरंग में उच्च आवृत्ति दोलन होते हैं, तो चरण वेग को स्थिर रखने के लिए तरंग दैर्ध्य को छोटा किया जाना चाहिए।<ref name="mathpages1">{{cite web|url=http://www.mathpages.com/home/kmath210/kmath210.htm |title=चरण, समूह और सिग्नल वेग|publisher=Mathpages.com |access-date=2011-07-24}}</ref> इसके अतिरिक्त, [[विद्युत चुम्बकीय विकिरण]] का चरण वेग - कुछ परिस्थितियों में (उदाहरण के लिए विषम फैलाव) - एक निर्वात में [[प्रकाश की गति]] से अधिक हो सकता है, लेकिन यह किसी भी सुपरमूलिनल सूचना या ऊर्जा हस्तांतरण का संकेत नहीं देता है। यह सैद्धांतिक रूप से भौतिकविदों जैसे [[अर्नोल्ड सोमरफेल्ड]] और लियोन ब्रिलौइन द्वारा वर्णित किया गया था।


== समूह वेग ==
== समूह वेग ==
Line 23: Line 23:


:<math> v_g = \frac{\partial \omega} {\partial k}.</math>
:<math> v_g = \frac{\partial \omega} {\partial k}.</math>
जब कई साइनसोइडल तरंगें एक साथ फैलती हैं, तो तरंगों के परिणामी सुपरपोज़िशन का परिणाम एक लिफाफा लहर के साथ-साथ एक वाहक तरंग भी हो सकता है जो लिफाफे के अंदर होती है। यह आमतौर पर वायरलेस संचार, [[मॉडुलन]], आयाम में परिवर्तन और/या डेटा भेजने के लिए चरण में प्रकट होता है। इस परिभाषा के लिए कुछ अंतर्ज्ञान प्राप्त करने के लिए, हम (कोज्या) तरंगों के सुपरपोजिशन पर विचार करते हैं {{mvar|f(x, t)}} उनके संबंधित कोणीय आवृत्तियों और वेववेक्टरों के साथ।
जब कई साइनसोइडल तरंगें एक साथ फैलती हैं, तो तरंगों के परिणामी सुपरपोजिशन का परिणाम "लिफाफा" लहर के साथ-साथ "वाहक" लहर हो सकता है जो लिफाफे के अंदर होता है। यह आमतौर पर बेतार संचार, [[मॉडुलन]], आयाम में परिवर्तन और/या चरण में डेटा भेजने के लिए नियोजित किया जाता है। इस परिभाषा के लिए कुछ अंतर्ज्ञान प्राप्त करने के लिए, हम उनके संबंधित कोणीय आवृत्तियों और तरंग सदिश के साथ (कोसाइन) तरंगों {{mvar|f(x, t)}} की एक अध्यारोपण पर विचार करते हैं।


:<math>\begin{align}
:<math>\begin{align}
Line 30: Line 30:
&= 2f_1(x,t)f_2(x,t).
&= 2f_1(x,t)f_2(x,t).
\end{align}</math>
\end{align}</math>
तो, हमारे पास दो तरंगों का एक उत्पाद है: एक लिफाफा लहर द्वारा गठित {{math| ''f''<sub>1</sub> }} और एक वाहक तरंग द्वारा गठित {{math| ''f''<sub>2</sub> }}. हम लिफाफा तरंग के वेग को समूह वेग कहते हैं। हम देखते हैं कि का चरण वेग {{math| ''f''<sub>1</sub> }} है
तो, हमारे पास दो तरंगों का एक उत्पाद है: {{math| ''f''<sub>1</sub> }}द्वारा निर्मित एक लिफाफा तरंग और {{math| ''f''<sub>2</sub> }}द्वारा निर्मित एक वाहक तरंग। हम लिफ़ाफ़े की गति को समूह वेग कहते हैं। हम देखते हैं कि {{math| ''f''<sub>1</sub> }}का चरण वेग है
:<math> \frac{\omega_2 - \omega_1}{k_2-k_1}.</math>
:<math> \frac{\omega_2 - \omega_1}{k_2-k_1}.</math>
निरंतर अंतर के मामले में, यह समूह वेग की परिभाषा बन जाती है।
सतत विभेदक मामले में, यह समूह वेग की परिभाषा बन जाती है।


== अपवर्तक सूचकांक ==
== अपवर्तक सूचकांक ==


इलेक्ट्रोमैग्नेटिक्स और ऑप्टिक्स के संदर्भ में, आवृत्ति कुछ कार्य है {{math|''ω''(''k'')}तरंग संख्या का }, इसलिए सामान्य तौर पर, चरण वेग और समूह वेग विशिष्ट माध्यम और आवृत्ति पर निर्भर करते हैं। प्रकाश की गति c और चरण वेग v के बीच का अनुपात<sub>''p''</sub> [[अपवर्तक सूचकांक]] के रूप में जाना जाता है, {{math|''n'' {{=}} ''c'' / ''v''<sub>''p''</sub> {{=}} ''ck'' / ''ω''}}.
इलेक्ट्रोमैग्नेटिक्स और ऑप्टिक्स के संदर्भ में, आवृत्ति तरंग संख्या का कुछ कार्य ω(k) है, इसलिए सामान्य तौर पर, चरण वेग और समूह वेग विशिष्ट माध्यम और आवृत्ति पर निर्भर करते हैं। प्रकाश c की गति और चरण वेग vp के बीच के अनुपात को [[अपवर्तक सूचकांक]] के रूप में जाना जाता है, {{math|''n'' {{=}} ''c'' / ''v''<sub>''p''</sub> {{=}} ''ck'' / ''ω''}}


इस तरह, हम इलेक्ट्रोमैग्नेटिक्स के लिए समूह वेग के लिए एक और रूप प्राप्त कर सकते हैं। लिखना {{math| ''n'' {{=}} ''n''(ω)}}, इस फॉर्म को प्राप्त करने का एक त्वरित तरीका निरीक्षण करना है
इस प्रकार, हम विद्युतचुंबकीय के समूह वेग के लिए एक अन्य रूप प्राप्त कर सकते हैं। {{math| ''n'' {{=}} ''n''(ω)}} लिखने पर, इस रूप को प्राप्त करने का एक त्वरित तरीका है निरीक्षण करना
:<math> k = \frac{1}{c}\omega n(\omega) \implies dk = \frac{1}{c}\left(n(\omega) + \omega \frac{\partial}{\partial \omega}n(\omega)\right)d\omega.</math>
:<math> k = \frac{1}{c}\omega n(\omega) \implies dk = \frac{1}{c}\left(n(\omega) + \omega \frac{\partial}{\partial \omega}n(\omega)\right)d\omega.</math>
इसके बाद हम उपरोक्त को प्राप्त करने के लिए पुनर्व्यवस्थित कर सकते हैं
इसके बाद हम उपरोक्त को प्राप्त करने के लिए पुनर्व्यवस्थित कर सकते हैं
:<math> v_g = \frac{\partial w}{\partial k} = \frac{c}{n+\omega\frac{\partial n}{\partial \omega}}.</math>
:<math> v_g = \frac{\partial w}{\partial k} = \frac{c}{n+\omega\frac{\partial n}{\partial \omega}}.</math>
इस सूत्र से, हम देखते हैं कि समूह वेग केवल चरण वेग के बराबर होता है जब अपवर्तक सूचकांक स्थिर होता है {{math|d''n'' / d''k'' {{=}} 0}}. जब ऐसा होता है, तो माध्यम को [[फैलाव (प्रकाशिकी)]] के विपरीत गैर-फैलाने वाला कहा जाता है, जहां माध्यम के विभिन्न गुण आवृत्ति पर निर्भर करते हैं {{mvar|ω}}. रिश्ता {{math|1=''ω'' = ''ω''(''k'')}} माध्यम के [[फैलाव संबंध]] के रूप में जाना जाता है।
इस सूत्र से, हम देखते हैं कि समूह वेग केवल चरण वेग के बराबर होता है जब अपवर्तक सूचकांक एक स्थिर {{math|d''n'' / d''k'' {{=}} 0}} होता है। जब ऐसा होता है, तो माध्यम को फैलाव के विपरीत गैर-फैलाने वाला कहा जाता है, जहां आवृत्ति {{mvar|ω}} के आधार पर माध्यम के विभिन्न गुण होते हैं। संबंध {{math|1=''ω'' = ''ω''(''k'')}} को माध्यम के [[फैलाव संबंध]] के रूप में जाना जाता है।


== यह भी देखें ==
== यह भी देखें ==
Line 59: Line 59:


==संदर्भ==
==संदर्भ==


=== फुटनोट्स ===
=== फुटनोट्स ===

Revision as of 15:17, 6 April 2023

गहरे पानी की सतह पर गुरुत्वाकर्षण तरंग के समूहों में फैलाव (जल तरंगें)। लाल वर्ग चरण वेग के साथ चलता है, और हरे घेरे समूह वेग के साथ फैलते हैं। इस गहरे पानी के मामले में, चरण वेग समूह वेग का दोगुना है। आकृति के बाएँ से दाएँ जाने पर लाल वर्ग दो हरे वृत्तों से आगे निकल जाता है। ऐसा लगता है कि नई तरंगें एक तरंग समूह के पीछे उभरती हैं, आयाम में तब तक बढ़ती हैं जब तक कि वे समूह के केंद्र में न हों, और लहर समूह के मोर्चे पर गायब हो जाती हैं।सतह गुरुत्वाकर्षण तरंगों के लिए, पानी के कण वेग ज्यादातर मामलों में चरण वेग से बहुत छोटे होते हैं।
फैलाव के बिना समूह वेग से अधिक चरण वेग का प्रदर्शन करने वाले एक तरंग पैकेट का प्रचार।
यह समूह वेग और चरण वेग के साथ एक तरंग को अलग-अलग दिशाओं में दिखाता है। समूह वेग धनात्मक है, जबकि चरण वेग ऋणात्मक है।[1]

तरंग का चरण वेग वह दर है जिस पर तरंग किसी भी माध्यम में प्रचारित होती है। यह वह वेग है जिस पर तरंग के किसी एक आवृत्ति घटक का चरण यात्रा करता है। इस तरह के एक घटक के लिए, तरंग का कोई भी चरण (उदाहरण के लिए, शिखा) चरण वेग से यात्रा करता हुआ प्रतीत होगा। चरण वेग तरंग दैर्ध्य λ (लैम्ब्डा) और समय अवधि T के रूप में दिया जाता है

समान रूप से, तरंग की कोणीय आवृत्ति ω के संदर्भ में, जो समय की प्रति इकाई कोणीय परिवर्तन को निर्दिष्ट करता है, और तरंग संख्या (या कोणीय तरंग संख्या) k, जो अंतरिक्ष की प्रति इकाई कोणीय परिवर्तन का प्रतिनिधित्व करती है,

इस समीकरण के लिए कुछ बुनियादी अंतर्ज्ञान प्राप्त करने के लिए, हम एक प्रसार (कोज्या) तरंग A cos(kxωt) पर विचार करते हैं। हम देखना चाहते हैं कि लहर का एक विशेष चरण कितनी तेजी से यात्रा करता है। उदाहरण के लिए, हम kx - ωt = 0 चुन सकते हैं, पहले शिखर का चरण। इसका तात्पर्य kx = ωt और इसलिए v = x / t = ω / k है।

औपचारिक रूप से, हम चरण देते हैं φ = kx - ωt और तुरंत देखें ω = -dφ / dt और k = dφ / dx. तो, यह तुरंत उसका अनुसरण करता है

परिणामस्वरूप, हम कोणीय आवृत्ति और तरंगवेक्टर के बीच व्युत्क्रम संबंध देखते हैं। यदि तरंग में उच्च आवृत्ति दोलन होते हैं, तो चरण वेग को स्थिर रखने के लिए तरंग दैर्ध्य को छोटा किया जाना चाहिए।[2] इसके अतिरिक्त, विद्युत चुम्बकीय विकिरण का चरण वेग - कुछ परिस्थितियों में (उदाहरण के लिए विषम फैलाव) - एक निर्वात में प्रकाश की गति से अधिक हो सकता है, लेकिन यह किसी भी सुपरमूलिनल सूचना या ऊर्जा हस्तांतरण का संकेत नहीं देता है। यह सैद्धांतिक रूप से भौतिकविदों जैसे अर्नोल्ड सोमरफेल्ड और लियोन ब्रिलौइन द्वारा वर्णित किया गया था।

समूह वेग

1डी समतल तरंगों (नीला) का एक सुपरपोज़िशन, प्रत्येक एक अलग चरण वेग (नीले डॉट्स द्वारा पता लगाया गया) पर यात्रा करता है, जिसके परिणामस्वरूप गॉसियन वेव पैकेट (लाल) होता है जो समूह वेग (लाल रेखा द्वारा पता लगाया जाता है) पर फैलता है।

तरंगों के संग्रह के समूह वेग को इस रूप में परिभाषित किया गया है

जब कई साइनसोइडल तरंगें एक साथ फैलती हैं, तो तरंगों के परिणामी सुपरपोजिशन का परिणाम "लिफाफा" लहर के साथ-साथ "वाहक" लहर हो सकता है जो लिफाफे के अंदर होता है। यह आमतौर पर बेतार संचार, मॉडुलन, आयाम में परिवर्तन और/या चरण में डेटा भेजने के लिए नियोजित किया जाता है। इस परिभाषा के लिए कुछ अंतर्ज्ञान प्राप्त करने के लिए, हम उनके संबंधित कोणीय आवृत्तियों और तरंग सदिश के साथ (कोसाइन) तरंगों f(x, t) की एक अध्यारोपण पर विचार करते हैं।

तो, हमारे पास दो तरंगों का एक उत्पाद है: f1 द्वारा निर्मित एक लिफाफा तरंग और f2 द्वारा निर्मित एक वाहक तरंग। हम लिफ़ाफ़े की गति को समूह वेग कहते हैं। हम देखते हैं कि f1 का चरण वेग है

सतत विभेदक मामले में, यह समूह वेग की परिभाषा बन जाती है।

अपवर्तक सूचकांक

इलेक्ट्रोमैग्नेटिक्स और ऑप्टिक्स के संदर्भ में, आवृत्ति तरंग संख्या का कुछ कार्य ω(k) है, इसलिए सामान्य तौर पर, चरण वेग और समूह वेग विशिष्ट माध्यम और आवृत्ति पर निर्भर करते हैं। प्रकाश c की गति और चरण वेग vp के बीच के अनुपात को अपवर्तक सूचकांक के रूप में जाना जाता है, n = c / vp = ck / ω

इस प्रकार, हम विद्युतचुंबकीय के समूह वेग के लिए एक अन्य रूप प्राप्त कर सकते हैं। n = n(ω) लिखने पर, इस रूप को प्राप्त करने का एक त्वरित तरीका है निरीक्षण करना

इसके बाद हम उपरोक्त को प्राप्त करने के लिए पुनर्व्यवस्थित कर सकते हैं

इस सूत्र से, हम देखते हैं कि समूह वेग केवल चरण वेग के बराबर होता है जब अपवर्तक सूचकांक एक स्थिर dn / dk = 0 होता है। जब ऐसा होता है, तो माध्यम को फैलाव के विपरीत गैर-फैलाने वाला कहा जाता है, जहां आवृत्ति ω के आधार पर माध्यम के विभिन्न गुण होते हैं। संबंध ω = ω(k) को माध्यम के फैलाव संबंध के रूप में जाना जाता है।

यह भी देखें

संदर्भ

फुटनोट्स

  1. Nemirovsky, Jonathan; Rechtsman, Mikael C; Segev, Mordechai (9 April 2012). "नकारात्मक विकिरण दबाव और नकारात्मक प्रभावी अपवर्तक सूचकांक ढांकता हुआ बायरफ्रिंजेंस के माध्यम से". Optics Express. 20 (8): 8907–8914. Bibcode:2012OExpr..20.8907N. doi:10.1364/OE.20.008907. PMID 22513601.
  2. "चरण, समूह और सिग्नल वेग". Mathpages.com. Retrieved 2011-07-24.

ग्रन्थसूची