एसी पावर: Difference between revisions
No edit summary |
No edit summary |
||
| (9 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
{{Short description|Power in alternating current systems}} | {{Short description|Power in alternating current systems}} | ||
[[File:City lights in motion.jpg|thumb|250px|इस अस्पष्ट-गति के लंबे प्रदर्शन में गैर-तापदीप्त शहर के प्रकाश का टिमटिमाना दिखाया गया है। गतिमान प्रकाश के निशानों के असतत स्वरुप से मुख्य शक्ति की एसी प्रकृति का पता चलता है।]]एक विद्युत परिपथ में, [[तात्कालिक शक्ति|तात्क्षणिक शक्ति]] परिपथ के एक दिए गए बिंदु से ऊर्जा के प्रवाह की समय दर है। [[प्रत्यावर्ती धारा]] परिपथों में, प्रेरक और [[संधारित्र]] जैसे ऊर्जा भंडारण तत्व ऊर्जा प्रवाह की दिशा के आवधिक उत्क्रमण में परिणत हो सकते हैं। इसका एसआई मात्रक [[वाट]] है। | |||
[[File:City lights in motion.jpg|thumb|250px|इस गति | |||
[[एसी तरंग|एसी तरंगरूप]] के एक पूर्ण चक्र पर औसत तात्क्षणिक शक्ति के एक ऐसे भाग को तात्क्षणिक सक्रिय शक्ति के रूप में जाना जाता है, जिसके परिणामस्वरूप एक दिशा में ऊर्जा का शुद्ध हस्तांतरण होता है, और इसके समय औसत को '''सक्रिय शक्ति''' या '''वास्तविक शक्ति''' के रूप में जाना जाता है।<ref name="IEEE_1459" />{{rp|3}} तात्क्षणिक शक्ति का उस भाग को तात्क्षणिक प्रतिघाती शक्ति के रूप में जाना जाता है, जिसके परिणामस्वरूप ऊर्जा का कोई शुद्ध हस्तांतरण नहीं होता है, बल्कि संग्रहित ऊर्जा के कारण प्रत्येक चक्र में स्रोत और भार के बीच दोलन होता है, और इसका आयाम '''प्रतिघाती शक्ति''' का निरपेक्ष मान है।<ref name="ThomasRosaToussaint_2016">{{cite book | title = | [[एसी तरंग|एसी तरंगरूप]] के एक पूर्ण चक्र पर औसत तात्क्षणिक शक्ति के एक ऐसे भाग को तात्क्षणिक सक्रिय शक्ति के रूप में जाना जाता है, जिसके परिणामस्वरूप एक दिशा में ऊर्जा का शुद्ध हस्तांतरण होता है, और इसके समय औसत को '''सक्रिय शक्ति''' या '''वास्तविक शक्ति''' के रूप में जाना जाता है।<ref name="IEEE_1459" />{{rp|3}} तात्क्षणिक शक्ति का उस भाग को तात्क्षणिक प्रतिघाती शक्ति के रूप में जाना जाता है, जिसके परिणामस्वरूप ऊर्जा का कोई शुद्ध हस्तांतरण नहीं होता है, बल्कि संग्रहित ऊर्जा के कारण प्रत्येक चक्र में स्रोत और भार के बीच दोलन होता है, और इसका आयाम '''प्रतिघाती शक्ति''' का निरपेक्ष मान है।<ref name="ThomasRosaToussaint_2016">{{cite book | title = The Analysis and Design of Linear Circuits | edition = 8 | first1 = Roland E. | last1 = Thomas | first2 = Albert J. | last2 = Rosa | first3 = Gregory J. | last3 = Toussaint | publisher = Wiley | year = 2016 | pages = 812–813 | isbn = 978-1-119-23538-5}}</ref><ref name="IEEE_1459">{{cite book | title = IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions | publisher = IEEE | year = 2010 | isbn = 978-0-7381-6058-0 | doi = 10.1109/IEEESTD.2010.5439063}}</ref>{{rp|4}} | ||
=={{anchor|Active power|Reactive power|Apparent power|Complex power|Real power}}साइनसोइडल स्थिर-अवस्था == में सक्रिय, प्रतिक्रियाशील, स्पष्ट और जटिल शक्ति | =={{anchor|Active power|Reactive power|Apparent power|Complex power|Real power}}साइनसोइडल स्थिर-अवस्था == में सक्रिय, प्रतिक्रियाशील, स्पष्ट और जटिल शक्ति | ||
एक साधारण प्रत्यावर्ती धारा (AC) सर्किट में एक स्रोत और एक [[रैखिक सर्किट]] [[समय-अपरिवर्तनीय प्रणाली]] | टाइम-इनवेरिएंट लोड होता है, जिसमें करंट और वोल्टेज दोनों समान आवृत्ति पर [[साइन लहर]] होते हैं। | एक साधारण प्रत्यावर्ती धारा (AC) सर्किट में एक स्रोत और एक [[रैखिक सर्किट]] [[समय-अपरिवर्तनीय प्रणाली]] | टाइम-इनवेरिएंट लोड होता है, जिसमें करंट और वोल्टेज दोनों समान आवृत्ति पर [[साइन लहर]] होते हैं।<ref name="Das_2015">{{cite book | title = पावर सिस्टम हार्मोनिक्स और पैसिव फ़िल्टर डिज़ाइन| first = J. C. | last = Das | publisher = Wiley, IEEE Press | year = 2015 | page = 2 | isbn = 978-1-118-86162-2 | quote = रैखिक और अरेखीय भार के बीच अंतर करने के लिए, हम कह सकते हैं कि रैखिक समय-अपरिवर्तनीय भार की विशेषता है ताकि एक साइनसोइडल वोल्टेज के एक आवेदन के परिणामस्वरूप वर्तमान का एक साइनसोइडल प्रवाह हो।}}</ref> | ||
== ज्यावक्रीय स्थिर-अवस्था में सक्रिय, प्रतिघाती, आभासी और जटिल शक्ति == | == ज्यावक्रीय स्थिर-अवस्था में सक्रिय, प्रतिघाती, आभासी और जटिल शक्ति == | ||
साधारण प्रत्यावर्ती धारा (एसी) परिपथ में एक स्रोत और एक रैखिक समय-अपरिवर्तनीय भार होता है, धारा और विभवान्तर दोनों एक ही आवृत्ति पर ज्यावक्रीय होते हैं।[[:en:AC_power#cite_note-Das_2015-3|<sup>[3]</sup>]] यदि भार विशुद्ध रूप से [[प्रतिरोधी]] है, तो दो राशियाँ एक ही समय में अपनी ध्रुवीयता को उत्क्रमित कर देती हैं। विभवान्तर और विद्युत धारा का गुणनफल प्रत्येक क्षण धनात्मक या शून्य होता है, जिसका परिणाम यह होता है कि ऊर्जा प्रवाह की दिशा उत्क्रमित नहीं होती है। इस स्थिति में, केवल सक्रिय शक्ति ही स्थानांतरित की जाती है। | साधारण प्रत्यावर्ती धारा (एसी) परिपथ में एक स्रोत और एक रैखिक समय-अपरिवर्तनीय भार होता है, धारा और विभवान्तर दोनों एक ही आवृत्ति पर ज्यावक्रीय होते हैं।[[:en:AC_power#cite_note-Das_2015-3|<sup>[3]</sup>]] यदि भार विशुद्ध रूप से [[प्रतिरोधी]] है, तो दो राशियाँ एक ही समय में अपनी ध्रुवीयता को उत्क्रमित कर देती हैं। विभवान्तर और विद्युत धारा का गुणनफल प्रत्येक क्षण धनात्मक या शून्य होता है, जिसका परिणाम यह होता है कि ऊर्जा प्रवाह की दिशा उत्क्रमित नहीं होती है। इस स्थिति में, केवल सक्रिय शक्ति ही स्थानांतरित की जाती है। | ||
यदि भार विशुद्ध रूप से ''प्रतिघाती'' है, तो विभवान्तर और विद्युत धारा 90 | यदि भार विशुद्ध रूप से ''प्रतिघाती'' है, तो विभवान्तर और विद्युत धारा 90 अंश चरण से बाहर होते हैं। प्रत्येक चक्र के दो चतुर्थांशों के लिए, विभवान्तर और विद्युत धारा का गुणनफल धनात्मक होता है, लेकिन अन्य दो चतुर्थांशों के लिए यह गुणनफल ऋणात्मक होता है, जो यह दर्शाता है कि औसतन उतनी ही ऊर्जा भार में प्रवाहित होती है जितनी कि वापस बाहर प्रवाहित होती है। प्रत्येक अर्द्ध चक्र में कोई शुद्ध ऊर्जा प्रवाह नहीं होता है। इस स्थिति में, केवल प्रतिघाती शक्ति प्रवाहित होती है: भार में ऊर्जा का कोई शुद्ध हस्तांतरण नहीं होता है; हालाँकि, विद्युत शक्ति तारों के साथ प्रवाहित होती है और उन्हीं तारों के साथ विपरीत दिशा में प्रवाहित होकर वापस लौटती है। इस प्रतिघाती शक्ति प्रवाह के लिए आवश्यक धारा रेखा प्रतिरोध में ऊर्जा का प्रसार करती है, यद्यपि आदर्श भार उपकरण स्वयं ऊर्जा का उपभोग न करे। व्यावहारिक भार में प्रतिरोध के साथ-साथ प्रेरकत्व या धारिता भी होती है, इसलिए सक्रिय और प्रतिघाती दोनों शक्तियाँ सामान्य भार में प्रवाहित होती हैं। | ||
आभासी शक्ति विभवान्तर और विद्युत धारा के वर्ग-माध्य-मूल मानों का गुणनफल है। शक्ति तंत्र को संरचित और संचालित करते समय आभासी शक्ति को ध्यान में रखा जाता है, क्योंकि हालाँकि प्रतिघाती शक्ति से जुड़ी विद्युत धारा भार पर कार्य नहीं करती है, फिर भी इसे शक्ति स्रोत द्वारा आपूर्ति की जानी चाहिए। चालक, ट्रांसफॉर्मर और जनित्र को केवल उपयोगी कार्य करने वाली विद्युत धारा का वहन करने के स्थान पर कुल विद्युत धारा का वहन करने के लिए आकार देना चाहिए। विद्युत ग्रिडों में पर्याप्त प्रतिघाती शक्ति की आपूर्ति प्रदान करने में विफलता से विभवान्तर का स्तर कम हो सकता है और, कुछ परिचालन स्थितियों के तहत नेटवर्क या [[बिजली चली गयी|विद्युत-कटौती]] का पूर्ण पतन हो सकता है। इसका एक अन्य परिणाम यह है कि दो भारों के लिए आभासी शक्ति संयोजन तब तक यथार्थतः कुल शक्ति नहीं प्रदान करता है, जब तक कि उसके पास धारा और विभवान्तर (समान शक्ति गुणांक) के बीच समान चरण अंतर न हो। | आभासी शक्ति विभवान्तर और विद्युत धारा के वर्ग-माध्य-मूल मानों का गुणनफल है। शक्ति तंत्र को संरचित और संचालित करते समय आभासी शक्ति को ध्यान में रखा जाता है, क्योंकि हालाँकि प्रतिघाती शक्ति से जुड़ी विद्युत धारा भार पर कार्य नहीं करती है, फिर भी इसे शक्ति स्रोत द्वारा आपूर्ति की जानी चाहिए। चालक, ट्रांसफॉर्मर और जनित्र को केवल उपयोगी कार्य करने वाली विद्युत धारा का वहन करने के स्थान पर कुल विद्युत धारा का वहन करने के लिए आकार देना चाहिए। विद्युत ग्रिडों में पर्याप्त प्रतिघाती शक्ति की आपूर्ति प्रदान करने में विफलता से विभवान्तर का स्तर कम हो सकता है और, कुछ परिचालन स्थितियों के तहत नेटवर्क या [[बिजली चली गयी|विद्युत-कटौती]] का पूर्ण पतन हो सकता है। इसका एक अन्य परिणाम यह है कि दो भारों के लिए आभासी शक्ति संयोजन तब तक यथार्थतः कुल शक्ति नहीं प्रदान करता है, जब तक कि उसके पास धारा और विभवान्तर (समान शक्ति गुणांक) के बीच समान चरण अंतर न हो। | ||
परंपरागत रूप से, संधारित्र के साथ ऐसा व्यवहार किया जाता है जैसे कि ये प्रतिघाती शक्ति उत्पन्न करते हैं, और प्रेरकों के साथ ऐसा व्यवहार किया जाता है जैसे कि ये इसका उपभोग करते हैं। यदि एक संधारित्र और एक प्रेरक को समानांतर में रखा जाता है, तो संधारित्र और प्रेरक के माध्यम से प्रवाहित धाराएँ जुड़ने के स्थान पर निरस्त हो जाती हैं। विद्युत शक्ति संचरण में शक्ति गुणांक को नियंत्रित करने के लिए यह मूलभूत तंत्र है; संधारित्र (या प्रेरक), भार द्वारा 'खपत' ('उत्पादित') की गई प्रतिघाती शक्ति के लिए आंशिक रूप से क्षतिपूर्ति करने के लिए परिपथ में अंतःस्थापित किये जाते हैं। विशुद्ध रूप से धारितीय परिपथ, धारा तरंगरूप के साथ प्रतिघाती शक्ति की आपूर्ति करते हैं, जो विभवान्तर तरंग को 90 | परंपरागत रूप से, संधारित्र के साथ ऐसा व्यवहार किया जाता है जैसे कि ये प्रतिघाती शक्ति उत्पन्न करते हैं, और प्रेरकों के साथ ऐसा व्यवहार किया जाता है जैसे कि ये इसका उपभोग करते हैं। यदि एक संधारित्र और एक प्रेरक को समानांतर में रखा जाता है, तो संधारित्र और प्रेरक के माध्यम से प्रवाहित धाराएँ जुड़ने के स्थान पर निरस्त हो जाती हैं। विद्युत शक्ति संचरण में शक्ति गुणांक को नियंत्रित करने के लिए यह मूलभूत तंत्र है; संधारित्र (या प्रेरक), भार द्वारा 'खपत' ('उत्पादित') की गई प्रतिघाती शक्ति के लिए आंशिक रूप से क्षतिपूर्ति करने के लिए परिपथ में अंतःस्थापित किये जाते हैं। विशुद्ध रूप से धारितीय परिपथ, धारा तरंगरूप के साथ प्रतिघाती शक्ति की आपूर्ति करते हैं, जो विभवान्तर तरंग को 90 अंश तक ले जाते हैं, जबकि विशुद्ध रूप से प्रेरण परिपथ विभवान्तर तरंग को 90 अंश से पश्चगामी करते हुए धारा तरंगरूप के साथ प्रतिघाती शक्ति को अवशोषित करते हैं। इसका परिणाम यह है कि धारितीय और प्रेरकीय परिपथ तत्व एक दूसरे को निरस्त कर देते हैं।[[:en:AC_power#cite_note-4|<sup>[4]</sup>]] | ||
[[File:Cmplxpower.svg|thumb|293x293px|<u>'''शक्ति त्रिभुज'''</u>जटिल शक्ति सक्रिय और प्रतिघाती शक्ति का सदिश योग है। आभासी शक्ति, जटिल शक्ति का परिमाण है।<br> '''सक्रिय शक्ति''', ''P''<br> '''प्रतिघाती शक्ति''', ''Q''<br> '''जटिल शक्ति''', ''S'<br> '''''आभासी शक्ति''''', ''{{pipe}}S{{pipe}}<br> '''धारा के सापेक्ष विभवान्तर का चरण''', <math>\varphi</math>]]अभियंता, किसी तंत्र में ऊर्जा प्रवाह का वर्णन करने के लिए निम्नलिखित शब्दों का उपयोग करते हैं (और इनमें से प्रत्येक को उनके बीच अंतर करने के लिए एक अलग इकाई आवंटित करते हैं): | [[File:Cmplxpower.svg|thumb|293x293px|<u>'''शक्ति त्रिभुज'''</u> जटिल शक्ति सक्रिय और प्रतिघाती शक्ति का सदिश योग है। आभासी शक्ति, जटिल शक्ति का परिमाण है।<br> '''सक्रिय शक्ति''', ''P''<br> '''प्रतिघाती शक्ति''', ''Q''<br> '''जटिल शक्ति''', ''S'<br> '''''आभासी शक्ति''''', ''{{pipe}}S{{pipe}}<br> '''धारा के सापेक्ष विभवान्तर का चरण''', <math>\varphi</math>]]अभियंता, किसी तंत्र में ऊर्जा प्रवाह का वर्णन करने के लिए निम्नलिखित शब्दों का उपयोग करते हैं (और इनमें से प्रत्येक को उनके बीच अंतर करने के लिए एक अलग इकाई आवंटित करते हैं): | ||
* '''सक्रिय शक्ति''',<ref>''[http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 Definition of Active Power in the International Electrotechnical Vocabulary] {{webarchive |url=https://web.archive.org/web/20150423120137/http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 |date=April 23, 2015 }}</ref> ''P'', या ''''वास्तविक शक्ति'''<nowiki/>':<ref>''IEEE 100 : the authoritative dictionary of IEEE standards terms.-7th ed.'' {{ISBN|0-7381-2601-2}}, page 23</ref> वाट (W); | * '''सक्रिय शक्ति''',<ref>''[http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 Definition of Active Power in the International Electrotechnical Vocabulary] {{webarchive |url=https://web.archive.org/web/20150423120137/http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 |date=April 23, 2015 }}</ref> ''P'', या ''''वास्तविक शक्ति'''<nowiki/>':<ref>''IEEE 100 : the authoritative dictionary of IEEE standards terms.-7th ed.'' {{ISBN|0-7381-2601-2}}, page 23</ref> वाट (W); | ||
* '''प्रतिघाती शक्ति''', ''Q'': [[वोल्ट-एम्पीयर]] प्रतिघाती (var); | * '''प्रतिघाती शक्ति''', ''Q'': [[वोल्ट-एम्पीयर]] प्रतिघाती (var); | ||
* '''जटिल शक्ति''', ''S'': वोल्ट-एम्पीयर (VA); | * '''जटिल शक्ति''', ''S'': वोल्ट-एम्पीयर (VA); | ||
* '''आभासी शक्ति''', |''S''|: जटिल शक्ति ''S'' का [[परिमाण (वेक्टर)|परिमाण]]: वोल्ट-एम्पीयर (VA); | * '''आभासी शक्ति''', |''S''|: जटिल शक्ति ''S'' का [[परिमाण (वेक्टर)|परिमाण]]: वोल्ट-एम्पीयर (VA); | ||
* '''विद्युत धारा के सापेक्ष विभवान्तर का चरण''', ''φ'': विद्युत धारा और विभवान्तर के बीच अंतर का कोण ( | * '''विद्युत धारा के सापेक्ष विभवान्तर का चरण''', ''φ'': विद्युत धारा और विभवान्तर के बीच अंतर का कोण (अंश में); <math>\varphi=\arg(V)-\arg(I)</math>. विद्युत धारा पश्चगामी [[वोल्टेज|विभवान्तर]] (चतुर्थांश I सदिश), विद्युत धारा अग्रगामी विभवान्तर (चतुर्थांश IV सदिश)। | ||
इन सभी को आसन्न आरेख (जिसे शक्ति त्रिभुज कहा जाता है) में दर्शाया गया है। | इन सभी को आसन्न आरेख (जिसे शक्ति त्रिभुज कहा जाता है) में दर्शाया गया है। | ||
| Line 30: | Line 29: | ||
शक्ति की इकाई वाट (प्रतीक: W) है। आभासी शक्ति प्रायः वोल्ट-एम्पीयर (VA) में व्यक्त की जाती है क्योंकि यह वर्ग-माध्य-मूल विभवान्तर और वर्ग-माध्य-मूल [[विद्युत प्रवाह]] का गुणनफल है। प्रतिघाती शक्ति की इकाई वीएआर है, जिसका पूर्णरूप वोल्ट-एम्पीयर प्रतिघाती है। चूँकि प्रतिघाती शक्ति भार में कोई शुद्ध ऊर्जा स्थानांतरित नहीं करती है, अतः इसे कभी-कभी "वाटहीन" शक्ति कहा जाता है। हालाँकि, यह [[विद्युत ग्रिड]] में एक महत्वपूर्ण कार्य करता है और इसकी कमी को वर्ष 2003 की पूर्वोत्तर विद्युत-कटौती में एक महत्वपूर्ण कारक के रूप में उद्धृत किया गया है।<ref>{{cite web |title=August 14, 2003 Outage – Sequence of Events |url=http://www.ferc.gov/industries/electric/indus-act/blackout/09-12-03-blackout-sum.pdf |publisher=[[FERC]] |date=2003-09-12 |access-date=2008-02-18 |archive-url=https://web.archive.org/web/20071020070028/http://www.ferc.gov/industries/electric/indus-act/blackout/09-12-03-blackout-sum.pdf |archive-date=2007-10-20 |url-status=dead }}</ref> इन तीन राशियों के बीच संबंध को समझना शक्ति अभियांत्रिकी को समझने के केंद्र में है। इनके बीच गणितीय संबंध को सदिश द्वारा दर्शाया जा सकता है या सम्मिश्र संख्याओं, ''S'' = ''P'' + ''j'' ''Q'' (जहाँ j [[काल्पनिक इकाई]] है) का उपयोग करके व्यक्त किया जा सकता है। | शक्ति की इकाई वाट (प्रतीक: W) है। आभासी शक्ति प्रायः वोल्ट-एम्पीयर (VA) में व्यक्त की जाती है क्योंकि यह वर्ग-माध्य-मूल विभवान्तर और वर्ग-माध्य-मूल [[विद्युत प्रवाह]] का गुणनफल है। प्रतिघाती शक्ति की इकाई वीएआर है, जिसका पूर्णरूप वोल्ट-एम्पीयर प्रतिघाती है। चूँकि प्रतिघाती शक्ति भार में कोई शुद्ध ऊर्जा स्थानांतरित नहीं करती है, अतः इसे कभी-कभी "वाटहीन" शक्ति कहा जाता है। हालाँकि, यह [[विद्युत ग्रिड]] में एक महत्वपूर्ण कार्य करता है और इसकी कमी को वर्ष 2003 की पूर्वोत्तर विद्युत-कटौती में एक महत्वपूर्ण कारक के रूप में उद्धृत किया गया है।<ref>{{cite web |title=August 14, 2003 Outage – Sequence of Events |url=http://www.ferc.gov/industries/electric/indus-act/blackout/09-12-03-blackout-sum.pdf |publisher=[[FERC]] |date=2003-09-12 |access-date=2008-02-18 |archive-url=https://web.archive.org/web/20071020070028/http://www.ferc.gov/industries/electric/indus-act/blackout/09-12-03-blackout-sum.pdf |archive-date=2007-10-20 |url-status=dead }}</ref> इन तीन राशियों के बीच संबंध को समझना शक्ति अभियांत्रिकी को समझने के केंद्र में है। इनके बीच गणितीय संबंध को सदिश द्वारा दर्शाया जा सकता है या सम्मिश्र संख्याओं, ''S'' = ''P'' + ''j'' ''Q'' (जहाँ j [[काल्पनिक इकाई]] है) का उपयोग करके व्यक्त किया जा सकता है। | ||
[[File:Active-and-reactive-power-064pf-en.svg|thumb|500px|एसी प्रणाली में तात्क्षणिक शक्ति जब धारा विभवान्तर से 50 | [[File:Active-and-reactive-power-064pf-en.svg|thumb|500px|एसी प्रणाली में तात्क्षणिक शक्ति, जब धारा विभवान्तर से 50 अंश पीछे हो जाती है।]] | ||
== ज्यावक्रीय स्थिर-अवस्था में गणना और समीकरण == | == ज्यावक्रीय स्थिर-अवस्था में गणना और समीकरण == | ||
| Line 76: | Line 75: | ||
{{Main|शक्ति गुणांक}} | {{Main|शक्ति गुणांक}} | ||
एक परिपथ में सक्रिय शक्ति और आभासी शक्ति के अनुपात को शक्ति गुणांक कहा जाता है। समान मात्रा में सक्रिय शक्ति संचारित करने वाली दो प्रणालियों के लिए, कम शक्ति गुणांक वाली प्रणाली में ऊर्जा के कारण उच्च परिसंचारी धाराएँ | एक परिपथ में सक्रिय शक्ति और आभासी शक्ति के अनुपात को शक्ति गुणांक कहा जाता है। समान मात्रा में सक्रिय शक्ति संचारित करने वाली दो प्रणालियों के लिए, कम शक्ति गुणांक वाली प्रणाली में ऊर्जा के कारण उच्च परिसंचारी धाराएँ होती हैं जो भार में ऊर्जा भंडारण से स्रोत पर वापस लौटती हैं। ये उच्च धाराएँ उच्च हानियाँ उत्पन्न करती हैं और समग्र संचरण दक्षता को कम करती हैं। निम्न शक्ति गुणांक परिपथ में सक्रिय शक्ति की समान मात्रा के लिए उच्च आभासी शक्ति और उच्च हानि होती है। शक्ति गुणांक 1.0 होता है जब विभवान्तर और विद्युत धारा चरण में होते हैं। यह शून्य होता है जब विद्युत धारा विभवान्तर को 90 अंश से आगे या पीछे करती है। जब विभवान्तर और विद्युत धारा चरण से 180 अंश बाहर होते हैं, तो शक्ति गुणांक धनात्मक होता है, और भार ऊर्जा को स्रोत में निवेशित करता है (किसी छत पर सौर सेलों वाला घर इसका एक उदाहरण है जो सूर्य के चमकने पर शक्ति ग्रिड में शक्ति निवेशित करता है)। विभवान्तर के सापेक्ष धारा के चरण कोण के चिह्न को दर्शाने के लिए शक्ति गुणांकों को सामान्यतः "अग्रगामी" या "पश्चगामी" कहा जाता है। विभवान्तर को उस आधार के रूप में नामित किया जाता है जिससे धारा कोण की तुलना की जाती है, जिसका अर्थ है कि धारा को "अग्रगामी" या "पश्चगामी" विभवान्तर के रूप में माना जाता है। जहाँ तरंगरूप विशुद्ध रूप से ज्यावक्रीय होते हैं, वहाँ शक्ति गुणांक, विद्युत धारा और विभवान्तर ज्यावक्रीय तरंगरूपों के बीच के चरण कोण (<math>\varphi</math>) की कोज्या होता है। इस कारण से उपकरण डेटा शीटें और नेमप्लेटें प्रायः शक्ति गुणांक को "<math>\cos \phi</math>" के रूप में संक्षिप्त करते हैं। | ||
उदाहरण: सक्रिय शक्ति 700 W | उदाहरण: सक्रिय शक्ति 700 W और विभवान्तर और विद्युत धारा के बीच का चरण कोण 45.6° है। शक्ति गुणांक cos(45.6°) = 0.700 है। तब आभासी शक्ति 700 W / cos(45.6°) = 1000 VA है। एसी परिपथ में विद्युत अपव्यय की अवधारणा को निम्न उदाहरण के साथ वर्णित किया और सचित्र समझाया गया है। | ||
उदाहरण के लिए, 0.68 के | उदाहरण के लिए, 0.68 के शक्ति गुणांक का अर्थ है कि कुल आपूर्ति (परिमाण में) का केवल 68 प्रतिशत भाग वास्तव में कार्य कर रहा है; शेष विद्युत धारा भार पर कोई कार्य नहीं करती है। | ||
== प्रतिघाती शक्ति == | == प्रतिघाती शक्ति == | ||
एक दिष्ट धारा परिपथ में, भार में प्रवाहित होने वाली शक्ति, भार के माध्यम से प्रवाहित धारा और भार में विभवपात के गुणनफल के समानुपाती होती है। स्रोत से भार तक ऊर्जा एक दिशा में प्रवाहित होती है। एसी शक्ति में, विभवान्तर और विद्युत धारा दोनों लगभग ज्यावक्रीय रूप से भिन्न होते हैं। जब परिपथ में प्रेरकत्व या धारिता होती है, तो विभवान्तर और विद्युत धारा तरंगरूप पूरी तरह से लाइन में नहीं आते हैं। विद्युत प्रवाह के दो घटक होते हैं, एक घटक, स्रोत से भार की ओर प्रवाहित होता है और भार पर कार्य कर सकता है; जबकि "प्रतिघाती शक्ति" के रूप में जाने जाने वाले अन्य घटक का कारण विभवान्तर और विद्युत धारा के बीच विलम्ब है, जिसे चरण कोण के रूप में जाना जाता है, और यह भार पर उपयोगी कार्य नहीं कर सकता है। इसे गलत समय (बहुत देर या बहुत जल्दी) पर आने वाली धारा के रूप में माना जा सकता है। प्रतिघाती शक्ति को सक्रिय शक्ति से अलग करने के लिए, इसे "[[वोल्ट-एम्पीयर प्रतिक्रियाशील|वोल्ट-एम्पीयर प्रतिघाती]]" या वीएआर की इकाइयों में मापा जाता है। ये इकाइयाँ वाट में सरलीकृत हो सकती हैं लेकिन यह दर्शाने के लिए वीएआर के रूप में छोड़ दी जाती हैं कि ये किसी वास्तविक कार्य आउटपुट को नहीं निरूपित करते हैं। | |||
नेटवर्क के | नेटवर्क के धारितीय या प्रेरकीय तत्वों में संग्रहित ऊर्जा प्रतिघाती शक्ति प्रवाह को उत्पन्न करती है। प्रतिघाती शक्ति प्रवाह पूरे नेटवर्क में विभवान्तर के स्तर को दृढ़ता से प्रभावित करता है। स्वीकार्य सीमा के भीतर विद्युत प्रणाली को संचालित करने की अनुमति देने के लिए विभवान्तर स्तर और प्रतिघाती शक्ति प्रवाह को सावधानीपूर्वक नियंत्रित किया जाना चाहिए। [[लचीला एसी संचरण प्रणाली|प्रतिघाती क्षतिपूर्ति]] के रूप में जानी जाने वाली तकनीक का उपयोग संचरण लाइनों से आपूर्ति की जाने वाली प्रतिघाती शक्ति को कम करके और इसे स्थानीय रूप से प्रदान करके भार में आभासी शक्ति प्रवाह को कम करने के लिए किया जाता है। उदाहरण के लिए, प्रेरकीय भार की क्षतिपूर्ति करने के लिए, भार के पास ही एक शंट संधारित्र स्थापित किया जाता है। यह संधारित्र द्वारा आपूर्ति की जाने वाली भार द्वारा आवश्यक सभी प्रतिघाती शक्तियों की अनुमति देता है और इसे संचरण लाइनों पर स्थानांतरित करने की आवश्यकता नहीं होती है। इस अभ्यास से ऊर्जा की बचत होती है क्योंकि यह उस ऊर्जा की मात्रा को कम कर देता है जिसे समान कार्य करने के लिए उपयोगिता द्वारा उत्पादित किया जाना आवश्यक है। इसके अतिरिक्त, यह छोटे चालक या कम बंडल चालक का उपयोग करके और संचरण टावरों की संरचना को अनुकूलित करने के लिए अधिक कुशल संचरण लाइन संरचनाओं की अनुमति प्रदान करता है। | ||
=== | === धारितीय बनाम प्रेरकीय भार === | ||
मोटर या संधारित्र जैसे भार उपकरणों के चुंबकीय या विद्युत क्षेत्र में संग्रहित ऊर्जा, धारा और विभवान्तर तरंगरूपों के बीच ऑफसेट का कारण बनती है। संधारित्र एक ऐसा उपकरण है जो ऊर्जा को विद्युत क्षेत्र के रूप में संग्रहित करता है। चूँकि धारा को संधारित्र के माध्यम से प्रवाहित किया जाता है, अतः आवेश के निर्माण के कारण के कारण संधारित्र में एक विरोधी विभवान्तर विकसित होता है। यह विभवान्तर तब तक बढ़ता है जब तक कि संधारित्र संरचना द्वारा अधिकतम विभवान्तर निर्धारित नहीं किया जाता है। एक एसी नेटवर्क में, संधारित्र में विभवान्तर नियत रूप से बदलता है। संधारित्र इस परिवर्तन का विरोध करता है, जिससे धारा, चरण में विभवान्तर का अग्रगमन करती है। संधारित्र को "स्रोत" प्रतिघाती शक्ति कहा जाता है, और इस प्रकार यह एक प्रमुख शक्ति गुणांक का कारण बनता है। | |||
प्रेरण मशीनें वर्तमान में विद्युत शक्ति तंत्रों में सबसे सामान्य प्रकार के भार हैं। ये मशीनें ऊर्जा को चुंबकीय क्षेत्र के रूप में संग्रहित करने के लिए [[कुचालक|प्रेरक]] या तार के बड़ी कुंडली का उपयोग करती हैं। जब एक विभवान्तर प्रारंभ में कुण्डली में रखा जाता है, तो प्रेरक, धारा और चुंबकीय क्षेत्र में इस परिवर्तन का दृढ़ता से विरोध करता है, जिससे विद्युत धारा को अपने अधिकतम मान तक पहुँचने में समय लगता है। यह चरण में विद्युत धारा के विभवान्तर से पिछड़ने का कारण बनता है। प्रेरक को प्रतिघाती शक्ति को "सिंक" करने के लिए कहा जाता है, और इस प्रकार यह एक पश्चगामी शक्ति गुणांक का कारण बनता है। [[प्रेरण जनरेटर|प्रेरण जनित्र]] प्रतिघाती शक्ति को स्रोत या सिंक कर सकते हैं, और प्रतिघाती शक्ति प्रवाह और इस प्रकार विभवान्तर पर प्रणाली संचालकों को नियंत्रण का एक उपाय प्रदान करते हैं।<ref>{{cite web|url=http://web.media.mit.edu/~dolguin/mas961/loads.html |title=Load differentiation |access-date=2015-04-29 |url-status=dead |archive-url=https://web.archive.org/web/20151025015726/http://web.media.mit.edu/~dolguin/mas961/loads.html |archive-date=2015-10-25 }}</ref> क्योंकि इन उपकरणों का विभवान्तर और विद्युत धारा के बीच के चरण कोण पर विपरीत प्रभाव पड़ता है, इसलिए इनका उपयोग एक दूसरे के प्रभावों को "निरस्त" करने के लिए किया जा सकता है। यह सामान्यतः संधारित्र बैंकों का रूप लेता है जिसका उपयोग प्रेरण मोटरों के कारण होने वाले पश्चगामी शक्ति गुणांक का प्रतिकार करने के लिए किया जाता है। | |||
=== प्रतिघाती शक्ति नियंत्रण === | === प्रतिघाती शक्ति नियंत्रण === | ||
{{main|विभवान्तर नियंत्रण और प्रतिक्रियाशील शक्ति प्रबंधन}} | {{main|विभवान्तर नियंत्रण और प्रतिक्रियाशील शक्ति प्रबंधन}} | ||
संचरण से जुड़े जनित्र सामान्यतः प्रतिघाती शक्ति प्रवाह का समर्थन करने के लिए आवश्यक होते हैं। उदाहरण के लिए, यूनाइटेड किंगडम संचरण प्रणाली पर, जनित्रों को ग्रिड कोड आवश्यकताओं द्वारा अपनी निर्धारित सीमा के बीच नामित टर्मिनलों पर 0.85 शक्ति गुणांक पश्चगामी और 0.90 शक्ति गुणांक अग्रगामी की आपूर्ति करने की आवश्यकता होती है। प्रतिघाती शक्ति संतुलन समीकरण को व्यवस्थित रखते हुए प्रणाली संचालक एक सुरक्षित और अल्पव्ययी विभवान्तर प्रोफ़ाइल व्यवस्थित रखने के लिए पारस्परिक-परिवर्तन क्रियाएँ करता है: | |||
: <math>\mathrm{Generator\ MVARs + System\ gain + Shunt\ capacitors = MVAR\ Demand + Reactive\ losses + Shunt\ reactors}</math> | : <math>\mathrm{Generator\ MVARs + System\ gain + Shunt\ capacitors = MVAR\ Demand + Reactive\ losses + Shunt\ reactors}</math> | ||
उपरोक्त शक्ति संतुलन समीकरण में " | उपरोक्त शक्ति संतुलन समीकरण में "प्रणाली लाभ" प्रतिघाती शक्ति का एक महत्वपूर्ण स्रोत है, जो कि संचरण नेटवर्क की धारितीय प्रकृति द्वारा ही उत्पन्न होती है। माँग बढ़ने से पूर्व सुबह निर्णायक पारस्परिक परिवर्तन क्रियाएँ करके, पूरे दिन के लिए प्रणाली को सुरक्षित रखने में सहायता करते हुए प्रणाली लाभ को शीघ्र अधिकतम किया जा सकता है। समीकरण को संतुलित करने के लिए कुछ पूर्व-दोष प्रतिघाती जनित्रों के उपयोग की आवश्यकता होती है। प्रतिघाती शक्ति के अन्य स्रोतों का भी उपयोग किया जाता है जिसमें शंट संधारित्र, शंट प्रतिघातक, स्थिर वीएआर क्षतिपूरक और विभवान्तर नियंत्रण परिपथ सम्मिलित हैं। | ||
== असंतुलित ज्यावक्रीय | == असंतुलित ज्यावक्रीय बहुचरणीय प्रणालियाँ == | ||
जबकि सक्रिय शक्ति और प्रतिघाती शक्ति किसी भी प्रणाली में | जबकि सक्रिय शक्ति और प्रतिघाती शक्ति किसी भी प्रणाली में सुपरिभाषित हैं, फिर भी असंतुलित बहुचरणीय प्रणालियों के लिए आभासी शक्ति की परिभाषा को शक्ति अभियांत्रिकी में सबसे विवादास्पद विषयों में से एक माना जाता है। मूल रूप से, आभासी शक्ति केवल विशेषता के रूप में उत्पन्न हुई है। इस अवधारणा के प्रमुख चित्रण का श्रेय स्टैनले की ''फेनोमेना ऑफ रिटार्डेशन इन द इंडक्शन कॉइल (''प्रेरण कुंडली में मंदता की घटना) (वर्ष 1888) और [[चार्ल्स प्रोटियस स्टेनमेट्ज़]] के ''थ्योरेटिकल एलिमेंट्स ऑफ इंजीनियरिंग (''अभियांत्रिकी के सैद्धांतिक तत्व) (वर्ष 1915) को दिया जाता है। हालाँकि, तीन चरण विद्युत वितरण के विकास के साथ यह आभासी हो गया कि आभासी शक्ति और शक्ति गुणांक की परिभाषा असंतुलित [[पॉलीफ़ेज़ सिस्टम|बहुचरणीय प्रणालियों]] पर लागू नहीं की जा सकती। वर्ष 1920 में, इस विषय को हल करने के लिए "एआईईई और राष्ट्रीय विद्युत प्रकाश संगठन की विशेष संयुक्त समिति" की बैठक हुई। इन्होंने दो परिभाषाओं पर विचार किया। | ||
: <math>S_A = |S_\mathrm{a}| + |S_\mathrm{b}| + |S_\mathrm{c}|</math> : <math>\mathrm{pf}_A = {P_\mathrm{a} + P_\mathrm{b} + P_\mathrm{c} \over S_A}</math>, | : <math>S_A = |S_\mathrm{a}| + |S_\mathrm{b}| + |S_\mathrm{c}|</math> | ||
:<math>\mathrm{pf}_A = {P_\mathrm{a} + P_\mathrm{b} + P_\mathrm{c} \over S_A}</math>, | |||
अर्थात्, चरण आभासी शक्तियों का अंकगणितीय योग; और | अर्थात्, चरण आभासी शक्तियों का अंकगणितीय योग; और | ||
| Line 107: | Line 107: | ||
: <math>\mathrm{pf}_V = {P_\mathrm{a} + P_\mathrm{b} + P_\mathrm{c} \over S_V}</math>, | : <math>\mathrm{pf}_V = {P_\mathrm{a} + P_\mathrm{b} + P_\mathrm{c} \over S_V}</math>, | ||
अर्थात्, तीन चरण जटिल शक्ति का कुल परिमाण। | |||
1920 | वर्ष 1920 समिति को कोई सामान्य सहमति नहीं मिली और विषय चर्चाओं पर प्रबल रहा। वर्ष 1930 में, एक और समिति का निर्माण हुआ, जो एक बार फिर इस प्रश्न को हल करने में विफल रही। उनकी चर्चाओं का प्रतिलेख, एआईईई द्वारा प्रकाशित अब तक का सबसे लंबा और सबसे विवादास्पद प्रतिलेख है।<ref name="Emanuel_1993">{{cite journal |last1=Emanuel |first1=Alexander |title=साइनसॉइडल वोल्टेज और धाराओं के साथ असंतुलित पॉलीफ़ेज़ सर्किट में पावर फैक्टर और स्पष्ट शक्ति की परिभाषा पर|journal=IEEE Transactions on Power Delivery |date=July 1993 |volume=8 |issue=3 |pages=841–852 |doi=10.1109/61.252612 |ref=Emanuel_1993}}</ref> इस चर्चा का अग्रिम समाधान 1990 के दशक के अंत तक सामने नहीं आया। | ||
[[सममित घटक]] सिद्धांत पर आधारित एक नई परिभाषा 1993 में अलेक्जेंडर इमानुएल द्वारा असंतुलित रेखीय भार के लिए प्रस्तावित की गई थी | [[सममित घटक]] सिद्धांत पर आधारित एक नई परिभाषा वर्ष 1993 में अलेक्जेंडर इमानुएल द्वारा असंतुलित रेखीय भार के लिए प्रस्तावित की गई थी जिसकी आपूर्ति विषम ज्यावक्रीय विभवान्तर के साथ की गई थी: | ||
: <math>S = \sqrt{ \left( |V_\mathrm{a}^2| + |V_\mathrm{b}^2| + |V_\mathrm{c}^2| \right ) \left ( |I_\mathrm{a}^2| + |I_\mathrm{b}^2| + |I_\mathrm{c}^2| \right )}</math> | : <math>S = \sqrt{ \left( |V_\mathrm{a}^2| + |V_\mathrm{b}^2| + |V_\mathrm{c}^2| \right ) \left ( |I_\mathrm{a}^2| + |I_\mathrm{b}^2| + |I_\mathrm{c}^2| \right )}</math> | ||
: <math>\mathrm{pf} = {P^+ \over S}</math>, | : <math>\mathrm{pf} = {P^+ \over S}</math>, | ||
अर्थात्, लाइन | अर्थात्, लाइन विभवान्तरों के वर्गित योगों के मूल को लाइन धाराओं के वर्गित योग के मूल से गुणा किया जाता है। <math>P^+</math> धनात्मक अनुक्रम शक्ति को दर्शाता है: | ||
:<math>P^+ = 3 |V^+| |I^+| \cos{(\arg{(V^+)} - \arg{(I^+)})}</math> | :<math>P^+ = 3 |V^+| |I^+| \cos{(\arg{(V^+)} - \arg{(I^+)})}</math> | ||
<math>V^+</math> | <math>V^+</math> धनात्मक अनुक्रम विभवान्तर फेजर को और <math>I^+</math> धनात्मक अनुक्रम धारा चरण को दर्शाता है।<ref name="Emanuel_1993" /> | ||
== वास्तविक संख्या सूत्र == | == वास्तविक संख्या सूत्र == | ||
एक पूर्ण | एक पूर्ण प्रतिरोधक कोई ऊर्जा संग्रहित नहीं करता है; इसलिए विद्युत धारा और विभवान्तर चरण में होते हैं। इसलिए, कोई प्रतिघाती शक्ति नहीं होती है और <math>P=S</math> ([[निष्क्रिय साइन कन्वेंशन|निष्क्रिय चिह्न परिपाटी]] का उपयोग करके)। इसलिए, एक पूर्ण प्रतिरोधक के लिए | ||
:<math>P = S = V_\mathrm{RMS} I_\mathrm{RMS} = I_\mathrm{RMS}^2 R = \frac{V_\mathrm{RMS}^2} {R}\,\!</math>. | :<math>P = S = V_\mathrm{RMS} I_\mathrm{RMS} = I_\mathrm{RMS}^2 R = \frac{V_\mathrm{RMS}^2} {R}\,\!</math>. | ||
एक पूर्ण संधारित्र या प्रेरक के लिए, कोई शुद्ध शक्ति हस्तांतरण नहीं होता है; इसलिए | एक पूर्ण संधारित्र या प्रेरक के लिए, कोई शुद्ध शक्ति हस्तांतरण नहीं होता है; इसलिए सम्पूर्ण शक्ति प्रतिघाती होती है। इसलिए, एक पूर्ण संधारित्र या प्रेरक के लिए: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
P &= 0 \\ | P &= 0 \\ | ||
| Line 129: | Line 129: | ||
\end{align}</math>. | \end{align}</math>. | ||
जहाँ <math>X</math>, संधारित्र या प्रेरक का विद्युत प्रतिघात है। | |||
यदि <math>X</math> को एक प्रेरक के लिए धनात्मक और संधारित्र के लिए ऋणात्मक होने के रूप में परिभाषित किया गया | यदि <math>X</math> को एक प्रेरक के लिए धनात्मक और संधारित्र के लिए ऋणात्मक होने के रूप में परिभाषित किया गया हो, तो मापांक चिह्नों को S और X से हटाया जा सकता है और निम्न को प्राप्त किया जा सकता है | ||
:<math>Q = I_\mathrm{RMS}^2 X = \frac{V_\mathrm{RMS}^2} {X}</math>. | :<math>Q = I_\mathrm{RMS}^2 X = \frac{V_\mathrm{RMS}^2} {X}</math>. | ||
| Line 137: | Line 137: | ||
:<math>p(t) = v(t) \, i(t)</math>, | :<math>p(t) = v(t) \, i(t)</math>, | ||
जहाँ <math>v(t)</math> और <math>i(t)</math> समय-परिवर्ती विभवान्तर और धारा तरंगरूप हैं। | |||
यह परिभाषा उपयोगी है क्योंकि यह सभी | यह परिभाषा उपयोगी है क्योंकि यह सभी तरंगोंरूपों पर लागू होती है, अर्थात् यह इनके ज्यावक्रीय होने या ना होने पर निर्भर नहीं करता है। यह विद्युत-शक्ति इलेक्ट्रॉनिक्स में विशेष रूप से उपयोगी है, जहाँ गैर-ज्यावक्रीय तरंगरूप सामान्य होते हैं। | ||
सामान्यतः, अभियंता समय की अवधि में औसतित सक्रिय शक्ति में रुचि रखते हैं, यद्यपि यह कम आवृत्ति लाइन चक्र या उच्च आवृत्ति शक्ति रूपान्तरक परिवर्तन अवधि हो। इस परिणाम को प्राप्त करने की सबसे आसान विधि वांछित अवधि में तात्क्षणिक गणना का समाकल लेना है: | |||
:<math>P_\text{avg} = \frac{1}{t_2 - t_1}\int_{t_1}^{t_2} v(t) \, i(t) \, \mathrm dt</math>. | :<math>P_\text{avg} = \frac{1}{t_2 - t_1}\int_{t_1}^{t_2} v(t) \, i(t) \, \mathrm dt</math>. | ||
तरंगरूप के [[हार्मोनिक सामग्री|हार्मोनिक अंश]] को ध्यान में रखे बिना औसत शक्ति की गणना करने की यह विधि सक्रिय शक्ति प्रदान करती है। व्यावहारिक अनुप्रयोगों में, यह डिजिटल परिक्षेत्र में किया जाता है, जहाँ सक्रिय शक्ति निर्धारित करने के लिए गणना, आरएमएस और चरण के उपयोग की तुलना में तुच्छ हो जाती है: | |||
:<math> P_\text{avg} = \frac{1}{n} \sum_{k=1}^n V[k]I[k] </math>. | :<math> P_\text{avg} = \frac{1}{n} \sum_{k=1}^n V[k]I[k] </math>. | ||
== एकाधिक आवृत्ति | == एकाधिक आवृत्ति प्रणालियाँ == | ||
चूँकि किसी भी | चूँकि किसी भी तरंगरूप के लिए वर्ग-माध्य-मूल मान की गणना की जा सकती है, अतः इससे आभासी शक्ति की गणना की जा सकती है। सक्रिय शक्ति के लिए सर्वप्रथम यह प्रतीत होता है कि कई गुणनफल पदों की गणना करना और उन सभी का औसत करना आवश्यक है। हालाँकि, इन गुणनफल पदों में से किसी एक को अधिक विस्तार से देखने से अत्यंत रोचक परिणाम उत्पन्न होता है। | ||
:<math>\begin{align} | :<math>\begin{align} | ||
&A\cos(\omega_1t+k_1)\cos(\omega_2t + k_2) \\ | &A\cos(\omega_1t+k_1)\cos(\omega_2t + k_2) \\ | ||
| Line 154: | Line 154: | ||
= {} &\frac{A}{2}\cos\left[\left(\omega_1 + \omega_2\right)t + k_1 + k_2\right] + \frac{A}{2}\cos\left[\left(\omega_1 - \omega_2\right)t + k_1 - k_2\right] | = {} &\frac{A}{2}\cos\left[\left(\omega_1 + \omega_2\right)t + k_1 + k_2\right] + \frac{A}{2}\cos\left[\left(\omega_1 - \omega_2\right)t + k_1 - k_2\right] | ||
\end{align}</math> | \end{align}</math> | ||
हालाँकि, {{nowrap|cos(''ωt'' + ''k'')}} के रूप के एक | हालाँकि, {{nowrap|cos(''ωt'' + ''k'')}} के रूप के एक फलन का समय औसत शून्य होता है, जबकि यह ज्ञात है कि ''ω'' अशून्य है। इसलिए, एकमात्र गुणनफल पद (जिनका औसत शून्य नहीं है) वे हैं जहाँ विभवान्तर और विद्युत धारा की आवृत्ति संगत है। दूसरे शब्दों में, प्रत्येक आवृत्ति के साथ अलग-अलग व्यवहार करके और उत्तरों को जोड़कर सक्रिय (औसत) शक्ति की गणना करना संभव है। इसके अतिरिक्त, यदि मुख्य आपूर्ति के विभवान्तर को एकल आवृत्ति माना जाता है (जो सामान्यतः होता है), तो ये यह दर्शाता है कि [[हार्मोनिक्स (विद्युत शक्ति)|हार्मोनिक धाराएँ]] एक ख़राब वस्तुएँ हैं। ये आरएमएस विद्युत धारा को (चूँकि इसमें अशून्य पद जोड़े जाते हैं) और इसलिए आभासी शक्ति बढ़ाते हैं, लेकिन हस्तांतरित सक्रिय शक्ति पर इनका कोई प्रभाव नहीं पड़ता है। इसलिए, हार्मोनिक धाराएँ शक्ति गुणांक को कम कर देती हैं। उपकरण के इनपुट पर लगाए गए निस्पंदक द्वारा हार्मोनिक धाराओं को कम किया जा सकता है। सामान्यतः इसमें या तो केवल एक संधारित्र (आपूर्ति में पराश्रयी प्रतिरोध और प्रेरकत्व पर निर्भर) या एक संधारित्र-प्रेरक नेटवर्क सम्मिलित होता है। इनपुट पर एक सक्रिय [[शक्ति का कारक सुधार|शक्ति गुणांक संशोधन]] परिपथ सामान्यतः हार्मोनिक धाराओं को और कम कर देता है और शक्ति गुणांक को इकाई के निकट बनाए रखता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
| Line 174: | Line 174: | ||
{{Authority control}} | {{Authority control}} | ||
{{DEFAULTSORT:Ac Power}} | {{DEFAULTSORT:Ac Power}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Ac Power]] | |||
[[Category:Collapse templates|Ac Power]] | |||
[[Category: | [[Category:Created On 03/02/2023|Ac Power]] | ||
[[Category:Created On 03/02/2023]] | [[Category:Lua-based templates|Ac Power]] | ||
[[Category:Machine Translated Page|Ac Power]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Ac Power]] | |||
[[Category:Pages with empty portal template|Ac Power]] | |||
[[Category:Pages with reference errors|Ac Power]] | |||
[[Category:Pages with script errors|Ac Power]] | |||
[[Category:Portal templates with redlinked portals|Ac Power]] | |||
[[Category:Short description with empty Wikidata description|Ac Power]] | |||
[[Category:Sidebars with styles needing conversion|Ac Power]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Ac Power]] | |||
[[Category:Templates generating microformats|Ac Power]] | |||
[[Category:Templates that add a tracking category|Ac Power]] | |||
[[Category:Templates that are not mobile friendly|Ac Power]] | |||
[[Category:Templates that generate short descriptions|Ac Power]] | |||
[[Category:Templates using TemplateData|Ac Power]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:Wikipedia metatemplates|Ac Power]] | |||
Latest revision as of 11:41, 14 February 2023
एक विद्युत परिपथ में, तात्क्षणिक शक्ति परिपथ के एक दिए गए बिंदु से ऊर्जा के प्रवाह की समय दर है। प्रत्यावर्ती धारा परिपथों में, प्रेरक और संधारित्र जैसे ऊर्जा भंडारण तत्व ऊर्जा प्रवाह की दिशा के आवधिक उत्क्रमण में परिणत हो सकते हैं। इसका एसआई मात्रक वाट है।
एसी तरंगरूप के एक पूर्ण चक्र पर औसत तात्क्षणिक शक्ति के एक ऐसे भाग को तात्क्षणिक सक्रिय शक्ति के रूप में जाना जाता है, जिसके परिणामस्वरूप एक दिशा में ऊर्जा का शुद्ध हस्तांतरण होता है, और इसके समय औसत को सक्रिय शक्ति या वास्तविक शक्ति के रूप में जाना जाता है।[1]: 3 तात्क्षणिक शक्ति का उस भाग को तात्क्षणिक प्रतिघाती शक्ति के रूप में जाना जाता है, जिसके परिणामस्वरूप ऊर्जा का कोई शुद्ध हस्तांतरण नहीं होता है, बल्कि संग्रहित ऊर्जा के कारण प्रत्येक चक्र में स्रोत और भार के बीच दोलन होता है, और इसका आयाम प्रतिघाती शक्ति का निरपेक्ष मान है।[2][1]: 4
==साइनसोइडल स्थिर-अवस्था == में सक्रिय, प्रतिक्रियाशील, स्पष्ट और जटिल शक्ति एक साधारण प्रत्यावर्ती धारा (AC) सर्किट में एक स्रोत और एक रैखिक सर्किट समय-अपरिवर्तनीय प्रणाली | टाइम-इनवेरिएंट लोड होता है, जिसमें करंट और वोल्टेज दोनों समान आवृत्ति पर साइन लहर होते हैं।[3]
ज्यावक्रीय स्थिर-अवस्था में सक्रिय, प्रतिघाती, आभासी और जटिल शक्ति
साधारण प्रत्यावर्ती धारा (एसी) परिपथ में एक स्रोत और एक रैखिक समय-अपरिवर्तनीय भार होता है, धारा और विभवान्तर दोनों एक ही आवृत्ति पर ज्यावक्रीय होते हैं।[3] यदि भार विशुद्ध रूप से प्रतिरोधी है, तो दो राशियाँ एक ही समय में अपनी ध्रुवीयता को उत्क्रमित कर देती हैं। विभवान्तर और विद्युत धारा का गुणनफल प्रत्येक क्षण धनात्मक या शून्य होता है, जिसका परिणाम यह होता है कि ऊर्जा प्रवाह की दिशा उत्क्रमित नहीं होती है। इस स्थिति में, केवल सक्रिय शक्ति ही स्थानांतरित की जाती है।
यदि भार विशुद्ध रूप से प्रतिघाती है, तो विभवान्तर और विद्युत धारा 90 अंश चरण से बाहर होते हैं। प्रत्येक चक्र के दो चतुर्थांशों के लिए, विभवान्तर और विद्युत धारा का गुणनफल धनात्मक होता है, लेकिन अन्य दो चतुर्थांशों के लिए यह गुणनफल ऋणात्मक होता है, जो यह दर्शाता है कि औसतन उतनी ही ऊर्जा भार में प्रवाहित होती है जितनी कि वापस बाहर प्रवाहित होती है। प्रत्येक अर्द्ध चक्र में कोई शुद्ध ऊर्जा प्रवाह नहीं होता है। इस स्थिति में, केवल प्रतिघाती शक्ति प्रवाहित होती है: भार में ऊर्जा का कोई शुद्ध हस्तांतरण नहीं होता है; हालाँकि, विद्युत शक्ति तारों के साथ प्रवाहित होती है और उन्हीं तारों के साथ विपरीत दिशा में प्रवाहित होकर वापस लौटती है। इस प्रतिघाती शक्ति प्रवाह के लिए आवश्यक धारा रेखा प्रतिरोध में ऊर्जा का प्रसार करती है, यद्यपि आदर्श भार उपकरण स्वयं ऊर्जा का उपभोग न करे। व्यावहारिक भार में प्रतिरोध के साथ-साथ प्रेरकत्व या धारिता भी होती है, इसलिए सक्रिय और प्रतिघाती दोनों शक्तियाँ सामान्य भार में प्रवाहित होती हैं।
आभासी शक्ति विभवान्तर और विद्युत धारा के वर्ग-माध्य-मूल मानों का गुणनफल है। शक्ति तंत्र को संरचित और संचालित करते समय आभासी शक्ति को ध्यान में रखा जाता है, क्योंकि हालाँकि प्रतिघाती शक्ति से जुड़ी विद्युत धारा भार पर कार्य नहीं करती है, फिर भी इसे शक्ति स्रोत द्वारा आपूर्ति की जानी चाहिए। चालक, ट्रांसफॉर्मर और जनित्र को केवल उपयोगी कार्य करने वाली विद्युत धारा का वहन करने के स्थान पर कुल विद्युत धारा का वहन करने के लिए आकार देना चाहिए। विद्युत ग्रिडों में पर्याप्त प्रतिघाती शक्ति की आपूर्ति प्रदान करने में विफलता से विभवान्तर का स्तर कम हो सकता है और, कुछ परिचालन स्थितियों के तहत नेटवर्क या विद्युत-कटौती का पूर्ण पतन हो सकता है। इसका एक अन्य परिणाम यह है कि दो भारों के लिए आभासी शक्ति संयोजन तब तक यथार्थतः कुल शक्ति नहीं प्रदान करता है, जब तक कि उसके पास धारा और विभवान्तर (समान शक्ति गुणांक) के बीच समान चरण अंतर न हो।
परंपरागत रूप से, संधारित्र के साथ ऐसा व्यवहार किया जाता है जैसे कि ये प्रतिघाती शक्ति उत्पन्न करते हैं, और प्रेरकों के साथ ऐसा व्यवहार किया जाता है जैसे कि ये इसका उपभोग करते हैं। यदि एक संधारित्र और एक प्रेरक को समानांतर में रखा जाता है, तो संधारित्र और प्रेरक के माध्यम से प्रवाहित धाराएँ जुड़ने के स्थान पर निरस्त हो जाती हैं। विद्युत शक्ति संचरण में शक्ति गुणांक को नियंत्रित करने के लिए यह मूलभूत तंत्र है; संधारित्र (या प्रेरक), भार द्वारा 'खपत' ('उत्पादित') की गई प्रतिघाती शक्ति के लिए आंशिक रूप से क्षतिपूर्ति करने के लिए परिपथ में अंतःस्थापित किये जाते हैं। विशुद्ध रूप से धारितीय परिपथ, धारा तरंगरूप के साथ प्रतिघाती शक्ति की आपूर्ति करते हैं, जो विभवान्तर तरंग को 90 अंश तक ले जाते हैं, जबकि विशुद्ध रूप से प्रेरण परिपथ विभवान्तर तरंग को 90 अंश से पश्चगामी करते हुए धारा तरंगरूप के साथ प्रतिघाती शक्ति को अवशोषित करते हैं। इसका परिणाम यह है कि धारितीय और प्रेरकीय परिपथ तत्व एक दूसरे को निरस्त कर देते हैं।[4]
अभियंता, किसी तंत्र में ऊर्जा प्रवाह का वर्णन करने के लिए निम्नलिखित शब्दों का उपयोग करते हैं (और इनमें से प्रत्येक को उनके बीच अंतर करने के लिए एक अलग इकाई आवंटित करते हैं):
- सक्रिय शक्ति,[4] P, या 'वास्तविक शक्ति':[5] वाट (W);
- प्रतिघाती शक्ति, Q: वोल्ट-एम्पीयर प्रतिघाती (var);
- जटिल शक्ति, S: वोल्ट-एम्पीयर (VA);
- आभासी शक्ति, |S|: जटिल शक्ति S का परिमाण: वोल्ट-एम्पीयर (VA);
- विद्युत धारा के सापेक्ष विभवान्तर का चरण, φ: विद्युत धारा और विभवान्तर के बीच अंतर का कोण (अंश में); . विद्युत धारा पश्चगामी विभवान्तर (चतुर्थांश I सदिश), विद्युत धारा अग्रगामी विभवान्तर (चतुर्थांश IV सदिश)।
इन सभी को आसन्न आरेख (जिसे शक्ति त्रिभुज कहा जाता है) में दर्शाया गया है।
आरेख में, P सक्रिय शक्ति, Q प्रतिघाती शक्ति (इस स्थिति में धनात्मक), S जटिल शक्ति और S की लंबाई आभासी शक्ति है। प्रतिघाती शक्ति कोई कार्य नहीं करती है, इसलिए इसे सदिश आरेख के काल्पनिक अक्ष के रूप में दर्शाया जाता है। सक्रिय शक्ति कार्य करती है, इसलिए वह वास्तविक अक्ष है।
शक्ति की इकाई वाट (प्रतीक: W) है। आभासी शक्ति प्रायः वोल्ट-एम्पीयर (VA) में व्यक्त की जाती है क्योंकि यह वर्ग-माध्य-मूल विभवान्तर और वर्ग-माध्य-मूल विद्युत प्रवाह का गुणनफल है। प्रतिघाती शक्ति की इकाई वीएआर है, जिसका पूर्णरूप वोल्ट-एम्पीयर प्रतिघाती है। चूँकि प्रतिघाती शक्ति भार में कोई शुद्ध ऊर्जा स्थानांतरित नहीं करती है, अतः इसे कभी-कभी "वाटहीन" शक्ति कहा जाता है। हालाँकि, यह विद्युत ग्रिड में एक महत्वपूर्ण कार्य करता है और इसकी कमी को वर्ष 2003 की पूर्वोत्तर विद्युत-कटौती में एक महत्वपूर्ण कारक के रूप में उद्धृत किया गया है।[6] इन तीन राशियों के बीच संबंध को समझना शक्ति अभियांत्रिकी को समझने के केंद्र में है। इनके बीच गणितीय संबंध को सदिश द्वारा दर्शाया जा सकता है या सम्मिश्र संख्याओं, S = P + j Q (जहाँ j काल्पनिक इकाई है) का उपयोग करके व्यक्त किया जा सकता है।
ज्यावक्रीय स्थिर-अवस्था में गणना और समीकरण
फेज़र रूप में जटिल शक्ति (इकाई: VA) का सूत्र निम्न है:
- ,
जहाँ V, फेज़र रूप में विभवान्तर को वर्ग-माध्य-मूल के रूप में आयाम के साथ, और I, फेज़र रूप में धारा को वर्ग-माध्य-मूल के रूप में आयाम के साथ दर्शाता है। साथ ही परिपाटी द्वारा, I के सम्मिश्र संयुग्मी का उपयोग किया जाता है, जिसे स्वयं I के स्थान पर (या ) द्वारा निरूपित किया जाता है। ऐसा इसलिए किया जाता है क्योंकि अन्यथा S को परिभाषित करने के लिए गुणनफल V I का उपयोग करने से ऐसी राशि प्राप्त होती है जो V या I के लिए चुने गए निर्देश कोण पर निर्भर करती है, लेकिन S को V I* के रूप में परिभाषित करने से ऐसी राशि प्राप्त होती है जो निर्देश कोण पर निर्भर नहीं करती है और S को P और Q से संबंधित करने की अनुमति प्रदान करती है।[7]
जटिल शक्ति (इकाई वोल्ट-एम्पियर, VA में) के अन्य रूप Z, भार प्रतिबाधा (इकाई ओम, Ω में) से प्राप्त होते हैं।
- .
परिणामस्वरूप, शक्ति त्रिभुज के संदर्भ में वास्तविक शक्ति (इकाई वाट, W में) निम्न रूप में प्राप्त की जाती है:
- .
विशुद्ध रूप से प्रतिरोधी भार के लिए, वास्तविक शक्ति को निम्न रूप में सरल बनाया जा सकता है:
- .
R भार के प्रतिरोध (इकाई, ओम, Ω में) को दर्शाता है।
प्रतिघाती शक्ति (इकाई वोल्ट-एम्पियर-प्रतिघाती, वीएआर में) निम्न प्रकार प्राप्त होती है:
- .
विशुद्ध रूप से प्रतिघाती भार के लिए, प्रतिघाती शक्ति को निम्न रूप में सरल बनाया जा सकता है:
- ,
जहाँ X भार के प्रतिघात (इकाई ओम, Ω में) को दर्शाता है।
संयोजित करने से जटिल शक्ति (इकाई वोल्ट-एम्पियर, VA में) निम्न रूप में
- ,
और आभासी शक्ति (इकाई वोल्ट-एम्पियर, VA में) निम्न रूप में पुनः प्राप्त होती है
- .
इन्हें शक्ति त्रिभुज द्वारा आरेखीय रूप से सरलीकृत किया गया है।
शक्ति गुणांक
एक परिपथ में सक्रिय शक्ति और आभासी शक्ति के अनुपात को शक्ति गुणांक कहा जाता है। समान मात्रा में सक्रिय शक्ति संचारित करने वाली दो प्रणालियों के लिए, कम शक्ति गुणांक वाली प्रणाली में ऊर्जा के कारण उच्च परिसंचारी धाराएँ होती हैं जो भार में ऊर्जा भंडारण से स्रोत पर वापस लौटती हैं। ये उच्च धाराएँ उच्च हानियाँ उत्पन्न करती हैं और समग्र संचरण दक्षता को कम करती हैं। निम्न शक्ति गुणांक परिपथ में सक्रिय शक्ति की समान मात्रा के लिए उच्च आभासी शक्ति और उच्च हानि होती है। शक्ति गुणांक 1.0 होता है जब विभवान्तर और विद्युत धारा चरण में होते हैं। यह शून्य होता है जब विद्युत धारा विभवान्तर को 90 अंश से आगे या पीछे करती है। जब विभवान्तर और विद्युत धारा चरण से 180 अंश बाहर होते हैं, तो शक्ति गुणांक धनात्मक होता है, और भार ऊर्जा को स्रोत में निवेशित करता है (किसी छत पर सौर सेलों वाला घर इसका एक उदाहरण है जो सूर्य के चमकने पर शक्ति ग्रिड में शक्ति निवेशित करता है)। विभवान्तर के सापेक्ष धारा के चरण कोण के चिह्न को दर्शाने के लिए शक्ति गुणांकों को सामान्यतः "अग्रगामी" या "पश्चगामी" कहा जाता है। विभवान्तर को उस आधार के रूप में नामित किया जाता है जिससे धारा कोण की तुलना की जाती है, जिसका अर्थ है कि धारा को "अग्रगामी" या "पश्चगामी" विभवान्तर के रूप में माना जाता है। जहाँ तरंगरूप विशुद्ध रूप से ज्यावक्रीय होते हैं, वहाँ शक्ति गुणांक, विद्युत धारा और विभवान्तर ज्यावक्रीय तरंगरूपों के बीच के चरण कोण () की कोज्या होता है। इस कारण से उपकरण डेटा शीटें और नेमप्लेटें प्रायः शक्ति गुणांक को "" के रूप में संक्षिप्त करते हैं।
उदाहरण: सक्रिय शक्ति 700 W और विभवान्तर और विद्युत धारा के बीच का चरण कोण 45.6° है। शक्ति गुणांक cos(45.6°) = 0.700 है। तब आभासी शक्ति 700 W / cos(45.6°) = 1000 VA है। एसी परिपथ में विद्युत अपव्यय की अवधारणा को निम्न उदाहरण के साथ वर्णित किया और सचित्र समझाया गया है।
उदाहरण के लिए, 0.68 के शक्ति गुणांक का अर्थ है कि कुल आपूर्ति (परिमाण में) का केवल 68 प्रतिशत भाग वास्तव में कार्य कर रहा है; शेष विद्युत धारा भार पर कोई कार्य नहीं करती है।
प्रतिघाती शक्ति
एक दिष्ट धारा परिपथ में, भार में प्रवाहित होने वाली शक्ति, भार के माध्यम से प्रवाहित धारा और भार में विभवपात के गुणनफल के समानुपाती होती है। स्रोत से भार तक ऊर्जा एक दिशा में प्रवाहित होती है। एसी शक्ति में, विभवान्तर और विद्युत धारा दोनों लगभग ज्यावक्रीय रूप से भिन्न होते हैं। जब परिपथ में प्रेरकत्व या धारिता होती है, तो विभवान्तर और विद्युत धारा तरंगरूप पूरी तरह से लाइन में नहीं आते हैं। विद्युत प्रवाह के दो घटक होते हैं, एक घटक, स्रोत से भार की ओर प्रवाहित होता है और भार पर कार्य कर सकता है; जबकि "प्रतिघाती शक्ति" के रूप में जाने जाने वाले अन्य घटक का कारण विभवान्तर और विद्युत धारा के बीच विलम्ब है, जिसे चरण कोण के रूप में जाना जाता है, और यह भार पर उपयोगी कार्य नहीं कर सकता है। इसे गलत समय (बहुत देर या बहुत जल्दी) पर आने वाली धारा के रूप में माना जा सकता है। प्रतिघाती शक्ति को सक्रिय शक्ति से अलग करने के लिए, इसे "वोल्ट-एम्पीयर प्रतिघाती" या वीएआर की इकाइयों में मापा जाता है। ये इकाइयाँ वाट में सरलीकृत हो सकती हैं लेकिन यह दर्शाने के लिए वीएआर के रूप में छोड़ दी जाती हैं कि ये किसी वास्तविक कार्य आउटपुट को नहीं निरूपित करते हैं।
नेटवर्क के धारितीय या प्रेरकीय तत्वों में संग्रहित ऊर्जा प्रतिघाती शक्ति प्रवाह को उत्पन्न करती है। प्रतिघाती शक्ति प्रवाह पूरे नेटवर्क में विभवान्तर के स्तर को दृढ़ता से प्रभावित करता है। स्वीकार्य सीमा के भीतर विद्युत प्रणाली को संचालित करने की अनुमति देने के लिए विभवान्तर स्तर और प्रतिघाती शक्ति प्रवाह को सावधानीपूर्वक नियंत्रित किया जाना चाहिए। प्रतिघाती क्षतिपूर्ति के रूप में जानी जाने वाली तकनीक का उपयोग संचरण लाइनों से आपूर्ति की जाने वाली प्रतिघाती शक्ति को कम करके और इसे स्थानीय रूप से प्रदान करके भार में आभासी शक्ति प्रवाह को कम करने के लिए किया जाता है। उदाहरण के लिए, प्रेरकीय भार की क्षतिपूर्ति करने के लिए, भार के पास ही एक शंट संधारित्र स्थापित किया जाता है। यह संधारित्र द्वारा आपूर्ति की जाने वाली भार द्वारा आवश्यक सभी प्रतिघाती शक्तियों की अनुमति देता है और इसे संचरण लाइनों पर स्थानांतरित करने की आवश्यकता नहीं होती है। इस अभ्यास से ऊर्जा की बचत होती है क्योंकि यह उस ऊर्जा की मात्रा को कम कर देता है जिसे समान कार्य करने के लिए उपयोगिता द्वारा उत्पादित किया जाना आवश्यक है। इसके अतिरिक्त, यह छोटे चालक या कम बंडल चालक का उपयोग करके और संचरण टावरों की संरचना को अनुकूलित करने के लिए अधिक कुशल संचरण लाइन संरचनाओं की अनुमति प्रदान करता है।
धारितीय बनाम प्रेरकीय भार
मोटर या संधारित्र जैसे भार उपकरणों के चुंबकीय या विद्युत क्षेत्र में संग्रहित ऊर्जा, धारा और विभवान्तर तरंगरूपों के बीच ऑफसेट का कारण बनती है। संधारित्र एक ऐसा उपकरण है जो ऊर्जा को विद्युत क्षेत्र के रूप में संग्रहित करता है। चूँकि धारा को संधारित्र के माध्यम से प्रवाहित किया जाता है, अतः आवेश के निर्माण के कारण के कारण संधारित्र में एक विरोधी विभवान्तर विकसित होता है। यह विभवान्तर तब तक बढ़ता है जब तक कि संधारित्र संरचना द्वारा अधिकतम विभवान्तर निर्धारित नहीं किया जाता है। एक एसी नेटवर्क में, संधारित्र में विभवान्तर नियत रूप से बदलता है। संधारित्र इस परिवर्तन का विरोध करता है, जिससे धारा, चरण में विभवान्तर का अग्रगमन करती है। संधारित्र को "स्रोत" प्रतिघाती शक्ति कहा जाता है, और इस प्रकार यह एक प्रमुख शक्ति गुणांक का कारण बनता है।
प्रेरण मशीनें वर्तमान में विद्युत शक्ति तंत्रों में सबसे सामान्य प्रकार के भार हैं। ये मशीनें ऊर्जा को चुंबकीय क्षेत्र के रूप में संग्रहित करने के लिए प्रेरक या तार के बड़ी कुंडली का उपयोग करती हैं। जब एक विभवान्तर प्रारंभ में कुण्डली में रखा जाता है, तो प्रेरक, धारा और चुंबकीय क्षेत्र में इस परिवर्तन का दृढ़ता से विरोध करता है, जिससे विद्युत धारा को अपने अधिकतम मान तक पहुँचने में समय लगता है। यह चरण में विद्युत धारा के विभवान्तर से पिछड़ने का कारण बनता है। प्रेरक को प्रतिघाती शक्ति को "सिंक" करने के लिए कहा जाता है, और इस प्रकार यह एक पश्चगामी शक्ति गुणांक का कारण बनता है। प्रेरण जनित्र प्रतिघाती शक्ति को स्रोत या सिंक कर सकते हैं, और प्रतिघाती शक्ति प्रवाह और इस प्रकार विभवान्तर पर प्रणाली संचालकों को नियंत्रण का एक उपाय प्रदान करते हैं।[8] क्योंकि इन उपकरणों का विभवान्तर और विद्युत धारा के बीच के चरण कोण पर विपरीत प्रभाव पड़ता है, इसलिए इनका उपयोग एक दूसरे के प्रभावों को "निरस्त" करने के लिए किया जा सकता है। यह सामान्यतः संधारित्र बैंकों का रूप लेता है जिसका उपयोग प्रेरण मोटरों के कारण होने वाले पश्चगामी शक्ति गुणांक का प्रतिकार करने के लिए किया जाता है।
प्रतिघाती शक्ति नियंत्रण
संचरण से जुड़े जनित्र सामान्यतः प्रतिघाती शक्ति प्रवाह का समर्थन करने के लिए आवश्यक होते हैं। उदाहरण के लिए, यूनाइटेड किंगडम संचरण प्रणाली पर, जनित्रों को ग्रिड कोड आवश्यकताओं द्वारा अपनी निर्धारित सीमा के बीच नामित टर्मिनलों पर 0.85 शक्ति गुणांक पश्चगामी और 0.90 शक्ति गुणांक अग्रगामी की आपूर्ति करने की आवश्यकता होती है। प्रतिघाती शक्ति संतुलन समीकरण को व्यवस्थित रखते हुए प्रणाली संचालक एक सुरक्षित और अल्पव्ययी विभवान्तर प्रोफ़ाइल व्यवस्थित रखने के लिए पारस्परिक-परिवर्तन क्रियाएँ करता है:
उपरोक्त शक्ति संतुलन समीकरण में "प्रणाली लाभ" प्रतिघाती शक्ति का एक महत्वपूर्ण स्रोत है, जो कि संचरण नेटवर्क की धारितीय प्रकृति द्वारा ही उत्पन्न होती है। माँग बढ़ने से पूर्व सुबह निर्णायक पारस्परिक परिवर्तन क्रियाएँ करके, पूरे दिन के लिए प्रणाली को सुरक्षित रखने में सहायता करते हुए प्रणाली लाभ को शीघ्र अधिकतम किया जा सकता है। समीकरण को संतुलित करने के लिए कुछ पूर्व-दोष प्रतिघाती जनित्रों के उपयोग की आवश्यकता होती है। प्रतिघाती शक्ति के अन्य स्रोतों का भी उपयोग किया जाता है जिसमें शंट संधारित्र, शंट प्रतिघातक, स्थिर वीएआर क्षतिपूरक और विभवान्तर नियंत्रण परिपथ सम्मिलित हैं।
असंतुलित ज्यावक्रीय बहुचरणीय प्रणालियाँ
जबकि सक्रिय शक्ति और प्रतिघाती शक्ति किसी भी प्रणाली में सुपरिभाषित हैं, फिर भी असंतुलित बहुचरणीय प्रणालियों के लिए आभासी शक्ति की परिभाषा को शक्ति अभियांत्रिकी में सबसे विवादास्पद विषयों में से एक माना जाता है। मूल रूप से, आभासी शक्ति केवल विशेषता के रूप में उत्पन्न हुई है। इस अवधारणा के प्रमुख चित्रण का श्रेय स्टैनले की फेनोमेना ऑफ रिटार्डेशन इन द इंडक्शन कॉइल (प्रेरण कुंडली में मंदता की घटना) (वर्ष 1888) और चार्ल्स प्रोटियस स्टेनमेट्ज़ के थ्योरेटिकल एलिमेंट्स ऑफ इंजीनियरिंग (अभियांत्रिकी के सैद्धांतिक तत्व) (वर्ष 1915) को दिया जाता है। हालाँकि, तीन चरण विद्युत वितरण के विकास के साथ यह आभासी हो गया कि आभासी शक्ति और शक्ति गुणांक की परिभाषा असंतुलित बहुचरणीय प्रणालियों पर लागू नहीं की जा सकती। वर्ष 1920 में, इस विषय को हल करने के लिए "एआईईई और राष्ट्रीय विद्युत प्रकाश संगठन की विशेष संयुक्त समिति" की बैठक हुई। इन्होंने दो परिभाषाओं पर विचार किया।
- ,
अर्थात्, चरण आभासी शक्तियों का अंकगणितीय योग; और
- ,
अर्थात्, तीन चरण जटिल शक्ति का कुल परिमाण।
वर्ष 1920 समिति को कोई सामान्य सहमति नहीं मिली और विषय चर्चाओं पर प्रबल रहा। वर्ष 1930 में, एक और समिति का निर्माण हुआ, जो एक बार फिर इस प्रश्न को हल करने में विफल रही। उनकी चर्चाओं का प्रतिलेख, एआईईई द्वारा प्रकाशित अब तक का सबसे लंबा और सबसे विवादास्पद प्रतिलेख है।[9] इस चर्चा का अग्रिम समाधान 1990 के दशक के अंत तक सामने नहीं आया।
सममित घटक सिद्धांत पर आधारित एक नई परिभाषा वर्ष 1993 में अलेक्जेंडर इमानुएल द्वारा असंतुलित रेखीय भार के लिए प्रस्तावित की गई थी जिसकी आपूर्ति विषम ज्यावक्रीय विभवान्तर के साथ की गई थी:
- ,
अर्थात्, लाइन विभवान्तरों के वर्गित योगों के मूल को लाइन धाराओं के वर्गित योग के मूल से गुणा किया जाता है। धनात्मक अनुक्रम शक्ति को दर्शाता है:
धनात्मक अनुक्रम विभवान्तर फेजर को और धनात्मक अनुक्रम धारा चरण को दर्शाता है।[9]
वास्तविक संख्या सूत्र
एक पूर्ण प्रतिरोधक कोई ऊर्जा संग्रहित नहीं करता है; इसलिए विद्युत धारा और विभवान्तर चरण में होते हैं। इसलिए, कोई प्रतिघाती शक्ति नहीं होती है और (निष्क्रिय चिह्न परिपाटी का उपयोग करके)। इसलिए, एक पूर्ण प्रतिरोधक के लिए
- .
एक पूर्ण संधारित्र या प्रेरक के लिए, कोई शुद्ध शक्ति हस्तांतरण नहीं होता है; इसलिए सम्पूर्ण शक्ति प्रतिघाती होती है। इसलिए, एक पूर्ण संधारित्र या प्रेरक के लिए:
- .
जहाँ , संधारित्र या प्रेरक का विद्युत प्रतिघात है।
यदि को एक प्रेरक के लिए धनात्मक और संधारित्र के लिए ऋणात्मक होने के रूप में परिभाषित किया गया हो, तो मापांक चिह्नों को S और X से हटाया जा सकता है और निम्न को प्राप्त किया जा सकता है
- .
तात्क्षणिक शक्ति को इस प्रकार परिभाषित किया गया है:
- ,
जहाँ और समय-परिवर्ती विभवान्तर और धारा तरंगरूप हैं।
यह परिभाषा उपयोगी है क्योंकि यह सभी तरंगोंरूपों पर लागू होती है, अर्थात् यह इनके ज्यावक्रीय होने या ना होने पर निर्भर नहीं करता है। यह विद्युत-शक्ति इलेक्ट्रॉनिक्स में विशेष रूप से उपयोगी है, जहाँ गैर-ज्यावक्रीय तरंगरूप सामान्य होते हैं।
सामान्यतः, अभियंता समय की अवधि में औसतित सक्रिय शक्ति में रुचि रखते हैं, यद्यपि यह कम आवृत्ति लाइन चक्र या उच्च आवृत्ति शक्ति रूपान्तरक परिवर्तन अवधि हो। इस परिणाम को प्राप्त करने की सबसे आसान विधि वांछित अवधि में तात्क्षणिक गणना का समाकल लेना है:
- .
तरंगरूप के हार्मोनिक अंश को ध्यान में रखे बिना औसत शक्ति की गणना करने की यह विधि सक्रिय शक्ति प्रदान करती है। व्यावहारिक अनुप्रयोगों में, यह डिजिटल परिक्षेत्र में किया जाता है, जहाँ सक्रिय शक्ति निर्धारित करने के लिए गणना, आरएमएस और चरण के उपयोग की तुलना में तुच्छ हो जाती है:
- .
एकाधिक आवृत्ति प्रणालियाँ
चूँकि किसी भी तरंगरूप के लिए वर्ग-माध्य-मूल मान की गणना की जा सकती है, अतः इससे आभासी शक्ति की गणना की जा सकती है। सक्रिय शक्ति के लिए सर्वप्रथम यह प्रतीत होता है कि कई गुणनफल पदों की गणना करना और उन सभी का औसत करना आवश्यक है। हालाँकि, इन गुणनफल पदों में से किसी एक को अधिक विस्तार से देखने से अत्यंत रोचक परिणाम उत्पन्न होता है।
हालाँकि, cos(ωt + k) के रूप के एक फलन का समय औसत शून्य होता है, जबकि यह ज्ञात है कि ω अशून्य है। इसलिए, एकमात्र गुणनफल पद (जिनका औसत शून्य नहीं है) वे हैं जहाँ विभवान्तर और विद्युत धारा की आवृत्ति संगत है। दूसरे शब्दों में, प्रत्येक आवृत्ति के साथ अलग-अलग व्यवहार करके और उत्तरों को जोड़कर सक्रिय (औसत) शक्ति की गणना करना संभव है। इसके अतिरिक्त, यदि मुख्य आपूर्ति के विभवान्तर को एकल आवृत्ति माना जाता है (जो सामान्यतः होता है), तो ये यह दर्शाता है कि हार्मोनिक धाराएँ एक ख़राब वस्तुएँ हैं। ये आरएमएस विद्युत धारा को (चूँकि इसमें अशून्य पद जोड़े जाते हैं) और इसलिए आभासी शक्ति बढ़ाते हैं, लेकिन हस्तांतरित सक्रिय शक्ति पर इनका कोई प्रभाव नहीं पड़ता है। इसलिए, हार्मोनिक धाराएँ शक्ति गुणांक को कम कर देती हैं। उपकरण के इनपुट पर लगाए गए निस्पंदक द्वारा हार्मोनिक धाराओं को कम किया जा सकता है। सामान्यतः इसमें या तो केवल एक संधारित्र (आपूर्ति में पराश्रयी प्रतिरोध और प्रेरकत्व पर निर्भर) या एक संधारित्र-प्रेरक नेटवर्क सम्मिलित होता है। इनपुट पर एक सक्रिय शक्ति गुणांक संशोधन परिपथ सामान्यतः हार्मोनिक धाराओं को और कम कर देता है और शक्ति गुणांक को इकाई के निकट बनाए रखता है।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. IEEE. 2010. doi:10.1109/IEEESTD.2010.5439063. ISBN 978-0-7381-6058-0.
- ↑ Thomas, Roland E.; Rosa, Albert J.; Toussaint, Gregory J. (2016). The Analysis and Design of Linear Circuits (8 ed.). Wiley. pp. 812–813. ISBN 978-1-119-23538-5.
- ↑ Das, J. C. (2015). पावर सिस्टम हार्मोनिक्स और पैसिव फ़िल्टर डिज़ाइन. Wiley, IEEE Press. p. 2. ISBN 978-1-118-86162-2.
रैखिक और अरेखीय भार के बीच अंतर करने के लिए, हम कह सकते हैं कि रैखिक समय-अपरिवर्तनीय भार की विशेषता है ताकि एक साइनसोइडल वोल्टेज के एक आवेदन के परिणामस्वरूप वर्तमान का एक साइनसोइडल प्रवाह हो।
- ↑ Definition of Active Power in the International Electrotechnical Vocabulary Archived April 23, 2015, at the Wayback Machine
- ↑ IEEE 100 : the authoritative dictionary of IEEE standards terms.-7th ed. ISBN 0-7381-2601-2, page 23
- ↑ "August 14, 2003 Outage – Sequence of Events" (PDF). FERC. 2003-09-12. Archived from the original (PDF) on 2007-10-20. Retrieved 2008-02-18.
- ↑ Close, Charles M. The Analysis of Linear Circuits. pp. 398 (section 8.3).
- ↑ "Load differentiation". Archived from the original on 2015-10-25. Retrieved 2015-04-29.
- ↑ 9.0 9.1 Emanuel, Alexander (July 1993). "साइनसॉइडल वोल्टेज और धाराओं के साथ असंतुलित पॉलीफ़ेज़ सर्किट में पावर फैक्टर और स्पष्ट शक्ति की परिभाषा पर". IEEE Transactions on Power Delivery. 8 (3): 841–852. doi:10.1109/61.252612.