टर्बोजेट: Difference between revisions

From Vigyanwiki
(TEXT)
No edit summary
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{short description|Airbreathing jet engine which is typically used in aircraft}}
{{for|[[हांगकांग]] आधारित नौका कंपनी|टर्बोजेट}}
{{More citations needed|date=April 2008}}
{{Seriesbox aircraft propulsion}}
{{Seriesbox aircraft propulsion}}
[[File:Starboard Junkers Jumo 004 engine of the Me 262 at the Australian War Memorial May 2015.jpg|thumb|[[ जंकर्स जुमो 004 ]], परिचालन उपयोग में पहला उत्पादन टर्बोजेट]]
[[File:Starboard Junkers Jumo 004 engine of the Me 262 at the Australian War Memorial May 2015.jpg|thumb|[[ जंकर्स जुमो 004 ]], परिचालन उपयोग में पहला उत्पादन टर्बोजेट]]
[[File:Jet engine.svg|thumb|एक विशिष्ट गैस टरबाइन जेट यन्त्र का आरेख]]
[[File:Jet engine.svg|thumb|एक विशिष्ट गैस टरबाइन जेट यन्त्र का आरेख]]'''टर्बोजेट''' एक [[ हवा में सांस लेने वाला जेट इंजन |वायुश्‍वसित्र जेट यन्त्र]] है जो सामान्यतः विमानों में उपयोग किया जाता है। इसमें[[ प्रोपेलिंग नोजल | प्रणोद तुंड]] के साथ गैस टरबाइन होता है। गैस [[ टर्बाइन |टर्बाइन]] में एक वायु अंतर्गम होता है जिसमें अंतर्गम निर्देश फलक, एक संपीड़क, एक दहन कक्ष और एक टरबाइन (जो संपीड़क को चलाता है) सम्मिलित होता है। संपीड़क से संपीड़ित हवा को दहन कक्ष में ईंधन जलाकर गरम किया जाता है और फिर टरबाइन के माध्यम से विस्तार करने की अनुमति दी जाती है। इसके बाद टर्बाइन निर्वात को प्रणोद तुंड में फैलाया जाता है, जहां इसे प्रणोद प्रदान करने के लिए उच्च गति पर त्वरित किया जाता है।<ref>{{cite web|title=Turbojet Engine|publisher=NASA Glenn Research Center|url=http://www.grc.nasa.gov/WWW/K-12/airplane/aturbj.html|access-date=6 May 2009}}</ref> दो इंजीनियरों, [[ यूनाइटेड किंगडम |यूनाइटेड किंगडम]] में [[ फ्रैंक व्हिटेल |फ्रैंक व्हिटेल]] और [[ जर्मनी |जर्मनी]] में [[ हंस वॉन ओहैन |हंस वॉन ओहैन]] ने 1930 के दशक के अंत में अवधारणा को व्यावहारिक यन्त्रों में स्वतंत्र रूप से विकसित किया।
[[File:Frank Whittle CH 011867.jpg|thumb|फ्रैंक व्हिटेल]]
[[File:Ohain.jpg|thumb|हंस वॉन ओहैन]]टर्बोजेट एक [[ हवा में सांस लेने वाला जेट इंजन |वायुश्‍वसित्र जेट यन्त्र]] है जो सामान्यतः विमानों में उपयोग किया जाता है। इसमें[[ प्रोपेलिंग नोजल | प्रणोद तुंड]] के साथ गैस टरबाइन होता है। गैस [[ टर्बाइन |टर्बाइन]] में एक वायु अंतर्गम होता है जिसमें अंतर्गम निर्देश फलक, एक संपीड़क, एक दहन कक्ष और एक टरबाइन (जो संपीड़क को चलाता है) सम्मिलित होता है। संपीड़क से संपीड़ित हवा को दहन कक्ष में ईंधन जलाकर गरम किया जाता है और फिर टरबाइन के माध्यम से विस्तार करने की अनुमति दी जाती है। इसके बाद टर्बाइन निर्वात को प्रणोद तुंड में फैलाया जाता है, जहां इसे प्रणोद प्रदान करने के लिए उच्च गति पर त्वरित किया जाता है।<ref>{{cite web|title=Turbojet Engine|publisher=NASA Glenn Research Center|url=http://www.grc.nasa.gov/WWW/K-12/airplane/aturbj.html|access-date=6 May 2009}}</ref> दो इंजीनियरों, [[ यूनाइटेड किंगडम |यूनाइटेड किंगडम]] में [[ फ्रैंक व्हिटेल |फ्रैंक व्हिटेल]] और [[ जर्मनी |जर्मनी]] में [[ हंस वॉन ओहैन |हंस वॉन ओहैन]] ने 1930 के दशक के अंत में अवधारणा को व्यावहारिक यन्त्रों में स्वतंत्र रूप से विकसित किया।


टर्बोजेट की कम वाहन गति पर खराब दक्षता होती है, जो विमान के अलावा अन्य वाहनों में उनकी उपयोगिता को सीमित करता है। टर्बोजेट यन्त्रों का उपयोग अलग-अलग स्तिथियों में विमान के अलावा अन्य वाहनों को ऊर्जा देने के लिए किया गया है, सामान्यतः [[ भूमि गति रिकॉर्ड |भूमि गति रिकॉर्ड]] के प्रयासों के लिए। जहां वाहन टर्बाइन-संचालित होते हैं, यह सामान्यतः [[ टर्बोशाफ्ट |टर्बोशाफ्ट]] यन्त्र के उपयोग से होता है, गैस टरबाइन यन्त्र का विकास जहां एक घूर्णन उत्पादन शाफ्ट को चलाने के लिए एक अतिरिक्त टर्बाइन का उपयोग किया जाता है। ये हेलीकॉप्टर और होवरक्राफ्ट में सामान्य हैं। कॉनकॉर्ड और [[ TU-144 ]]के लंबी दूरी के संस्करणों पर टर्बोजेट का उपयोग किया गया था, जिन्हें पराध्वनिक रूप से यात्रा करने में लंबी अवधि बिताने की आवश्यकता थी। मध्यम श्रेणी की [[ क्रूज़ मिसाइल |क्रूज़ मिसाइलों]] में टर्बोजेट उनकी उच्च निकास गति, छोटे ललाट क्षेत्र और सापेक्ष सादगी के कारण अभी भी सामान्य हैं। वे अभी भी मिग -25 जैसे कुछ पराध्वनिक लड़ाकू विमानों पर उपयोग किए जाते हैं, लेकिन पराध्वनिक रूप से यात्रा करने में बहुत कम समय व्यतीत करते हैं, और इसलिए पराध्वनिक लघु दौड़ के लिए निकास गति बढ़ाने के लिए टर्बोफैन और आफ्टरबर्नर का उपयोग करते हैं।
टर्बोजेट की कम वाहन गति पर खराब दक्षता होती है, जो विमान के अलावा अन्य वाहनों में उनकी उपयोगिता को सीमित करता है। टर्बोजेट यन्त्रों का उपयोग अलग-अलग स्तिथियों में विमान के अलावा अन्य वाहनों को ऊर्जा देने के लिए किया गया है, सामान्यतः [[ भूमि गति रिकॉर्ड |भूमि गति रिकॉर्ड]] के प्रयासों के लिए। जहां वाहन टर्बाइन-संचालित होते हैं, यह सामान्यतः [[ टर्बोशाफ्ट |टर्बोशाफ्ट]] यन्त्र के उपयोग से होता है, गैस टरबाइन यन्त्र का विकास जहां एक घूर्णन उत्पादन शाफ्ट को चलाने के लिए एक अतिरिक्त टर्बाइन का उपयोग किया जाता है। ये हेलीकॉप्टर और होवरक्राफ्ट में सामान्य हैं। कॉनकॉर्ड और [[ TU-144 |TU-144]] के लंबी दूरी के संस्करणों पर टर्बोजेट का उपयोग किया गया था, जिन्हें पराध्वनिक रूप से यात्रा करने में लंबी अवधि बिताने की आवश्यकता थी। मध्यम श्रेणी की [[ क्रूज़ मिसाइल |क्रूज़ मिसाइलों]] में टर्बोजेट उनकी उच्च निकास गति, छोटे ललाट क्षेत्र और सापेक्ष सादगी के कारण अभी भी सामान्य हैं। वे अभी भी मिग -25 जैसे कुछ पराध्वनिक लड़ाकू विमानों पर उपयोग किए जाते हैं, लेकिन पराध्वनिक रूप से यात्रा करने में बहुत कम समय व्यतीत करते हैं, और इसलिए पराध्वनिक लघु दौड़ के लिए निकास गति बढ़ाने के लिए टर्बोफैन और आफ्टरबर्नर का उपयोग करते हैं।


== इतिहास ==
== इतिहास ==


[[File:Ohain USAF He 178 page61.jpg|thumb|[[ Heinkel He 178 ]], [[ Heinkel HeS 3 ]] यन्त्र का उपयोग करते हुए शुद्ध रूप से टर्बोजेट शक्ति पर उड़ान भरने वाला दुनिया का पहला विमान]]एक विमान को ऊर्जा देने के लिए गैस टर्बाइन का उपयोग करने के लिए पहला एकस्व अधिकार 1921 में फ्रेंचमैन मैक्सिमे गुइल्यूम द्वारा दायर किया गया था।<ref name= "Guillaume">Maxime Guillaume,"Propulseur par réaction sur l'air," French patent {{cite patent|country=FR|number=534801}} (filed: 3 May 1921; issued: 13 January 1922)</ref> उनका यन्त्र एक अक्षीय-प्रवाह टर्बोजेट होना था, लेकिन इसका निर्माण कभी नहीं किया गया था, क्योंकि इसके लिए संपीड़क में कला की स्थिति पर काफी प्रगति की आवश्यकता होती थी।<ref>{{Cite book|url= https://books.google.com/books?id=lxqtCwAAQBAJ&pg=PT7|title=Britain's Jet Age: From the Meteor to the Sea Vixen|last= Ellis|first=Guy|date=15 February 2016 |publisher=Amberley |isbn= 978-1-44564901-6}}</ref>
[[File:Ohain USAF He 178 page61.jpg|thumb|[[ Heinkel He 178 | हेंकेल He 178]] , [[ Heinkel HeS 3 |हेंकेल HeS 3]] यन्त्र का उपयोग करते हुए शुद्ध रूप से टर्बोजेट शक्ति पर उड़ान भरने वाला दुनिया का पहला विमान]]एक विमान को ऊर्जा देने के लिए गैस टर्बाइन का उपयोग करने के लिए पहला एकस्व अधिकार 1921 में फ्रेंचमैन मैक्सिमे गुइल्यूम द्वारा दायर किया गया था।<ref name= "Guillaume">Maxime Guillaume,"Propulseur par réaction sur l'air," French patent {{cite patent|country=FR|number=534801}} (filed: 3 May 1921; issued: 13 January 1922)</ref> उनका यन्त्र एक अक्षीय-प्रवाह टर्बोजेट होना था, लेकिन इसका निर्माण कभी नहीं किया गया था, क्योंकि इसके लिए संपीड़क में कला की स्थिति पर काफी प्रगति की आवश्यकता होती थी।<ref>{{Cite book|url= https://books.google.com/books?id=lxqtCwAAQBAJ&pg=PT7|title=Britain's Jet Age: From the Meteor to the Sea Vixen|last= Ellis|first=Guy|date=15 February 2016 |publisher=Amberley |isbn= 978-1-44564901-6}}</ref>


[[File:Whittle Jet Engine W2-700.JPG|thumb|व्हिटल W.2/700 यन्त्र ने ग्‍लोस्‍टर E.28/39 में उड़ान भरी, टर्बोजेट यन्त्र के साथ उड़ान भरने वाला पहला ब्रिटिश विमान, और [[ Gloster Meteor | ग्‍लोस्‍टर Meteor]]]]1928 में, ब्रिटिश [[ आरएएफ कॉलेज क्रैनवेल |RAF कॉलेज क्रैनवेल]] सेनाछात्र<ref>{{cite web|url= https://www.pbs.org/kcet/chasingthesun/innovators/fwhittle.html |title=Chasing the Sun – Frank Whittle |publisher=PBS |access-date=26 March 2010}}</ref> फ्रैंक व्हिटल ने औपचारिक रूप से अपने वरिष्ठों को टर्बोजेट के लिए अपने विचार प्रस्तुत किए। अक्टूबर 1929 में उन्होंने अपने विचारों को और विकसित किया।<ref>{{cite web|url= https://www.bbc.co.uk/history/historic_figures/whittle_frank.shtml |title= History – Frank Whittle (1907–1996) |publisher= BBC |access-date= 26 March 2010}}</ref> 16 जनवरी 1930 को इंग्लैंड में, व्हिटल ने अपना पहला एकस्व अधिकार (1932 में प्रदान किया गया) प्रस्तुत किया।<ref>Frank Whittle, [http://v3.espacenet.com/origdoc?DB=EPODOC&IDX=GB347206&F=0&QPN=GB347206  Improvements relating to the propulsion of aircraft and other vehicles], British patent no. 347,206 (filed: 16 January 1930).</ref> एकस्व अधिकार ने एक एकल-पक्षीय [[ केन्द्रापसारक कंप्रेसर |केन्द्रापसारक संपीड़क]] को खिलाते हुए एक दो-चरण [[ अक्षीय कंप्रेसर |अक्षीय संपीड़क]] दिखाया। 1926 में एक सेमिनल पेपर में ("टरबाइन अभिकल्पना का एक वायुगतिकीय सिद्धांत") व्यावहारिक अक्षीय कंप्रेशर्स को ए.ए. ग्रिफ़िथ के विचारों द्वारा संभव बनाया गया था। व्हिटल ने बाद में कई तरह के व्यावहारिक कारणों से सरल केन्द्रापसारक संपीड़क पर ही ध्यान केंद्रित किया। 12 अप्रैल 1937 को [[ पावर जेट्स WU |शक्ति जेट्स WU]] चलाने वाला पहला टर्बोजेट एक व्हिटल यन्त्र था। यह तरल-ईंधन वाला था। जब ईंधन की आपूर्ति बंद होने के बावजूद यन्त्र अपेक्षाकृत उच्च गति से नियंत्रण से बाहर हो गया, तो व्हिटल के दल ने पहली शुरुआत के प्रयासों के दौरान निकट-घबराहट का अनुभव किया। बाद में यह पाया गया कि आरम्भपूर्व मोटरिंग चेक के दौरान ईंधन का दहन कक्ष में रिसाव हो गया था और पूल में जमा हो गया था, इसलिए यन्त्र तब तक गति करना बंद नहीं करेगा जब तक कि सभी रिसाव हुए ईंधन जल न जाएं। व्हिटल अपने आविष्कार में सरकार को प्रभावित नहीं कर पा रहा था, और विकास धीमी गति से जारी रहा।
[[File:Whittle Jet Engine W2-700.JPG|thumb|व्हिटल W.2/700 यन्त्र ने ग्‍लोस्‍टर E.28/39 में उड़ान भरी, टर्बोजेट यन्त्र के साथ उड़ान भरने वाला पहला ब्रिटिश विमान, और [[ Gloster Meteor |ग्‍लोस्‍टर मेटेओर]]]]1928 में, ब्रिटिश [[ आरएएफ कॉलेज क्रैनवेल |RAF कॉलेज क्रैनवेल]] सेनाछात्र<ref>{{cite web|url= https://www.pbs.org/kcet/chasingthesun/innovators/fwhittle.html |title=Chasing the Sun – Frank Whittle |publisher=PBS |access-date=26 March 2010}}</ref> फ्रैंक व्हिटल ने औपचारिक रूप से अपने वरिष्ठों को टर्बोजेट के लिए अपने विचार प्रस्तुत किए। अक्टूबर 1929 में उन्होंने अपने विचारों को और विकसित किया।<ref>{{cite web|url= https://www.bbc.co.uk/history/historic_figures/whittle_frank.shtml |title= History – Frank Whittle (1907–1996) |publisher= BBC |access-date= 26 March 2010}}</ref> 16 जनवरी 1930 को इंग्लैंड में, व्हिटल ने अपना पहला एकस्व अधिकार (1932 में प्रदान किया गया) प्रस्तुत किया।<ref>Frank Whittle, [http://v3.espacenet.com/origdoc?DB=EPODOC&IDX=GB347206&F=0&QPN=GB347206  Improvements relating to the propulsion of aircraft and other vehicles], British patent no. 347,206 (filed: 16 January 1930).</ref> एकस्व अधिकार ने एक एकल-पक्षीय [[ केन्द्रापसारक कंप्रेसर |केन्द्रापसारक संपीड़क]] को खिलाते हुए एक दो-चरण [[ अक्षीय कंप्रेसर |अक्षीय संपीड़क]] दिखाया। 1926 में एक सेमिनल पेपर में ("टरबाइन अभिकल्पना का एक वायुगतिकीय सिद्धांत") व्यावहारिक अक्षीय कंप्रेशर्स को ए.ए. ग्रिफ़िथ के विचारों द्वारा संभव बनाया गया था। व्हिटल ने बाद में कई तरह के व्यावहारिक कारणों से सरल केन्द्रापसारक संपीड़क पर ही ध्यान केंद्रित किया। 12 अप्रैल 1937 को [[ पावर जेट्स WU |शक्ति जेट्स WU]] चलाने वाला पहला टर्बोजेट एक व्हिटल यन्त्र था। यह तरल-ईंधन वाला था। जब ईंधन की आपूर्ति बंद होने के बावजूद यन्त्र अपेक्षाकृत उच्च गति से नियंत्रण से बाहर हो गया, तो व्हिटल के दल ने पहली शुरुआत के प्रयासों के दौरान निकट-घबराहट का अनुभव किया। बाद में यह पाया गया कि आरम्भपूर्व मोटरिंग चेक के दौरान ईंधन का दहन कक्ष में रिसाव हो गया था और पूल में जमा हो गया था, इसलिए यन्त्र तब तक गति करना बंद नहीं करेगा जब तक कि सभी रिसाव हुए ईंधन जल न जाएं। व्हिटल अपने आविष्कार में सरकार को प्रभावित नहीं कर पा रहा था, और विकास धीमी गति से जारी रहा।


जर्मनी में, हंस वॉन ओहैन ने 1935 में इसी तरह के यन्त्र का एकस्व अधिकार कराया था। व्हिटल के केन्द्रापसारक प्रवाह यन्त्र के विपरीत उनकी अभिकल्पना, एक अक्षीय-प्रवाह यन्त्र, अंततः 1950 के दशक तक अधिकांश निर्माताओं द्वारा अपनाया गया था।<ref>Experimental & Prototype US Air Force Jet Fighters, Jenkins & Landis, 2008</ref><ref>{{cite news | url=https://www.nytimes.com/1996/08/10/world/frank-whittle-89-dies-his-jet-engine-propelled-progress.html | title=Frank Whittle, 89, Dies; His Jet Engine Propelled Progress | work=The New York Times | date=10 August 1996 | last1=Foderaro | first1=Lisa W. }}</ref>
जर्मनी में, हंस वॉन ओहैन ने 1935 में इसी तरह के यन्त्र का एकस्व अधिकार कराया था। व्हिटल के केन्द्रापसारक प्रवाह यन्त्र के विपरीत उनकी अभिकल्पना, एक अक्षीय-प्रवाह यन्त्र, अंततः 1950 के दशक तक अधिकांश निर्माताओं द्वारा अपनाया गया था।<ref>Experimental & Prototype US Air Force Jet Fighters, Jenkins & Landis, 2008</ref><ref>{{cite news | url=https://www.nytimes.com/1996/08/10/world/frank-whittle-89-dies-his-jet-engine-propelled-progress.html | title=Frank Whittle, 89, Dies; His Jet Engine Propelled Progress | work=The New York Times | date=10 August 1996 | last1=Foderaro | first1=Lisa W. }}</ref>
Line 22: Line 17:
पहले दो परिचालन टर्बोजेट विमान, [[ मैसर्सचमिट मी 262 |मैसर्सचमिट मी 262]] और फिर ग्लॉस्टर उल्का, [[ द्वितीय विश्व युद्ध |द्वितीय विश्व युद्ध]] के अंत की ओर, 1944 में सेवा में आए। अप्रैल में मी 262 और जुलाई में ग्‍लोस्‍टर मेटेओर, इसलिए मेटेओर ने केवल लगभग 15 विमानों को WW2 की कार्रवाई में प्रवेश करते देखा, जबकि 1400 मी 262 तक का उत्पादन किया गया, जिसमें 300 ने युद्ध में प्रवेश किया, पहला जमीनी हमला किया और जेट विमानों की हवाई लड़ाई में जीत प्राप्त की।<ref>{{Cite book|url= https://books.google.com/books?id=449Ob41RgZMC&pg=PT103|title=The Me 262 Stormbird: From the Pilots Who Flew, Fought, and Survived It|last1=Heaton |first1= Colin D.|last2=Lewis|first2= Anne-Marien|last3=Tillman|first3= Barrett |date= 15 May 2012|publisher= Voyageur Press |isbn=978-1-61058434-0}}</ref>{{Sfn | Listemann | 2016 | p = [https://books.google.com/books?id=DgakDAAAQBAJ&pg=PA5  5]}}<ref>{{cite web | url=https://www.smithsonianmag.com/smithsonian-institution/day-germanys-first-jet-fighter-soared-history-180978152/ | title=The Day Germany's First Jet Fighter Soared into History }}</ref>
पहले दो परिचालन टर्बोजेट विमान, [[ मैसर्सचमिट मी 262 |मैसर्सचमिट मी 262]] और फिर ग्लॉस्टर उल्का, [[ द्वितीय विश्व युद्ध |द्वितीय विश्व युद्ध]] के अंत की ओर, 1944 में सेवा में आए। अप्रैल में मी 262 और जुलाई में ग्‍लोस्‍टर मेटेओर, इसलिए मेटेओर ने केवल लगभग 15 विमानों को WW2 की कार्रवाई में प्रवेश करते देखा, जबकि 1400 मी 262 तक का उत्पादन किया गया, जिसमें 300 ने युद्ध में प्रवेश किया, पहला जमीनी हमला किया और जेट विमानों की हवाई लड़ाई में जीत प्राप्त की।<ref>{{Cite book|url= https://books.google.com/books?id=449Ob41RgZMC&pg=PT103|title=The Me 262 Stormbird: From the Pilots Who Flew, Fought, and Survived It|last1=Heaton |first1= Colin D.|last2=Lewis|first2= Anne-Marien|last3=Tillman|first3= Barrett |date= 15 May 2012|publisher= Voyageur Press |isbn=978-1-61058434-0}}</ref>{{Sfn | Listemann | 2016 | p = [https://books.google.com/books?id=DgakDAAAQBAJ&pg=PA5  5]}}<ref>{{cite web | url=https://www.smithsonianmag.com/smithsonian-institution/day-germanys-first-jet-fighter-soared-history-180978152/ | title=The Day Germany's First Jet Fighter Soared into History }}</ref>


वायु अंतर्ग्राही के माध्यम से घूर्णन संपीड़क में खींची जाती है और दहन कक्ष में प्रवेश करने से पहले एक उच्च दबाव में संपीड़ित होती है। [[ ईंधन |ईंधन]] को संपीड़ित हवा के साथ मिलाया जाता है और दहन में जलता है। दहन उत्पाद कंबस्टर को छोड़ देते हैं और टर्बाइन के माध्यम से फैलते हैं जहां संपीड़क को चलाने के लिए ऊर्जा निकाली जाती है। टर्बाइन निकास गैसों में अभी भी काफी ऊर्जा होती है जो प्रणोद तुंड में एक उच्च गति जेट में परिवर्तित हो जाती है।
वायु अंतर्ग्राही के माध्यम से घूर्णन संपीड़क में खींची जाती है और दहन कक्ष में प्रवेश करने से पहले एक उच्च दबाव में संपीड़ित होती है। [[ ईंधन |ईंधन]] को संपीड़ित हवा के साथ मिलाया जाता है और दहन में जलता है। दहन उत्पाद दहन तंत्र को छोड़ देते हैं और टर्बाइन के माध्यम से फैलते हैं जहां संपीड़क को चलाने के लिए ऊर्जा निकाली जाती है। टर्बाइन निकास गैसों में अभी भी काफी ऊर्जा होती है जो प्रणोद तुंड में एक उच्च गति जेट में परिवर्तित हो जाती है।


पहले टर्बोजेट, या तो एक केन्द्रापसारक संपीड़क (हेन्केल HES 3 के रूप में), या एक अक्षीय संपीड़क (जंकर्स जुमो 004 के रूप में) का इस्तेमाल करते थे, जो एक छोटा व्यास यद्यपि लंबा यन्त्र देता था। पिस्टन यन्त्रों पर इस्तेमाल किए गए प्रेरक को निकास के उच्च गति वाले जेट के साथ बदलकर, उच्च विमान गति प्राप्त की जा सकती थी।
पहले टर्बोजेट, या तो एक केन्द्रापसारक संपीड़क (हेन्केल HES 3 के रूप में), या एक अक्षीय संपीड़क (जंकर्स जुमो 004 के रूप में) का इस्तेमाल करते थे, जो एक छोटा व्यास यद्यपि लंबा यन्त्र देता था। पिस्टन यन्त्रों पर इस्तेमाल किए गए प्रेरक को निकास के उच्च गति वाले जेट के साथ बदलकर, उच्च विमान गति प्राप्त की जा सकती थी।
Line 35: Line 30:


== प्रारंभिक अभिकल्पना ==
== प्रारंभिक अभिकल्पना ==
टर्बाइनों के लिए उपयुक्त उच्च तापमान सामग्री की कमी के कारण प्रारंभिक जर्मन टर्बोजेट चलाने की मात्रा पर गंभीर सीमाएं थीं। रोल्स-रॉयस वेलैंड जैसे ब्रिटिश यन्त्रों ने बेहतर स्थायित्व प्रदान करने वाली बेहतर सामग्री का उपयोग किया। वेलैंड शुरू में 80 घंटे के लिए प्रकार-प्रमाणित था। बाद में मरम्मत के बीच 150 घंटे तक बढ़ा दिया गया, क्योंकि परीक्षणों में 500 घंटे की विस्तारित दौड़ प्राप्त की जा रही थी।<ref>{{cite journal|url=http://www.flightglobal.com/pdfarchive/view/1945/1945%20-%202113.html |title=Rolls-Royce Derwent &#124; 1945 |journal=Flight |publisher=Flightglobal.com |date=25 October 1945 |access-date=14 December 2013|page=448}}</ref>
टर्बाइनों के लिए उपयुक्त उच्च तापमान सामग्री की कमी के कारण प्रारंभिक जर्मन टर्बोजेट चलाने की मात्रा पर गंभीर सीमाएं थीं। रोल्स-रॉयस वेलैंड जैसे ब्रिटिश यन्त्रों ने बेहतर स्थायित्व प्रदान करने वाली बेहतर सामग्री का उपयोग किया। वेलैंड प्रारम्भ में 80 घंटे के लिए प्रकार-प्रमाणित था। बाद में मरम्मत के बीच 150 घंटे तक बढ़ा दिया गया, क्योंकि परीक्षणों में 500 घंटे की विस्तारित दौड़ प्राप्त की जा रही थी।<ref>{{cite journal|url=http://www.flightglobal.com/pdfarchive/view/1945/1945%20-%202113.html |title=Rolls-Royce Derwent &#124; 1945 |journal=Flight |publisher=Flightglobal.com |date=25 October 1945 |access-date=14 December 2013|page=448}}</ref>


[[File:J85 ge 17a turbojet engine.jpg|thumb|जनरल इलेक्ट्रिक से J85-GE-17A टर्बोजेट यन्त्र (1970)]]संयुक्त राज्य अमेरिका में [[ जनरल इलेक्ट्रिक |जनरल इलेक्ट्रिक]] द्वितीय विश्व युद्ध के दौरान अपने टर्बोसुपरचार्जर में प्रयुक्त उच्च तापमान सामग्री के साथ अपने अनुभव के कारण जेट यन्त्र व्यवसाय में प्रवेश करने की अच्छी स्थिति में था।<ref>Robert V. Garvin, ''"Starting Something Big"'', {{ISBN|978-1-56347-289-3}}, p.5</ref>
[[File:J85 ge 17a turbojet engine.jpg|thumb|जनरल इलेक्ट्रिक से J85-GE-17A टर्बोजेट यन्त्र (1970)]]संयुक्त राज्य अमेरिका में [[ जनरल इलेक्ट्रिक |जनरल इलेक्ट्रिक]] द्वितीय विश्व युद्ध के दौरान अपने टर्बोसुपरचार्जर में प्रयुक्त उच्च तापमान सामग्री के साथ अपने अनुभव के कारण जेट यन्त्र व्यवसाय में प्रवेश करने की अच्छी स्थिति में था।<ref>Robert V. Garvin, ''"Starting Something Big"'', {{ISBN|978-1-56347-289-3}}, p.5</ref>
जल अंतःक्षेप एक सामान्य विधि थी जिसका उपयोग प्रणोद बढ़ाने के लिए किया जाता था, सामान्यतः विद्रूपिका के समय, शुरुआती टर्बोजेट में जो उनके स्वीकार्य टरबाइन प्रवेश तापमान द्वारा प्रणोद-सीमित थे। पानी ने तापमान की सीमा पर ऊर्जा बड़ाई, लेकिन पूर्ण दहन को रोका, प्रायः एक बहुत ही दृश्यमान धुएं का निशान छोड़ दिया।
जल अंतःक्षेप एक सामान्य विधि थी जिसका उपयोग प्रणोद बढ़ाने के लिए किया जाता था, सामान्यतः विद्रूपिका के समय, शुरुआती टर्बोजेट में जो उनके स्वीकार्य टरबाइन प्रवेश तापमान द्वारा प्रणोद-सीमित थे। पानी ने तापमान की सीमा पर ऊर्जा बड़ाई, लेकिन पूर्ण दहन को रोका, प्रायः एक बहुत ही दृश्यमान धुएं का निशान छोड़ दिया।


बेहतर मिश्र धातुओं और विलेपन के प्रारम्भ और फलक शीतलन अभिकल्पनाों के प्रारम्भ और प्रगतिशील प्रभावशीलता दोनों के साथ समय के साथ स्वीकार्य टरबाइन प्रवेश तापमान में तेजी से वृद्धि हुई है। प्रारंभिक यन्त्रों पर, टर्बाइन तापमान सीमा की निगरानी की जानी थी, और पायलट द्वारा, सामान्यतः शुरू करने के दौरान और अधिकतम प्रणोद समायोजन पर टाला जाता था। पायलट कार्यभार को कम करने और अधिक तापमान के कारण टरबाइन क्षति की संभावना को कम करने के लिए स्वत: तापमान सीमित करना शुरू किया गया था।
बेहतर मिश्र धातुओं और विलेपन के प्रारम्भ और फलक शीतलन अभिकल्पनाों के प्रारम्भ और प्रगतिशील प्रभावशीलता दोनों के साथ समय के साथ स्वीकार्य टरबाइन प्रवेश तापमान में तेजी से वृद्धि हुई है। प्रारंभिक यन्त्रों पर, टर्बाइन तापमान सीमा की निगरानी की जानी थी, और पायलट द्वारा, सामान्यतः प्रारम्भ करने के दौरान और अधिकतम प्रणोद समायोजन पर टाला जाता था। पायलट कार्यभार को कम करने और अधिक तापमान के कारण टरबाइन क्षति की संभावना को कम करने के लिए स्वत: तापमान सीमित करना प्रारम्भ किया गया था।


== अवयव ==
== अवयव ==
 
[[File:Axial compressor.gif|thumb|एक अक्षीय संपीड़क का एक सजीवता। स्थिर फलक स्थिरक हैं।]]
 
[[File:Axial compressor.gif|thumb|एक अक्षीय संपीड़क का एक एनीमेशन। स्थिर फलक स्टेटर हैं।]]
[[File:Turbojet operation- centrifugal flow.png|thumb|योजनाबद्ध आरेख एक केन्द्रापसारक प्रवाह टर्बोजेट यन्त्र के संचालन को दर्शाता है। संपीड़क टर्बाइन चरण द्वारा संचालित होता है और हवा को बाहर फेंकता है, जिससे इसे जोर के धुरी के समानांतर पुनर्निर्देशित करने की आवश्यकता होती है।]]
[[File:Turbojet operation- centrifugal flow.png|thumb|योजनाबद्ध आरेख एक केन्द्रापसारक प्रवाह टर्बोजेट यन्त्र के संचालन को दर्शाता है। संपीड़क टर्बाइन चरण द्वारा संचालित होता है और हवा को बाहर फेंकता है, जिससे इसे जोर के धुरी के समानांतर पुनर्निर्देशित करने की आवश्यकता होती है।]]
[[File:Turbojet operation- axial flow.png|thumb|योजनाबद्ध आरेख एक अक्षीय प्रवाह टर्बोजेट यन्त्र के संचालन को दर्शाता है। यहां, संपीड़क को फिर से टरबाइन द्वारा संचालित किया जाता है, लेकिन हवा का प्रवाह प्रणोद के अक्ष के समानांतर रहता है]]
[[File:Turbojet operation- axial flow.png|thumb|योजनाबद्ध आरेख एक अक्षीय प्रवाह टर्बोजेट यन्त्र के संचालन को दर्शाता है। यहां, संपीड़क को फिर से टरबाइन द्वारा संचालित किया जाता है, लेकिन हवा का प्रवाह प्रणोद के अक्ष के समानांतर रहता है]]
Line 54: Line 47:
अंतर्ग्रहण को यन्त्र को हवा की आपूर्ति दबाव में स्वीकार्य रूप से छोटे बदलाव (विकृति के रूप में जाना जाता है) और मार्ग में जितना संभव हो उतना कम ऊर्जा खोने के साथ करना पड़ता है (दबाव पुनः प्राप्ति के रूप में जाना जाता है)। अंतर्ग्रहण में कुट्टक दबाव वृद्धि प्रणोदन प्रणाली के [[ समग्र दबाव अनुपात |समग्र दबाव अनुपात]] और ऊष्मीय दक्षता में अंतर्गम का योगदान है।
अंतर्ग्रहण को यन्त्र को हवा की आपूर्ति दबाव में स्वीकार्य रूप से छोटे बदलाव (विकृति के रूप में जाना जाता है) और मार्ग में जितना संभव हो उतना कम ऊर्जा खोने के साथ करना पड़ता है (दबाव पुनः प्राप्ति के रूप में जाना जाता है)। अंतर्ग्रहण में कुट्टक दबाव वृद्धि प्रणोदन प्रणाली के [[ समग्र दबाव अनुपात |समग्र दबाव अनुपात]] और ऊष्मीय दक्षता में अंतर्गम का योगदान है।


उच्च गति पर अंतर्ग्रहण प्रमुखता प्राप्त करता है जब यह संपीड़क चरण की तुलना में अधिक संपीड़न उत्पन्न करता है। जाने-माने उदाहरण कॉनकॉर्ड और [[ लॉकहीड SR-71 ब्लैकबर्ड |लॉकहीड SR-71 ब्लैकबर्ड]] नोदन निकाय हैं जहां कुल संपीडन में अंतर्गहण और यन्त्र का योगदान मैक 2 पर 63%/8% था।<ref>"Test Pilot" Brian Trubshaw, Sutton Publishing 1999, {{ISBN|0 7509 1838 1}}, Appendix VIIIb</ref>और मैक 3+ पर 54%/17%। <ref>{{cite web |url=http://www.enginehistory.org/Convention/2013/HowInletsWork8-19-13.pdf |title=Archived copy |access-date=16 May 2016 |url-status=dead |archive-url=https://web.archive.org/web/20160509025601/http://www.enginehistory.org/Convention/2013/HowInletsWork8-19-13.pdf |archive-date=9 May 2016  }} Fig.26</ref> अंतर्ग्रहण शून्य-लंबाई से लेकर <ref>"Trade-offs in Jet Inlet Design" Sobester, Journal of Aircraft Vol.44, No.3, May–June 2007, Fig.12</ref> [[ लॉकहीड C-141 स्टारलिफ्टर |लॉकहीड C-141 स्टारलिफ्टर]] में प्रैट एंड व्हिटनी TF33 [[ टर्बोफैन |टर्बोफैन]] संस्थापन पर, ट्विन के लिए {{convert|65|ft}} लंबे समय तक हैं, उत्तरी अमेरिकी XB-70 पर अंतर्ग्रहण करता है, प्रत्येक तीन यन्त्रों को खिलाता है, जिसमें अंतर्ग्रहण वायु प्रवाह होता है {{convert|800|lb/s|kg/s}}.
उच्च गति पर अंतर्ग्रहण प्रमुखता प्राप्त करता है जब यह संपीड़क चरण की तुलना में अधिक संपीड़न उत्पन्न करता है। जाने-माने उदाहरण कॉनकॉर्ड और [[ लॉकहीड SR-71 ब्लैकबर्ड |लॉकहीड SR-71 ब्लैकबर्ड]] नोदन निकाय हैं जहां कुल संपीडन में अंतर्गहण और यन्त्र का योगदान मैक 2 पर 63%/8% था।<ref>"Test Pilot" Brian Trubshaw, Sutton Publishing 1999, {{ISBN|0 7509 1838 1}}, Appendix VIIIb</ref>और मैक 3+ पर 54%/17%। <ref>{{cite web |url=http://www.enginehistory.org/Convention/2013/HowInletsWork8-19-13.pdf |title=Archived copy |access-date=16 May 2016 |url-status=dead |archive-url=https://web.archive.org/web/20160509025601/http://www.enginehistory.org/Convention/2013/HowInletsWork8-19-13.pdf |archive-date=9 May 2016  }} Fig.26</ref> अंतर्ग्रहण शून्य-लंबाई से लेकर <ref>"Trade-offs in Jet Inlet Design" Sobester, Journal of Aircraft Vol.44, No.3, May–June 2007, Fig.12</ref> [[ लॉकहीड C-141 स्टारलिफ्टर |लॉकहीड C-141 स्टारलिफ्टर]] में प्रैट एंड व्हिटनी TF33 [[ टर्बोफैन |टर्बोफैन]] संस्थापन पर, ट्विन के लिए {{convert|65|ft}} लंबे समय तक हैं, उत्तरी अमेरिकी XB-70 पर अंतर्ग्रहण करता है, प्रत्येक तीन यन्त्रों को खिलाता है, जिसमें अंतर्ग्रहण वायु प्रवाह होता है {{convert|800|lb/s|kg/s}}.


=== संपीड़क ===
=== संपीड़क ===
Line 64: Line 57:


=== दहन कक्ष ===
=== दहन कक्ष ===
[[ दहनशील ]] '''में जलने की प्रक्रिया''' [[ पिस्टन इंजन | पिस्टन यन्त्र]] में जलने की प्रक्रिया से काफी भिन्न होती है। एक पिस्टन यन्त्र में, जलती हुई गैसें एक छोटी मात्रा तक ही सीमित होती हैं, और जैसे ही ईंधन जलता है, दबाव बढ़ जाता है। एक टर्बोजेट में, दहन में हवा और ईंधन का मिश्रण जलता है और बिना किसी दबाव के निर्माण के बिना निरंतर बहने वाली प्रक्रिया में टरबाइन से गुजरता है। इसके बजाय, कंबस्टर में एक छोटा दबाव नुकसान होता है।
[[ दहनशील |दहन तंत्र]] में जलने की प्रक्रिया [[ पिस्टन इंजन |पिस्टन यन्त्र]] में जलने की प्रक्रिया से काफी भिन्न होती है। एक पिस्टन यन्त्र में, जलती हुई गैसें एक छोटी मात्रा तक ही सीमित होती हैं, और जैसे-जैसे ईंधन जलता है, दबाव बढ़ता जाता है। एक टर्बोजेट में, दहन में हवा और ईंधन का मिश्रण जलता है और बिना किसी दबाव के निर्माण के बिना निरंतर बहने वाली प्रक्रिया में टरबाइन से गुजरता है। इसके स्थान पर, दहन तंत्र में एक छोटा दबाव हानि होती है।


ईंधन-हवा का मिश्रण केवल धीमी गति से चलने वाली हवा में ही जल सकता है, इसलिए प्राथमिक क्षेत्र में लगभग स्टोइकोमेट्रिक जलने के लिए ईंधन नलिका द्वारा रिवर्स प्रवाह का एक क्षेत्र बनाए रखा जाता है। आगे संपीड़ित हवा पेश की जाती है जो दहन प्रक्रिया को पूरा करती है और दहन उत्पादों के तापमान को उस स्तर तक कम कर देती है जिसे टरबाइन स्वीकार कर सकता है। सामान्यतः दहन के लिए 25% से कम हवा का उपयोग किया जाता है, क्योंकि टर्बाइन तापमान सीमा के भीतर रखने के लिए समग्र दुबला मिश्रण आवश्यक होता है।
ईंधन-हवा का मिश्रण केवल धीमी गति से चलने वाली हवा में ही जल सकता है, इसलिए प्राथमिक क्षेत्र में लगभग उचित तत्वानुपातकीय जलने के लिए ईंधन नलिका द्वारा प्रतिलोम प्रवाह का एक क्षेत्र बनाए रखा जाता है। आगे संपीड़ित हवा प्रस्तुत की जाती है जो दहन प्रक्रिया को पूरा करती है और दहन उत्पादों के तापमान को उस स्तर तक कम कर देती है जिसे टरबाइन स्वीकार कर सकता है। सामान्यतः दहन के लिए 25% से कम हवा का उपयोग किया जाता है, क्योंकि टर्बाइन तापमान सीमा के भीतर रखने के लिए समग्र दुबला मिश्रण आवश्यक होता है।


=== टर्बाइन ===
=== टर्बाइन ===
दहनशील से निकलने वाली गर्म गैसें टर्बाइन के माध्यम से फैलती हैं। टर्बाइनों के लिए विशिष्ट सामग्रियों में [[ inconel ]] और निमोनिक सम्मिलित हैं।<ref>[http://www.flightglobal.com/pdfarchive/view/1960/1960%20-%201525.html 1960 &#124; Flight &#124; Archive]</ref> एक यन्त्र में सबसे गर्म टर्बाइन वैन और फलक में आंतरिक शीतलन मार्ग होते हैं। धातु के तापमान को सीमा के भीतर रखने के लिए संपीड़क से हवा इनके माध्यम से पारित की जाती है। शेष चरणों को ठंडा करने की आवश्यकता नहीं होती है।
दहनशील से निकलने वाली गर्म गैसें टर्बाइन के माध्यम से फैलती हैं। टर्बाइनों के लिए विशिष्ट सामग्रियों में [[ inconel |इन्कोनेल]] और निमोनिक सम्मिलित हैं।<ref>[http://www.flightglobal.com/pdfarchive/view/1960/1960%20-%201525.html 1960 &#124; Flight &#124; Archive]</ref> एक यन्त्र में सबसे गर्म टर्बाइन वैन और फलक में आंतरिक शीतलन मार्ग होते हैं। धातु के तापमान को सीमा के भीतर रखने के लिए संपीड़क से हवा इनके माध्यम से पारित की जाती है। शेष चरणों को ठंडा करने की आवश्यकता नहीं होती है।


पहले चरण में, टर्बाइन काफी हद तक एक आवेग टर्बाइन (एक [[ पेल्टन व्हील ]] के समान) है और गर्म गैस धारा के प्रभाव के कारण घूमता है। बाद के चरण अभिसारी नलिकाएं हैं जो गैस को गति देती हैं। संपीड़क में ऊर्जा हस्तांतरण के विपरीत ऊर्जा को संवेग विनिमय के माध्यम से शाफ्ट में स्थानांतरित किया जाता है। टर्बाइन द्वारा विकसित शक्ति संपीड़क और सहायक उपकरण जैसे ईंधन, तेल और हाइड्रोलिक पंपों को चलाती है जो गौण गियरबॉक्स द्वारा संचालित होते हैं।
पहले चरण में, टर्बाइन काफी हद तक एक आवेग टर्बाइन (एक [[ पेल्टन व्हील |पेल्टन चक्र]] के समान) है और गर्म गैस धारा के प्रभाव के कारण घूमता है। बाद के चरण अभिसारी नलिकाएं हैं जो गैस को गति देती हैं। संपीड़क में ऊर्जा हस्तांतरण के विपरीत ऊर्जा को संवेग विनिमय के माध्यम से शाफ्ट में स्थानांतरित किया जाता है। टर्बाइन द्वारा विकसित शक्ति संपीड़क और सहायक उपकरण जैसे ईंधन, तेल और द्रवचालित पंपों को चलाती है जो उपसाधन गियरबॉक्स द्वारा संचालित होते हैं।


=== नोक ===
=== तुंड ===
{{main|Propelling nozzle}}
{{main|प्रणोद तुंड}}
टर्बाइन के बाद, गैसें निकास नोजल के माध्यम से फैलती हैं और एक उच्च वेग जेट का निर्माण करती हैं। एक अभिसरण नोजल में, डक्टिंग धीरे-धीरे गले तक जाती है। टर्बोजेट पर नोज़ल दबाव अनुपात उच्च प्रणोद सेटिंग्स पर काफी अधिक होता है जिससे नोज़ल चोक हो जाता है।


यदि, हालांकि, एक अभिसारी-अपसारी [[ डी लवल नोजल ]] फिट किया जाता है, तो अपसारी (बढ़ता हुआ प्रवाह क्षेत्र) खंड गैसों को अपसारी खंड के भीतर पराध्वनिक वेग तक पहुंचने की अनुमति देता है। अतिरिक्त जोर उच्च परिणामी निकास वेग द्वारा उत्पन्न होता है।
टर्बाइन के बाद, गैसें निकास तुंड के माध्यम से फैलती हैं और एक उच्च वेग जेट का निर्माण करती हैं। एक अभिसरण तुंड में, नलिकीकरण धीरे-धीरे श्वासनलिका तक जाती है। टर्बोजेट पर तुंड दबाव अनुपात उच्च प्रणोद समंजन पर काफी अधिक होता है जिससे तुंड जाम हो जाता है।
 
यदि, हालांकि, एक अभिसारी-अपसारी [[ डी लवल नोजल |डी लवल तुंड]] फिट किया जाता है, तो अपसारी (बढ़ता हुआ प्रवाह क्षेत्र) खंड गैसों को अपसारी खंड के भीतर पराध्वनिक वेग तक पहुंचने की अनुमति देता है। अतिरिक्त प्रणोद उच्च परिणामी निकास वेग द्वारा उत्पन्न होता है।
 
=== प्रणोद वर्धन ===
पानी/मेथनॉल अंतःक्षेप या [[ ऑफ़्टरबर्नर |ऑफ़्टरबर्नर]] वाले टर्बोजेट में सबसे अधिक प्रणोद दिया गया था।


=== जोर वृद्धि ===
पानी अंतःक्षेप (यन्त्र) | पानी/मेथनॉल अंतःक्षेप या [[ ऑफ़्टरबर्नर ]] वाले टर्बोजेट में सबसे अधिक जोर दिया गया था।
कुछ यन्त्र एक ही समय में दोनों का इस्तेमाल करते थे।
कुछ यन्त्र एक ही समय में दोनों का इस्तेमाल करते थे।


1941 में पावर जेट्स W.1 पर तरल अंतःक्षेप का परीक्षण शुरू में पानी और फिर पानी-मेथनॉल में बदलने से पहले [[ अमोनिया ]] का उपयोग करके किया गया था। ग्लॉस्टर ई.28/39 में तकनीक का परीक्षण करने के लिए एक प्रणाली तैयार की गई थी लेकिन इसे कभी फिट नहीं किया गया।<ref>[https://www.flightglobal.com/pdfarchive/view/1947/1947%20-%201359.html 1947 | 1359 | Flight Archive]</ref>
1941 में विद्युत् जेट्स W.1 पर तरल अंतःक्षेप का परीक्षण प्रारम्भ में पानी और फिर पानी-मेथनॉल में बदलने से पहले [[ अमोनिया |अमोनिया]] का उपयोग करके किया गया था। ग्लॉस्टर ई.28/39 में तकनीक का परीक्षण करने के लिए एक प्रणाली तैयार की गई थी लेकिन इसे कभी फिट नहीं किया गया।<ref>[https://www.flightglobal.com/pdfarchive/view/1947/1947%20-%201359.html 1947 | 1359 | Flight Archive]</ref>
 




==== आफ्टरबर्नर ====
==== आफ्टरबर्नर ====
{{main|Afterburner}}
{{main|आफ्टरबर्नर}}
एक आफ्टरबर्नर या रिहीट जेटपाइप एक दहन कक्ष है जिसे टर्बाइन निकास गैसों को फिर से गर्म करने के लिए जोड़ा जाता है। ईंधन की खपत बहुत अधिक है, सामान्यतः मुख्य यन्त्र की चार गुना। आफ्टरबर्नर का उपयोग लगभग विशेष रूप से [[ सुपरसोनिक विमान | पराध्वनिक विमान]] ों पर किया जाता है, जिनमें से अधिकांश सैन्य विमान हैं। दो पराध्वनिक एयरलाइनर, कॉनकॉर्ड और [[ Tu-144 ]], आफ्टरबर्नर का भी उपयोग करते हैं जैसा कि [[ स्केल्ड कम्पोजिट व्हाइट नाइट ]] करता है, प्रायोगिक [[ स्केल्ड कम्पोजिट स्पेसशिपवन ]] [[ suborbital ]] अंतरिक्ष यान के लिए एक वाहक विमान है।
एक आफ्टरबर्नर या रिहीट जेटपाइप एक दहन कक्ष है जिसे टर्बाइन निकास गैसों को फिर से गर्म करने के लिए जोड़ा जाता है। ईंधन की खपत बहुत अधिक है, सामान्यतः मुख्य यन्त्र की चार गुना। आफ्टरबर्नर का उपयोग लगभग विशेष रूप से [[ सुपरसोनिक विमान |पराध्वनिक विमानों]] पर किया जाता है, जिनमें से अधिकांश सैन्य विमान हैं। दो पराध्वनिक एयरलाइनर, कॉनकॉर्ड और [[ Tu-144 |Tu-144]] , आफ्टरबर्नर का भी उपयोग करते हैं जैसा कि [[ स्केल्ड कम्पोजिट व्हाइट नाइट |पर्पटित संयोजन उद्धारकर्ता]] करता है, प्रायोगिक [[ स्केल्ड कम्पोजिट स्पेसशिपवन |पर्पटित संयोजन स्पेसशिपवन]] [[ suborbital |अवाक्षिकोटर]] अंतरिक्ष यान के लिए एक वाहक विमान है।


1944 में ग्लॉस्टर उल्का में पावर जेट्स W.2|W.2/700 यन्त्र पर रिहीट का उड़ान-परीक्षण किया गया था।<ref>"World Encyclopedia of Aero Engines – 5th edition" by [[Bill Gunston]], Sutton Publishing, 2006, p.160</ref>
1944 में ग्लॉस्टर उल्का में पावर जेट्स W.2|W.2/700 यन्त्र पर पुनस्ताप का उड़ान-परीक्षण किया गया था।<ref>"World Encyclopedia of Aero Engines – 5th edition" by [[Bill Gunston]], Sutton Publishing, 2006, p.160</ref>




== नेट प्रणोद ==
== नेट प्रणोद ==
शुद्ध [[ जोर ]] <math>F_N\;</math> एक टर्बोजेट द्वारा दिया जाता है:<ref name="JP3.1" >{{Cite book | last=Cumpsty  |first=Nicholas | year=2003 | title=Jet Propulsion | edition=2nd | publisher=Cambridge University Press | isbn=0-521-54144-1 | ref=Cumpsty, Jet Propulsion | chapter=3.1 }}</ref><ref>{{cite web | title = Turbojet Thrust | publisher = NASA Glenn Research Center | url = http://www.grc.nasa.gov/WWW/K-12/airplane/turbth.html | access-date =6 May 2009 }}</ref>
शुद्ध [[ जोर |प्रणोद]] <math>F_N\;</math>एक टर्बोजेट द्वारा दिया जाता है:<ref name="JP3.1" >{{Cite book | last=Cumpsty  |first=Nicholas | year=2003 | title=Jet Propulsion | edition=2nd | publisher=Cambridge University Press | isbn=0-521-54144-1 | ref=Cumpsty, Jet Propulsion | chapter=3.1 }}</ref><ref>{{cite web | title = Turbojet Thrust | publisher = NASA Glenn Research Center | url = http://www.grc.nasa.gov/WWW/K-12/airplane/turbth.html | access-date =6 May 2009 }}</ref>


<math>F_N =( \dot{m}_{air}  + \dot{m}_f) V_{j} - \dot{m}_{air} V</math>
<math>F_N =( \dot{m}_{air}  + \dot{m}_f) V_{j} - \dot{m}_{air} V</math>
कहाँ पे:
 
जहाँ पर:


{| style="border: none"
{| style="border: none"
|-
|-
|<math>\dot{m}_{air}</math>
|<math>\dot{m}_{air}</math>
| is the rate of flow of air through the engine
| इंजन के माध्यम से वायु प्रवाह की दर है
|-
|-
|<math>\dot{m}_f</math>
|<math>\dot{m}_f</math>
| is the rate of flow of fuel entering the engine
| इंजन में प्रवेश करने वाले ईंधन के प्रवाह की दर है
|-
|-
|<math>V_j\;</math>
|<math>V_j\;</math>
| is the speed of the jet (the exhaust plume) and is assumed to be less than [[sonic velocity]]
| जेट की गति (निकास पंख) है और इसे ध्वनि वेग से कम माना जाता है
|-
|-
|<math>V\;</math>
|<math>V\;</math>
| is the [[true airspeed]] of the aircraft
| विमान का असली वायुचालमापी है
|-
|-
|<math>(\dot{m}_{air} + \dot{m}_f) V_j</math>
|<math>(\dot{m}_{air} + \dot{m}_f) V_j</math>
| represents the nozzle gross thrust
| तुंड सकल जोर का प्रतिनिधित्व करता है
|-
|-
|<math>\dot{m}_{air} V</math>
|<math>\dot{m}_{air} V</math>
| represents the ram drag of the intake
| सेवन के कुट्टक ड्रैग का प्रतिनिधित्व करता है
|}
|}
यदि जेट की गति [[ ध्वनि वेग ]] के बराबर है तो नोज़ल को [[ चोक प्रवाह ]] कहा जाता है। यदि नोज़ल चोक हो जाता है, तो नोज़ल निकास तल पर दाब वायुमंडलीय दाब से अधिक होता है, और दाब प्रणोद को ध्यान में रखते हुए उपरोक्त समीकरण में अतिरिक्त शब्द जोड़े जाने चाहिए।<ref name="Cumpsty, 6.3" >[[#Cumpsty, Jet Propulsion|Cumpsty, Jet Propulsion]], Section 6.3</ref>
यदि जेट की गति [[ ध्वनि वेग |ध्वनि वेग]] के बराबर है तो तुंड को [[ चोक प्रवाह |चोक प्रवाह]] कहा जाता है। यदि तुंड चोक हो जाता है, तो तुंड निकास तल पर दाब वायुमंडलीय दाब से अधिक होता है, और दाब प्रणोद को ध्यान में रखते हुए उपरोक्त समीकरण में अतिरिक्त शब्द जोड़े जाने चाहिए।<ref name="Cumpsty, 6.3">[[#Cumpsty, Jet Propulsion|Cumpsty, Jet Propulsion]], Section 6.3</ref>
हवा के प्रवाह की दर की तुलना में यन्त्र में प्रवेश करने वाले ईंधन के प्रवाह की दर बहुत कम है।<ref name=JP3.1/>यदि नोज़ल ग्रॉस प्रणोद में ईंधन के योगदान की उपेक्षा की जाती है, तो नेट प्रणोद है:
 
हवा के प्रवाह की दर की तुलना में यन्त्र में प्रवेश करने वाले ईंधन के प्रवाह की दर बहुत कम है।<ref name="JP3.1" />यदि तुंड संकल प्रणोद में ईंधन के योगदान की उपेक्षा की जाती है, तो नेट प्रणोद है:


<math>F_N = \dot{m}_{air} (V_{j} - V)</math>
<math>F_N = \dot{m}_{air} (V_{j} - V)</math>
जेट की गति <math>V_j\;</math> विमान के असली airspeed से अधिक होना चाहिए <math>V\;</math>अगर एयरफ्रेम पर नेट फॉरवर्ड प्रणोद होना है। रफ्तार <math>V_j\;</math> [[ एडियाबेटिक विस्तार ]] के आधार पर थर्मोडायनामिक रूप से गणना की जा सकती है।<ref>[http://web.mit.edu/16.unified/www/SPRING/propulsion/notes/node85.html#SECTION06364000000000000000 MIT.EDU Unified: Thermodynamics and Propulsion Prof. Z. S. Spakovszky – Turbojet Engine]</ref>


जेट की गति <math>V_j\;</math> विमान के असली वायुचालमापी <math>V\;</math>से अधिक होना चाहिए अगर एयरफ्रेम पर नेट फॉरवर्ड प्रणोद होना है। रफ्तार <math>V_j\;</math>[[ एडियाबेटिक विस्तार |एडियाबेटिक विस्तार]] के आधार पर थर्मोडायनामिक रूप से गणना की जा सकती है।<ref>[http://web.mit.edu/16.unified/www/SPRING/propulsion/notes/node85.html#SECTION06364000000000000000 MIT.EDU Unified: Thermodynamics and Propulsion Prof. Z. S. Spakovszky – Turbojet Engine]</ref>
== चक्र सुधार ==
टर्बोजेट का संचालन लगभग [[ ब्रेटन चक्र |ब्रेटन चक्र]] द्वारा तैयार किया गया है।
गैस टर्बाइन की दक्षता समग्र दबाव अनुपात को बढ़ाकर, उच्च तापमान संपीड़क सामग्री की आवश्यकता होती है, और टर्बाइन प्रवेश तापमान को बढ़ाकर बेहतर टर्बाइन सामग्री और/या बेहतर वेन/फलक शीतलन की आवश्यकता होती है। यह घाटे को कम करके भी बढ़ाया जाता है क्योंकि प्रवाह अंतर्ग्रहण से प्रणोद तुंड तक बढ़ता है। इन नुकसानों को संपीड़क और टरबाइन की क्षमता और नलिकीकरण दाब हानि द्वारा निर्धारित किया जाता है।


== चक्र सुधार ==
जब एक टर्बोजेट अनुप्रयोग में उपयोग किया जाता है, जहां गैस टर्बाइन से उत्पादन एक प्रणोद तुंड में उपयोग किया जाता है, टर्बाइन तापमान बढ़ाने से जेट वेग बढ़ जाता है। सामान्य अवध्वानिक गति पर यह प्रणोदन क्षमता को कम करता है, जिससे समग्र नुकसान होता है, जैसा कि उच्च ईंधन खपत, या SFC द्वारा परिलक्षित होता है।<ref>"Gas Turbine Theory" Cohen, Rogers, Saravanamuttoo, {{ISBN|0 582 44927 8}}, p72-73, fig 3.11</ref> हालांकि, पराध्वनिक विमानों के लिए यह फायदेमंद हो सकता है, और यही कारण है कि कॉनकॉर्ड ने टर्बोजेट का इस्तेमाल किया।
टर्बोजेट का संचालन लगभग [[ ब्रेटन चक्र ]] द्वारा तैयार किया गया है।
 
टर्बोजेट प्रणालियाँ जटिल प्रणालियाँ हैं इसलिए ऐसी प्रणाली के इष्टतम कार्य को सुरक्षित करने के लिए, स्वचालन के क्षेत्रों से नवीनतम ज्ञान को लागू करने के लिए अपने नियंत्रण प्रणालियों को उन्नत करने के लिए नए प्रतिरूप विकसित किए जा रहे हैं, इसलिए इसकी सुरक्षा और प्रभावशीलता में वृद्धि करें।<ref>SAMI 2010 • 8th IEEE International Symposium on Applied Machine Intelligence and Informatics • 28–30 January 2010 • Herl'any, Slovakia (Advanced methods of turbojet engines' control)(R. Andoga*,*** , L. Főző*,** , L. Madarász* and J. Judičák****
*Technical University of Košice, Department of Cybernetics and Artificial Intelligence, Košice, Slovakia ** Technical University of Košice, Department of Environmental Studies and Information Engineering, Košice,))</ref>


गैस टर्बाइन की दक्षता समग्र दबाव अनुपात को बढ़ाकर, उच्च तापमान संपीड़क सामग्री की आवश्यकता होती है, और टर्बाइन प्रवेश तापमान को बढ़ाकर बेहतर टर्बाइन सामग्री और/या बेहतर वेन/फलक शीतलन की आवश्यकता होती है। यह घाटे को कम करके भी बढ़ाया जाता है क्योंकि प्रवाह अंतर्ग्रहण से प्रणोद तुंड तक बढ़ता है। इन नुकसानों को संपीड़क और टरबाइन की क्षमता और डक्टिंग प्रेशर लॉस द्वारा निर्धारित किया जाता है।
जब एक टर्बोजेट अनुप्रयोग में उपयोग किया जाता है, जहां गैस टर्बाइन से उत्पादन एक प्रणोद तुंड में उपयोग किया जाता है, टर्बाइन तापमान बढ़ाने से जेट वेग बढ़ जाता है। सामान्य अवध्वानिक गति पर यह प्रणोदन क्षमता को कम करता है, जिससे समग्र नुकसान होता है, जैसा कि उच्च ईंधन खपत, या एसएफसी द्वारा परिलक्षित होता है।<ref>"Gas Turbine Theory" Cohen, Rogers, Saravanamuttoo, {{ISBN|0 582 44927 8}}, p72-73, fig 3.11</ref> हालांकि, पराध्वनिक विमानों के लिए यह फायदेमंद हो सकता है, और यही कारण है कि कॉनकॉर्ड ने टर्बोजेट का इस्तेमाल किया।
टर्बोजेट प्रणालियाँ जटिल प्रणालियाँ हैं इसलिए ऐसी प्रणाली के इष्टतम कार्य को सुरक्षित करने के लिए, स्वचालन के क्षेत्रों से नवीनतम ज्ञान को लागू करने के लिए अपने नियंत्रण प्रणालियों को उन्नत करने के लिए नए मॉडल विकसित किए जा रहे हैं, इसलिए इसकी सुरक्षा और प्रभावशीलता में वृद्धि करें।<ref>SAMI 2010 • 8th IEEE International Symposium on Applied Machine Intelligence and Informatics • 28–30 January 2010 • Herl'any, Slovakia (Advanced methods of turbojet engines' control)(R. Andoga*,*** , L. Főző*,** , L. Madarász* and J. Judičák****
* Technical University of Košice, Department of Cybernetics and Artificial Intelligence, Košice, Slovakia ** Technical University of Košice, Department of Environmental Studies and Information Engineering, Košice,))</ref>




== यह भी देखें ==
== यह भी देखें ==
* [[ एयर-स्टार्ट सिस्टम ]]
* [[ एयर-स्टार्ट सिस्टम | वायुगत-प्रारम्भण प्रणाली]]
* [[ एक्सोस्केलेटल इंजन | एक्सोस्केलेटल यन्त्र]]
* [[ एक्सोस्केलेटल इंजन | अभियन्ता यन्त्र]]
* [[ जेट कार ]]
* [[ जेट कार ]]
* टर्बाइन यन्त्र की विफलता
* टर्बाइन यन्त्र की विफलता
Line 145: Line 145:
== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}
== आगे की पढाई ==
== आगे की पढाई ==
* {{cite book | last = Springer  |first=Edwin H. | year = 2001 | title = Constructing A Turbocharger Turbojet Engine | publisher = Turbojet Technologies | ref = Springer, Turbocharger Turbojet }}
* {{cite book | last = Springer  |first=Edwin H. | year = 2001 | title = Constructing A Turbocharger Turbojet Engine | publisher = Turbojet Technologies | ref = Springer, Turbocharger Turbojet }}
== बाहरी कड़ियाँ ==
== बाहरी कड़ियाँ ==
* [http://www.erichwarsitz.com Erich Warsitz, the world's first jet pilot]: includes rare videos (Heinkel He 178) and audio commentaries
* [http://www.erichwarsitz.com Erich Warsitz, the world's first jet pilot]: includes rare videos (हेंकेल He 178) and audio commentaries
* [http://www.grc.nasa.gov/WWW/k-12/airplane/Animation/turbtyp/ettf.html NASA reciprocating Engine Description]: includes a software model
* [http://www.grc.nasa.gov/WWW/k-12/airplane/Animation/turbtyp/ettf.html NASA reciprocating Engine Description]: includes a software model
* [https://www.flightglobal.com/pdfarchive/view/1941/1941%20-%201949.html Possibilities of Jet Propulsion]: 1941 survey with discussion of experimental designs of the 1920s and 1930s.
* [https://www.flightglobal.com/pdfarchive/view/1941/1941%20-%201949.html Possibilities of Jet Propulsion]: 1941 survey with discussion of experimental designs of the 1920s and 1930s.
Line 161: Line 157:
{{Heat engines|state=uncollapsed}}
{{Heat engines|state=uncollapsed}}


{{Use dmy dates|date=September 2019}}
   
[[Category: अंग्रेजी आविष्कार]] [[Category: जेट इंजन]] [[Category: गैस टरबाइन]] [[Category: नाजी जर्मनी में अनुसंधान और विकास]] [[Category: विज्ञान में 1930 के दशक]]


[[cs:Proudový motor]]
[[cs:Proudový motor]]
[[de:Strahltriebwerk#Einstrom-Strahltriebwerk (Turbojet)]]
[[de:Strahltriebwerk#Einstrom-Strahltriebwerk (Turbojet)]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 maint]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 20/01/2023]]
[[Category:Created On 20/01/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Use dmy dates from September 2019]]
[[Category:Wikipedia metatemplates]]
[[Category:अंग्रेजी आविष्कार]]
[[Category:गैस टरबाइन]]
[[Category:जेट इंजन]]
[[Category:नाजी जर्मनी में अनुसंधान और विकास]]
[[Category:विज्ञान में 1930 के दशक]]

Latest revision as of 13:07, 3 November 2023

File:Starboard Junkers Jumo 004 engine of the Me 262 at the Australian War Memorial May 2015.jpg
जंकर्स जुमो 004 , परिचालन उपयोग में पहला उत्पादन टर्बोजेट
File:Jet engine.svg
एक विशिष्ट गैस टरबाइन जेट यन्त्र का आरेख

टर्बोजेट एक वायुश्‍वसित्र जेट यन्त्र है जो सामान्यतः विमानों में उपयोग किया जाता है। इसमें प्रणोद तुंड के साथ गैस टरबाइन होता है। गैस टर्बाइन में एक वायु अंतर्गम होता है जिसमें अंतर्गम निर्देश फलक, एक संपीड़क, एक दहन कक्ष और एक टरबाइन (जो संपीड़क को चलाता है) सम्मिलित होता है। संपीड़क से संपीड़ित हवा को दहन कक्ष में ईंधन जलाकर गरम किया जाता है और फिर टरबाइन के माध्यम से विस्तार करने की अनुमति दी जाती है। इसके बाद टर्बाइन निर्वात को प्रणोद तुंड में फैलाया जाता है, जहां इसे प्रणोद प्रदान करने के लिए उच्च गति पर त्वरित किया जाता है।[1] दो इंजीनियरों, यूनाइटेड किंगडम में फ्रैंक व्हिटेल और जर्मनी में हंस वॉन ओहैन ने 1930 के दशक के अंत में अवधारणा को व्यावहारिक यन्त्रों में स्वतंत्र रूप से विकसित किया।

टर्बोजेट की कम वाहन गति पर खराब दक्षता होती है, जो विमान के अलावा अन्य वाहनों में उनकी उपयोगिता को सीमित करता है। टर्बोजेट यन्त्रों का उपयोग अलग-अलग स्तिथियों में विमान के अलावा अन्य वाहनों को ऊर्जा देने के लिए किया गया है, सामान्यतः भूमि गति रिकॉर्ड के प्रयासों के लिए। जहां वाहन टर्बाइन-संचालित होते हैं, यह सामान्यतः टर्बोशाफ्ट यन्त्र के उपयोग से होता है, गैस टरबाइन यन्त्र का विकास जहां एक घूर्णन उत्पादन शाफ्ट को चलाने के लिए एक अतिरिक्त टर्बाइन का उपयोग किया जाता है। ये हेलीकॉप्टर और होवरक्राफ्ट में सामान्य हैं। कॉनकॉर्ड और TU-144 के लंबी दूरी के संस्करणों पर टर्बोजेट का उपयोग किया गया था, जिन्हें पराध्वनिक रूप से यात्रा करने में लंबी अवधि बिताने की आवश्यकता थी। मध्यम श्रेणी की क्रूज़ मिसाइलों में टर्बोजेट उनकी उच्च निकास गति, छोटे ललाट क्षेत्र और सापेक्ष सादगी के कारण अभी भी सामान्य हैं। वे अभी भी मिग -25 जैसे कुछ पराध्वनिक लड़ाकू विमानों पर उपयोग किए जाते हैं, लेकिन पराध्वनिक रूप से यात्रा करने में बहुत कम समय व्यतीत करते हैं, और इसलिए पराध्वनिक लघु दौड़ के लिए निकास गति बढ़ाने के लिए टर्बोफैन और आफ्टरबर्नर का उपयोग करते हैं।

इतिहास

File:Ohain USAF He 178 page61.jpg
हेंकेल He 178 , हेंकेल HeS 3 यन्त्र का उपयोग करते हुए शुद्ध रूप से टर्बोजेट शक्ति पर उड़ान भरने वाला दुनिया का पहला विमान

एक विमान को ऊर्जा देने के लिए गैस टर्बाइन का उपयोग करने के लिए पहला एकस्व अधिकार 1921 में फ्रेंचमैन मैक्सिमे गुइल्यूम द्वारा दायर किया गया था।[2] उनका यन्त्र एक अक्षीय-प्रवाह टर्बोजेट होना था, लेकिन इसका निर्माण कभी नहीं किया गया था, क्योंकि इसके लिए संपीड़क में कला की स्थिति पर काफी प्रगति की आवश्यकता होती थी।[3]

File:Whittle Jet Engine W2-700.JPG
व्हिटल W.2/700 यन्त्र ने ग्‍लोस्‍टर E.28/39 में उड़ान भरी, टर्बोजेट यन्त्र के साथ उड़ान भरने वाला पहला ब्रिटिश विमान, और ग्‍लोस्‍टर मेटेओर

1928 में, ब्रिटिश RAF कॉलेज क्रैनवेल सेनाछात्र[4] फ्रैंक व्हिटल ने औपचारिक रूप से अपने वरिष्ठों को टर्बोजेट के लिए अपने विचार प्रस्तुत किए। अक्टूबर 1929 में उन्होंने अपने विचारों को और विकसित किया।[5] 16 जनवरी 1930 को इंग्लैंड में, व्हिटल ने अपना पहला एकस्व अधिकार (1932 में प्रदान किया गया) प्रस्तुत किया।[6] एकस्व अधिकार ने एक एकल-पक्षीय केन्द्रापसारक संपीड़क को खिलाते हुए एक दो-चरण अक्षीय संपीड़क दिखाया। 1926 में एक सेमिनल पेपर में ("टरबाइन अभिकल्पना का एक वायुगतिकीय सिद्धांत") व्यावहारिक अक्षीय कंप्रेशर्स को ए.ए. ग्रिफ़िथ के विचारों द्वारा संभव बनाया गया था। व्हिटल ने बाद में कई तरह के व्यावहारिक कारणों से सरल केन्द्रापसारक संपीड़क पर ही ध्यान केंद्रित किया। 12 अप्रैल 1937 को शक्ति जेट्स WU चलाने वाला पहला टर्बोजेट एक व्हिटल यन्त्र था। यह तरल-ईंधन वाला था। जब ईंधन की आपूर्ति बंद होने के बावजूद यन्त्र अपेक्षाकृत उच्च गति से नियंत्रण से बाहर हो गया, तो व्हिटल के दल ने पहली शुरुआत के प्रयासों के दौरान निकट-घबराहट का अनुभव किया। बाद में यह पाया गया कि आरम्भपूर्व मोटरिंग चेक के दौरान ईंधन का दहन कक्ष में रिसाव हो गया था और पूल में जमा हो गया था, इसलिए यन्त्र तब तक गति करना बंद नहीं करेगा जब तक कि सभी रिसाव हुए ईंधन जल न जाएं। व्हिटल अपने आविष्कार में सरकार को प्रभावित नहीं कर पा रहा था, और विकास धीमी गति से जारी रहा।

जर्मनी में, हंस वॉन ओहैन ने 1935 में इसी तरह के यन्त्र का एकस्व अधिकार कराया था। व्हिटल के केन्द्रापसारक प्रवाह यन्त्र के विपरीत उनकी अभिकल्पना, एक अक्षीय-प्रवाह यन्त्र, अंततः 1950 के दशक तक अधिकांश निर्माताओं द्वारा अपनाया गया था।[7][8]

27 अगस्त 1939 को वॉन ओहैन की अभिकल्पना द्वारा संचालित हिंकेल हे 178, टर्बोजेट यन्त्र से शक्ति का उपयोग करके उड़ान भरने वाला दुनिया का पहला विमान बन गया। इसे जाँच पायलट एरिक वारसिट्ज ने उड़ाया था।[9] ग्लॉस्टर E.28/39, (जिसे ग्लॉस्टर व्हिटल , ग्लॉस्टर अग्रगामी , या ग्लॉस्टर G.40 भी कहा जाता है) ने 1941 में पहली ब्रिटिश जेट-यन्त्र वाली उड़ान भरी। इसे उड़ान में व्हिटल जेट यन्त्र का परीक्षण करने के लिए अभिकल्पना किया गया था, और ग्लॉस्टर उल्का के विकास का नेतृत्व किया।[10]

पहले दो परिचालन टर्बोजेट विमान, मैसर्सचमिट मी 262 और फिर ग्लॉस्टर उल्का, द्वितीय विश्व युद्ध के अंत की ओर, 1944 में सेवा में आए। अप्रैल में मी 262 और जुलाई में ग्‍लोस्‍टर मेटेओर, इसलिए मेटेओर ने केवल लगभग 15 विमानों को WW2 की कार्रवाई में प्रवेश करते देखा, जबकि 1400 मी 262 तक का उत्पादन किया गया, जिसमें 300 ने युद्ध में प्रवेश किया, पहला जमीनी हमला किया और जेट विमानों की हवाई लड़ाई में जीत प्राप्त की।[11][12][13]

वायु अंतर्ग्राही के माध्यम से घूर्णन संपीड़क में खींची जाती है और दहन कक्ष में प्रवेश करने से पहले एक उच्च दबाव में संपीड़ित होती है। ईंधन को संपीड़ित हवा के साथ मिलाया जाता है और दहन में जलता है। दहन उत्पाद दहन तंत्र को छोड़ देते हैं और टर्बाइन के माध्यम से फैलते हैं जहां संपीड़क को चलाने के लिए ऊर्जा निकाली जाती है। टर्बाइन निकास गैसों में अभी भी काफी ऊर्जा होती है जो प्रणोद तुंड में एक उच्च गति जेट में परिवर्तित हो जाती है।

पहले टर्बोजेट, या तो एक केन्द्रापसारक संपीड़क (हेन्केल HES 3 के रूप में), या एक अक्षीय संपीड़क (जंकर्स जुमो 004 के रूप में) का इस्तेमाल करते थे, जो एक छोटा व्यास यद्यपि लंबा यन्त्र देता था। पिस्टन यन्त्रों पर इस्तेमाल किए गए प्रेरक को निकास के उच्च गति वाले जेट के साथ बदलकर, उच्च विमान गति प्राप्त की जा सकती थी।

टर्बोजेट यन्त्र के लिए अंतिम अनुप्रयोगों में से एक कॉनकॉर्ड था जिसने ओलिंप 593 यन्त्र का उपयोग किया था। हालांकि, कॉनकॉर्ड के सेवा में आने से तीन साल पहले 593 कोर का उपयोग कर दूसरी पीढ़ी के SST यन्त्र के लिए रोल्स-रॉयस और स्नेकमा द्वारा संयुक्त अध्ययन किया गया था। उन्होंने बेहतर उपरितरण और परिभ्रमण प्रदर्शन देने के लिए 0.1 और 1.0 के बीच उपमार्ग अनुपात वाले उपमार्ग यन्त्रों का मूल्यांकन किया।[14] फिर भी, 593 कॉनकॉर्ड कार्यक्रम की सभी आवश्यकताओं को पूरा करते थे।[15]मच 2.2 पर कॉनकॉर्ड अभिकल्पना के लिए 1964 में किए गए अनुमानों ने पराध्वनिक एयरलाइनर के लिए मील प्रति गैलन के संदर्भ में, मैक 0.85 (बोइंग 707, DC-8) पर अवध्वानिक एयरलाइनर की तुलना क्षेत्र में मच को अपेक्षाकृत छोटा दिखाया। ऐसा इसलिए है क्योंकि संकर्षण में बड़ी वृद्धि की काफी हद तक बिजली संयंत्र दक्षता में वृद्धि से भरपाई की जाती है (यन्त्र की दक्षता कुट्टक के दबाव में वृद्धि से बढ़ जाती है जो संपीड़क के दबाव में वृद्धि को जोड़ती है, उच्च विमान की गति निकास जेट की गति को बढ़ाती है जिससे प्रणोदन क्षमता बढ़ जाती है)।[16]

टर्बोजेट यन्त्रों का व्यावसायिक विमानन पर महत्वपूर्ण प्रभाव पड़ा। तेज़ उड़ान गति देने के अलावा, टर्बोजेट में पिस्टन यन्त्र की तुलना में अधिक विश्वसनीयता थी, कुछ प्रतिरूपों ने 99.9% से अधिक की प्रेषण विश्वसनीयता अनुमतांक का प्रदर्शन किया। उड़ान मध्य विफलताओं पर चिंताओं के कारण पूर्व-जेट वाणिज्यिक विमानों को आंशिक रूप से चार यन्त्रों के साथ अभिकल्पित किया गया था। अवतरण क्षेत्र के एक घंटे के भीतर विमानों को रखने के लिए विदेशी उड़ान पथ तैयार किए गए थे, जिससे उड़ानें लंबी हो गईं। टर्बोजेट के साथ आई विश्वसनीयता में वृद्धि ने तीन और दो-यन्त्र अभिकल्पना और अधिक सीधी लंबी दूरी की उड़ानों को संभव बनाया।[17]

उच्च-तापमान मिश्र धातुएं एक प्रतिलोम प्रमुख थीं, एक प्रमुख तकनीक जिसने जेट यन्त्रों पर प्रगति को खींच लिया। 1930 और 1940 के दशक में निर्मित गैर-UK जेट यन्त्रों को सरपण विफल होने और फलक को अन्य प्रकार की क्षति के कारण हर 10 या 20 घंटे में मरम्मत करनी पड़ती थी। हालांकि, ब्रिटिश यन्त्रों ने निमोनिक मिश्र धातुओं का उपयोग किया, जो मरम्मत के बिना विस्तारित उपयोग की अनुमति देते थे, रोल्स-रॉयस वेलैंड और रोल्स-रॉयस डेरवेंट जैसे यन्त्र,[18] और 1949 तक डी हैविलैंड गोबलिन बिना रखरखाव के 500 घंटे के लिए परीक्षण किया।[19] यह 1950 के दशक तक नहीं था कि अधिमिश्रातु तकनीक ने अन्य देशों को आर्थिक रूप से व्यावहारिक यन्त्र बनाने की अनुमति दी थी।[20]


प्रारंभिक अभिकल्पना

टर्बाइनों के लिए उपयुक्त उच्च तापमान सामग्री की कमी के कारण प्रारंभिक जर्मन टर्बोजेट चलाने की मात्रा पर गंभीर सीमाएं थीं। रोल्स-रॉयस वेलैंड जैसे ब्रिटिश यन्त्रों ने बेहतर स्थायित्व प्रदान करने वाली बेहतर सामग्री का उपयोग किया। वेलैंड प्रारम्भ में 80 घंटे के लिए प्रकार-प्रमाणित था। बाद में मरम्मत के बीच 150 घंटे तक बढ़ा दिया गया, क्योंकि परीक्षणों में 500 घंटे की विस्तारित दौड़ प्राप्त की जा रही थी।[21]

File:J85 ge 17a turbojet engine.jpg
जनरल इलेक्ट्रिक से J85-GE-17A टर्बोजेट यन्त्र (1970)

संयुक्त राज्य अमेरिका में जनरल इलेक्ट्रिक द्वितीय विश्व युद्ध के दौरान अपने टर्बोसुपरचार्जर में प्रयुक्त उच्च तापमान सामग्री के साथ अपने अनुभव के कारण जेट यन्त्र व्यवसाय में प्रवेश करने की अच्छी स्थिति में था।[22]

जल अंतःक्षेप एक सामान्य विधि थी जिसका उपयोग प्रणोद बढ़ाने के लिए किया जाता था, सामान्यतः विद्रूपिका के समय, शुरुआती टर्बोजेट में जो उनके स्वीकार्य टरबाइन प्रवेश तापमान द्वारा प्रणोद-सीमित थे। पानी ने तापमान की सीमा पर ऊर्जा बड़ाई, लेकिन पूर्ण दहन को रोका, प्रायः एक बहुत ही दृश्यमान धुएं का निशान छोड़ दिया।

बेहतर मिश्र धातुओं और विलेपन के प्रारम्भ और फलक शीतलन अभिकल्पनाों के प्रारम्भ और प्रगतिशील प्रभावशीलता दोनों के साथ समय के साथ स्वीकार्य टरबाइन प्रवेश तापमान में तेजी से वृद्धि हुई है। प्रारंभिक यन्त्रों पर, टर्बाइन तापमान सीमा की निगरानी की जानी थी, और पायलट द्वारा, सामान्यतः प्रारम्भ करने के दौरान और अधिकतम प्रणोद समायोजन पर टाला जाता था। पायलट कार्यभार को कम करने और अधिक तापमान के कारण टरबाइन क्षति की संभावना को कम करने के लिए स्वत: तापमान सीमित करना प्रारम्भ किया गया था।

अवयव

File:Axial compressor.gif
एक अक्षीय संपीड़क का एक सजीवता। स्थिर फलक स्थिरक हैं।
Error creating thumbnail:
योजनाबद्ध आरेख एक केन्द्रापसारक प्रवाह टर्बोजेट यन्त्र के संचालन को दर्शाता है। संपीड़क टर्बाइन चरण द्वारा संचालित होता है और हवा को बाहर फेंकता है, जिससे इसे जोर के धुरी के समानांतर पुनर्निर्देशित करने की आवश्यकता होती है।
File:Turbojet operation- axial flow.png
योजनाबद्ध आरेख एक अक्षीय प्रवाह टर्बोजेट यन्त्र के संचालन को दर्शाता है। यहां, संपीड़क को फिर से टरबाइन द्वारा संचालित किया जाता है, लेकिन हवा का प्रवाह प्रणोद के अक्ष के समानांतर रहता है

वायु अंतर्ग्रहण

आने वाली वायु को घूर्णन संपीड़क फलक में सुचारू रूप से निर्देशित करने में मदद करने के लिए संपीड़क के सामने एक अंतर्ग्रहण या नलिका की आवश्यकता होती है। पुराने यन्त्रों में गतिमान फलकों के सामने स्थिर फलक होते थे। इन पिच्छफलक ने फलकों पर वायु को निर्देशित करने में भी मदद की। विमान की गति का ध्यान दिए बिना, टर्बोजेट यन्त्र में बहने वाली हवा हमेशा अवध्वानिक होती है।

अंतर्ग्रहण को यन्त्र को हवा की आपूर्ति दबाव में स्वीकार्य रूप से छोटे बदलाव (विकृति के रूप में जाना जाता है) और मार्ग में जितना संभव हो उतना कम ऊर्जा खोने के साथ करना पड़ता है (दबाव पुनः प्राप्ति के रूप में जाना जाता है)। अंतर्ग्रहण में कुट्टक दबाव वृद्धि प्रणोदन प्रणाली के समग्र दबाव अनुपात और ऊष्मीय दक्षता में अंतर्गम का योगदान है।

उच्च गति पर अंतर्ग्रहण प्रमुखता प्राप्त करता है जब यह संपीड़क चरण की तुलना में अधिक संपीड़न उत्पन्न करता है। जाने-माने उदाहरण कॉनकॉर्ड और लॉकहीड SR-71 ब्लैकबर्ड नोदन निकाय हैं जहां कुल संपीडन में अंतर्गहण और यन्त्र का योगदान मैक 2 पर 63%/8% था।[23]और मैक 3+ पर 54%/17%। [24] अंतर्ग्रहण शून्य-लंबाई से लेकर [25] लॉकहीड C-141 स्टारलिफ्टर में प्रैट एंड व्हिटनी TF33 टर्बोफैन संस्थापन पर, ट्विन के लिए 65 feet (20 m) लंबे समय तक हैं, उत्तरी अमेरिकी XB-70 पर अंतर्ग्रहण करता है, प्रत्येक तीन यन्त्रों को खिलाता है, जिसमें अंतर्ग्रहण वायु प्रवाह होता है 800 pounds per second (360 kg/s).

संपीड़क

संपीड़क टरबाइन द्वारा संचालित होता है। यह उच्च गति से घूमता है, वायु प्रवाह में ऊर्जा जोड़ता है और साथ ही इसे एक छोटी सी जगह में निचोड़ (संपीड़ित) करता है। हवा को दबाने से उसका दबाव और तापमान बढ़ जाता है। संपीड़क जितना छोटा होता है, उतनी ही तेजी से मुड़ता है। क्षेत्र के बड़े सिरे पर, सामान्य इलेक्ट्रिक GE90 पंखा लगभग 2,500 RPM पर घूमता है, जबकि एक छोटा हेलीकॉप्टर यन्त्र संपीड़क लगभग 50,000 RPM पर घूमता है।

टर्बोजेट विभिन्न उप-प्रणालियों के संचालन के लिए संपीड़क से वायुयान को स्त्राव वायु की आपूर्ति करते हैं। उदाहरणों में पर्यावरण नियंत्रण प्रणाली, हिमरोधी, और ईंधन टैंक दबाव सम्मिलित हैं। यन्त्र को चालू रखने के लिए विभिन्न दबावों और प्रवाह दरों पर हवा की जरूरत होती है। यह हवा संपीड़क से आती है, और इसके बिना, टर्बाइन ज़्यादा गरम हो जाएगी, स्‍नेहक वाला तेल असर वाली गुहाओं से रिसेगा, घूर्णक प्रणोद दिक्कोण फिसल जाएगी या अधिभार हो जाएगी, और अग्र शंकु पर बर्फ बन जाएगी। संपीड़क से हवा, जिसे द्वितीयक वायु कहा जाता है, का उपयोग टर्बाइन शीतलन, दिक्मान छिद्र मुद्रांकन, हिमरोधी, और यह सुनिश्चित करने के लिए किया जाता है कि इसके प्रणोद दिक्मान पर घूर्णक अक्षीय भार इसे समय से पहले खराब नहीं करेगा। विमान को स्त्राव वायु की आपूर्ति करने से यन्त्र की दक्षता कम हो जाती है क्योंकि इसे संक्षिप्त किया गया है, लेकिन फिर यह प्रणोद उत्पादन करने में योगदान नहीं देता है।

टर्बोजेट में प्रयुक्त संपीड़क प्रकार सामान्यतः अक्षीय या केन्द्रापसारक थे। शुरुआती टर्बोजेट संपीड़क में लगभग 5:1 तक कम दबाव का अनुपात था। वायुगतिकीय सुधार जिसमें संपीड़क को दो अलग-अलग घूमने वाले भागों में विभाजित करना, प्रविष्टि निर्देश फलक और स्थिरक के लिए परिवर्तनशील फलक कोण सम्मिलित करना, और संपीड़क से स्त्रवण: वायु सम्मिलित है, जो बाद में टर्बोजेट को 15:1 या अधिक के समग्र दबाव अनुपात में सक्षम बनाता है। तुलना के लिए, आधुनिक असैन्य टर्बोफैन यन्त्रों का समग्र दाब अनुपात 44:1 या उससे अधिक होता है। संपीड़क छोड़ने के बाद, हवा दहन कक्ष में प्रवेश करती है।

दहन कक्ष

दहन तंत्र में जलने की प्रक्रिया पिस्टन यन्त्र में जलने की प्रक्रिया से काफी भिन्न होती है। एक पिस्टन यन्त्र में, जलती हुई गैसें एक छोटी मात्रा तक ही सीमित होती हैं, और जैसे-जैसे ईंधन जलता है, दबाव बढ़ता जाता है। एक टर्बोजेट में, दहन में हवा और ईंधन का मिश्रण जलता है और बिना किसी दबाव के निर्माण के बिना निरंतर बहने वाली प्रक्रिया में टरबाइन से गुजरता है। इसके स्थान पर, दहन तंत्र में एक छोटा दबाव हानि होती है।

ईंधन-हवा का मिश्रण केवल धीमी गति से चलने वाली हवा में ही जल सकता है, इसलिए प्राथमिक क्षेत्र में लगभग उचित तत्वानुपातकीय जलने के लिए ईंधन नलिका द्वारा प्रतिलोम प्रवाह का एक क्षेत्र बनाए रखा जाता है। आगे संपीड़ित हवा प्रस्तुत की जाती है जो दहन प्रक्रिया को पूरा करती है और दहन उत्पादों के तापमान को उस स्तर तक कम कर देती है जिसे टरबाइन स्वीकार कर सकता है। सामान्यतः दहन के लिए 25% से कम हवा का उपयोग किया जाता है, क्योंकि टर्बाइन तापमान सीमा के भीतर रखने के लिए समग्र दुबला मिश्रण आवश्यक होता है।

टर्बाइन

दहनशील से निकलने वाली गर्म गैसें टर्बाइन के माध्यम से फैलती हैं। टर्बाइनों के लिए विशिष्ट सामग्रियों में इन्कोनेल और निमोनिक सम्मिलित हैं।[26] एक यन्त्र में सबसे गर्म टर्बाइन वैन और फलक में आंतरिक शीतलन मार्ग होते हैं। धातु के तापमान को सीमा के भीतर रखने के लिए संपीड़क से हवा इनके माध्यम से पारित की जाती है। शेष चरणों को ठंडा करने की आवश्यकता नहीं होती है।

पहले चरण में, टर्बाइन काफी हद तक एक आवेग टर्बाइन (एक पेल्टन चक्र के समान) है और गर्म गैस धारा के प्रभाव के कारण घूमता है। बाद के चरण अभिसारी नलिकाएं हैं जो गैस को गति देती हैं। संपीड़क में ऊर्जा हस्तांतरण के विपरीत ऊर्जा को संवेग विनिमय के माध्यम से शाफ्ट में स्थानांतरित किया जाता है। टर्बाइन द्वारा विकसित शक्ति संपीड़क और सहायक उपकरण जैसे ईंधन, तेल और द्रवचालित पंपों को चलाती है जो उपसाधन गियरबॉक्स द्वारा संचालित होते हैं।

तुंड

टर्बाइन के बाद, गैसें निकास तुंड के माध्यम से फैलती हैं और एक उच्च वेग जेट का निर्माण करती हैं। एक अभिसरण तुंड में, नलिकीकरण धीरे-धीरे श्वासनलिका तक जाती है। टर्बोजेट पर तुंड दबाव अनुपात उच्च प्रणोद समंजन पर काफी अधिक होता है जिससे तुंड जाम हो जाता है।

यदि, हालांकि, एक अभिसारी-अपसारी डी लवल तुंड फिट किया जाता है, तो अपसारी (बढ़ता हुआ प्रवाह क्षेत्र) खंड गैसों को अपसारी खंड के भीतर पराध्वनिक वेग तक पहुंचने की अनुमति देता है। अतिरिक्त प्रणोद उच्च परिणामी निकास वेग द्वारा उत्पन्न होता है।

प्रणोद वर्धन

पानी/मेथनॉल अंतःक्षेप या ऑफ़्टरबर्नर वाले टर्बोजेट में सबसे अधिक प्रणोद दिया गया था।

कुछ यन्त्र एक ही समय में दोनों का इस्तेमाल करते थे।

1941 में विद्युत् जेट्स W.1 पर तरल अंतःक्षेप का परीक्षण प्रारम्भ में पानी और फिर पानी-मेथनॉल में बदलने से पहले अमोनिया का उपयोग करके किया गया था। ग्लॉस्टर ई.28/39 में तकनीक का परीक्षण करने के लिए एक प्रणाली तैयार की गई थी लेकिन इसे कभी फिट नहीं किया गया।[27]


आफ्टरबर्नर

एक आफ्टरबर्नर या रिहीट जेटपाइप एक दहन कक्ष है जिसे टर्बाइन निकास गैसों को फिर से गर्म करने के लिए जोड़ा जाता है। ईंधन की खपत बहुत अधिक है, सामान्यतः मुख्य यन्त्र की चार गुना। आफ्टरबर्नर का उपयोग लगभग विशेष रूप से पराध्वनिक विमानों पर किया जाता है, जिनमें से अधिकांश सैन्य विमान हैं। दो पराध्वनिक एयरलाइनर, कॉनकॉर्ड और Tu-144 , आफ्टरबर्नर का भी उपयोग करते हैं जैसा कि पर्पटित संयोजन उद्धारकर्ता करता है, प्रायोगिक पर्पटित संयोजन स्पेसशिपवन अवाक्षिकोटर अंतरिक्ष यान के लिए एक वाहक विमान है।

1944 में ग्लॉस्टर उल्का में पावर जेट्स W.2|W.2/700 यन्त्र पर पुनस्ताप का उड़ान-परीक्षण किया गया था।[28]


नेट प्रणोद

शुद्ध प्रणोद एक टर्बोजेट द्वारा दिया जाता है:[29][30]

जहाँ पर:

इंजन के माध्यम से वायु प्रवाह की दर है
इंजन में प्रवेश करने वाले ईंधन के प्रवाह की दर है
जेट की गति (निकास पंख) है और इसे ध्वनि वेग से कम माना जाता है
विमान का असली वायुचालमापी है
तुंड सकल जोर का प्रतिनिधित्व करता है
सेवन के कुट्टक ड्रैग का प्रतिनिधित्व करता है

यदि जेट की गति ध्वनि वेग के बराबर है तो तुंड को चोक प्रवाह कहा जाता है। यदि तुंड चोक हो जाता है, तो तुंड निकास तल पर दाब वायुमंडलीय दाब से अधिक होता है, और दाब प्रणोद को ध्यान में रखते हुए उपरोक्त समीकरण में अतिरिक्त शब्द जोड़े जाने चाहिए।[31]

हवा के प्रवाह की दर की तुलना में यन्त्र में प्रवेश करने वाले ईंधन के प्रवाह की दर बहुत कम है।[29]यदि तुंड संकल प्रणोद में ईंधन के योगदान की उपेक्षा की जाती है, तो नेट प्रणोद है:

जेट की गति विमान के असली वायुचालमापी से अधिक होना चाहिए अगर एयरफ्रेम पर नेट फॉरवर्ड प्रणोद होना है। रफ्तार एडियाबेटिक विस्तार के आधार पर थर्मोडायनामिक रूप से गणना की जा सकती है।[32]

चक्र सुधार

टर्बोजेट का संचालन लगभग ब्रेटन चक्र द्वारा तैयार किया गया है।

गैस टर्बाइन की दक्षता समग्र दबाव अनुपात को बढ़ाकर, उच्च तापमान संपीड़क सामग्री की आवश्यकता होती है, और टर्बाइन प्रवेश तापमान को बढ़ाकर बेहतर टर्बाइन सामग्री और/या बेहतर वेन/फलक शीतलन की आवश्यकता होती है। यह घाटे को कम करके भी बढ़ाया जाता है क्योंकि प्रवाह अंतर्ग्रहण से प्रणोद तुंड तक बढ़ता है। इन नुकसानों को संपीड़क और टरबाइन की क्षमता और नलिकीकरण दाब हानि द्वारा निर्धारित किया जाता है।

जब एक टर्बोजेट अनुप्रयोग में उपयोग किया जाता है, जहां गैस टर्बाइन से उत्पादन एक प्रणोद तुंड में उपयोग किया जाता है, टर्बाइन तापमान बढ़ाने से जेट वेग बढ़ जाता है। सामान्य अवध्वानिक गति पर यह प्रणोदन क्षमता को कम करता है, जिससे समग्र नुकसान होता है, जैसा कि उच्च ईंधन खपत, या SFC द्वारा परिलक्षित होता है।[33] हालांकि, पराध्वनिक विमानों के लिए यह फायदेमंद हो सकता है, और यही कारण है कि कॉनकॉर्ड ने टर्बोजेट का इस्तेमाल किया।

टर्बोजेट प्रणालियाँ जटिल प्रणालियाँ हैं इसलिए ऐसी प्रणाली के इष्टतम कार्य को सुरक्षित करने के लिए, स्वचालन के क्षेत्रों से नवीनतम ज्ञान को लागू करने के लिए अपने नियंत्रण प्रणालियों को उन्नत करने के लिए नए प्रतिरूप विकसित किए जा रहे हैं, इसलिए इसकी सुरक्षा और प्रभावशीलता में वृद्धि करें।[34]


यह भी देखें

संदर्भ

  1. "Turbojet Engine". NASA Glenn Research Center. Retrieved 6 May 2009.
  2. Maxime Guillaume,"Propulseur par réaction sur l'air," French patent FR 534801  (filed: 3 May 1921; issued: 13 January 1922)
  3. Ellis, Guy (15 February 2016). Britain's Jet Age: From the Meteor to the Sea Vixen. Amberley. ISBN 978-1-44564901-6.
  4. "Chasing the Sun – Frank Whittle". PBS. Retrieved 26 March 2010.
  5. "History – Frank Whittle (1907–1996)". BBC. Retrieved 26 March 2010.
  6. Frank Whittle, Improvements relating to the propulsion of aircraft and other vehicles, British patent no. 347,206 (filed: 16 January 1930).
  7. Experimental & Prototype US Air Force Jet Fighters, Jenkins & Landis, 2008
  8. Foderaro, Lisa W. (10 August 1996). "Frank Whittle, 89, Dies; His Jet Engine Propelled Progress". The New York Times.
  9. Warsitz, Lutz 2009 The First Jet Pilot – The Story of German Test Pilot Erich Warsitz, Pen and Sword Books, England, ISBN 978-1-84415-818-8, p. 125.
  10. Listemann, Phil H. (6 September 2016), The Gloster Meteor F.I & F.III, Philedition, p. 3, ISBN 978-291859095-8
  11. Heaton, Colin D.; Lewis, Anne-Marien; Tillman, Barrett (15 May 2012). The Me 262 Stormbird: From the Pilots Who Flew, Fought, and Survived It. Voyageur Press. ISBN 978-1-61058434-0.
  12. Listemann 2016, p. 5.
  13. "The Day Germany's First Jet Fighter Soared into History".
  14. Power for the second-generation SST, Young and Devriese,Extracts from the 25th Louis Bleriot Lecture,Flight International,11 May 1972,p.659
  15. The Engine For TSR2,J.D.Wragg - TSR2 with Hindsight,Royal Air Force Historical Society,ISBN 0 9519824 8 6, p.120
  16. https://journals-sagepub-com.wikipedialibrary.idm.oclc.org/doi/pdf/10.1177/0020348363178001159, Powerplants For The Concord Supersonic Civil Airliner,S.G.Hooker,Proceedings of The Institution of Mechanical Engineers,Summer meeting 1964,p.1227
  17. Larson, George C. (April–May 2010), "Old Faithful", Air & Space, 25 (1): 80
  18. "World Encyclopedia of Aero Engines – 5th edition" by Bill Gunston, Sutton Publishing, 2006, p.192
  19. sir alec | flame tubes | marshal sir | 1949 | 0598 | Flight Archive
  20. Sims, C.T., Chester, A History of Superalloy Metallurgy, Proc. 5th Symp. on Superalloys, 1984.
  21. "Rolls-Royce Derwent | 1945". Flight. Flightglobal.com: 448. 25 October 1945. Retrieved 14 December 2013.
  22. Robert V. Garvin, "Starting Something Big", ISBN 978-1-56347-289-3, p.5
  23. "Test Pilot" Brian Trubshaw, Sutton Publishing 1999, ISBN 0 7509 1838 1, Appendix VIIIb
  24. "Archived copy" (PDF). Archived from the original (PDF) on 9 May 2016. Retrieved 16 May 2016.{{cite web}}: CS1 maint: archived copy as title (link) Fig.26
  25. "Trade-offs in Jet Inlet Design" Sobester, Journal of Aircraft Vol.44, No.3, May–June 2007, Fig.12
  26. 1960 | Flight | Archive
  27. 1947 | 1359 | Flight Archive
  28. "World Encyclopedia of Aero Engines – 5th edition" by Bill Gunston, Sutton Publishing, 2006, p.160
  29. 29.0 29.1 Cumpsty, Nicholas (2003). "3.1". Jet Propulsion (2nd ed.). Cambridge University Press. ISBN 0-521-54144-1.
  30. "Turbojet Thrust". NASA Glenn Research Center. Retrieved 6 May 2009.
  31. Cumpsty, Jet Propulsion, Section 6.3
  32. MIT.EDU Unified: Thermodynamics and Propulsion Prof. Z. S. Spakovszky – Turbojet Engine
  33. "Gas Turbine Theory" Cohen, Rogers, Saravanamuttoo, ISBN 0 582 44927 8, p72-73, fig 3.11
  34. SAMI 2010 • 8th IEEE International Symposium on Applied Machine Intelligence and Informatics • 28–30 January 2010 • Herl'any, Slovakia (Advanced methods of turbojet engines' control)(R. Andoga*,*** , L. Főző*,** , L. Madarász* and J. Judičák****
    • Technical University of Košice, Department of Cybernetics and Artificial Intelligence, Košice, Slovakia ** Technical University of Košice, Department of Environmental Studies and Information Engineering, Košice,))

आगे की पढाई

  • Springer, Edwin H. (2001). Constructing A Turbocharger Turbojet Engine. Turbojet Technologies.

बाहरी कड़ियाँ