संकेतक फलन: Difference between revisions

From Vigyanwiki
m (Sugatha moved page संकेतक समारोह to संकेतक फलन without leaving a redirect)
No edit summary
Line 1: Line 1:
{{Short description|Mathematical function characterizing set membership}}
{{Short description|Mathematical function characterizing set membership}}
{{About|the 0-1 indicator function|the 0-infinity indicator function|characteristic function (convex analysis)}}
{{About|the 0-1 indicator function|the 0-infinity indicator function|characteristic function (convex analysis)}}
{{More footnotes|date=December 2009}}
{{Use American English|date = March 2019}}


[[Image:Indicator function illustration.png|right|thumb|एक वर्ग द्वि-आयामी डोमेन (सेट {{mvar|X}}): उठा हुआ हिस्सा उन द्वि-आयामी बिंदुओं को ओवरले करता है जो संकेतित उपसमुच्चय के सदस्य हैं ({{mvar|A}}).]]गणित में, एक संकेतक फ़ंक्शन या एक [[सेट (गणित)]] के [[सबसेट]] का एक विशिष्ट कार्य एक फ़ंक्शन (गणित) है जो सबसेट के तत्वों को एक और अन्य सभी तत्वों को शून्य पर मैप करता है। यानी अगर {{mvar|A}} किसी समुच्चय का उपसमुच्चय है {{mvar|X}}, किसी के पास <math>\mathbf{1}_{A}(x)=1</math> अगर <math>x\in A,</math> और <math>\mathbf{1}_{A}(x)=0</math> अन्यथा कहाँ <math>\mathbf{1}_A</math> सूचक समारोह के लिए एक सामान्य संकेतन है। अन्य सामान्य संकेतन हैं <math>I_A,</math> और <math>\chi_A.</math>
[[Image:Indicator function illustration.png|right|thumb|वर्ग द्वि-आयामी डोमेन (सेट {{mvar|X}}): उठा हुआ हिस्सा उन द्वि-आयामी बिंदुओं को ओवरले करता है जो संकेतित उपसमुच्चय के सदस्य हैं ({{mvar|A}}).]]गणित में, संकेतक फ़ंक्शन या [[सेट (गणित)]] के [[सबसेट]] का विशिष्ट कार्य फ़ंक्शन (गणित) है जो सबसेट के तत्वों को और अन्य सभी तत्वों को शून्य पर मैप करता है। अर्थात यदि {{mvar|A}} किसी समुच्चय का उपसमुच्चय है {{mvar|X}}, किसी के पास <math>\mathbf{1}_{A}(x)=1</math> यदि <math>x\in A,</math> और <math>\mathbf{1}_{A}(x)=0</math> अन्यथा कहाँ <math>\mathbf{1}_A</math> सूचक समारोह के लिए सामान्य संकेतन है। अन्य सामान्य संकेतन हैं <math>I_A,</math> और <math>\chi_A.</math>
का सूचक कार्य {{mvar|A}} से संबंधित संपत्ति का [[आइवरसन ब्रैकेट]] है {{mvar|A}}; वह है,
का सूचक कार्य {{mvar|A}} से संबंधित संपत्ति का [[आइवरसन ब्रैकेट]] है {{mvar|A}}; वह है,
:<math>\mathbf{1}_{A}(x)=[x\in A].</math>
:<math>\mathbf{1}_{A}(x)=[x\in A].</math>
Line 10: Line 8:


== परिभाषा ==
== परिभाषा ==
एक उपसमुच्चय का सूचक कार्य {{mvar|A}एक सेट का {{mvar|X}} एक कार्य है
<nowiki>उपसमुच्चय का सूचक कार्य {{mvar|A}सेट का </nowiki>{{mvar|X}} कार्य है


<math display=block>\mathbf{1}_A \colon X \to \{ 0, 1 \} </math>
<math display=block>\mathbf{1}_A \colon X \to \{ 0, 1 \} </math>
Line 27: Line 25:
अंकन <math>\chi_A</math> [[उत्तल विश्लेषण]] में विशेषता फ़ंक्शन (उत्तल विश्लेषण) को निरूपित करने के लिए भी उपयोग किया जाता है, जिसे संकेतक फ़ंक्शन की मानक परिभाषा के गुणक व्युत्क्रम का उपयोग करते हुए परिभाषित किया गया है।
अंकन <math>\chi_A</math> [[उत्तल विश्लेषण]] में विशेषता फ़ंक्शन (उत्तल विश्लेषण) को निरूपित करने के लिए भी उपयोग किया जाता है, जिसे संकेतक फ़ंक्शन की मानक परिभाषा के गुणक व्युत्क्रम का उपयोग करते हुए परिभाषित किया गया है।


सांख्यिकी में एक संबंधित अवधारणा एक [[डमी चर (सांख्यिकी)]] की है। (यह डमी चर के साथ भ्रमित नहीं होना चाहिए क्योंकि यह शब्द आमतौर पर गणित में प्रयोग किया जाता है, जिसे [[मुक्त चर और बाध्य चर]] भी कहा जाता है।)
सांख्यिकी में संबंधित अवधारणा [[डमी चर (सांख्यिकी)]] की है। (यह डमी चर के साथ भ्रमित नहीं होना चाहिए क्योंकि यह शब्द सामान्यतः गणित में प्रयोग किया जाता है, जिसे [[मुक्त चर और बाध्य चर]] भी कहा जाता है।)


विशेषता कार्य (संभाव्यता सिद्धांत) शब्द का संभाव्यता सिद्धांत में एक असंबंधित अर्थ है। इस कारण से, संभाव्यतावादियों की सूची यहां लगभग विशेष रूप से परिभाषित फ़ंक्शन के लिए संकेतक फ़ंक्शन शब्द का उपयोग करती है, जबकि अन्य क्षेत्रों के गणितज्ञों द्वारा 'विशेषता फ़ंक्शन' शब्द का उपयोग करने की अधिक संभावना है।{{efn|name=χαρακτήρ}} फ़ंक्शन का वर्णन करने के लिए जो एक सेट में सदस्यता इंगित करता है।
विशेषता कार्य (संभाव्यता सिद्धांत) शब्द का संभाव्यता सिद्धांत में असंबंधित अर्थ है। इस कारण से, संभाव्यतावादियों की सूची यहां लगभग विशेष रूप से परिभाषित फ़ंक्शन के लिए संकेतक फ़ंक्शन शब्द का उपयोग करती है, जबकि अन्य क्षेत्रों के गणितज्ञों द्वारा 'विशेषता फ़ंक्शन' शब्द का उपयोग करने की अधिक संभावना है।{{efn|name=χαρακτήρ}} फ़ंक्शन का वर्णन करने के लिए जो सेट में सदस्यता इंगित करता है।


[[फजी लॉजिक]] और [[बहु-मूल्यवान तर्क]]शास्त्र में | आधुनिक बहु-मूल्यवान तर्क, विधेय संभाव्यता वितरण के विशिष्ट कार्य (संभाव्यता सिद्धांत) हैं। अर्थात्, विधेय के सख्त सच्चे/गलत मूल्यांकन को सत्य की डिग्री के रूप में व्याख्या की गई मात्रा से बदल दिया जाता है।
[[फजी लॉजिक]] और [[बहु-मूल्यवान तर्क]]शास्त्र में | आधुनिक बहु-मूल्यवान तर्क, विधेय संभाव्यता वितरण के विशिष्ट कार्य (संभाव्यता सिद्धांत) हैं। अर्थात्, विधेय के सख्त सच्चे/गलत मूल्यांकन को सत्य की डिग्री के रूप में व्याख्या की गई मात्रा से बदल दिया जाता है।


== मूल गुण ==
== मूल गुण ==
एक सबसेट का सूचक या विशेषता कार्य (गणित)। {{mvar|A}} कुछ सेट का {{mvar|X}} मानचित्र (गणित) के तत्व {{mvar|X}} किसी फ़ंक्शन की सीमा तक <math>\{0,1\}</math>.
सबसेट का सूचक या विशेषता कार्य (गणित)। {{mvar|A}} कुछ सेट का {{mvar|X}} मानचित्र (गणित) के तत्व {{mvar|X}} किसी फ़ंक्शन की सीमा तक <math>\{0,1\}</math>.


यह मानचित्रण केवल तभी आच्छादित होता है {{mvar|A}} का एक गैर-खाली उचित उपसमुच्चय है {{mvar|X}}. अगर <math>A \equiv X,</math> तब <math>\mathbf{1}_A=1.</math> इसी तरह के तर्क से, अगर <math>A\equiv\emptyset</math> तब <math>\mathbf{1}_A=0.</math>
यह मानचित्रण केवल तभी आच्छादित होता है {{mvar|A}} का गैर-खाली उचित उपसमुच्चय है {{mvar|X}}. यदि <math>A \equiv X,</math> तब <math>\mathbf{1}_A=1.</math> इसी तरह के तर्क से, यदि <math>A\equiv\emptyset</math> तब <math>\mathbf{1}_A=0.</math>
निम्नलिखित में, डॉट गुणन का प्रतिनिधित्व करता है, <math>1\cdot1 = 1,</math> <math>1\cdot0 = 0,</math> आदि + और - जोड़ और घटाव का प्रतिनिधित्व करते हैं।<math>\cap </math>और<math>\cup </math>चौराहे और संघ हैं, क्रमशः।
निम्नलिखित में, डॉट गुणन का प्रतिनिधित्व करता है, <math>1\cdot1 = 1,</math> <math>1\cdot0 = 0,</math> आदि + और - जोड़ और घटाव का प्रतिनिधित्व करते हैं।<math>\cap </math>और<math>\cup </math>चौराहे और संघ हैं, क्रमशः।


अगर <math>A</math> और <math>B</math> के दो उपसमुच्चय हैं <math>X,</math> तब
यदि <math>A</math> और <math>B</math> के दो उपसमुच्चय हैं <math>X,</math> तब
<math display=block>\begin{align}
<math display=block>\begin{align}
\mathbf{1}_{A\cap B} = \min\{\mathbf{1}_A,\mathbf{1}_B\} = \mathbf{1}_A \cdot\mathbf{1}_B, \\
\mathbf{1}_{A\cap B} = \min\{\mathbf{1}_A,\mathbf{1}_B\} = \mathbf{1}_A \cdot\mathbf{1}_B, \\
Line 46: Line 44:
और के [[पूरक (सेट सिद्धांत)]] के सूचक समारोह <math>A</math> अर्थात। <math>A^C</math> है:
और के [[पूरक (सेट सिद्धांत)]] के सूचक समारोह <math>A</math> अर्थात। <math>A^C</math> है:
<math display=block>\mathbf{1}_{A^\complement} = 1-\mathbf{1}_A.</math>
<math display=block>\mathbf{1}_{A^\complement} = 1-\mathbf{1}_A.</math>
अधिक आम तौर पर, मान लीजिए <math>A_1, \dotsc, A_n</math> के उपसमूहों का संग्रह है {{mvar|X}}. किसी के लिए <math>x \in X:</math>
अधिक सामान्यतः, मान लीजिए <math>A_1, \dotsc, A_n</math> के उपसमूहों का संग्रह है {{mvar|X}}. किसी के लिए <math>x \in X:</math>


<math display=block> \prod_{k \in I} ( 1 - \mathbf{1}_{A_k}(x))</math>
<math display=block> \prod_{k \in I} ( 1 - \mathbf{1}_{A_k}(x))</math>
Line 55: Line 53:


<math display=block> \mathbf{1}_{\bigcup_{k} A_k}= 1 - \sum_{F \subseteq \{1, 2, \dotsc, n\}} (-1)^{|F|} \mathbf{1}_{\bigcap_F A_k} = \sum_{\emptyset \neq F \subseteq \{1, 2, \dotsc, n\}} (-1)^{|F|+1} \mathbf{1}_{\bigcap_F A_k} </math>
<math display=block> \mathbf{1}_{\bigcup_{k} A_k}= 1 - \sum_{F \subseteq \{1, 2, \dotsc, n\}} (-1)^{|F|} \mathbf{1}_{\bigcap_F A_k} = \sum_{\emptyset \neq F \subseteq \{1, 2, \dotsc, n\}} (-1)^{|F|+1} \mathbf{1}_{\bigcap_F A_k} </math>
कहाँ <math>|F|</math> की [[प्रमुखता]] है {{mvar|F}}. यह समावेश-बहिष्करण के सिद्धांत का एक रूप है।
कहाँ <math>|F|</math> की [[प्रमुखता]] है {{mvar|F}}. यह समावेश-बहिष्करण के सिद्धांत का रूप है।


जैसा कि पिछले उदाहरण द्वारा सुझाया गया है, इंडिकेटर फ़ंक्शन [[ साहचर्य ]] में एक उपयोगी नोटेशनल डिवाइस है। संकेतन का प्रयोग अन्य स्थानों पर भी किया जाता है, उदाहरण के लिए प्रायिकता सिद्धांत में: यदि {{mvar|X}} संभाव्यता माप के साथ एक प्रायिकता स्थान है <math>\operatorname{P}</math> और {{mvar|A}} एक माप (गणित) है, फिर <math>\mathbf{1}_A</math> एक यादृच्छिक चर बन जाता है जिसका अपेक्षित मान की प्रायिकता के बराबर होता है {{mvar|A}}:
जैसा कि पिछले उदाहरण द्वारा सुझाया गया है, इंडिकेटर फ़ंक्शन [[ साहचर्य |साहचर्य]] में उपयोगी नोटेशनल डिवाइस है। संकेतन का प्रयोग अन्य स्थानों पर भी किया जाता है, उदाहरण के लिए प्रायिकता सिद्धांत में: यदि {{mvar|X}} संभाव्यता माप के साथ प्रायिकता स्थान है <math>\operatorname{P}</math> और {{mvar|A}} माप (गणित) है, फिर <math>\mathbf{1}_A</math> यादृच्छिक चर बन जाता है जिसका अपेक्षित मान की प्रायिकता के बराबर होता है {{mvar|A}}:


<math display=block>\operatorname{E}(\mathbf{1}_A)= \int_{X} \mathbf{1}_A(x)\,d\operatorname{P} = \int_{A} d\operatorname{P} = \operatorname{P}(A).</math>
<math display=block>\operatorname{E}(\mathbf{1}_A)= \int_{X} \mathbf{1}_A(x)\,d\operatorname{P} = \int_{A} d\operatorname{P} = \operatorname{P}(A).</math>
मार्कोव की असमानता के एक सरल प्रमाण में इस पहचान का उपयोग किया जाता है।
मार्कोव की असमानता के सरल प्रमाण में इस पहचान का उपयोग किया जाता है।


कई मामलों में, जैसे [[आदेश सिद्धांत]], संकेतक फ़ंक्शन के व्युत्क्रम को परिभाषित किया जा सकता है। प्राथमिक [[संख्या सिद्धांत]], मोबियस फ़ंक्शन में संकेतक फ़ंक्शन के व्युत्क्रम के सामान्यीकरण के रूप में इसे आमतौर पर सामान्यीकृत मोबियस फ़ंक्शन कहा जाता है। (शास्त्रीय पुनरावर्तन सिद्धांत में व्युत्क्रम के उपयोग के बारे में नीचे पैराग्राफ देखें।)
कई स्थितियों में, जैसे [[आदेश सिद्धांत]], संकेतक फ़ंक्शन के व्युत्क्रम को परिभाषित किया जा सकता है। प्राथमिक [[संख्या सिद्धांत]], मोबियस फ़ंक्शन में संकेतक फ़ंक्शन के व्युत्क्रम के सामान्यीकरण के रूप में इसे सामान्यतः सामान्यीकृत मोबियस फ़ंक्शन कहा जाता है। (मौलिक पुनरावर्तन सिद्धांत में व्युत्क्रम के उपयोग के बारे में नीचे पैराग्राफ देखें।)


== माध्य, विचरण और सहप्रसरण ==
== माध्य, विचरण और सहप्रसरण ==
एक संभाव्यता स्थान दिया गया <math>\textstyle (\Omega, \mathcal F, \operatorname{P})</math> साथ <math>A \in \mathcal F,</math> सूचक यादृच्छिक चर <math>\mathbf{1}_A \colon \Omega \rightarrow \mathbb{R}</math> द्वारा परिभाषित किया गया है <math>\mathbf{1}_A (\omega) = 1 </math> अगर <math> \omega \in A,</math> अन्यथा <math>\mathbf{1}_A (\omega) = 0.</math>
संभाव्यता स्थान दिया गया <math>\textstyle (\Omega, \mathcal F, \operatorname{P})</math> साथ <math>A \in \mathcal F,</math> सूचक यादृच्छिक चर <math>\mathbf{1}_A \colon \Omega \rightarrow \mathbb{R}</math> द्वारा परिभाषित किया गया है <math>\mathbf{1}_A (\omega) = 1 </math> यदि <math> \omega \in A,</math> अन्यथा <math>\mathbf{1}_A (\omega) = 0.</math>
;[[अर्थ]]: <math>\operatorname{E}(\mathbf{1}_A (\omega)) = \operatorname{P}(A) </math> (जिसे फंडामेंटल ब्रिज भी कहा जाता है)।
;[[अर्थ]]: <math>\operatorname{E}(\mathbf{1}_A (\omega)) = \operatorname{P}(A) </math> (जिसे फंडामेंटल ब्रिज भी कहा जाता है)।


Line 73: Line 71:


== पुनरावर्तन सिद्धांत में विशेषता कार्य, गोडेल और क्लेन का प्रतिनिधित्व समारोह ==
== पुनरावर्तन सिद्धांत में विशेषता कार्य, गोडेल और क्लेन का प्रतिनिधित्व समारोह ==
कर्ट गोडेल ने अपने 1934 के पेपर में औपचारिक गणितीय प्रणालियों के अनिर्णीत प्रस्तावों पर प्रतिनिधित्व समारोह का वर्णन किया (¬ तार्किक उलटा इंगित करता है, यानी नहीं):<ref name=Martin-1965>{{cite book |pages=41–74 |editor-link=Martin Davis (mathematician) |editor-first=Martin |editor-last=Davis |year=1965 |title=अनिर्णीत|publisher=Raven Press Books |place=New York, NY}}</ref>{{rp|page=42}}
कर्ट गोडेल ने अपने 1934 के पेपर में औपचारिक गणितीय प्रणालियों के अनिर्णीत प्रस्तावों पर प्रतिनिधित्व समारोह का वर्णन किया (¬ तार्किक उलटा इंगित करता है, अर्थात नहीं):<ref name=Martin-1965>{{cite book |pages=41–74 |editor-link=Martin Davis (mathematician) |editor-first=Martin |editor-last=Davis |year=1965 |title=अनिर्णीत|publisher=Raven Press Books |place=New York, NY}}</ref>{{rp|page=42}}


{{blockquote|1=There shall correspond to each class or relation {{mvar|R}} a representing function <math>\phi(x_1, \ldots x_n) = 0</math> if <math>R(x_1,\ldots x_n)</math> and <math>\phi(x_1,\ldots x_n) = 1</math> if <math>\neg R(x_1,\ldots x_n).</math>}}
{{blockquote|1=There shall correspond to each class or relation {{mvar|R}} a representing function <math>\phi(x_1, \ldots x_n) = 0</math> if <math>R(x_1,\ldots x_n)</math> and <math>\phi(x_1,\ldots x_n) = 1</math> if <math>\neg R(x_1,\ldots x_n).</math>}}


[[स्टीफन क्लेन]] एक समारोह के रूप में [[आदिम पुनरावर्ती कार्य]]ों के संदर्भ में एक ही परिभाषा प्रस्तुत करता है {{mvar|φ}} एक विधेय का {{mvar|P}} मान लेता है {{math|0}} यदि विधेय सत्य है और {{math|1}} यदि विधेय असत्य है।<ref name=Kleene1952>{{cite book |last=Kleene |first=Stephen |author-link=Stephen Kleene |year=1971 |orig-year=1952 |title=मेटामैथमैटिक्स का परिचय|page=227 |publisher=Wolters-Noordhoff Publishing and North Holland Publishing Company |location=Netherlands |edition=Sixth reprint, with corrections}}</ref>
[[स्टीफन क्लेन]] समारोह के रूप में [[आदिम पुनरावर्ती कार्य]]ों के संदर्भ में ही परिभाषा प्रस्तुत करता है {{mvar|φ}} विधेय का {{mvar|P}} मान लेता है {{math|0}} यदि विधेय सत्य है और {{math|1}} यदि विधेय असत्य है।<ref name=Kleene1952>{{cite book |last=Kleene |first=Stephen |author-link=Stephen Kleene |year=1971 |orig-year=1952 |title=मेटामैथमैटिक्स का परिचय|page=227 |publisher=Wolters-Noordhoff Publishing and North Holland Publishing Company |location=Netherlands |edition=Sixth reprint, with corrections}}</ref>
उदाहरण के लिए, क्योंकि विशेषता कार्यों का उत्पाद <math>\phi_1 * \phi_2 * \cdots * \phi_n = 0</math> जब भी कोई एक कार्य बराबर होता है {{math|0}}, यह तार्किक OR: IF की भूमिका निभाता है <math>\phi_1 = 0</math> या <math>\phi_2 = 0</math> या या <math>\phi_n = 0</math> फिर उनका उत्पाद है {{math|0}}. आधुनिक पाठक को प्रतिनिधित्व करने वाले कार्य के तार्किक व्युत्क्रमण के रूप में क्या दिखाई देता है, अर्थात प्रतिनिधित्व करने वाला कार्य है {{math|0}} जब समारोह {{mvar|R}} सत्य या संतुष्ट है, तार्किक कार्यों OR, AND, और IMPLY की क्लेन की परिभाषा में उपयोगी भूमिका निभाता है,<ref name=Kleene1952 />{{rp|228}} परिबद्ध-<ref name=Kleene1952 />{{rp|228}} और असीमित-<ref name=Kleene1952 />{{rp|279 ff}} mu ऑपरेटर्स और CASE फ़ंक्शन।<ref name=Kleene1952 />{{rp|229}}
उदाहरण के लिए, क्योंकि विशेषता कार्यों का उत्पाद <math>\phi_1 * \phi_2 * \cdots * \phi_n = 0</math> जब भी कोई कार्य बराबर होता है {{math|0}}, यह तार्किक OR: IF की भूमिका निभाता है <math>\phi_1 = 0</math> या <math>\phi_2 = 0</math> या या <math>\phi_n = 0</math> फिर उनका उत्पाद है {{math|0}}. आधुनिक पाठक को प्रतिनिधित्व करने वाले कार्य के तार्किक व्युत्क्रमण के रूप में क्या दिखाई देता है, अर्थात प्रतिनिधित्व करने वाला कार्य है {{math|0}} जब समारोह {{mvar|R}} सत्य या संतुष्ट है, तार्किक कार्यों OR, AND, और IMPLY की क्लेन की परिभाषा में उपयोगी भूमिका निभाता है,<ref name=Kleene1952 />{{rp|228}} परिबद्ध-<ref name=Kleene1952 />{{rp|228}} और असीमित-<ref name=Kleene1952 />{{rp|279 ff}} mu ऑपरेटर्स और CASE फ़ंक्शन।<ref name=Kleene1952 />{{rp|229}}


== फ़ज़ी सेट थ्योरी == में विशेषता कार्य
== फ़ज़ी सेट थ्योरी == में विशेषता कार्य
शास्त्रीय गणित में, समुच्चयों के विशिष्ट फलन केवल मान लेते हैं {{math|1}} (सदस्य) या {{math|0}} (गैर-सदस्य)। [[फ़ज़ी सेट सिद्धांत]] में, विशिष्ट कार्यों को वास्तविक इकाई अंतराल में मान लेने के लिए सामान्यीकृत किया जाता है {{closed-closed|0, 1}}, या अधिक आम तौर पर, कुछ [[सार्वभौमिक बीजगणित]] या [[संरचना (गणितीय तर्क)]] में (आमतौर पर कम से कम [[आंशिक रूप से आदेशित सेट]] या जाली (क्रम) होना आवश्यक है)। इस तरह के सामान्यीकृत विशेषता कार्यों को आमतौर पर [[सदस्यता समारोह (गणित)]] कहा जाता है, और संबंधित सेटों को फ़ज़ी सेट कहा जाता है। फ़ज़ी सेट कई वास्तविक दुनिया के [[विधेय (गणित)]] जैसे लंबे, गर्म, आदि में देखे गए सत्य की सदस्यता की डिग्री में क्रमिक परिवर्तन का मॉडल बनाते हैं।
मौलिक गणित में, समुच्चयों के विशिष्ट फलन केवल मान लेते हैं {{math|1}} (सदस्य) या {{math|0}} (गैर-सदस्य)। [[फ़ज़ी सेट सिद्धांत]] में, विशिष्ट कार्यों को वास्तविक इकाई अंतराल में मान लेने के लिए सामान्यीकृत किया जाता है {{closed-closed|0, 1}}, या अधिक सामान्यतः, कुछ [[सार्वभौमिक बीजगणित]] या [[संरचना (गणितीय तर्क)]] में (सामान्यतः कम से कम [[आंशिक रूप से आदेशित सेट]] या जाली (क्रम) होना आवश्यक है)। इस तरह के सामान्यीकृत विशेषता कार्यों को सामान्यतः [[सदस्यता समारोह (गणित)]] कहा जाता है, और संबंधित सेटों को फ़ज़ी सेट कहा जाता है। फ़ज़ी सेट कई वास्तविक दुनिया के [[विधेय (गणित)]] जैसे लंबे, गर्म, आदि में देखे गए सत्य की सदस्यता की डिग्री में क्रमिक परिवर्तन का मॉडल बनाते हैं।


== सूचक समारोह के डेरिवेटिव्स ==
== सूचक समारोह के डेरिवेटिव्स ==
{{Main|Laplacian of the indicator}}
{{Main|Laplacian of the indicator}}
एक विशेष संकेतक फ़ंक्शन [[हैवीसाइड स्टेप फंक्शन]] है
विशेष संकेतक फ़ंक्शन [[हैवीसाइड स्टेप फंक्शन]] है
<math display="block">H(x) := \mathbf{1}_{x > 0}</math>
<math display="block">H(x) := \mathbf{1}_{x > 0}</math>
हीविसाइड स्टेप फंक्शन का [[वितरण व्युत्पन्न]] [[डिराक डेल्टा समारोह]] के बराबर है, यानी
हीविसाइड स्टेप फंक्शन का [[वितरण व्युत्पन्न]] [[डिराक डेल्टा समारोह]] के बराबर है, अर्थात
<math display=block>\frac{d H(x)}{dx}=\delta(x)</math>
<math display=block>\frac{d H(x)}{dx}=\delta(x)</math>
और इसी तरह का वितरण व्युत्पन्न <math display="block">G(x) := \mathbf{1}_{x < 0}</math> है
और इसी तरह का वितरण व्युत्पन्न <math display="block">G(x) := \mathbf{1}_{x < 0}</math> है
<math display=block>\frac{d G(x)}{dx}=-\delta(x)</math>
<math display=block>\frac{d G(x)}{dx}=-\delta(x)</math>
इस प्रकार हेविसाइड स्टेप फ़ंक्शन के व्युत्पन्न को सकारात्मक अर्ध-रेखा द्वारा दिए गए डोमेन की सीमा पर आवक सामान्य व्युत्पन्न के रूप में देखा जा सकता है। उच्च आयामों में, व्युत्पन्न स्वाभाविक रूप से आवक सामान्य व्युत्पन्न के लिए सामान्यीकृत होता है, जबकि हीविसाइड स्टेप फ़ंक्शन स्वाभाविक रूप से कुछ डोमेन के संकेतक फ़ंक्शन के लिए सामान्य होता है {{mvar|D}}. की सतह {{mvar|D}} द्वारा दर्शाया जाएगा {{mvar|S}}. आगे बढ़ते हुए, यह व्युत्पन्न किया जा सकता है कि संकेतक का लाप्लासियन #Dirac सतह डेल्टा फ़ंक्शन एक 'सतह डेल्टा फ़ंक्शन' को जन्म देता है, जिसे इसके द्वारा इंगित किया जा सकता है <math>\delta_S(\mathbf{x})</math>:
इस प्रकार हेविसाइड स्टेप फ़ंक्शन के व्युत्पन्न को सकारात्मक अर्ध-रेखा द्वारा दिए गए डोमेन की सीमा पर आवक सामान्य व्युत्पन्न के रूप में देखा जा सकता है। उच्च आयामों में, व्युत्पन्न स्वाभाविक रूप से आवक सामान्य व्युत्पन्न के लिए सामान्यीकृत होता है, जबकि हीविसाइड स्टेप फ़ंक्शन स्वाभाविक रूप से कुछ डोमेन के संकेतक फ़ंक्शन के लिए सामान्य होता है {{mvar|D}}. की सतह {{mvar|D}} द्वारा दर्शाया जाएगा {{mvar|S}}. आगे बढ़ते हुए, यह व्युत्पन्न किया जा सकता है कि संकेतक का लाप्लासियन #Dirac सतह डेल्टा फ़ंक्शन 'सतह डेल्टा फ़ंक्शन' को जन्म देता है, जिसे इसके द्वारा इंगित किया जा सकता है <math>\delta_S(\mathbf{x})</math>:
<math display=block>\delta_S(\mathbf{x}) = -\mathbf{n}_x \cdot \nabla_x\mathbf{1}_{\mathbf{x}\in D}</math>
<math display=block>\delta_S(\mathbf{x}) = -\mathbf{n}_x \cdot \nabla_x\mathbf{1}_{\mathbf{x}\in D}</math>
कहाँ {{mvar|n}} सतह का बाहरी [[सामान्य (ज्यामिति)]] है {{mvar|S}}. इस 'सरफेस डेल्टा फंक्शन' में निम्नलिखित गुण हैं:<ref>{{cite journal |last=Lange |first=Rutger-Jan |year=2012 |title=संभावित सिद्धांत, पथ अभिन्न और संकेतक के लाप्लासियन|journal=Journal of High Energy Physics |volume=2012 |issue=11 |pages=29–30 |arxiv=1302.0864 |bibcode=2012JHEP...11..032L |doi=10.1007/JHEP11(2012)032|s2cid=56188533 }}</ref>
कहाँ {{mvar|n}} सतह का बाहरी [[सामान्य (ज्यामिति)]] है {{mvar|S}}. इस 'सरफेस डेल्टा फंक्शन' में निम्नलिखित गुण हैं:<ref>{{cite journal |last=Lange |first=Rutger-Jan |year=2012 |title=संभावित सिद्धांत, पथ अभिन्न और संकेतक के लाप्लासियन|journal=Journal of High Energy Physics |volume=2012 |issue=11 |pages=29–30 |arxiv=1302.0864 |bibcode=2012JHEP...11..032L |doi=10.1007/JHEP11(2012)032|s2cid=56188533 }}</ref>
<math display=block>-\int_{\R^n}f(\mathbf{x})\,\mathbf{n}_x\cdot\nabla_x\mathbf{1}_{\mathbf{x}\in D}\;d^{n}\mathbf{x} = \oint_{S}\,f(\mathbf{\beta})\;d^{n-1}\mathbf{\beta}.</math>
<math display=block>-\int_{\R^n}f(\mathbf{x})\,\mathbf{n}_x\cdot\nabla_x\mathbf{1}_{\mathbf{x}\in D}\;d^{n}\mathbf{x} = \oint_{S}\,f(\mathbf{\beta})\;d^{n-1}\mathbf{\beta}.</math>
फंक्शन सेट करके {{mvar|f}} एक के बराबर, यह इस प्रकार है कि सूचक का लाप्लासियन #Dirac सतह डेल्टा फ़ंक्शन सतह क्षेत्र के संख्यात्मक मान को एकीकृत करता है {{mvar|S}}.
फंक्शन सेट करके {{mvar|f}} के बराबर, यह इस प्रकार है कि सूचक का लाप्लासियन #Dirac सतह डेल्टा फ़ंक्शन सतह क्षेत्र के संख्यात्मक मान को एकीकृत करता है {{mvar|S}}.


== यह भी देखें ==
== यह भी देखें ==

Revision as of 17:54, 27 March 2023

वर्ग द्वि-आयामी डोमेन (सेट X): उठा हुआ हिस्सा उन द्वि-आयामी बिंदुओं को ओवरले करता है जो संकेतित उपसमुच्चय के सदस्य हैं (A).

गणित में, संकेतक फ़ंक्शन या सेट (गणित) के सबसेट का विशिष्ट कार्य फ़ंक्शन (गणित) है जो सबसेट के तत्वों को और अन्य सभी तत्वों को शून्य पर मैप करता है। अर्थात यदि A किसी समुच्चय का उपसमुच्चय है X, किसी के पास यदि और अन्यथा कहाँ सूचक समारोह के लिए सामान्य संकेतन है। अन्य सामान्य संकेतन हैं और

का सूचक कार्य A से संबंधित संपत्ति का आइवरसन ब्रैकेट है A; वह है,

उदाहरण के लिए, डिरिचलेट समारोह वास्तविक संख्याओं के उपसमुच्चय के रूप में परिमेय संख्याओं का सूचक फलन है।

परिभाषा

उपसमुच्चय का सूचक कार्य {{mvar|A}सेट का X कार्य है

के रूप में परिभाषित

आइवरसन ब्रैकेट समकक्ष अंकन प्रदान करता है, या xA, के स्थान पर उपयोग किया जाना है कार्यक्रम कभी-कभी निरूपित किया जाता है IA, χA, KA, या यहां तक ​​कि बस A.[lower-alpha 1][lower-alpha 2]

संकेतन और शब्दावली

अंकन उत्तल विश्लेषण में विशेषता फ़ंक्शन (उत्तल विश्लेषण) को निरूपित करने के लिए भी उपयोग किया जाता है, जिसे संकेतक फ़ंक्शन की मानक परिभाषा के गुणक व्युत्क्रम का उपयोग करते हुए परिभाषित किया गया है।

सांख्यिकी में संबंधित अवधारणा डमी चर (सांख्यिकी) की है। (यह डमी चर के साथ भ्रमित नहीं होना चाहिए क्योंकि यह शब्द सामान्यतः गणित में प्रयोग किया जाता है, जिसे मुक्त चर और बाध्य चर भी कहा जाता है।)

विशेषता कार्य (संभाव्यता सिद्धांत) शब्द का संभाव्यता सिद्धांत में असंबंधित अर्थ है। इस कारण से, संभाव्यतावादियों की सूची यहां लगभग विशेष रूप से परिभाषित फ़ंक्शन के लिए संकेतक फ़ंक्शन शब्द का उपयोग करती है, जबकि अन्य क्षेत्रों के गणितज्ञों द्वारा 'विशेषता फ़ंक्शन' शब्द का उपयोग करने की अधिक संभावना है।[lower-alpha 1] फ़ंक्शन का वर्णन करने के लिए जो सेट में सदस्यता इंगित करता है।

फजी लॉजिक और बहु-मूल्यवान तर्कशास्त्र में | आधुनिक बहु-मूल्यवान तर्क, विधेय संभाव्यता वितरण के विशिष्ट कार्य (संभाव्यता सिद्धांत) हैं। अर्थात्, विधेय के सख्त सच्चे/गलत मूल्यांकन को सत्य की डिग्री के रूप में व्याख्या की गई मात्रा से बदल दिया जाता है।

मूल गुण

सबसेट का सूचक या विशेषता कार्य (गणित)। A कुछ सेट का X मानचित्र (गणित) के तत्व X किसी फ़ंक्शन की सीमा तक .

यह मानचित्रण केवल तभी आच्छादित होता है A का गैर-खाली उचित उपसमुच्चय है X. यदि तब इसी तरह के तर्क से, यदि तब निम्नलिखित में, डॉट गुणन का प्रतिनिधित्व करता है, आदि + और - जोड़ और घटाव का प्रतिनिधित्व करते हैं।औरचौराहे और संघ हैं, क्रमशः।

यदि और के दो उपसमुच्चय हैं तब

और के पूरक (सेट सिद्धांत) के सूचक समारोह अर्थात। है:
अधिक सामान्यतः, मान लीजिए के उपसमूहों का संग्रह है X. किसी के लिए

का उत्पाद है 0रेत 1एस। ठीक उन्हीं पर इस उत्पाद का मान 1 है जो किसी भी सेट से संबंधित नहीं है और 0 अन्यथा है। वह है

उत्पाद को बाईं ओर विस्तारित करना,

कहाँ की प्रमुखता है F. यह समावेश-बहिष्करण के सिद्धांत का रूप है।

जैसा कि पिछले उदाहरण द्वारा सुझाया गया है, इंडिकेटर फ़ंक्शन साहचर्य में उपयोगी नोटेशनल डिवाइस है। संकेतन का प्रयोग अन्य स्थानों पर भी किया जाता है, उदाहरण के लिए प्रायिकता सिद्धांत में: यदि X संभाव्यता माप के साथ प्रायिकता स्थान है और A माप (गणित) है, फिर यादृच्छिक चर बन जाता है जिसका अपेक्षित मान की प्रायिकता के बराबर होता है A:

मार्कोव की असमानता के सरल प्रमाण में इस पहचान का उपयोग किया जाता है।

कई स्थितियों में, जैसे आदेश सिद्धांत, संकेतक फ़ंक्शन के व्युत्क्रम को परिभाषित किया जा सकता है। प्राथमिक संख्या सिद्धांत, मोबियस फ़ंक्शन में संकेतक फ़ंक्शन के व्युत्क्रम के सामान्यीकरण के रूप में इसे सामान्यतः सामान्यीकृत मोबियस फ़ंक्शन कहा जाता है। (मौलिक पुनरावर्तन सिद्धांत में व्युत्क्रम के उपयोग के बारे में नीचे पैराग्राफ देखें।)

माध्य, विचरण और सहप्रसरण

संभाव्यता स्थान दिया गया साथ सूचक यादृच्छिक चर द्वारा परिभाषित किया गया है यदि अन्यथा

अर्थ
(जिसे फंडामेंटल ब्रिज भी कहा जाता है)।

विचरण: सहप्रसरण:


पुनरावर्तन सिद्धांत में विशेषता कार्य, गोडेल और क्लेन का प्रतिनिधित्व समारोह

कर्ट गोडेल ने अपने 1934 के पेपर में औपचारिक गणितीय प्रणालियों के अनिर्णीत प्रस्तावों पर प्रतिनिधित्व समारोह का वर्णन किया (¬ तार्किक उलटा इंगित करता है, अर्थात नहीं):[1]: 42 

There shall correspond to each class or relation R a representing function if and if

स्टीफन क्लेन समारोह के रूप में आदिम पुनरावर्ती कार्यों के संदर्भ में ही परिभाषा प्रस्तुत करता है φ विधेय का P मान लेता है 0 यदि विधेय सत्य है और 1 यदि विधेय असत्य है।[2] उदाहरण के लिए, क्योंकि विशेषता कार्यों का उत्पाद जब भी कोई कार्य बराबर होता है 0, यह तार्किक OR: IF की भूमिका निभाता है या या या फिर उनका उत्पाद है 0. आधुनिक पाठक को प्रतिनिधित्व करने वाले कार्य के तार्किक व्युत्क्रमण के रूप में क्या दिखाई देता है, अर्थात प्रतिनिधित्व करने वाला कार्य है 0 जब समारोह R सत्य या संतुष्ट है, तार्किक कार्यों OR, AND, और IMPLY की क्लेन की परिभाषा में उपयोगी भूमिका निभाता है,[2]: 228  परिबद्ध-[2]: 228  और असीमित-[2]: 279 ff  mu ऑपरेटर्स और CASE फ़ंक्शन।[2]: 229 

== फ़ज़ी सेट थ्योरी == में विशेषता कार्य मौलिक गणित में, समुच्चयों के विशिष्ट फलन केवल मान लेते हैं 1 (सदस्य) या 0 (गैर-सदस्य)। फ़ज़ी सेट सिद्धांत में, विशिष्ट कार्यों को वास्तविक इकाई अंतराल में मान लेने के लिए सामान्यीकृत किया जाता है [0, 1], या अधिक सामान्यतः, कुछ सार्वभौमिक बीजगणित या संरचना (गणितीय तर्क) में (सामान्यतः कम से कम आंशिक रूप से आदेशित सेट या जाली (क्रम) होना आवश्यक है)। इस तरह के सामान्यीकृत विशेषता कार्यों को सामान्यतः सदस्यता समारोह (गणित) कहा जाता है, और संबंधित सेटों को फ़ज़ी सेट कहा जाता है। फ़ज़ी सेट कई वास्तविक दुनिया के विधेय (गणित) जैसे लंबे, गर्म, आदि में देखे गए सत्य की सदस्यता की डिग्री में क्रमिक परिवर्तन का मॉडल बनाते हैं।

सूचक समारोह के डेरिवेटिव्स

विशेष संकेतक फ़ंक्शन हैवीसाइड स्टेप फंक्शन है

हीविसाइड स्टेप फंक्शन का वितरण व्युत्पन्न डिराक डेल्टा समारोह के बराबर है, अर्थात
और इसी तरह का वितरण व्युत्पन्न
है
इस प्रकार हेविसाइड स्टेप फ़ंक्शन के व्युत्पन्न को सकारात्मक अर्ध-रेखा द्वारा दिए गए डोमेन की सीमा पर आवक सामान्य व्युत्पन्न के रूप में देखा जा सकता है। उच्च आयामों में, व्युत्पन्न स्वाभाविक रूप से आवक सामान्य व्युत्पन्न के लिए सामान्यीकृत होता है, जबकि हीविसाइड स्टेप फ़ंक्शन स्वाभाविक रूप से कुछ डोमेन के संकेतक फ़ंक्शन के लिए सामान्य होता है D. की सतह D द्वारा दर्शाया जाएगा S. आगे बढ़ते हुए, यह व्युत्पन्न किया जा सकता है कि संकेतक का लाप्लासियन #Dirac सतह डेल्टा फ़ंक्शन 'सतह डेल्टा फ़ंक्शन' को जन्म देता है, जिसे इसके द्वारा इंगित किया जा सकता है :
कहाँ n सतह का बाहरी सामान्य (ज्यामिति) है S. इस 'सरफेस डेल्टा फंक्शन' में निम्नलिखित गुण हैं:[3]
फंक्शन सेट करके f के बराबर, यह इस प्रकार है कि सूचक का लाप्लासियन #Dirac सतह डेल्टा फ़ंक्शन सतह क्षेत्र के संख्यात्मक मान को एकीकृत करता है S.

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 The Greek letter χ appears because it is the initial letter of the Greek word χαρακτήρ, which is the ultimate origin of the word characteristic.
  2. The set of all indicator functions on X can be identified with the power set of X. Consequently, both sets are sometimes denoted by This is a special case () of the notation for the set of all functions


संदर्भ

  1. Davis, Martin, ed. (1965). अनिर्णीत. New York, NY: Raven Press Books. pp. 41–74.
  2. 2.0 2.1 2.2 2.3 2.4 Kleene, Stephen (1971) [1952]. मेटामैथमैटिक्स का परिचय (Sixth reprint, with corrections ed.). Netherlands: Wolters-Noordhoff Publishing and North Holland Publishing Company. p. 227.
  3. Lange, Rutger-Jan (2012). "संभावित सिद्धांत, पथ अभिन्न और संकेतक के लाप्लासियन". Journal of High Energy Physics. 2012 (11): 29–30. arXiv:1302.0864. Bibcode:2012JHEP...11..032L. doi:10.1007/JHEP11(2012)032. S2CID 56188533.


स्रोत

श्रेणी:माप सिद्धांत श्रेणी:इंटीग्रल कैलकुलस श्रेणी:वास्तविक विश्लेषण श्रेणी:गणितीय तर्क श्रेणी:सेट थ्योरी में बुनियादी अवधारणाएँ श्रेणी:संभाव्यता सिद्धांत श्रेणी: कार्यों के प्रकार