सूक्ष्मकण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Spherical particle larger than nano particles but smaller than sand particles}} {{about|the particles|the software company| Microsphere (software company)|...")
 
m (8 revisions imported from alpha:सूक्ष्मकण)
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Spherical particle larger than nano particles but smaller than sand particles}}
{{Short description|Spherical particle larger than nano particles but smaller than sand particles}}{{Quote box
{{about|the particles|the software company| Microsphere (software company)|other uses|microsphere (disambiguation)|the biological cell fragment|Microvesicles}}
|title =[[इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड केमिस्ट्री|आईयूपीएसी]] परिभाषा
|quote = मध्य के आयामों वाला कण 1 × 10<sup>−7</sup> and 1 × 10<sup>−4</sup> m.


{{More citations needed|date=August 2013}}
''नोट 1'': माइक्रो और नैनो आकार के मध्य की निचली सीमा अभी भी वार्तालाप का विषय है।


{{Quote box
''नोट 2'': उपसर्ग "माइक्रो" और परिभाषा द्वारा लगाई गई सीमा के अनुरूप होने के लिए,<br/>उपसर्ग "माइक्रो" और परिभाषा द्वारा लगाई गई सीमा के अनुरूप होने के लिए,
|title =[[International Union of Pure and Applied Chemistry|IUPAC]] definition
माइक्रोपार्टिकल्स के आयामों को μm में व्यक्त किया जाना चाहिए।,.<ref>{{cite journal|title=Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)|journal=[[Pure and Applied Chemistry]]|year=2012|volume=84|issue=2|pages=377–410|doi=10.1351/PAC-REC-10-12-04|url=http://pac.iupac.org/publications/pac/pdf/2012/pdf/8402x0377.pdf|last1=Vert|first1=Michel|last2=Doi|first2=Yoshiharu|last3=Hellwich|first3=Karl-Heinz|last4=Hess|first4=Michael|last5=Hodge|first5=Philip|last6=Kubisa|first6=Przemyslaw|last7=Rinaudo|first7=Marguerite|last8=Schué|first8=François|s2cid=98107080}}</ref>  
|quote = Particle with dimensions between 1 × 10<sup>−7</sup> and 1 × 10<sup>−4</sup> m.
 
''Note 1'': The lower limit between micro- and nano-sizing is still a matter of debate.
 
''Note 2'': To be consistent with the prefix “micro” and the range imposed by the definition,<br/>dimensions of microparticles should be expressed in μm.<ref>{{cite journal|title=Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)|journal=[[Pure and Applied Chemistry]]|year=2012|volume=84|issue=2|pages=377–410|doi=10.1351/PAC-REC-10-12-04|url=http://pac.iupac.org/publications/pac/pdf/2012/pdf/8402x0377.pdf|last1=Vert|first1=Michel|last2=Doi|first2=Yoshiharu|last3=Hellwich|first3=Karl-Heinz|last4=Hess|first4=Michael|last5=Hodge|first5=Philip|last6=Kubisa|first6=Przemyslaw|last7=Rinaudo|first7=Marguerite|last8=Schué|first8=François|s2cid=98107080}}</ref>  
}}
}}


माइक्रोपार्टिकल्स 0.1 और 100 μm आकार के कण होते हैं। व्यावसायिक रूप से उपलब्ध माइक्रोपार्टिकल्स विभिन्न प्रकार की सामग्रियों में उपलब्ध हैं, जिनमें [[सिरेमिक सामग्री]], कांच, [[पॉलिमर]] और धातुएं शामिल हैं।<ref>{{Cite web|url=https://www.cospheric.com/metal_microspheres.htm|title=ठोस धातु माइक्रोस्फीयर - स्टेनलेस स्टील और टाइटेनियम क्षेत्र|website=www.cospheric.com|access-date=2019-05-07}}</ref> दैनिक जीवन में पाए जाने वाले सूक्ष्म कणों में [[पराग]], रेत, धूल, आटा और पाउडर चीनी शामिल हैं।
'''सूक्ष्मकण''' 0.1 और 100 μm आकार के कण होते हैं। व्यावसायिक रूप से उपलब्ध सूक्ष्मकण विभिन्न प्रकार की सामग्रियों में उपलब्ध हैं, जिनमें [[सिरेमिक सामग्री|सिरेमिक]], कांच, [[पॉलिमर]] और धातुएं सम्मिलित हैं।<ref>{{Cite web|url=https://www.cospheric.com/metal_microspheres.htm|title=ठोस धातु माइक्रोस्फीयर - स्टेनलेस स्टील और टाइटेनियम क्षेत्र|website=www.cospheric.com|access-date=2019-05-07}}</ref> दैनिक जीवन में पाए जाने वाले सूक्ष्म कणों में [[पराग]], रेत, धूल, आटा और पाउडर चीनी सम्मिलित हैं।


मैक्रोस्केल की तुलना में माइक्रोपार्टिकल्स का सतह-से-आयतन अनुपात बहुत बड़ा होता है, और इस प्रकार उनका व्यवहार काफी भिन्न हो सकता है। उदाहरण के लिए, धातु के सूक्ष्म कण हवा में विस्फोटक हो सकते हैं।
मैक्रोस्केल की तुलना में सूक्ष्मकण का सरफेस-टू-वोल्यूम अनुपात बहुत बड़ा होता है, और इस प्रकार उनका व्यवहार अधिक भिन्न हो सकता है। उदाहरण के लिए, धातु के सूक्ष्म कण हवा में विस्फोटक कर सकते हैं।


[[माइक्रोस्फीयर]] गोलाकार सूक्ष्म कण हैं,<ref>{{Cite web|url=http://microspheres.us/|title=माइक्रोस्फीयर ऑनलाइन|website=माइक्रोस्फीयर ऑनलाइन|language=EN|access-date=2019-05-07}}</ref> और इसका उपयोग वहां किया जाता है जहां सुसंगत और पूर्वानुमानित कण सतह क्षेत्र महत्वपूर्ण है।
[[माइक्रोस्फीयर|सूक्ष्मगोलक]] वृत्ताकार सूक्ष्म कण हैं,<ref>{{Cite web|url=http://microspheres.us/|title=माइक्रोस्फीयर ऑनलाइन|website=माइक्रोस्फीयर ऑनलाइन|language=EN|access-date=2019-05-07}}</ref> और इसका उपयोग वहां किया जाता है जहां कंसिस्टेंट और प्रेडिक्टेबल कण सतह क्षेत्र अधिक महत्वपूर्ण है।


जैविक प्रणालियों में, एक माइक्रोपार्टिकल [[ सूक्ष्मवाहिकाएँ ]] का पर्याय है, जो एक प्रकार का बाह्य कोशिकीय पुटिका (ईवी) है।
जैविक प्रणालियों में, सूक्ष्मकण [[ सूक्ष्मवाहिकाएँ |सूक्ष्मवाहिकाएँ]] है, जो एक प्रकार का बाह्य कोशिकीय रंध्र (ईवी) है।


==आकार के लिए वैकल्पिक परिभाषाएँ==
==आकार के लिए वैकल्पिक परिभाषाएँ                                                                                                           ==
गणितीय: जैसा कि माइक्रो शब्द से तात्पर्य है <math>10^{-6}</math>, माइक्रो के लिए सीमा तब होगी <math>10^{-7.5}</math> को <math>10^{-4.5}</math>, या लगभग 31.6 एनएम से 31.6 माइक्रोमीटर। हालाँकि, सामान्य स्वीकृति 100 एनएम नैनोकणों से छोटे कणों पर विचार करती है।
गणितीय: जैसा कि माइक्रो शब्द से तात्पर्य <math>10^{-6}                                                                               </math> से है , माइक्रो के लिए सीमा <math>10^{-7.5}</math> को <math>10^{-4.5}</math> या लगभग 31.6 nm से 31.6 माइक्रोमीटर होती है। चूकी सामान्य स्वीकृति 100 nm नैनोकणों से छोटे कणों पर विचार करती है।


पूर्णांकन: गणित में पूर्णांकन के नियम परिभाषा के लिए एक विकल्प प्रदान करते हैं। 0.5 μm से बड़ी कोई भी चीज़ और 0.5 मिमी से छोटी कोई भी चीज़ माइक्रोपार्टिकल्स मानी जाती है।
पूर्णांकन: गणित में पूर्णांकन के नियम परिभाषा के लिए विकल्प प्रदान करते हैं। 0.5 μm से बड़ी कोई भी वस्तु और 0.5 मिमी से छोटी वस्तु भी सूक्ष्मकण मानी जाती है।


सुविधाजनक/लोकप्रिय: अक्सर 100 एनएम से अधिक आयाम वाले कणों को अभी भी नैनोकण कहा जाता है। ऊपरी सीमा 300 और 700 एनएम के बीच हो सकती है, इसलिए यह 0.3 से 300 माइक्रोमीटर या 0.7 से 700 माइक्रोमीटर के माइक्रोपार्टिकल्स के लिए आकार की परिभाषा देगा।
सुविधाजनक/लोकप्रिय: अधिकांशतः 100 nm से अधिक आयाम वाले कणों को अभी भी नैनोपार्टिकल्सअधिअधी कहा जाता है। ऊपरी सीमा 300 और 700 nm के मध्य हो सकती है, इसलिए यह 0.3 से 300 माइक्रोमीटर या 0.7 से 700 माइक्रोमीटर के सूक्ष्मकण के लिए आकार की परिभाषा देगा।


==अनुप्रयोग==
==अनुप्रयोग==
घरेलू गर्भावस्था परीक्षण में सोने के सूक्ष्म कणों का उपयोग किया जाता है। कई एप्लिकेशन माइक्रोस्फीयर लेख में भी सूचीबद्ध हैं।
घरेलू गर्भावस्था परीक्षण में सोने के सूक्ष्म कणों का उपयोग किया जाता है। अनेक एप्लिकेशन सूक्ष्मगोलक लेख में भी सूचीबद्ध हैं।


एक हालिया अध्ययन से पता चला है कि संक्रमित, नकारात्मक रूप से चार्ज किए गए, प्रतिरक्षा-संशोधित माइक्रोपार्टिकल्स का सूजन संबंधी मोनोसाइट्स द्वारा उत्पन्न या प्रबल होने वाली बीमारियों में चिकित्सीय उपयोग हो सकता है।<ref name=" pmid = 24431111 ">{{cite journal  |vauthors=Getts DR, Terry RL, Getts MT, etal | title = प्रतिरक्षा-संशोधित माइक्रोपार्टिकल्स का उपयोग करके चिकित्सीय सूजन मोनोसाइट मॉड्यूलेशन।| journal = Sci. Transl. Med. | volume = 6 | issue = 219 |date=Jan 2014 | pmid = 24431111 | url= | pages = 219 | doi=10.1126/scitranslmed.3007563| pmc=3973033 }}</ref>
वर्तमान अध्ययन से पता चला है कि संक्रमित, ऋणात्मक रूप से चार्ज किए गए, प्रतिरक्षा-संशोधित सूक्ष्मकण का सूजन संबंधी मोनोसाइट्स द्वारा उत्पन्न या प्रबल होने वाली बीमारियों में चिकित्सीय उपयोग हो सकता है।<ref name=" pmid = 24431111 ">{{cite journal  |vauthors=Getts DR, Terry RL, Getts MT, etal | title = प्रतिरक्षा-संशोधित माइक्रोपार्टिकल्स का उपयोग करके चिकित्सीय सूजन मोनोसाइट मॉड्यूलेशन।| journal = Sci. Transl. Med. | volume = 6 | issue = 219 |date=Jan 2014 | pmid = 24431111 | url= | pages = 219 | doi=10.1126/scitranslmed.3007563| pmc=3973033 }}</ref>




== सूक्ष्ममंडल ==
== सूक्ष्मगोलक                                                                                                            ==


माइक्रोस्फीयर छोटे गोलाकार कण होते हैं, जिनका व्यास [[माइक्रोमीटर]] रेंज (आमतौर पर 1 माइक्रोमीटर से 1000 माइक्रोमीटर (1 मिमी)) में होता है। माइक्रोस्फीयर को कभी-कभी गोलाकार माइक्रोपार्टिकल्स के रूप में जाना जाता है। सामान्य तौर पर माइक्रोस्फीयर ठोस या खोखले होते हैं और इसके विपरीत, अंदर कोई तरल पदार्थ नहीं होता है माइक्रोकैप्सूल को.
सूक्ष्मगोलक छोटे वृत्ताकार कण होते हैं, जिनका व्यास [[माइक्रोमीटर]] रेंज (सामान्यतः 1 माइक्रोमीटर से 1000 माइक्रोमीटर (1 मिमी)) में होता है। सूक्ष्मगोलक को संभवतः वृत्ताकार सूक्ष्मकण के रूप में जाना जाता है। सामान्यतः सूक्ष्मगोलक ठोस या खोखले होते हैं और माइक्रोकैप्सूल के विपरीत, अंदर कोई तरल पदार्थ नहीं होता है|


माइक्रोस्फीयर विभिन्न प्राकृतिक और [[सिंथेटिक रसायन]]ों से बनाए जा सकते हैं। ग्लास माइक्रोस्फीयर, [[पॉलीमर]] माइक्रोस्फीयर, मेटल माइक्रोस्फीयर और सिरेमिक माइक्रोस्फीयर व्यावसायिक रूप से उपलब्ध हैं।<ref>{{Cite web|url=https://www.cospheric.com/|title=माइक्रोस्फीयर, गोलाकार कण, माइक्रोबीड्स, कस्टम घनत्व, फ्लोरोसेंट, प्रवाहकीय|website=www.cospheric.com|access-date=2019-05-07}}</ref> ठोस और खोखले माइक्रोस्फेयर [[घनत्व]] में व्यापक रूप से भिन्न होते हैं और इसलिए, विभिन्न अनुप्रयोगों के लिए उपयोग किए जाते हैं। किसी सामग्री के घनत्व को कम करने के लिए खोखले माइक्रोस्फीयर का उपयोग आमतौर पर योजक के रूप में किया जाता है। ठोस माइक्रोस्फीयर के कई अनुप्रयोग होते हैं, यह इस बात पर निर्भर करता है कि वे किस सामग्री से बने हैं और वे किस आकार के हैं।
सूक्ष्मगोलक विभिन्न प्राकृतिक और [[सिंथेटिक रसायन|सिंथेटिक रसायनो]] से बनाए जा सकते हैं। ग्लास सूक्ष्मगोलक, [[पॉलीमर]] सूक्ष्मगोलक, मेटल सूक्ष्मगोलक और सिरेमिक सूक्ष्मगोलक व्यावसायिक रूप से उपलब्ध हैं।<ref>{{Cite web|url=https://www.cospheric.com/|title=माइक्रोस्फीयर, गोलाकार कण, माइक्रोबीड्स, कस्टम घनत्व, फ्लोरोसेंट, प्रवाहकीय|website=www.cospheric.com|access-date=2019-05-07}}</ref> ठोस और खोखले सूक्ष्मगोलक [[घनत्व]] में व्यापक रूप से भिन्न होते हैं और इसलिए, विभिन्न अनुप्रयोगों के लिए उपयोग किए जाते हैं। किसी सामग्री के घनत्व को कम करने के लिए खोखले सूक्ष्मगोलक का उपयोग सामान्यतः योजक के रूप में किया जाता है। ठोस सूक्ष्मगोलक के अनेक अनुप्रयोग होते हैं, यह इस विषय पर निर्भर करता है कि वे किस सामग्री से बने हैं और उनका आकर किस प्रकार का है।


[[polyethylene]], [[POLYSTYRENE]] और विस्तार योग्य माइक्रोस्फीयर पॉलिमर माइक्रोस्फीयर के सबसे सामान्य प्रकार हैं।
पॉलीथीन, पॉलीस्टीरीनऔर विस्तार योग्य सूक्ष्मगोलक पॉलिमर सूक्ष्मगोलक के सबसे सामान्य प्रकार हैं।
  {{Quote box
   
  |title = IUPAC definition
{{Quote box
  |quote = Microparticle of spherical shape without membrane or any distinct outer layer.
  |title = आईयूपीएसी परिभाषा
  |quote = झिल्ली या किसी स्पष्ट बाहरी परत के बिना गोलाकार आकार का सूक्ष्म कण।


''Note'': The absence of outer layer forming a distinct phase is important to distinguish<br/>microspheres from microcapsules because it leads to first-order diffusion phenomena,<br/>whereas diffusion is zero order in the case of microcapsules.<ref>{{cite journal|title=Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)|journal=[[Pure and Applied Chemistry]]|year=2012|volume=84|issue=2|pages=377–410|doi=10.1351/PAC-REC-10-12-04|url=http://pac.iupac.org/publications/pac/pdf/2012/pdf/8402x0377.pdf|last1=Vert|first1=Michel|last2=Doi|first2=Yoshiharu|last3=Hellwich|first3=Karl-Heinz|last4=Hess|first4=Michael|last5=Hodge|first5=Philip|last6=Kubisa|first6=Przemyslaw|last7=Rinaudo|first7=Marguerite|last8=Schué|first8=François|s2cid=98107080}}</ref>  
''नोट'': भिन्न चरण बनाने वाली बाहरी परत की अनुपस्थिति में अंतर करना महत्वपूर्ण है<br/>माइक्रोकैप्सूल से माइक्रोस्फेयर क्योंकि यह प्रथम-क्रम प्रसार घटना की ओर ले जाता है,<br/>जबकि माइक्रोकैप्सूल कीस्थिति में प्रसार शून्य क्रम है।<ref>{{cite journal|title=जैवसंबंधित पॉलिमर और अनुप्रयोगों के लिए शब्दावली (आईयूपीएसी 2012)|जर्नल=[[Pure and Applied Chemistry]]|year=2012|volume=84|issue=2|pages=377–410|doi=10.1351/PAC-REC-10-12-04|url=http://pac.iupac.org/publications/pac/pdf/2012/pdf/8402x0377.pdf|last1=Vert|first1=Michel|last2=Doi|first2=Yoshiharu|last3=Hellwich|first3=Karl-Heinz|last4=Hess|first4=Michael|last5=Hodge|first5=Philip|last6=Kubisa|first6=Przemyslaw|last7=Rinaudo|first7=Marguerite|last8=Schué|first8=François|s2cid=98107080}}</ref>  
}}
}}
पॉलीस्टाइरीन माइक्रोस्फीयर का उपयोग आमतौर पर [[ जैव चिकित्सा ]] अनुप्रयोगों में किया जाता है, क्योंकि यह सेल सॉर्टिंग और इम्यूनोप्रेसिपिटेशन जैसी प्रक्रियाओं को सुविधाजनक बनाने की क्षमता रखता है। प्रोटीन और लिगेंड पॉलीस्टाइनिन पर आसानी से और स्थायी रूप से सोख लेते हैं, जो पॉलीस्टाइनिन माइक्रोस्फीयर को चिकित्सा अनुसंधान और जैविक प्रयोगशाला प्रयोगों के लिए उपयुक्त बनाता है।


[[पॉलीथीन माइक्रोस्फीयर]] का उपयोग आमतौर पर स्थायी या अस्थायी भराव के रूप में किया जाता है। कम पिघलने का तापमान पॉलीथीन माइक्रोस्फीयर को सिरेमिक सामग्री और अन्य सामग्रियों में छिद्रपूर्ण संरचनाएं बनाने में सक्षम बनाता है। पॉलीथीन माइक्रोस्फीयर की उच्च गोलाकारता, साथ ही रंगीन और फ्लोरोसेंट माइक्रोस्फीयर की उपलब्धता, उन्हें प्रवाह दृश्य और [[द्रव प्रवाह]] विश्लेषण, माइक्रोस्कोपी तकनीक, स्वास्थ्य विज्ञान, प्रक्रिया [[समस्या निवारण]] और कई शोध अनुप्रयोगों के लिए अत्यधिक वांछनीय बनाती है। चार्ज किए गए पॉलीथीन माइक्रोस्फीयर का उपयोग इलेक्ट्रॉनिक पेपर डिजिटल डिस्प्ले में भी किया जाता है।<ref>[http://www.pcimag.com/Articles/Feature_Article/BNP_GUID_9-5-2006_A_10000000000000723862 Paint and Coatings Industry Magazine, January 1st, 2010 : Opaque Polyethylene Microspheres for the coatings applications]</ref><ref>[http://www.cosmeticsandtoiletries.com/formulating/ingredient/pigment/89521652.html Cosmetics and Toiletries, April 2010 Issue: Solid Polyethylene Microspheres for effects in color cosmetics] {{webarchive|url=https://web.archive.org/web/20120304184713/http://www.cosmeticsandtoiletries.com/formulating/ingredient/pigment/89521652.html |date=2012-03-04 }}</ref>
पॉलीस्टाइरीन सूक्ष्मगोलक का उपयोग सामान्यतः [[ जैव चिकित्सा |जैव चिकित्सा]] अनुप्रयोगों में किया जाता है क्योंकि यह सेल सॉर्टिंग और इम्यूनोप्रेसिपिटेशन जैसी प्रक्रियाओं को सुविधाजनक बनाने की क्षमता रखता है। प्रोटीन और लिगेंड पॉलीस्टाइनिन पर सरलता से और स्थायी रूप से सोख लेते हैं, जो पॉलीस्टाइनिन सूक्ष्मगोलक को चिकित्सा अनुसंधान और जैविक प्रयोगशाला प्रयोगों के लिए उपयुक्त बनाता है।
विस्तार योग्य माइक्रोस्फीयर पॉलिमर माइक्रोस्फीयर होते हैं जिनका उपयोग ब्लोइंग एजेंट के रूप में किया जाता है। पफ स्याही, ऑटोमोटिव अंडरबॉडी कोटिंग्स और थर्मोप्लास्टिक्स की इंजेक्शन मोल्डिंग। इन्हें हल्के वजन वाले भराव के रूप में भी इस्तेमाल किया जा सकता है, उदाहरण के लिए। सुसंस्कृत संगमरमर, जलजनित पेंट और दरार भराव/संयुक्त यौगिक। जब उन पर गर्मी लागू की जाती है तो विस्तार योग्य पॉलिमर माइक्रोस्फीयर अपने मूल आकार से 50 गुना से अधिक तक विस्तारित हो सकते हैं। प्रत्येक गोले की बाहरी दीवार एक थर्मोप्लास्टिक खोल है जो कम क्वथनांक वाले हाइड्रोकार्बन को समाहित करती है। गर्म होने पर, यह बाहरी आवरण नरम हो जाता है और फैलता है क्योंकि हाइड्रोकार्बन आंतरिक आवरण की दीवार पर दबाव डालता है।


[[ग्लास माइक्रोस्फीयर]] का उपयोग मुख्य रूप से वजन घटाने के लिए फिलर और वॉल्यूमाइज़र, राजमार्ग सुरक्षा के लिए रेट्रो-रिफ्लेक्टर, सौंदर्य प्रसाधन और चिपकने वाले पदार्थों के लिए एडिटिव, चिकित्सा प्रौद्योगिकी में सीमित अनुप्रयोगों के साथ किया जाता है।
[[पॉलीथीन माइक्रोस्फीयर|पॉलीथीन सूक्ष्मगोलक]] का उपयोग सामान्यतः स्थायी या अस्थायी फिलर के रूप में किया जाता है। लोअर मेल्टिंग टेम्प्रेचर पॉलीथीन सूक्ष्मगोलक को सिरेमिक सामग्री और अन्य सामग्रियों में सरंध्र संरचनाएं बनाने में सक्षम बनाता है। पॉलीथीन सूक्ष्मगोलक की उच्च गोलाकारता, साथ ही रंगीन और फ्लोरोसेंट सूक्ष्मगोलक की उपलब्धता, उन्हें प्रवाह दृश्य और [[द्रव प्रवाह]] विश्लेषण, माइक्रोस्कोपी विधि, स्वास्थ्य विज्ञान, प्रक्रिया [[समस्या निवारण]] और अनेक शोध अनुप्रयोगों के लिए अत्यधिक वांछनीय बनाती है। चार्ज किए गए पॉलीथीन सूक्ष्मगोलक का उपयोग इलेक्ट्रॉनिक पेपर डिजिटल डिस्प्ले में भी किया जाता है।<ref>[http://www.pcimag.com/Articles/Feature_Article/BNP_GUID_9-5-2006_A_10000000000000723862 Paint and Coatings Industry Magazine, January 1st, 2010 : Opaque Polyethylene Microspheres for the coatings applications]</ref><ref>[http://www.cosmeticsandtoiletries.com/formulating/ingredient/pigment/89521652.html Cosmetics and Toiletries, April 2010 Issue: Solid Polyethylene Microspheres for effects in color cosmetics] {{webarchive|url=https://web.archive.org/web/20120304184713/http://www.cosmeticsandtoiletries.com/formulating/ingredient/pigment/89521652.html |date=2012-03-04 }}</ref>


अत्यधिक पारदर्शी कांच से बने माइक्रोस्फीयर बहुत उच्च गुणवत्ता वाले [[ऑप्टिकल माइक्रोकैविटी]] या ऑप्टिकल माइक्रोरेसोनेटर के रूप में कार्य कर सकते हैं।
विस्तार करने योग्य सूक्ष्मगोलक पॉलिमर सूक्ष्मगोलक होते हैं| जिनका उपयोग ब्लोइंग एजेंट के रूप में किया जाता है| जो कि पफ इंक, ऑटोमोटिव अंडरबॉडी कोटिंग्स और थर्मोप्लास्टिक्स की इंजेक्शन मोल्डिंग आदि है। इन्हें कम भार वाले फिलर के रूप में भी प्रयोग किया जा सकता है, उदाहरण के लिए कल्चर संगमरमर, वाटर बोर्न पेंट और फिलर /जॉइंट कंपाउंड। जब उन पर ऊष्मा क्रियान्वित की जाती है तब विस्तार योग्य पॉलिमर सूक्ष्मगोलक अपने मूल आकार से 50 गुना से अधिक तक विस्तारित हो सकते हैं। प्रत्येक गोले की बाहरी दीवार थर्मोप्लास्टिक आवरण है जो कम क्वथनांक वाले हाइड्रोकार्बन को समाहित करती है। गर्म होने पर यह बाहरी आवरण सॉफ्ट हो जाता है और फैलता है क्योंकि हाइड्रोकार्बन आंतरिक आवरण की दीवार पर दबाव डालता है।


सिरेमिक माइक्रोस्फीयर का उपयोग मुख्य रूप से पीसने वाले मीडिया के रूप में किया जाता है।
[[ग्लास माइक्रोस्फीयर|ग्लास सूक्ष्मगोलक]] का उपयोग मुख्य रूप से भार को कम करने के लिए फिलर और वॉल्यूमाइज़र, हाइवे सुरक्षा के लिए रेट्रो-रिफ्लेक्टर, सौंदर्य प्रसाधन और चिपकने वाले पदार्थों के लिए एडिटिव, चिकित्सा प्रौद्योगिकी में सीमित अनुप्रयोगों के साथ किया जाता है।


उनके बाहरी बहुलक खोल में दवा से भरे खोखले माइक्रोस्फीयर को एक नवीन इमल्शन विलायक प्रसार विधि और स्प्रे सुखाने की तकनीक द्वारा तैयार किया गया था।
अत्यधिक पारदर्शी कांच से बने सूक्ष्मगोलक बहुत उच्च गुणवत्ता वाले [[ऑप्टिकल माइक्रोकैविटी]] या ऑप्टिकल माइक्रोरेसोनेटर के रूप में कार्य कर सकते हैं।


सूक्ष्ममंडल गुणवत्ता, गोलाकारता, एकरूपता, कण आकार और कण आकार वितरण में व्यापक रूप से भिन्न होते हैं। प्रत्येक अद्वितीय अनुप्रयोग के लिए उपयुक्त माइक्रोस्फीयर को चुनने की आवश्यकता है।
सिरेमिक सूक्ष्मगोलक का उपयोग मुख्य रूप से ग्राइंडिंग मीडिया के रूप में किया जाता है।


==अनुप्रयोग==
उनके बाहरी बहुलक खोल में दवा से भरे खोखले सूक्ष्मगोलक को नयी इमल्शन विलायक प्रसार विधि और स्प्रे ड्राइंग विधि द्वारा तैयार किया गया था।
माइक्रोस्फीयर के लिए हर दिन नए अनुप्रयोग खोजे जाते हैं। नीचे कुछ ही हैं:
 
*[[परख]] - लेपित माइक्रोस्फीयर जीव विज्ञान और औषधि अनुसंधान में मापने का उपकरण प्रदान करते हैं
सूक्ष्मगोलक गुणवत्ता, गोलाकारता, रूपता, कण आकार और कण आकार वितरण में व्यापक रूप से भिन्न होते हैं। प्रत्येक अद्वितीय अनुप्रयोग के लिए उपयुक्त सूक्ष्मगोलक को चुनने की आवश्यकता है।
*उत्प्लावकता - प्लास्टिक (कांच और पॉलिमर) में सामग्री के घनत्व को कम करने के लिए खोखले माइक्रोस्फीयर का उपयोग किया जाता है, द्रव [[प्रवाह दृश्य]] के लिए तटस्थ रूप से उत्प्लावक माइक्रोस्फीयर का उपयोग अक्सर किया जाता है।
 
*[[कण छवि वेलोसिमेट्री]] - प्रवाह दृश्य के लिए उपयोग किए जाने वाले ठोस या खोखले माइक्रोस्फेयर, कण का घनत्व तरल पदार्थ के घनत्व से मेल खाना चाहिए।<ref>http://microspheres.us/fluorescent-microspheres/piv-seeding-microparticle-flow-visualization/599.html PIV seeding particle recommendations</ref>
==अनुप्रयोग                                                                                               ==
*सिरेमिक सामग्री - फिल्टर के लिए उपयोग किए जाने वाले झरझरा सिरेमिक बनाने के लिए उपयोग किया जाता है (फायरिंग के दौरान माइक्रोस्फीयर पिघल जाते हैं, पॉलीइथाइलीन माइक्रोस्फीयर) या उच्च शक्ति वाले हल्के कंक्रीट तैयार करने के लिए उपयोग किया जाता है।<ref>{{cite journal|title=खोखले माइक्रोस्फीयर पर आधारित उच्च शक्ति वाले हल्के कंक्रीट की तैयारी और अनुसंधान|journal=Advanced Materials Research|year=2013|volume=746|pages=285–288|doi=10.4028/www.scientific.net/AMR.746.285|url=http://www.scientific.net/AMR.746.285|last1=Korolev|first1=Evgeniy Valerjevich|last2=Inozemtcev|first2=Alexandr Sergeevich|s2cid=137481918}}</ref> *सौंदर्य प्रसाधन - झुर्रियों को छिपाने और रंग देने के लिए अपारदर्शी माइक्रोस्फीयर का उपयोग किया जाता है, स्पष्ट माइक्रोस्फीयर लगाने के दौरान चिकनी बॉल बेयरिंग बनावट प्रदान करते हैं (पॉलीथीन माइक्रोस्फीयर)
सूक्ष्मगोलक के लिए प्रत्येक दिन नए अनुप्रयोग खोजे जाते हैं। नीचे कुछ अनुप्रयोग दिए गए हैं:
* [[विखंडन]] - सूक्ष्मदर्शी को चिह्नित करने और छवि डीकोनवोल्यूशन करने के लिए एक प्रयोगात्मक बिंदु प्रसार फ़ंक्शन प्राप्त करने के लिए छोटे फ्लोरोसेंट माइक्रोस्फीयर (<200 नैनोमीटर) की आवश्यकता होती है
*[[परख]] - लेपित सूक्ष्मगोलक जीव विज्ञान और औषधि अनुसंधान में मापने का उपकरण प्रदान करते हैं
*[[दवा वितरण]] - उदाहरण के लिए, पॉलिमर से बने लघु समय रिलीज ड्रग कैप्सूल के रूप में। इसी तरह का उपयोग [[कंट्रास्ट-एन्हांस्ड अल्ट्रासाउंड]] में उपयोग किए जाने वाले माइक्रोबबल कंट्रास्ट एजेंटों के बाहरी आवरण के रूप में होता है।
*उत्प्लावकता - खोखले सूक्ष्मगोलक का उपयोग प्लास्टिक (कांच और पॉलिमर) में सामग्री के घनत्व को कम करने के लिए किया जाता है, द्रव [[प्रवाह दृश्य]] के लिए तटस्थ रूप से उत्प्लावक सूक्ष्मगोलक का उपयोग अधिकांशतः किया जाता है।
*[[ इलेक्ट्रॉनिक कागज ]] - [[जाइरिकॉन]] इलेक्ट्रॉनिक पेपर में उपयोग किए जाने वाले दोहरे कार्यात्मक माइक्रोस्फीयर
*[[कण छवि वेलोसिमेट्री]] - प्रवाह दृश्य के लिए उपयोग किए जाने वाले ठोस या खोखले सूक्ष्मगोलक, कण का घनत्व तरल पदार्थ के घनत्व के सामान होना चाहिए।<ref>http://microspheres.us/fluorescent-microspheres/piv-seeding-microparticle-flow-visualization/599.html PIV seeding particle recommendations</ref>
*इन्सुलेशन - विस्तार योग्य पॉलिमर माइक्रोस्फीयर का उपयोग थर्मल इन्सुलेशन और ध्वनि शमन के लिए किया जाता है।
*सिरेमिक सामग्री - फिल्टर के लिए उपयोग किए जाने वाले पोरस सिरेमिक बनाने के लिए उपयोग किया जाता है (फायरिंग के समय सूक्ष्मगोलक पिघल जाते हैं, पॉलीइथाइलीन सूक्ष्मगोलक) या उच्च शक्ति वाले हल्के कंक्रीट तैयार करने के लिए उपयोग किया जाता है।<ref>{{cite journal|title=खोखले माइक्रोस्फीयर पर आधारित उच्च शक्ति वाले हल्के कंक्रीट की तैयारी और अनुसंधान|journal=Advanced Materials Research|year=2013|volume=746|pages=285–288|doi=10.4028/www.scientific.net/AMR.746.285|url=http://www.scientific.net/AMR.746.285|last1=Korolev|first1=Evgeniy Valerjevich|last2=Inozemtcev|first2=Alexandr Sergeevich|s2cid=137481918}}</ref>
*[[व्यक्तिगत देखभाल]] - एक्सफ़ोलीएटिंग एजेंट के रूप में स्क्रब में जोड़ा गया (पॉलीथीन माइक्रोस्फीयर)
*सौंदर्य प्रसाधन - झुर्रियों को छिपाने और रंग देने के लिए अपारदर्शी सूक्ष्मगोलक का उपयोग किया जाता है, स्पष्ट सूक्ष्मगोलक लगाने के समय चिकनी बॉल बेयरिंग बनावट प्रदान करते हैं (पॉलीथीन सूक्ष्मगोलक)
*स्पेसर - ग्लास पैनलों (ग्लास) के बीच सटीक दूरी प्रदान करने के लिए एलसीडी स्क्रीन में उपयोग किया जाता है
* [[विखंडन]] - सूक्ष्मदर्शी को चिह्नित करने और इमेज डीकोनवोल्यूशन करने के लिए प्रयोगात्मक बिंदु प्रसार फलन प्राप्त करने के लिए छोटे फ्लोरोसेंट सूक्ष्मगोलक (<200 नैनोमीटर) की आवश्यकता होती है|
*[[मानक (मेट्रोलॉजी)]] - मोनोडिस्पियर माइक्रोस्फेयर का उपयोग कण छलनी और कण गिनती उपकरण को कैलिब्रेट करने के लिए किया जाता है।
*[[दवा वितरण]] - उदाहरण के लिए, पॉलिमर से बने लघु समय रिलीज ड्रग कैप्सूल के रूप में। इसी प्रकार का उपयोग [[कंट्रास्ट-एन्हांस्ड अल्ट्रासाउंड]] में उपयोग किए जाने वाले माइक्रोबबल कंट्रास्ट एजेंटों के बाहरी आवरण के रूप में होता है।
*[[रेट्रोरिफ्लेक्टिव]] - रात में सड़क की पट्टियों और संकेतों की दृश्यता बढ़ाने के लिए सड़कों और संकेतों पर उपयोग किए जाने वाले पेंट के ऊपर जोड़ा गया (कांच)
*[[ इलेक्ट्रॉनिक कागज | इलेक्ट्रॉनिक कागज]] - [[जाइरिकॉन]] इलेक्ट्रॉनिक पेपर में उपयोग किए जाने वाले दोहरे कार्यात्मक सूक्ष्मगोलक है|
* गाढ़ा करने वाला एजेंट - चिपचिपाहट और उछाल को संशोधित करने के लिए पेंट और एपॉक्सी में जोड़ा जाता है
*इन्सुलेशन - विस्तार योग्य पॉलिमर सूक्ष्मगोलक का उपयोग थर्मल इन्सुलेशन और ध्वनि कम के लिए किया जाता है।
*दवाओं को एचबीएस फ्लोटिंग माइक्रोस्फीयर के रूप में तैयार किया जा सकता है। निम्नलिखित दवाओं की सूची है जिन्हें माइक्रोस्फीयर के रूप में तैयार किया जा सकता है: [[रिपैग्लिनाइड]], [[सिमेटिडाइन]], [[रोसिग्लिटाज़ोन]], [[नाइट्रेंडिपाइन]], [[ ऐसीक्लोविर ]], रैनिटिडाइन, [[ misoprostol ]], [[ मेटफोर्मिन ]], [[एसिक्लोफेनाक]], [[ डिल्टियाज़ेम ]], [[ एल Dopa ]] और बेनेसेरागाइड, फ्लूरोरासिल।
*[[व्यक्तिगत देखभाल]] - एक्सफ़ोलीएटिंग एजेंट के रूप में स्क्रब में जोड़ा गया (पॉलीइथाइलीन सूक्ष्मगोलक) है|
*स्पेसर - ग्लास पैनलों (ग्लास) के मध्य स्पष्ट दूरी प्रदान करने के लिए एलसीडी स्क्रीन में उपयोग किया जाता है
*[[मानक (मेट्रोलॉजी)]] - ग्लास पैनलों (ग्लास) के मध्य त्रुटिहीन दूरी प्रदान करने के लिए एलसीडी स्क्रीन में उपयोग किया जाता है
*[[रेट्रोरिफ्लेक्टिव]] - रात में सड़क की पट्टियों और संकेतों की दृश्यता बढ़ाने के लिए सड़कों और संकेतों पर उपयोग किए जाने वाले पेंट के ऊपर जोड़ा (कांच) जाता है|
* गाढ़ा करने वाला एजेंट - श्यानता और उत्प्लावकता को संशोधित करने के लिए पेंट और एपॉक्सी में जोड़ा जाता है
*दवाओं को एचबीएस फ्लोटिंग सूक्ष्मगोलक के रूप में तैयार किया जा सकता है। निम्नलिखित दवाओं की सूची है जिन्हें सूक्ष्मगोलक के रूप में तैयार किया जा सकता है: [[रिपैग्लिनाइड]], [[सिमेटिडाइन]], [[रोसिग्लिटाज़ोन]], [[नाइट्रेंडिपाइन]], [[ ऐसीक्लोविर |ऐसीक्लोविर]] , रैनिटिडाइन, [[ misoprostol |मिसोप्रोस्टेल]] , [[ मेटफोर्मिन |मेटफोर्मिन]] , [[एसिक्लोफेनाक]], [[ डिल्टियाज़ेम |डिल्टियाज़ेम]] , [[ एल Dopa |एल-डोपा]] और बेनेसेरागाइड, फ्लूरोरासिल।


==जैविक प्रोटोकल्स==
==जैविक प्रोटोकल्स                                                                                     ==
कुछ लोग माइक्रोस्फीयर या [[[[प्रोटीन]]ॉइड]] प्रोटोकल्स को छोटी गोलाकार इकाइयों के रूप में संदर्भित करते हैं, जिन्हें कुछ वैज्ञानिकों ने [[जीवन की उत्पत्ति]] में एक महत्वपूर्ण चरण के रूप में माना है।
कुछ लोग सूक्ष्मगोलक या [[[[प्रोटीन]]]] प्रोटोकल्स को छोटी वृत्ताकार इकाइयों के रूप में संदर्भित करते हैं, जिन्हें कुछ वैज्ञानिकों ने [[जीवन की उत्पत्ति]] में महत्वपूर्ण चरण के रूप में माना है।


1953 में, [[स्टेनली मिलर]] और हेरोल्ड सी. उरे मिलर-उरे ने प्रयोग किया कि जीवन के विकास से पहले पृथ्वी पर पाए जाने वाले अणुओं की नकल करने के लिए डिज़ाइन की गई प्रयोगशाला स्थितियों के तहत अकार्बनिक रसायन विज्ञान अग्रदूत [[रासायनिक यौगिक]] से कई सरल बायोमोलेक्यूल्स स्वचालित रूप से बनाये जा सकते हैं। विशेष रुचि प्राप्त [[ एमिनो एसिड ]] की पर्याप्त उपज थी, क्योंकि अमीनो एसिड प्रोटीन के लिए बिल्डिंग ब्लॉक हैं।
1953 में, [[स्टेनली मिलर]] और हेरोल्ड सी. उरे मिलर-उरे ने प्रयोग किया कि जीवन के विकास से पहले पृथ्वी पर पाए जाने वाले अणुओं की कॉपी करने के लिए डिज़ाइन की गई प्रयोगशाला स्थितियों के अनुसारअकार्बनिक रसायन विज्ञान [[रासायनिक यौगिक]] से अनेक सरल बायोमोलेक्यूल्स स्वचालित रूप से बनाये जा सकते हैं। विशेष [[ एमिनो एसिड |एमिनो एसिड]] की पर्याप्त उपज थी, क्योंकि अमीनो एसिड प्रोटीन के लिए बिल्डिंग ब्लॉक हैं।


1957 में, सिडनी डब्ल्यू फॉक्स ने प्रदर्शित किया कि अमीनो एसिड के सूखे मिश्रण को मध्यम गर्मी के संपर्क में आने पर पोलीमराइज़ करने के लिए प्रोत्साहित किया जा सकता है। जब परिणामी [[पेप्टाइड]], या प्रोटीनोइड्स को गर्म पानी में घोल दिया गया और घोल को ठंडा होने दिया गया, तो उन्होंने लगभग 2 माइक्रोमीटर व्यास वाले छोटे गोलाकार गोले-माइक्रोस्फियर बनाए। उपयुक्त परिस्थितियों में, सूक्ष्ममंडल अपनी सतहों पर नए गोले विकसित करेंगे।
1957 में, सिडनी डब्ल्यू फॉक्स ने प्रदर्शित किया कि अमीनो एसिड के सूखे मिश्रण को मध्यम गर्मी के संपर्क में आने पर पोलीमराइज़ करने के लिए प्रोत्साहित किया जा सकता है। जब परिणामी [[पेप्टाइड]], या प्रोटीनोइड्स को गर्म पानी में घोल दिया गया और घोल को ठंडा होने दिया गया, तब उन्होंने लगभग 2 माइक्रोमीटर व्यास वाले छोटे वृत्ताकार सूक्ष्मगोलकबनाए गये। उपयुक्त परिस्थितियों में, सूक्ष्मगोलकअपनी सतहों पर नए गोले विकसित करेंगे।


यद्यपि मोटे तौर पर कोशिका (जीवविज्ञान) दिखने में, सूक्ष्ममंडल अपने आप में जीवित नहीं हैं। यद्यपि वे नवोदित द्वारा अलैंगिक रूप से प्रजनन करते हैं, फिर भी वे किसी भी प्रकार की [[आनुवंशिकी]] सामग्री पारित नहीं करते हैं। हालाँकि, वे जीवन के विकास में महत्वपूर्ण हो सकते हैं, एक [[जैविक झिल्ली]]-संलग्न मात्रा प्रदान करते हैं जो एक कोशिका के समान है। कोशिकाओं की तरह माइक्रोस्फीयर भी विकसित हो सकते हैं और उनमें एक दोहरी झिल्ली होती है जो सामग्री और परासरण के प्रसार से गुजरती है। सिडनी फॉक्स ने माना कि जैसे-जैसे ये माइक्रोस्फीयर अधिक जटिल होते जाएंगे, वे अधिक जीवंत कार्य करेंगे। वे हेटरोट्रॉफ़ बन जाएंगे, ऊर्जा और विकास के लिए पर्यावरण से पोषक तत्वों को अवशोषित करने की क्षमता वाले जीव। जैसे-जैसे उस अवधि में पर्यावरण में पोषक तत्वों की मात्रा कम हुई, उन बहुमूल्य संसाधनों के लिए प्रतिस्पर्धा बढ़ गई। अधिक जटिल जैव रासायनिक प्रतिक्रियाओं वाले हेटरोट्रॉफ़्स को इस प्रतियोगिता में लाभ होगा। समय के साथ, ऐसे जीव विकसित होंगे जो ऊर्जा उत्पन्न करने के लिए [[प्रकाश संश्लेषण]] का उपयोग करेंगे।
यद्यपि सामान्यतः कोशिका (जीवविज्ञान) दिखने में, सूक्ष्मगोलक अपने आप में जीवित नहीं हैं। यद्यपि वे नयी विधि द्वारा अलैंगिक रूप से प्रजनन करते हैं, फिर भी वे किसी भी प्रकार की [[आनुवंशिकी]] सामग्री पारित नहीं करते हैं। चूकी, वे जीवन के विकास में महत्वपूर्ण हो सकते हैं, [[जैविक झिल्ली|जैविक मेम्ब्रेन-संलग्न]] मात्रा प्रदान करते हैं जो कोशिका के समान है। कोशिकाओं के सामान सूक्ष्मगोलक भी विकसित हो सकते हैं और उनमें दोहरी झिल्ली होती है जो सामग्री और परासरण के प्रसार से निकलती है। सिडनी फॉक्स ने माना कि जैसे-जैसे ये सूक्ष्मगोलक अधिक सम्मिश्र होते जाएंगे, वे अधिक जीवंत कार्य करेंगे। वे हेटरोट्रॉफ़ बन जाएंगे, ऊर्जा और विकास के लिए पर्यावरण से पोषक अवयवों को अवशोषित करने की क्षमता वाले जीव। जैसे-जैसे उस अवधि में पर्यावरण में पोषक अवयवों की मात्रा कम हुई, उन बहुमूल्य संसाधनों के लिए प्रतिस्पर्धा बढ़ गई। अधिक सम्मिश्र जैव रासायनिक प्रतिक्रियाओं वाले हेटरोट्रॉफ़्स को इस प्रतियोगिता में लाभ होगा। समय के साथ, ऐसे जीव विकसित होंगे जो ऊर्जा उत्पन्न करने के लिए [[प्रकाश संश्लेषण]] का उपयोग करेंगे।


==[[कैंसर]] अनुसंधान==
==[[कैंसर]] अनुसंधान                                                                                                         ==
सूक्ष्ममंडलों के अनुसंधान से प्राप्त एक उपयोगी खोज आणविक स्तर पर कैंसर से लड़ने का एक तरीका है। वेक ऑन्कोलॉजिस्ट के अनुसार, एसआईआर-स्फेयर माइक्रोस्फेयर [[रेडियोधर्मी]] पॉलिमर गोले हैं जो [[बीटा विकिरण]] उत्सर्जित करते हैं। चिकित्सक कमर के माध्यम से [[यकृत धमनी]] में एक [[ कैथिटर ]] डालते हैं और लाखों माइक्रोस्फेयर सीधे ट्यूमर स्थल पर पहुंचाते हैं। [[SIR-Spheres]] माइक्रोस्फीयर [[जिगर]] ट्यूमर को लक्षित करते हैं और स्वस्थ लीवर ऊतक को बचाते हैं। कैंसर चिकित्सा में कैंसर माइक्रोस्फीयर तकनीक नवीनतम चलन है{{Citation needed|date=September 2022}}. यह फार्मासिस्ट को अधिकतम चिकित्सीय मूल्य और न्यूनतम या नगण्य सीमा के साइड इफेक्ट के साथ उत्पाद तैयार करने में मदद करता है। कैंसर रोधी दवाओं का एक बड़ा नुकसान अकेले ट्यूमर ऊतक के लिए उनकी चयनात्मकता की कमी है, जो गंभीर दुष्प्रभाव का कारण बनता है और इलाज की दर कम होती है। इस प्रकार, दवा वितरण प्रणाली की पारंपरिक पद्धति द्वारा असामान्य कोशिकाओं को लक्षित करना बहुत मुश्किल है। माइक्रोस्फीयर तकनीक संभवतः एकमात्र ऐसी विधि है जिसका उपयोग सामान्य कोशिकाओं पर महत्वपूर्ण दुष्प्रभाव पैदा किए बिना, साइट-विशिष्ट कार्रवाई (अत्यधिक अतिरंजित) के लिए किया जा सकता है।<ref>Mithun Singh Rajput, Purti Agrawal. Microspheres in Cancer  Therapy. Indian Journal of Cancer. 2010;47(4):458-468. http://www.indianjcancer.com/text.asp?2010/47/4/458/73547</ref>
सूक्ष्ममंडलों के अनुसंधान से प्राप्त उपयोगी खोज आणविक स्तर पर कैंसर से लड़ने का उपाय है। वेक ऑन्कोलॉजिस्ट के अनुसार, एसआईआर-स्फेयर सूक्ष्मगोलक[[रेडियोधर्मी]] पॉलिमर गोले हैं जो [[बीटा विकिरण]] उत्सर्जित करते हैं। चिकित्सक कमर के माध्यम से [[यकृत धमनी]] में [[ कैथिटर |कैथिटर]] डालते हैं और लाखों मासूक्ष्मगोलक सीधे ट्यूमर स्थल पर पहुंचाते हैं। [[SIR-Spheres|एसाइआर-स्फेयर्स]] सूक्ष्मगोलक [[जिगर|लीवर]] ट्यूमर को लक्षित करते हैं और स्वस्थ लीवर ऊतक को बचाते हैं। कैंसर चिकित्सा में कैंसर सूक्ष्मगोलक विधि नवीनतम चलन है यह फार्मासिस्ट को अधिकतम चिकित्सीय मूल्य और न्यूनतम या नगण्य सीमा के साइड इफेक्ट के साथ उत्पाद तैयार करने में सहायता करता है। कैंसर रोधी दवाओं का बडी हानि अकेले ट्यूमर ऊतक के लिए उनकी चयनात्मकता की कमी है, जो गंभीर दुष्प्रभाव का कारण बनता है और चिकित्सा की दर कम होती है। इस प्रकार, दवा वितरण प्रणाली की पारंपरिक पद्धति द्वारा असामान्य कोशिकाओं को लक्षित करना बहुत कठिन है। सूक्ष्मगोलक विधि संभवतः मात्र ऐसी विधि है जिसका उपयोग सामान्य कोशिकाओं पर महत्वपूर्ण दुष्प्रभाव उत्पन्न किए बिना, साइट-स्पेशल के लिए किया जा सकता है।<ref>Mithun Singh Rajput, Purti Agrawal. Microspheres in Cancer  Therapy. Indian Journal of Cancer. 2010;47(4):458-468. http://www.indianjcancer.com/text.asp?2010/47/4/458/73547</ref>




==बाह्यकोशिकीय पुटिका==
==बाह्यकोशिकीय रन्ध्र                                                                  ==
माइक्रोवेसिकल्स को [[लाल रक्त कोशिका]]ओं, सफेद रक्त कोशिकाओं, [[प्लेटलेट]]्स, [[अन्तःस्तरीय कोशिका]] कोशिकाओं से बाह्य कोशिकीय पुटिका माइक्रोवेसिकल्स के रूप में जारी किया जा सकता है। ऐसा माना जाता है कि ये जैविक सूक्ष्म कण कोशिका के [[प्लाज्मा झिल्ली]] से लिपिड बाइलेयर-बाउंड इकाइयों के रूप में निकलते हैं जो आमतौर पर व्यास में 100 एनएम से बड़े होते हैं। [[ hemostasis ]] साहित्य में माइक्रोपार्टिकल का उपयोग इस अर्थ में सबसे अधिक बार किया गया है, आमतौर पर [[रक्त परिसंचरण]] में पाए जाने वाले प्लेटलेट ईवी के लिए एक शब्द के रूप में। क्योंकि ईवी मूल कोशिका की सिग्नेचर मेम्ब्रेन प्रोटीन संरचना को बनाए रखते हैं, एमपी और अन्य ईवी रोग के [[बायोमार्कर]] सहित उपयोगी जानकारी ले सकते हैं। [[ फ़्लो साइटॉमेट्री ]] जैसी विधियों द्वारा उनका पता लगाया जा सकता है और उनकी पहचान की जा सकती है,<ref>{{Cite journal|pmc=6322352|year=2018|last1=Théry|first1=C.|last2=Witwer|first2=K. W.|last3=Aikawa|first3=E.|last4=Alcaraz|first4=M. J.|last5=Anderson|first5=J. D.|last6=Andriantsitohaina|first6=R.|last7=Antoniou|first7=A.|last8=Arab|first8=T.|last9=Archer|first9=F.|last10=Atkin-Smith|first10=G. K.|last11=Ayre|first11=D. C.|last12=Bach|first12=J. M.|last13=Bachurski|first13=D.|last14=Baharvand|first14=H.|last15=Balaj|first15=L.|last16=Baldacchino|first16=S.|last17=Bauer|first17=N. N.|last18=Baxter|first18=A. A.|last19=Bebawy|first19=M.|last20=Beckham|first20=C.|last21=Bedina Zavec|first21=A.|last22=Benmoussa|first22=A.|last23=Berardi|first23=A. C.|last24=Bergese|first24=P.|last25=Bielska|first25=E.|last26=Blenkiron|first26=C.|last27=Bobis-Wozowicz|first27=S.|last28=Boilard|first28=E.|last29=Boireau|first29=W.|last30=Bongiovanni|first30=A.|title=Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines|journal=Journal of Extracellular Vesicles|volume=7|issue=1|doi=10.1080/20013078.2018.1535750|pmid=30637094|display-authors=29}}</ref> या गतिशील प्रकाश प्रकीर्णन।
सूक्ष्म रिक्तिकाये को [[लाल रक्त कोशिका]]ओं, सफेद रक्त कोशिकाओं, [[प्लेटलेट|प्लेटलेटस]], [[अन्तःस्तरीय कोशिका]] कोशिकाओं से बाह्य कोशिकीय रन्ध्र सूक्ष्म रिक्तिकाओ के रूप में जारी किया जा सकता है। ऐसा माना जाता है कि ये जैविक सूक्ष्म कण कोशिका के [[प्लाज्मा झिल्ली]] से लिपिड बाइलेयर-बाउंड इकाइयों के रूप में निकलते हैं जो सामान्यतः पर व्यास में 100 nm से बड़े होते हैं। [[ hemostasis |हेमोस्टेटिस]] लिट्रेचर में सूक्ष्मकण का उपयोग इस अर्थ में सबसे अधिक बार किया गया है, सामान्यतः [[रक्त परिसंचरण]] में पाए जाने वाले प्लेटलेट ईवी शब्द के रूप में इसका प्रयोग किया जाता है। क्योंकि ईवी मूल कोशिका की सिग्नेचर मेम्ब्रेन प्रोटीन संरचना को बनाए रखते हैं, एमपी और अन्य ईवी रोग के [[बायोमार्कर]] सहित उपयोगी जानकारी प्राप्त सकते हैं। [[ फ़्लो साइटॉमेट्री |फ़्लो साइटॉमेट्री]] या गतिशील प्रकाश प्रकीर्णन जैसी विधियों द्वारा उनका पता लगाया जा सकता है और उनकी पहचान की जा सकती है|<ref>{{Cite journal|pmc=6322352|year=2018|last1=Théry|first1=C.|last2=Witwer|first2=K. W.|last3=Aikawa|first3=E.|last4=Alcaraz|first4=M. J.|last5=Anderson|first5=J. D.|last6=Andriantsitohaina|first6=R.|last7=Antoniou|first7=A.|last8=Arab|first8=T.|last9=Archer|first9=F.|last10=Atkin-Smith|first10=G. K.|last11=Ayre|first11=D. C.|last12=Bach|first12=J. M.|last13=Bachurski|first13=D.|last14=Baharvand|first14=H.|last15=Balaj|first15=L.|last16=Baldacchino|first16=S.|last17=Bauer|first17=N. N.|last18=Baxter|first18=A. A.|last19=Bebawy|first19=M.|last20=Beckham|first20=C.|last21=Bedina Zavec|first21=A.|last22=Benmoussa|first22=A.|last23=Berardi|first23=A. C.|last24=Bergese|first24=P.|last25=Bielska|first25=E.|last26=Blenkiron|first26=C.|last27=Bobis-Wozowicz|first27=S.|last28=Boilard|first28=E.|last29=Boireau|first29=W.|last30=Bongiovanni|first30=A.|title=Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines|journal=Journal of Extracellular Vesicles|volume=7|issue=1|doi=10.1080/20013078.2018.1535750|pmid=30637094|display-authors=29}}</ref>


==यह भी देखें==
==यह भी देखें                                                                                                                               ==
*[[एक साथ इकट्ठा]]
* [[एक साथ इकट्ठा|सहसंयोजी]]  
*दीप्तिमान
*लुमिनेसेंट
* प्रोटीनोइड
* प्रोटीनोइड
*[[माइक्रो कैप्सूलीकरण]]
*[[माइक्रो कैप्सूलीकरण|माइक्रो-एन्कैप्सुलेसन]]
*सूक्ष्म मोती
*माइक्रोबीड्स
*नैनोकण
*नैनोपार्टिकल


==संदर्भ==
==संदर्भ==
Line 115: Line 115:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 10/08/2023]]
[[Category:Created On 10/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 19:14, 3 October 2023

आईयूपीएसी परिभाषा

मध्य के आयामों वाला कण 1 × 10−7 and 1 × 10−4 m.

नोट 1: माइक्रो और नैनो आकार के मध्य की निचली सीमा अभी भी वार्तालाप का विषय है।

नोट 2: उपसर्ग "माइक्रो" और परिभाषा द्वारा लगाई गई सीमा के अनुरूप होने के लिए,
उपसर्ग "माइक्रो" और परिभाषा द्वारा लगाई गई सीमा के अनुरूप होने के लिए, माइक्रोपार्टिकल्स के आयामों को μm में व्यक्त किया जाना चाहिए।,.[1]

सूक्ष्मकण 0.1 और 100 μm आकार के कण होते हैं। व्यावसायिक रूप से उपलब्ध सूक्ष्मकण विभिन्न प्रकार की सामग्रियों में उपलब्ध हैं, जिनमें सिरेमिक, कांच, पॉलिमर और धातुएं सम्मिलित हैं।[2] दैनिक जीवन में पाए जाने वाले सूक्ष्म कणों में पराग, रेत, धूल, आटा और पाउडर चीनी सम्मिलित हैं।

मैक्रोस्केल की तुलना में सूक्ष्मकण का सरफेस-टू-वोल्यूम अनुपात बहुत बड़ा होता है, और इस प्रकार उनका व्यवहार अधिक भिन्न हो सकता है। उदाहरण के लिए, धातु के सूक्ष्म कण हवा में विस्फोटक कर सकते हैं।

सूक्ष्मगोलक वृत्ताकार सूक्ष्म कण हैं,[3] और इसका उपयोग वहां किया जाता है जहां कंसिस्टेंट और प्रेडिक्टेबल कण सतह क्षेत्र अधिक महत्वपूर्ण है।

जैविक प्रणालियों में, सूक्ष्मकण सूक्ष्मवाहिकाएँ है, जो एक प्रकार का बाह्य कोशिकीय रंध्र (ईवी) है।

आकार के लिए वैकल्पिक परिभाषाएँ

गणितीय: जैसा कि माइक्रो शब्द से तात्पर्य से है , माइक्रो के लिए सीमा को या लगभग 31.6 nm से 31.6 माइक्रोमीटर होती है। चूकी सामान्य स्वीकृति 100 nm नैनोकणों से छोटे कणों पर विचार करती है।

पूर्णांकन: गणित में पूर्णांकन के नियम परिभाषा के लिए विकल्प प्रदान करते हैं। 0.5 μm से बड़ी कोई भी वस्तु और 0.5 मिमी से छोटी वस्तु भी सूक्ष्मकण मानी जाती है।

सुविधाजनक/लोकप्रिय: अधिकांशतः 100 nm से अधिक आयाम वाले कणों को अभी भी नैनोपार्टिकल्सअधिअधी कहा जाता है। ऊपरी सीमा 300 और 700 nm के मध्य हो सकती है, इसलिए यह 0.3 से 300 माइक्रोमीटर या 0.7 से 700 माइक्रोमीटर के सूक्ष्मकण के लिए आकार की परिभाषा देगा।

अनुप्रयोग

घरेलू गर्भावस्था परीक्षण में सोने के सूक्ष्म कणों का उपयोग किया जाता है। अनेक एप्लिकेशन सूक्ष्मगोलक लेख में भी सूचीबद्ध हैं।

वर्तमान अध्ययन से पता चला है कि संक्रमित, ऋणात्मक रूप से चार्ज किए गए, प्रतिरक्षा-संशोधित सूक्ष्मकण का सूजन संबंधी मोनोसाइट्स द्वारा उत्पन्न या प्रबल होने वाली बीमारियों में चिकित्सीय उपयोग हो सकता है।[4]


सूक्ष्मगोलक

सूक्ष्मगोलक छोटे वृत्ताकार कण होते हैं, जिनका व्यास माइक्रोमीटर रेंज (सामान्यतः 1 माइक्रोमीटर से 1000 माइक्रोमीटर (1 मिमी)) में होता है। सूक्ष्मगोलक को संभवतः वृत्ताकार सूक्ष्मकण के रूप में जाना जाता है। सामान्यतः सूक्ष्मगोलक ठोस या खोखले होते हैं और माइक्रोकैप्सूल के विपरीत, अंदर कोई तरल पदार्थ नहीं होता है|

सूक्ष्मगोलक विभिन्न प्राकृतिक और सिंथेटिक रसायनो से बनाए जा सकते हैं। ग्लास सूक्ष्मगोलक, पॉलीमर सूक्ष्मगोलक, मेटल सूक्ष्मगोलक और सिरेमिक सूक्ष्मगोलक व्यावसायिक रूप से उपलब्ध हैं।[5] ठोस और खोखले सूक्ष्मगोलक घनत्व में व्यापक रूप से भिन्न होते हैं और इसलिए, विभिन्न अनुप्रयोगों के लिए उपयोग किए जाते हैं। किसी सामग्री के घनत्व को कम करने के लिए खोखले सूक्ष्मगोलक का उपयोग सामान्यतः योजक के रूप में किया जाता है। ठोस सूक्ष्मगोलक के अनेक अनुप्रयोग होते हैं, यह इस विषय पर निर्भर करता है कि वे किस सामग्री से बने हैं और उनका आकर किस प्रकार का है।

पॉलीथीन, पॉलीस्टीरीनऔर विस्तार योग्य सूक्ष्मगोलक पॉलिमर सूक्ष्मगोलक के सबसे सामान्य प्रकार हैं।

आईयूपीएसी परिभाषा

झिल्ली या किसी स्पष्ट बाहरी परत के बिना गोलाकार आकार का सूक्ष्म कण।

नोट: भिन्न चरण बनाने वाली बाहरी परत की अनुपस्थिति में अंतर करना महत्वपूर्ण है
माइक्रोकैप्सूल से माइक्रोस्फेयर क्योंकि यह प्रथम-क्रम प्रसार घटना की ओर ले जाता है,
जबकि माइक्रोकैप्सूल कीस्थिति में प्रसार शून्य क्रम है।[6]

पॉलीस्टाइरीन सूक्ष्मगोलक का उपयोग सामान्यतः जैव चिकित्सा अनुप्रयोगों में किया जाता है क्योंकि यह सेल सॉर्टिंग और इम्यूनोप्रेसिपिटेशन जैसी प्रक्रियाओं को सुविधाजनक बनाने की क्षमता रखता है। प्रोटीन और लिगेंड पॉलीस्टाइनिन पर सरलता से और स्थायी रूप से सोख लेते हैं, जो पॉलीस्टाइनिन सूक्ष्मगोलक को चिकित्सा अनुसंधान और जैविक प्रयोगशाला प्रयोगों के लिए उपयुक्त बनाता है।

पॉलीथीन सूक्ष्मगोलक का उपयोग सामान्यतः स्थायी या अस्थायी फिलर के रूप में किया जाता है। लोअर मेल्टिंग टेम्प्रेचर पॉलीथीन सूक्ष्मगोलक को सिरेमिक सामग्री और अन्य सामग्रियों में सरंध्र संरचनाएं बनाने में सक्षम बनाता है। पॉलीथीन सूक्ष्मगोलक की उच्च गोलाकारता, साथ ही रंगीन और फ्लोरोसेंट सूक्ष्मगोलक की उपलब्धता, उन्हें प्रवाह दृश्य और द्रव प्रवाह विश्लेषण, माइक्रोस्कोपी विधि, स्वास्थ्य विज्ञान, प्रक्रिया समस्या निवारण और अनेक शोध अनुप्रयोगों के लिए अत्यधिक वांछनीय बनाती है। चार्ज किए गए पॉलीथीन सूक्ष्मगोलक का उपयोग इलेक्ट्रॉनिक पेपर डिजिटल डिस्प्ले में भी किया जाता है।[7][8]

विस्तार करने योग्य सूक्ष्मगोलक पॉलिमर सूक्ष्मगोलक होते हैं| जिनका उपयोग ब्लोइंग एजेंट के रूप में किया जाता है| जो कि पफ इंक, ऑटोमोटिव अंडरबॉडी कोटिंग्स और थर्मोप्लास्टिक्स की इंजेक्शन मोल्डिंग आदि है। इन्हें कम भार वाले फिलर के रूप में भी प्रयोग किया जा सकता है, उदाहरण के लिए कल्चर संगमरमर, वाटर बोर्न पेंट और फिलर /जॉइंट कंपाउंड। जब उन पर ऊष्मा क्रियान्वित की जाती है तब विस्तार योग्य पॉलिमर सूक्ष्मगोलक अपने मूल आकार से 50 गुना से अधिक तक विस्तारित हो सकते हैं। प्रत्येक गोले की बाहरी दीवार थर्मोप्लास्टिक आवरण है जो कम क्वथनांक वाले हाइड्रोकार्बन को समाहित करती है। गर्म होने पर यह बाहरी आवरण सॉफ्ट हो जाता है और फैलता है क्योंकि हाइड्रोकार्बन आंतरिक आवरण की दीवार पर दबाव डालता है।

ग्लास सूक्ष्मगोलक का उपयोग मुख्य रूप से भार को कम करने के लिए फिलर और वॉल्यूमाइज़र, हाइवे सुरक्षा के लिए रेट्रो-रिफ्लेक्टर, सौंदर्य प्रसाधन और चिपकने वाले पदार्थों के लिए एडिटिव, चिकित्सा प्रौद्योगिकी में सीमित अनुप्रयोगों के साथ किया जाता है।

अत्यधिक पारदर्शी कांच से बने सूक्ष्मगोलक बहुत उच्च गुणवत्ता वाले ऑप्टिकल माइक्रोकैविटी या ऑप्टिकल माइक्रोरेसोनेटर के रूप में कार्य कर सकते हैं।

सिरेमिक सूक्ष्मगोलक का उपयोग मुख्य रूप से ग्राइंडिंग मीडिया के रूप में किया जाता है।

उनके बाहरी बहुलक खोल में दवा से भरे खोखले सूक्ष्मगोलक को नयी इमल्शन विलायक प्रसार विधि और स्प्रे ड्राइंग विधि द्वारा तैयार किया गया था।

सूक्ष्मगोलक गुणवत्ता, गोलाकारता, रूपता, कण आकार और कण आकार वितरण में व्यापक रूप से भिन्न होते हैं। प्रत्येक अद्वितीय अनुप्रयोग के लिए उपयुक्त सूक्ष्मगोलक को चुनने की आवश्यकता है।

अनुप्रयोग

सूक्ष्मगोलक के लिए प्रत्येक दिन नए अनुप्रयोग खोजे जाते हैं। नीचे कुछ अनुप्रयोग दिए गए हैं:

  • परख - लेपित सूक्ष्मगोलक जीव विज्ञान और औषधि अनुसंधान में मापने का उपकरण प्रदान करते हैं
  • उत्प्लावकता - खोखले सूक्ष्मगोलक का उपयोग प्लास्टिक (कांच और पॉलिमर) में सामग्री के घनत्व को कम करने के लिए किया जाता है, द्रव प्रवाह दृश्य के लिए तटस्थ रूप से उत्प्लावक सूक्ष्मगोलक का उपयोग अधिकांशतः किया जाता है।
  • कण छवि वेलोसिमेट्री - प्रवाह दृश्य के लिए उपयोग किए जाने वाले ठोस या खोखले सूक्ष्मगोलक, कण का घनत्व तरल पदार्थ के घनत्व के सामान होना चाहिए।[9]
  • सिरेमिक सामग्री - फिल्टर के लिए उपयोग किए जाने वाले पोरस सिरेमिक बनाने के लिए उपयोग किया जाता है (फायरिंग के समय सूक्ष्मगोलक पिघल जाते हैं, पॉलीइथाइलीन सूक्ष्मगोलक) या उच्च शक्ति वाले हल्के कंक्रीट तैयार करने के लिए उपयोग किया जाता है।[10]
  • सौंदर्य प्रसाधन - झुर्रियों को छिपाने और रंग देने के लिए अपारदर्शी सूक्ष्मगोलक का उपयोग किया जाता है, स्पष्ट सूक्ष्मगोलक लगाने के समय चिकनी बॉल बेयरिंग बनावट प्रदान करते हैं (पॉलीथीन सूक्ष्मगोलक)
  • विखंडन - सूक्ष्मदर्शी को चिह्नित करने और इमेज डीकोनवोल्यूशन करने के लिए प्रयोगात्मक बिंदु प्रसार फलन प्राप्त करने के लिए छोटे फ्लोरोसेंट सूक्ष्मगोलक (<200 नैनोमीटर) की आवश्यकता होती है|
  • दवा वितरण - उदाहरण के लिए, पॉलिमर से बने लघु समय रिलीज ड्रग कैप्सूल के रूप में। इसी प्रकार का उपयोग कंट्रास्ट-एन्हांस्ड अल्ट्रासाउंड में उपयोग किए जाने वाले माइक्रोबबल कंट्रास्ट एजेंटों के बाहरी आवरण के रूप में होता है।
  • इलेक्ट्रॉनिक कागज - जाइरिकॉन इलेक्ट्रॉनिक पेपर में उपयोग किए जाने वाले दोहरे कार्यात्मक सूक्ष्मगोलक है|
  • इन्सुलेशन - विस्तार योग्य पॉलिमर सूक्ष्मगोलक का उपयोग थर्मल इन्सुलेशन और ध्वनि कम के लिए किया जाता है।
  • व्यक्तिगत देखभाल - एक्सफ़ोलीएटिंग एजेंट के रूप में स्क्रब में जोड़ा गया (पॉलीइथाइलीन सूक्ष्मगोलक) है|
  • स्पेसर - ग्लास पैनलों (ग्लास) के मध्य स्पष्ट दूरी प्रदान करने के लिए एलसीडी स्क्रीन में उपयोग किया जाता है
  • मानक (मेट्रोलॉजी) - ग्लास पैनलों (ग्लास) के मध्य त्रुटिहीन दूरी प्रदान करने के लिए एलसीडी स्क्रीन में उपयोग किया जाता है
  • रेट्रोरिफ्लेक्टिव - रात में सड़क की पट्टियों और संकेतों की दृश्यता बढ़ाने के लिए सड़कों और संकेतों पर उपयोग किए जाने वाले पेंट के ऊपर जोड़ा (कांच) जाता है|
  • गाढ़ा करने वाला एजेंट - श्यानता और उत्प्लावकता को संशोधित करने के लिए पेंट और एपॉक्सी में जोड़ा जाता है
  • दवाओं को एचबीएस फ्लोटिंग सूक्ष्मगोलक के रूप में तैयार किया जा सकता है। निम्नलिखित दवाओं की सूची है जिन्हें सूक्ष्मगोलक के रूप में तैयार किया जा सकता है: रिपैग्लिनाइड, सिमेटिडाइन, रोसिग्लिटाज़ोन, नाइट्रेंडिपाइन, ऐसीक्लोविर , रैनिटिडाइन, मिसोप्रोस्टेल , मेटफोर्मिन , एसिक्लोफेनाक, डिल्टियाज़ेम , एल-डोपा और बेनेसेरागाइड, फ्लूरोरासिल।

जैविक प्रोटोकल्स

कुछ लोग सूक्ष्मगोलक या [[प्रोटीन]] प्रोटोकल्स को छोटी वृत्ताकार इकाइयों के रूप में संदर्भित करते हैं, जिन्हें कुछ वैज्ञानिकों ने जीवन की उत्पत्ति में महत्वपूर्ण चरण के रूप में माना है।

1953 में, स्टेनली मिलर और हेरोल्ड सी. उरे मिलर-उरे ने प्रयोग किया कि जीवन के विकास से पहले पृथ्वी पर पाए जाने वाले अणुओं की कॉपी करने के लिए डिज़ाइन की गई प्रयोगशाला स्थितियों के अनुसारअकार्बनिक रसायन विज्ञान रासायनिक यौगिक से अनेक सरल बायोमोलेक्यूल्स स्वचालित रूप से बनाये जा सकते हैं। विशेष एमिनो एसिड की पर्याप्त उपज थी, क्योंकि अमीनो एसिड प्रोटीन के लिए बिल्डिंग ब्लॉक हैं।

1957 में, सिडनी डब्ल्यू फॉक्स ने प्रदर्शित किया कि अमीनो एसिड के सूखे मिश्रण को मध्यम गर्मी के संपर्क में आने पर पोलीमराइज़ करने के लिए प्रोत्साहित किया जा सकता है। जब परिणामी पेप्टाइड, या प्रोटीनोइड्स को गर्म पानी में घोल दिया गया और घोल को ठंडा होने दिया गया, तब उन्होंने लगभग 2 माइक्रोमीटर व्यास वाले छोटे वृत्ताकार सूक्ष्मगोलकबनाए गये। उपयुक्त परिस्थितियों में, सूक्ष्मगोलकअपनी सतहों पर नए गोले विकसित करेंगे।

यद्यपि सामान्यतः कोशिका (जीवविज्ञान) दिखने में, सूक्ष्मगोलक अपने आप में जीवित नहीं हैं। यद्यपि वे नयी विधि द्वारा अलैंगिक रूप से प्रजनन करते हैं, फिर भी वे किसी भी प्रकार की आनुवंशिकी सामग्री पारित नहीं करते हैं। चूकी, वे जीवन के विकास में महत्वपूर्ण हो सकते हैं, जैविक मेम्ब्रेन-संलग्न मात्रा प्रदान करते हैं जो कोशिका के समान है। कोशिकाओं के सामान सूक्ष्मगोलक भी विकसित हो सकते हैं और उनमें दोहरी झिल्ली होती है जो सामग्री और परासरण के प्रसार से निकलती है। सिडनी फॉक्स ने माना कि जैसे-जैसे ये सूक्ष्मगोलक अधिक सम्मिश्र होते जाएंगे, वे अधिक जीवंत कार्य करेंगे। वे हेटरोट्रॉफ़ बन जाएंगे, ऊर्जा और विकास के लिए पर्यावरण से पोषक अवयवों को अवशोषित करने की क्षमता वाले जीव। जैसे-जैसे उस अवधि में पर्यावरण में पोषक अवयवों की मात्रा कम हुई, उन बहुमूल्य संसाधनों के लिए प्रतिस्पर्धा बढ़ गई। अधिक सम्मिश्र जैव रासायनिक प्रतिक्रियाओं वाले हेटरोट्रॉफ़्स को इस प्रतियोगिता में लाभ होगा। समय के साथ, ऐसे जीव विकसित होंगे जो ऊर्जा उत्पन्न करने के लिए प्रकाश संश्लेषण का उपयोग करेंगे।

कैंसर अनुसंधान

सूक्ष्ममंडलों के अनुसंधान से प्राप्त उपयोगी खोज आणविक स्तर पर कैंसर से लड़ने का उपाय है। वेक ऑन्कोलॉजिस्ट के अनुसार, एसआईआर-स्फेयर सूक्ष्मगोलकरेडियोधर्मी पॉलिमर गोले हैं जो बीटा विकिरण उत्सर्जित करते हैं। चिकित्सक कमर के माध्यम से यकृत धमनी में कैथिटर डालते हैं और लाखों मासूक्ष्मगोलक सीधे ट्यूमर स्थल पर पहुंचाते हैं। एसाइआर-स्फेयर्स सूक्ष्मगोलक लीवर ट्यूमर को लक्षित करते हैं और स्वस्थ लीवर ऊतक को बचाते हैं। कैंसर चिकित्सा में कैंसर सूक्ष्मगोलक विधि नवीनतम चलन है यह फार्मासिस्ट को अधिकतम चिकित्सीय मूल्य और न्यूनतम या नगण्य सीमा के साइड इफेक्ट के साथ उत्पाद तैयार करने में सहायता करता है। कैंसर रोधी दवाओं का बडी हानि अकेले ट्यूमर ऊतक के लिए उनकी चयनात्मकता की कमी है, जो गंभीर दुष्प्रभाव का कारण बनता है और चिकित्सा की दर कम होती है। इस प्रकार, दवा वितरण प्रणाली की पारंपरिक पद्धति द्वारा असामान्य कोशिकाओं को लक्षित करना बहुत कठिन है। सूक्ष्मगोलक विधि संभवतः मात्र ऐसी विधि है जिसका उपयोग सामान्य कोशिकाओं पर महत्वपूर्ण दुष्प्रभाव उत्पन्न किए बिना, साइट-स्पेशल के लिए किया जा सकता है।[11]


बाह्यकोशिकीय रन्ध्र

सूक्ष्म रिक्तिकाये को लाल रक्त कोशिकाओं, सफेद रक्त कोशिकाओं, प्लेटलेटस, अन्तःस्तरीय कोशिका कोशिकाओं से बाह्य कोशिकीय रन्ध्र सूक्ष्म रिक्तिकाओ के रूप में जारी किया जा सकता है। ऐसा माना जाता है कि ये जैविक सूक्ष्म कण कोशिका के प्लाज्मा झिल्ली से लिपिड बाइलेयर-बाउंड इकाइयों के रूप में निकलते हैं जो सामान्यतः पर व्यास में 100 nm से बड़े होते हैं। हेमोस्टेटिस लिट्रेचर में सूक्ष्मकण का उपयोग इस अर्थ में सबसे अधिक बार किया गया है, सामान्यतः रक्त परिसंचरण में पाए जाने वाले प्लेटलेट ईवी शब्द के रूप में इसका प्रयोग किया जाता है। क्योंकि ईवी मूल कोशिका की सिग्नेचर मेम्ब्रेन प्रोटीन संरचना को बनाए रखते हैं, एमपी और अन्य ईवी रोग के बायोमार्कर सहित उपयोगी जानकारी प्राप्त सकते हैं। फ़्लो साइटॉमेट्री या गतिशील प्रकाश प्रकीर्णन जैसी विधियों द्वारा उनका पता लगाया जा सकता है और उनकी पहचान की जा सकती है|[12]

यह भी देखें

संदर्भ

  1. Vert, Michel; Doi, Yoshiharu; Hellwich, Karl-Heinz; Hess, Michael; Hodge, Philip; Kubisa, Przemyslaw; Rinaudo, Marguerite; Schué, François (2012). "Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)" (PDF). Pure and Applied Chemistry. 84 (2): 377–410. doi:10.1351/PAC-REC-10-12-04. S2CID 98107080.
  2. "ठोस धातु माइक्रोस्फीयर - स्टेनलेस स्टील और टाइटेनियम क्षेत्र". www.cospheric.com. Retrieved 2019-05-07.
  3. "माइक्रोस्फीयर ऑनलाइन". माइक्रोस्फीयर ऑनलाइन (in English). Retrieved 2019-05-07.
  4. Getts DR, Terry RL, Getts MT, et al. (Jan 2014). "प्रतिरक्षा-संशोधित माइक्रोपार्टिकल्स का उपयोग करके चिकित्सीय सूजन मोनोसाइट मॉड्यूलेशन।". Sci. Transl. Med. 6 (219): 219. doi:10.1126/scitranslmed.3007563. PMC 3973033. PMID 24431111.
  5. "माइक्रोस्फीयर, गोलाकार कण, माइक्रोबीड्स, कस्टम घनत्व, फ्लोरोसेंट, प्रवाहकीय". www.cospheric.com. Retrieved 2019-05-07.
  6. Vert, Michel; Doi, Yoshiharu; Hellwich, Karl-Heinz; Hess, Michael; Hodge, Philip; Kubisa, Przemyslaw; Rinaudo, Marguerite; Schué, François (2012). "जैवसंबंधित पॉलिमर और अनुप्रयोगों के लिए शब्दावली (आईयूपीएसी 2012)" (PDF). 84 (2): 377–410. doi:10.1351/PAC-REC-10-12-04. S2CID 98107080. {{cite journal}}: Cite journal requires |journal= (help); Unknown parameter |जर्नल= ignored (help)
  7. Paint and Coatings Industry Magazine, January 1st, 2010 : Opaque Polyethylene Microspheres for the coatings applications
  8. Cosmetics and Toiletries, April 2010 Issue: Solid Polyethylene Microspheres for effects in color cosmetics Archived 2012-03-04 at the Wayback Machine
  9. http://microspheres.us/fluorescent-microspheres/piv-seeding-microparticle-flow-visualization/599.html PIV seeding particle recommendations
  10. Korolev, Evgeniy Valerjevich; Inozemtcev, Alexandr Sergeevich (2013). "खोखले माइक्रोस्फीयर पर आधारित उच्च शक्ति वाले हल्के कंक्रीट की तैयारी और अनुसंधान". Advanced Materials Research. 746: 285–288. doi:10.4028/www.scientific.net/AMR.746.285. S2CID 137481918.
  11. Mithun Singh Rajput, Purti Agrawal. Microspheres in Cancer Therapy. Indian Journal of Cancer. 2010;47(4):458-468. http://www.indianjcancer.com/text.asp?2010/47/4/458/73547
  12. Théry, C.; Witwer, K. W.; Aikawa, E.; Alcaraz, M. J.; Anderson, J. D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G. K.; Ayre, D. C.; Bach, J. M.; Bachurski, D.; Baharvand, H.; Balaj, L.; Baldacchino, S.; Bauer, N. N.; Baxter, A. A.; Bebawy, M.; Beckham, C.; Bedina Zavec, A.; Benmoussa, A.; Berardi, A. C.; Bergese, P.; Bielska, E.; Blenkiron, C.; Bobis-Wozowicz, S.; Boilard, E.; Boireau, W.; et al. (2018). "Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines". Journal of Extracellular Vesicles. 7 (1). doi:10.1080/20013078.2018.1535750. PMC 6322352. PMID 30637094.


बाहरी संबंध