बीरेशनल ज्यामिति: Difference between revisions

From Vigyanwiki
 
(62 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Field of algebraic geometry}}
[[Image:Stereoprojzero.svg|thumb|right|वृत्त द्विभाजित रूप से [[वास्तविक रेखा]] के समतुल्य है। उन दोनों के बीच एक द्विपक्षीय नक्शा [[त्रिविम प्रक्षेपण]] है, यहां चित्रित किया गया है।]][[गणित]] में, बीरेशनल ज्यामिति [[बीजगणितीय ज्यामिति]] का एक क्षेत्र है जिसका लक्ष्य यह निर्धारित करना है कि दो [[बीजगणितीय किस्में|बीजगणितीय प्रकार]] निम्न-आयामी उपसमुच्चय के बाहर [[ समरूप |समरूप]] हैं। यह मानचित्रणों का अध्ययन करने के बराबर है जो बहुपदों के बजाय [[तर्कसंगत कार्य|परिमेय फलनो]] द्वारा दिया जाता है, तथा मानचित्र परिभाषित करने में विफल हो सकता है जहां परिमेय फलनो में स्तंभ होते हैं।
[[Image:Stereoprojzero.svg|thumb|right|वृत्त द्विभाजित रूप से [[वास्तविक रेखा]] के समतुल्य है। उन दोनों के बीच एक द्विपक्षीय नक्शा [[त्रिविम प्रक्षेपण]] है, यहां चित्रित किया गया है।]][[गणित]] में, बायरेशनल ज्यामिति [[बीजगणितीय ज्यामिति]] का एक क्षेत्र है जिसका लक्ष्य यह निर्धारित करना है कि दो [[बीजगणितीय किस्में|बीजगणितीय प्रकार]] निम्न-आयामी उपसमुच्चय के बाहर [[ समरूप |समरूप]] हैं। यह मानचित्रणों का अध्ययन करने के बराबर है जो बहुपदों के बजाय [[तर्कसंगत कार्य|परिमेय फलनो]] द्वारा दिया जाता है, मानचित्र परिभाषित करने में विफल हो सकता है जहां परिमेय फलनो में ध्रुव होते हैं।


== द्विवार्षिक मानचित्र ==
== बीरेशनल मानचित्र ==


=== परिमेय मानचित्र ===
=== परिमेय मानचित्र ===
एक विविध से एक [[तर्कसंगत मानचित्रण|परिमेय मानचित्रण]] (जिसे [[अलघुकरणीय]] समझा जाता है) <math>X</math> दूसरी विविध के लिए <math>Y</math>, जिसे एक वियोजक तीर {{nowrap|''X'' {{font|size=145%|⇢}}''Y''}} के रूप में लिखा गया है, उसको एक अरिक्त- विवृत उपसमुच्चय <math>U \subset X</math> से <math>Y</math> के [[आकारिकी]] के रूप में परिभाषित किया गया है। बीजगणितीय ज्यामिति में प्रयुक्त [[जरिस्की टोपोलॉजी|जरिस्की सांस्थिति विज्ञान]] की परिभाषा के अनुसार, एक अरिक्त- विवृत उपसमुच्चय <math>U</math> <math>X</math> में हमेशा सघन होता है , वास्तव में एक निम्न-आयामी उपसमुच्चय का पूरक होता है। वास्तव में, एक परिमेय मानचित्र को परिमेय फलनो का उपयोग करके निर्देशांक में लिखा जा सकता है।
एक विविध से एक [[तर्कसंगत मानचित्रण|परिमेय मानचित्रण]] (जिसे [[अलघुकरणीय]] समझा जाता है) <math>X</math> दूसरी विविध के लिए <math>Y</math>, जिसे एक वियोजक तीर {{nowrap|''X'' {{font|size=145%|⇢}}''Y''}} के रूप में लिखा गया है, उसको एक अरिक्त- विवृत उपसमुच्चय <math>U \subset X</math> से <math>Y</math> के [[आकारिकी]] के रूप में परिभाषित किया गया है। बीजगणितीय ज्यामिति में प्रयुक्त [[जरिस्की टोपोलॉजी|जरिस्की सांस्थिति विज्ञान]] की परिभाषा के अनुसार, एक अरिक्त- विवृत उपसमुच्चय <math>U</math> <math>X</math> में हमेशा सघन होता है , वास्तव में एक निम्न-आयामी उपसमुच्चय का पूरक होता है। वास्तव में, एक परिमेय मानचित्र को परिमेय फलनो का उपयोग करके निर्देशांक में लिखा जा सकता है।


=== द्विवार्षिक मानचित्र ===
=== बीरेशनल मानचित्र ===
''X'' से ''Y'' तक का एक द्विवार्षिक मानचित्र एक परिमेय मानचित्र {{nowrap|''f'' : ''X'' ⇢ ''Y''}} ऐसा है  जैसे कि एक परिमेय मानचित्र {{nowrap|''Y'' ⇢ ''X''}} f का व्युत्क्रम है। एक द्विवार्षिक मानचित्र एक समरूपता को X के एक गैर-रिक्त खुले उपसमुच्चय से वाई के एक गैर-रिक्त खुले उपसमुच्चय के लिए प्रेरित करता है। इस मामले में, X और वाई को 'बायरेशनल' या 'बायरेशनल समकक्ष' कहा जाता है। बीजगणितीय शब्दों में, एक क्षेत्र k पर दो किस्में द्विभाजित हैं यदि और केवल यदि उनके बीजगणितीय प्रकार के कार्य क्षेत्र k के विस्तार क्षेत्रों के रूप में आइसोमोर्फिक हैं।
''X'' से ''Y'' तक का एक बीरेशनल मानचित्र एक परिमेय मानचित्र {{nowrap|''f'' : ''X'' ⇢ ''Y''}} ऐसा है  जैसे कि एक परिमेय मानचित्र {{nowrap|''Y'' ⇢ ''X''}} f का व्युत्क्रम है। एक बीरेशनल मानचित्र एक समरूपता को X के एक गैर-रिक्त विवृत उपसमुच्चय से Y के एक गैर-रिक्त विवृत उपसमुच्चय के लिए प्रेरित करता है। इस मामले में, X और वाई को 'बीरेशनल' या 'बीरेशनल समकक्ष' कहा जाता है। बीजगणितीय शब्दों में, एक क्षेत्र k पर दो विविधताए द्विभाजित हैं और यदि उनके बीजगणितीय प्रकार के [[फलन क्षेत्र]] k के विस्तार क्षेत्रों के रूप में समरूपी हैं।


एक विशेष मामला एक 'बायरेशनल मोर्फिज्म' है {{nowrap|''f'' : ''X'' → ''Y''}}, जिसका अर्थ एक आकारिकी है जो द्विवार्षिक है। अर्थात्, f हर जगह परिभाषित है, लेकिन इसका व्युत्क्रम नहीं हो सकता है। आमतौर पर, ऐसा इसलिए होता है क्योंकि एक बायरेशनल मोर्फिज्म X की कुछ उप-किस्मों को वाई में इंगित करता है।
एक विशेष स्तिथि 'बीरेशनल आकारिता' है {{nowrap|''f'' : ''X'' → ''Y''}}, जिसका अर्थ एक आकारिकी है जो बीरेशनल है। अर्थात्, f हर जगह परिभाषित है, लेकिन इसका व्युत्क्रम नहीं हो सकता है। आमतौर पर, ऐसा इसलिए होता है क्योंकि एक बीरेशनल आकारिता X की कुछ उप-विविधताओ को वाई में इंगित करता है।


=== बीरेशनल तुल्यता और परिमेयता ===
=== बीरेशनल तुल्यता और परिमेयता ===
एक विविधता X को 'परिमेय विविधता' कहा जाता है यदि यह किसी आयाम के एफ़िन स्पेस (या समतुल्य, [[ प्रक्षेपण स्थान ]]) के लिए बायरेशनल है। परिमेयता एक बहुत ही प्राकृतिक संपत्ति है: इसका मतलब है कि X माइनस कुछ लो-डायमेंशनल सबसेट को एफाइन स्पेस माइनस कुछ लो-डायमेंशनल सबसेट से पहचाना जा सकता है।
एक विविधता X को 'परिमेय विविधता' कहा जाता है यदि यह किसी आयाम के सजातीयउपसमष्‍टि (या समतुल्य,[[ प्रक्षेपण स्थान ]]) के लिए बीरेशनल है। परिमेयता एक बहुत ही प्राकृतिक संपत्ति है, इसका मतलब है कि X ऋण कुछ निम्न-आयामी उपसमुच्चय को सजातीयउपसमष्‍टि ऋण कुछ निम्न-आयामी उपसमुच्चय से पहचाना जा सकता है।


==== समतल शंकु की द्विवार्षिक तुल्यता ====
==== समतल शंकु की बीरेशनल तुल्यता ====
उदाहरण के लिए, घेरा <math>X</math> समीकरण के साथ <math>x^2 + y^2 - 1 = 0</math> affine तल में एक परिमेय वक्र है, क्योंकि एक परिमेय मानचित्र है {{nowrap|''f'' : <math>\mathbb{A}^1</math> ⇢ ''X''}} द्वारा दिए गए
उदाहरण के लिए, परिबंध तल में समीकरण <math>x^2 + y^2 - 1 = 0</math> वाला वृत्त <math>X</math> एक परिमेय वक्र है,  क्योंकि
:<math>f(t) = \left( \frac{2t}{1+t^2}, \frac{1 - t^2}{1 + t^2}\right),</math>
:<math>f(t) = \left( \frac{2t}{1+t^2}, \frac{1 - t^2}{1 + t^2}\right),</math>
जिसका परिमेय व्युत्क्रम g: X ⇢ है <math>\mathbb{A}^1</math> द्वारा दिए गए
द्वारा दिया गया एक परिमेय मानचित्र {{nowrap|''f'' : <math>\mathbb{A}^1</math> ⇢ ''X''}} है, जिसका परिमेय व्युत्क्रम g: X ⇢ <math>\mathbb{A}^1</math>  
:<math>g(x,y) = \frac{1-y}{x}.</math>
:<math>g(x,y) = \frac{1-y}{x}</math> द्वारा दिया गया है।
एक परिमेय संख्या के साथ मानचित्र f को लागू करने से [[पायथागॉरियन ट्रिपल]] का एक व्यवस्थित निर्माण मिलता है।
एक [[परिमेय संख्या]] के साथ मानचित्र f को लागू करने से [[पायथागॉरियन ट्रिपल|पाइथैगोरसी त्रिक]] का एक व्यवस्थित निर्माण मिलता है।


परिमेय नक्शा <math>f</math> ठिकाने पर परिभाषित नहीं है जहां <math>1 + t^2 = 0</math>. तो, जटिल एफ़िन लाइन पर <math>\mathbb{A}^1_{\Complex}</math>, <math>f</math> खुले उपसमुच्चय पर एक आकारिकी है <math>U = \mathbb{A}^1_{\Complex}-\{i, -i\}</math>, <math>f: U \to X</math>. इसी तरह, परिमेय मानचित्र {{nowrap|''g'' : ''X'' ⇢ <math>\mathbb{A}^1</math>}} बिंदु (0,−1) में परिभाषित नहीं है <math>X</math>.
परिमेय मानचित्र <math>f</math> उस स्थान पर परिभाषित नहीं है जहाँ <math>1 + t^2 = 0</math> है। तो, जटिल सजातीय पंक्ति <math>\mathbb{A}^1_{\Complex}</math>, <math>f</math>   विवृत उपसमुच्चय <math>U = \mathbb{A}^1_{\Complex}-\{i, -i\}</math>, <math>f: U \to X</math> पर एक आकारिकी है। इसी तरह, परिमेय मानचित्र {{nowrap|''g'' : ''X'' ⇢ <math>\mathbb{A}^1</math>}} बिंदु (0,−1) में <math>X</math> पर परिभाषित नहीं है।


==== चिकने चतुष्कोणों की द्विवार्षिक तुल्यता और पी<sup>एन</sup> ====
==== स्मूथ चतुष्कोणों और P<sup>n</sup> की बीरेशनल तुल्यता ====
अधिक आम तौर पर, स्टीरियोग्राफिक प्रोजेक्शन द्वारा किसी भी आयाम एन का एक चिकनी चतुर्भुज (बीजीय ज्यामिति) (डिग्री 2) हाइपरसफेस X परिमेय है। (X के लिए एक क्षेत्र k पर एक द्विघात, X को एक परिमेय बिंदु होना चाहिए #बीजगणितीय किस्मों पर परिमेय या K-परिमेय बिंदु|k-परिमेय बिंदु; यह स्वचालित है यदि k बीजगणितीय रूप से बंद है।) स्टीरियोग्राफिक प्रक्षेपण को परिभाषित करने के लिए, पी को X में एक बिंदु होने दें। फिर X से प्रोजेक्टिव स्पेस के लिए एक बायरेशनल मैप <math>\mathbb{P}^n</math> p से होकर जाने वाली रेखाओं की संख्या X में बिंदु q को p और q से होकर जाने वाली रेखा पर भेजकर दी जाती है। यह एक द्विवार्षिक तुल्यता है, लेकिन किस्मों का समरूपता नहीं है, क्योंकि यह कहां परिभाषित करने में विफल रहता है {{nowrap|1=''q'' = ''p''}} (और व्युत्क्रम नक्शा p के माध्यम से उन पंक्तियों पर परिभाषित करने में विफल रहता है जो X में समाहित हैं)।
अधिक आम तौर पर, [[त्रिविम प्रक्षेप]] द्वारा किसी भी आयाम n का एक स्मूथ चतुर्भुज (डिग्री 2) ऊनविम पृष्ठ X परिमेय है। (X के लिए एक क्षेत्र k ऊपर एक [[चतुर्भुज]], X को एक [[k-परिमेय बिंदु]] माना जाना चाहिए, यदि k बीजगणितीय रूप से बंद है तो यह स्वचालित है।) त्रिविम प्रक्षेपण को परिभाषित करने के लिए, p को X में एक बिंदु होने दें। फिर X से p और q के माध्यम से रेखा में X में एक बिंदु q भेजकर p के माध्यम से X प्रक्षेपी समष्‍टि <math>\mathbb{P}^n</math> तक एक बीरेशनल मानचित्र दिया जाता है। यह एक बीरेशनल तुल्यता है, लेकिन विविधताओ की समरूपता नहीं है, क्योंकि यह परिभाषित करने में विफल रहता है {{nowrap|1=''q'' = ''p''}} (और व्युत्क्रम नक्शा उन पंक्तियों पर परिभाषित करने में विफल रहता है जो p के माध्यम से X में समाहित हैं)।


===== चतुष्कोणीय सतह की द्विवार्षिक तुल्यता =====
===== चतुष्कोणीय सतह की बीरेशनल तुल्यता =====
[[सेग्रे एम्बेडिंग]] एक एम्बेडिंग देता है <math>\mathbb{P}^1\times\mathbb{P}^1 \to \mathbb{P}^3</math> द्वारा दिए गए
[[सेग्रे एम्बेडिंग|सेग्रे अंत: स्थापन]] एक अंत: स्थापन <math>\mathbb{P}^1\times\mathbb{P}^1 \to \mathbb{P}^3</math> देता है जो
:<math>([x,y],[z,w]) \mapsto [xz,xw,yz,yw].</math>
:<math>([x,y],[z,w]) \mapsto [xz,xw,yz,yw]</math>
छवि चतुर्भुज सतह है <math>x_0x_3=x_1x_2</math> में <math>\mathbb{P}^3</math>. यह एक और प्रमाण देता है कि यह चतुष्कोणीय सतह परिमेय है, क्योंकि <math>\mathbb{P}^1\times\mathbb{P}^1</math> स्पष्ट रूप से परिमेय है, एक खुले उपसमुच्चय के लिए आइसोमोर्फिक है <math>\mathbb{A}^2</math>.
द्वारा दिया गया है। छवि चतुर्भुज सतह <math>x_0x_3=x_1x_2</math> <math>\mathbb{P}^3</math> में है। यह एक और प्रमाण देता है कि यह चतुर्भुज सतह परिमेय है, क्योंकि <math>\mathbb{P}^1\times\mathbb{P}^1</math> स्पष्ट रूप से परिमेय है, तथा <math>\mathbb{A}^2</math> के लिए एक खुला उपसमुच्चय समरूपी है।


== न्यूनतम मॉडल और [[विलक्षणताओं का संकल्प]] ==
== न्यूनतम प्रारूप और विलक्षणताओं का संकल्प ==
प्रत्येक बीजगणितीय विविधता एक प्रोजेक्टिव विविधता (चाउ की लेम्मा) के लिए द्विपक्षीय है। इसलिए, द्विवार्षिक वर्गीकरण के प्रयोजनों के लिए, यह केवल प्रक्षेपी किस्मों के साथ काम करने के लिए पर्याप्त है, और यह आमतौर पर सबसे सुविधाजनक सेटिंग है।
प्रत्येक बीजगणितीय विविधता एक [[प्रक्षेपीय विविधता (चाउ की लेम्मा)]] के लिए द्विपक्षीय है। इसलिए, बीरेशनल वर्गीकरण के प्रयोजनों के लिए, यह केवल प्रक्षेपी विविधताओ के साथ काम करने के लिए पर्याप्त है, और यह आमतौर पर सबसे सुविधाजनक विन्यास है।


[[हीसुके हिरोनका]] की 1964 की प्रमेय विलक्षणताओं के समाधान पर बहुत गहरी है: विशेषता 0 (जैसे जटिल संख्या) के एक क्षेत्र पर, प्रत्येक विविधता एक बीजगणितीय विविधता प्रक्षेपी विविधता के एक विलक्षण बिंदु के लिए द्विवार्षिक है। यह देखते हुए, यह द्विवार्षिक तुल्यता तक चिकनी प्रक्षेप्य किस्मों को वर्गीकृत करने के लिए पर्याप्त है।
[[विलक्षणताओं के समाधान पर]] [[हीसुके हिरोनका|हिरोनाका]] की 1964 की प्रमेय बहुत गहरी है, विशेषता 0 (जैसे जटिल संख्या) के एक क्षेत्र में, प्रत्येक विविधता एक [[स्मूथ]] प्रक्षेप्य विविधता के लिए बीरेशनल है। यह देखते हुए, यह बीरेशनल तुल्यता तक समतल प्रक्षेप्य विविधताओ को वर्गीकृत करने के लिए पर्याप्त है।


आयाम 1 में, यदि दो चिकने प्रक्षेपी वक्र बायरेशनल हैं, तो वे आइसोमोर्फिक हैं। लेकिन यह विस्फोट निर्माण से कम से कम 2 आयाम में विफल रहता है। विस्फोट करके, कम से कम 2 आयाम की प्रत्येक चिकनी प्रक्षेपी विविधता अनंत रूप से कई बड़ी किस्मों के लिए द्विभाजित है, उदाहरण के लिए बड़ी बेट्टी संख्याओं के साथ।
आयाम 1 में, यदि दो चिकने प्रक्षेपी वक्र बीरेशनल हैं, तो वे समरूपी हैं। लेकिन यह [[विस्फोट]] निर्माण से कम से कम 2 आयाम में विफल रहता है। विस्फोट करके, कम से कम 2 आयाम की प्रत्येक समतल प्रक्षेपी विविधता अनंत रूप से कई बड़ी विविधताओ के लिए द्विभाजित है, उदाहरण के लिए बड़ी [[बेट्टी संख्याओं]] के साथ।


यह [[न्यूनतम मॉडल कार्यक्रम]] के विचार की ओर जाता है: क्या प्रत्येक द्विवार्षिक तुल्यता में एक अद्वितीय सरलतम विविधता है
यह [[न्यूनतम मॉडल कार्यक्रम|न्यूनतम प्रारूप]] के विचार की ओर जाता है, क्या प्रत्येक बीरेशनल तुल्यता वर्ग में एक अद्वितीय सरलतम विविधता है ? आधुनिक परिभाषा यह है कि यदि [[विहित रेखा बंडल]] K<sub>X</sub> में X में प्रत्येक वक्र पर गैर-नकारात्मक डिग्री है तो एक प्रक्षेपी विविध X 'न्यूनतम' है दूसरे शब्दों में, K<sub>X</sub>[[ एनईएफ लाइन बंडल | एनईएफ पंक्ति बंडल]] है। यह जांचना आसान है कि [[विस्फोट|विस्फोटित]] विविधताए कभी भी न्यूनतम नहीं होती हैं।
कक्षा? आधुनिक परिभाषा यह है कि एक प्रक्षेपी विविध X 'न्यूनतम' है यदि [[विहित बंडल]] के<sub>X</sub>X में प्रत्येक वक्र पर गैर-नकारात्मक डिग्री है; दूसरे शब्दों में, के<sub>X</sub>[[ एनईएफ लाइन बंडल ]] है। यह जांचना आसान है कि फूली हुई किस्में कभी भी न्यूनतम नहीं होती हैं।


यह धारणा बीजगणितीय सतहों (आयाम 2 की किस्मों) के लिए पूरी तरह से काम करती है। आधुनिक शब्दों में, 1890-1910 से बीजगणितीय ज्यामिति के इतालवी स्कूल का एक केंद्रीय परिणाम, एनरिक्स-कोडैरा वर्गीकरण का हिस्सा है, यह है कि प्रत्येक सतह X द्विभाजित है या तो एक उत्पाद के लिए <math>\mathbb{P}^1\times C</math> कुछ वक्र C या न्यूनतम सतह Y के लिए।{{sfn|Kollár|Mori|1998|loc=Theorem 1.29.}} दो मामले परस्पर अनन्य हैं, और यदि मौजूद है तो Y अद्वितीय है। जब Y मौजूद होता है, तो इसे X का न्यूनतम मॉडल प्रोग्राम कहा जाता है।
यह धारणा बीजगणितीय सतहों (आयाम 2 की विविधताओ) के लिए पूरी तरह से काम करती है। आधुनिक शब्दों में, 1890-1910 से बीजगणितीय ज्यामिति के इतालवी स्कूल का एक केंद्रीय परिणाम, सतहों के वर्गीकरण का हिस्सा है, यह है कि प्रत्येक सतह X किसी वक्र C के लिए या न्यूनतम सतह Y के उत्पाद <math>\mathbb{P}^1\times C</math> के लिए बीरेशनल है।{{sfn|Kollár|Mori|1998|loc=Theorem 1.29.}} दो स्थितिया परस्पर अनन्य हैं, और यदि मौजूद है तो Y अद्वितीय है। जब Y मौजूद होता है, तो इसे X का [[न्यूनतम प्रारूप]] कहा जाता है।


== बीरेशनल इनवेरिएंट्स ==
== बीरेशनल अपरिवर्तनशीलताए ==
{{Main|Birational invariant}}
{{Main|द्विवार्षिक अपरिवर्तनशीलताए}}
सबसे पहले, यह स्पष्ट नहीं है कि कैसे दिखाया जाए कि कोई बीजगणितीय किस्में हैं जो परिमेय नहीं हैं। इसे साबित करने के लिए, बीजगणितीय किस्मों के कुछ बायरेशनल इनवेरिएंट की जरूरत है। एक बायरेशनल इनवेरिएंट किसी भी प्रकार की संख्या, रिंग, आदि है जो समान है, या आइसोमोर्फिक है, सभी किस्मों के लिए जो कि बायरेशनल समकक्ष हैं।
 
सबसे पहले, यह स्पष्ट नहीं है कि कैसे दिखाया जाए कि कोई बीजगणितीय विविधताए हैं जो परिमेय नहीं हैं। इसे साबित करने के लिए, बीजगणितीय विविधताओ के कुछ बीरेशनल अपरिवर्तनशीलताओं की जरूरत है। एक बीरेशनल अपरिवर्तनशीलता किसी भी प्रकार की संख्या, रिंग, आदि है जो समान है, या समरूपी है, तथा सभी विविधताओ के लिए जो कि बीरेशनल समकक्ष हैं।


=== प्लुरिजेनेरा ===
=== प्लुरिजेनेरा ===
बिरेशनल इनवेरिएंट्स का एक उपयोगी सेट कोडैरा डायमेंशन # प्लुरिजेनेरा है। आयाम n की एक चिकनी विविध X के विहित बंडल का अर्थ है n-रूपों का रेखा बंडल {{nowrap|1=''K<sub>X</sub>'' = Ω<sup>''n''</sup>}}, जो कि X के [[स्पर्शरेखा बंडल]] की nवीं [[बाहरी शक्ति]] है। एक पूर्णांक d के लिए, K की dth टेन्सर शक्ति<sub>X</sub>फिर से एक लाइन बंडल है। के लिए {{nowrap|''d'' ≥ 0}}, वैश्विक वर्गों का वेक्टर स्थान {{nowrap|''H''<sup>0</sup>(''X'', ''K''<sub>''X''</sub><sup>''d''</sup>)}} के पास उल्लेखनीय संपत्ति है जो एक बायरेशनल मैप है {{nowrap|''f'' : ''X'' ⇢ ''Y''}} चिकनी प्रक्षेप्य किस्मों के बीच एक समरूपता को प्रेरित करता है {{nowrap|''H''<sup>0</sup>(''X'', ''K''<sub>''X''</sub><sup>''d''</sup>) ≅ ''H''<sup>0</sup>(''Y'', ''K''<sub>''Y''</sub><sup>''d''</sup>)}}.{{sfn|Hartshorne|1977| loc= Exercise II.8.8.}}
बीरेशनल निश्चर का एक उपयोगी समुच्चय [[प्लुरिजेनेरा]] है। आयाम n की एक समतल विविध X के [[विहित बंडल]] का अर्थ यह है कि n-रूपों का [[रेखा बंडल]] {{nowrap|1=''K<sub>X</sub>'' = Ω<sup>''n''</sup>}}, जो कि X के [[स्पर्शरेखा बंडल]] की nवीं [[बाहरी शक्ति]] है। एक पूर्णांक d के लिए, K<sub>X</sub> की dवी प्रदिश शक्ति फिर से एक पंक्ति बंडल है। {{nowrap|''d'' ≥ 0}} के लिए, वैश्विक वर्गों {{nowrap|''H''<sup>0</sup>(''X'', ''K''<sub>''X''</sub><sup>''d''</sup>)}} के सदिश समष्टि में उल्लेखनीय संपत्ति है जो एक बीरेशनल मानचित्र  {{nowrap|''f'' : ''X'' ⇢ ''Y''}} समतल प्रक्षेप्य विविधताओ के बीच एक समरूपता {{nowrap|''H''<sup>0</sup>(''X'', ''K''<sub>''X''</sub><sup>''d''</sup>) ≅ ''H''<sup>0</sup>(''Y'', ''K''<sub>''Y''</sub><sup>''d''</sup>)}} को प्रेरित करता है।{{sfn|Hartshorne|1977| loc= Exercise II.8.8.}}


के लिए {{nowrap|''d'' ≥ 0}}, डीटीएच 'प्लुरिजेनस' पी को परिभाषित करें<sub>''d''</sub> वेक्टर अंतरिक्ष के आयाम के रूप में {{nowrap|''H''<sup>0</sup>(''X'', ''K''<sub>''X''</sub><sup>''d''</sup>)}}; तो प्लूरिजेनेरा चिकनी प्रक्षेपी किस्मों के लिए द्विवार्षिक आक्रमणकारी हैं। विशेष रूप से, यदि कोई प्लूरिजेनस पी<sub>''d''</sub> साथ {{nowrap|''d'' > 0}} शून्य नहीं है, तो X परिमेय नहीं है।
यदि {{nowrap|''d'' ≥ 0}} के लिए, डीटीएच 'प्लुरिजेनस' P<sub>''d''</sub> को सदिश समष्टि {{nowrap|''H''<sup>0</sup>(''X'', ''K''<sub>''X''</sub><sup>''d''</sup>)}} के आयाम के रूप में परिभाषित करें, तो प्लूरिजेनेरा समतल प्रक्षेपी विविधताओ के लिए बीरेशनल आक्रमणकारी हैं। विशेष रूप से, यदि कोई प्लूरिजेनस P<sub>''d''</sub> साथ {{nowrap|''d'' > 0}} शून्य नहीं है, तो X परिमेय नहीं है।


=== कोडैरा जिमेंशन ===
=== कोडैरा आयाम ===
{{Main|Kodaira dimension}}
{{Main|कोडैरा आयाम}}
[[कोडैरा ग्राउंड सिय्योन]] एक मूलभूत द्वितर्कात्मक अपरिवर्तनीय है, जो प्लुरिजेनेरा पी की वृद्धि को मापता है<sub>''d''</sub> जैसा कि d अनंत तक जाता है। कोडैरा आयाम सभी प्रकार के आयाम n को विभाजित करता है {{nowrap|''n'' + 2}} प्रकार, कोडैरा आयाम के साथ −∞, 0, 1, ..., या n। यह विभिन्न प्रकार की जटिलता का एक उपाय है, जिसमें प्रोजेक्टिव स्पेस कोडैरा आयाम -∞ है। सबसे जटिल किस्में वे हैं जिनके कोडैरा आयाम उनके आयाम n के बराबर हैं, जिन्हें कोडैरा आयाम की किस्में कहा जाता है।
[[कोडैरा ग्राउंड सिय्योन|कोडैरा आयाम]] एक मौलिक बीरेशनल अपरिवर्तनीय है, जो प्लुरिजेनेरा P<sub>''d''</sub> के विकास को मापता है, क्योंकि d अनंत तक जाता है। कोडैरा आयाम आयाम n की सभी विविधताओ को कोडैरा आयाम −∞, 0, 1, ..., या n , {{nowrap|''n'' + 2}} प्रकारों में विभाजित करता है। यह विभिन्न प्रकार की जटिलता का एक उपाय है, जिसमें प्रक्षेपी समष्‍टि कोडैरा आयाम -∞ है। सबसे जटिल विविधताए वे हैं जिनके कोडैरा आयाम उनके आयाम n के बराबर हैं, जिन्हें [[कोडैरा आयाम|सामान्य प्रकार]] की विविधताए कहा जाता है।
 
=== ⊗ का योग<sup>क</सुप>Ω<sup>1</sup> और कुछ हॉज नंबर ===
अधिक सामान्यतः, किसी भी प्राकृतिक योग के लिए


=== ⊗<sup>kΩ<sup><sup>1</sup>  का योग और कुछ हॉज नंबर ===
आम तौर पर अधिक,  {{nowrap|''r'' ≥ 0}} के साथ स्पर्शरेखा बंडल Ω<sup>1</sup> की r-वें प्रदिश शक्ति के किसी भी प्राकृतिक योग
:<math>E(\Omega^1) = \bigotimes^k \Omega^1</math>
:<math>E(\Omega^1) = \bigotimes^k \Omega^1</math>
cotangent बंडल Ω की आर-वें टेंसर शक्ति का<sup>1</sup> के साथ {{nowrap|''r'' ≥ 0}}, वैश्विक वर्गों का वेक्टर स्थान {{nowrap|''H''<sup>0</sup>(''X'', ''E''(Ω<sup>1</sup>))}} चिकनी प्रक्षेप्य किस्मों के लिए एक द्विवार्षिक अपरिवर्तनीय है। विशेष रूप से, [[हॉज सिद्धांत]]
के लिए, वैश्विक वर्गों का सदिश समष्टि {{nowrap|''H''<sup>0</sup>(''X'', ''E''(Ω<sup>1</sup>))}} समतल प्रक्षेप्य विविधताओ के लिए एक बीरेशनल अपरिवर्तनीय है। विशेष रूप से, [[हॉज सिद्धांत|हॉज नंबर]]  


:<math>h^{p,0} = H^0(X,\Omega^p)</math>
:<math>h^{p,0} = H^0(X,\Omega^p)</math>
X के बायरेशनल इनवेरिएंट हैं। (अधिकांश अन्य हॉज नंबर एच<sup>p,q</sup> बायरेशनल इनवेरिएंट नहीं हैं, जैसा कि ब्लो अप करके दिखाया गया है।)
X के बीरेशनल अपरिवर्तनीय हैं। (अधिकांश अन्य हॉज नंबर h<sup>p,q</sup> बीरेशनल अपरिवर्तनीय नहीं हैं, जैसा कि विस्फोट करके दिखाया गया है।)


=== चिकनी प्रक्षेपी किस्मों का [[मौलिक समूह]] ===
=== समतल प्रक्षेपी विविधताओ का मूल समूह ===
मौलिक समूह π<sub>1</sub>(X) चिकनी जटिल प्रोजेक्टिव किस्मों के लिए एक द्विवार्षिक अपरिवर्तनीय है।
[[मूल समूह]] π<sub>1</sub>(X) समतल जटिल प्रक्षेपी विविधताओ के लिए एक बीरेशनल अपरिवर्तनीय है।


अब्रामोविच, कारू, मात्सुकी, और व्लोडार्कज़ीक #refAKMW|(2002) द्वारा सिद्ध किया गया कमजोर गुणनखंडन प्रमेय कहता है कि दो चिकनी जटिल प्रक्षेपी किस्मों के बीच किसी भी द्विवार्षिक मानचित्र को सूक्ष्म रूप से कई ब्लो-अप या चिकनी उप-किस्मों के ब्लो-डाउन में विघटित किया जा सकता है। यह जानना महत्वपूर्ण है, लेकिन यह निर्धारित करना अभी भी बहुत कठिन हो सकता है कि क्या दो चिकनी प्रोजेक्टिव किस्में बायरेशनल हैं।
अब्रामोविच, कारू, मात्सुकी, और व्लोडार्कज़ीक ([[2002]]) द्वारा सिद्ध किया गया कमजोर गुणन प्रमेय कहता है कि दो समतल जटिल प्रक्षेपी विविधताओ के बीच किसी भी बीरेशनल मानचित्र को सूक्ष्म रूप से कई आवर्धित या समतल उप-विविधताओ के अवधमन में विघटित किया जा सकता है। यह जानना महत्वपूर्ण है, लेकिन यह निर्धारित करना अभी भी बहुत कठिन हो सकता है कि क्या दो समतल प्रक्षेपीय विविधताए बीरेशनल हैं।


== उच्च आयामों में न्यूनतम मॉडल ==
== उच्च आयामों में न्यूनतम प्रारूप ==
{{Main|Minimal model program}}
{{Main|न्यूनतम प्रारूप प्रोग्राम }}
एक प्रोजेक्टिव विविध X को 'न्यूनतम' कहा जाता है यदि कैननिकल बंडल के<sub>X</sub>नेफ लाइन बंडल है। X आयाम 2 के लिए, इस परिभाषा में चिकनी किस्मों पर विचार करना पर्याप्त है। आयामों में कम से कम 3, न्यूनतम किस्मों को कुछ हल्के विलक्षणताओं की अनुमति दी जानी चाहिए, जिसके लिए K<sub>X</sub>अभी भी अच्छा व्यवहार करता है; इन्हें विहित विलक्षणता कहा जाता है।
यदि [[विहित बंडल]] K<sub>X</sub> [[नेफ]] है तो प्रक्षेपी विविध X को 'न्यूनतम' कहा जाता है। X आयाम 2 के लिए, इस परिभाषा में समतल विविधताओ पर विचार करना पर्याप्त है। आयामों में कम से कम 3, न्यूनतम विविधताओ को कुछ हल्के विशिष्टताएं रखने की अनुमति दी जानी चाहिए, जिसके लिए K<sub>X</sub> अभी भी अच्छा व्यवहार करता है, इन्हें [[अंतिम विलक्षणताएँ]] कहा जाता है।


कहा जा रहा है कि, न्यूनतम मॉडल कार्यक्रम का अर्थ यह होगा कि हर विविध X या तो परिमेय घटता से आच्छादित है या एक न्यूनतम विविध वाई के लिए बायरेशनल है। जब यह मौजूद होता है, तो वाई को X का 'न्यूनतम मॉडल' कहा जाता है।
कहा जा रहा है कि, [[न्यूनतम प्रारूप अनुमान]] का अर्थ यह होगा कि हर विविध X या तो [[परिमेय वक्र]] से आच्छादित है या एक न्यूनतम विविधता Y के लिए बीरेशनल है। जब यह मौजूद होता है, तो Y को X का 'न्यूनतम प्रारूप' कहा जाता है।


न्यूनतम मॉडल कम से कम 3 आयामों में अद्वितीय नहीं हैं, लेकिन कोई भी दो न्यूनतम किस्में जो कि बायरेशनल हैं, बहुत करीब हैं। उदाहरण के लिए, वे कम से कम 2 कोडिमेंशन के आइसोमॉर्फिक बाहरी उपसमुच्चय हैं, और अधिक सटीक रूप से वे [[फ्लिप (गणित)]] के अनुक्रम से संबंधित हैं। तो न्यूनतम मॉडल अनुमान बीजगणितीय किस्मों के बायरेशनल वर्गीकरण के बारे में मजबूत जानकारी देगा।
न्यूनतम प्रारूप कम से कम 3 आयामों में अद्वितीय नहीं हैं, लेकिन कोई भी दो न्यूनतम विविधताए जो कि बीरेशनल हैं, वे बहुत करीब हैं। उदाहरण के लिए, वे कम से कम 2 सह आयाम के समरूपी बाहरी उपसमुच्चय हैं, और अधिक सटीक रूप से वे [[फ्लिप (गणित)|फ्लाप्स]] के अनुक्रम से संबंधित हैं। तो न्यूनतम प्रारूप अनुमान बीजगणितीय विविधताओ के बीरेशनल वर्गीकरण के बारे में मजबूत जानकारी देगा।


यह अनुमान मोरी द्वारा आयाम 3 में सिद्ध किया गया था।{{sfn|Mori|1988}} उच्च आयामों में काफी प्रगति हुई है, हालांकि सामान्य समस्या बनी हुई है। विशेष रूप से, Birkar, Cascini, Hacon, और McKernan (2010){{sfn|Birkar|Cascini|Hacon|McKernan|2010}} ने साबित किया कि विशेषता शून्य के क्षेत्र में कोडैरा आयाम की प्रत्येक विविध का एक न्यूनतम मॉडल है।
यह अनुमान मोरी द्वारा आयाम 3 में सिद्ध किया गया था।{{sfn|Mori|1988}} उच्च आयामों में काफी प्रगति हुई है, हालांकि सामान्य समस्या बनी हुई है। विशेष रूप से, बिरकर, कैसिनी, हैकोन , और मैककर्नन (2010){{sfn|Birkar|Cascini|Hacon|McKernan|2010}} ने साबित किया कि विशेषता शून्य के क्षेत्र में [[सामान्य प्रकार]] की प्रत्येक विविध का एक न्यूनतम प्रारूप होता है।  


== अनियंत्रित किस्में ==
== अशासित विविधताए ==
{{Main|Ruled variety}}
{{Main|शासित विविधताए}}
एक विविध को अनियंत्रित कहा जाता है यदि यह परिमेय घटता से आच्छादित है। एक अनियंत्रित विविध का न्यूनतम मॉडल नहीं होता है, लेकिन एक अच्छा विकल्प होता है: बिरकर, कैसिनी, हैकॉन और मैककर्नन ने दिखाया कि विशेषता शून्य के क्षेत्र में हर अनियंत्रित विविधता एक न्यूनतम मॉडल कार्यक्रम के लिए द्विवार्षिक है।{{efn|{{harvtxt|Birkar|Cascini|Hacon|McKernan|2010|loc=Corollary 1.3.3}}, implies that every uniruled variety in characteristic zero is birational to a Fano fiber space, using the easier result that a uniruled variety ''X'' is covered by a family of curves on which ''K<sub>X</sub>'' has negative degree. A reference for the latter fact is {{harvtxt|Debarre|2001|loc=Corollary 4.11}} and Example 4.7(1).}} यह फ़ानो फाइबर रिक्त स्थान और (सबसे दिलचस्प विशेष मामले के रूप में) फ़ानो विविध के द्विवार्षिक वर्गीकरण की समस्या की ओर जाता है। परिभाषा के अनुसार, एक प्रक्षेपी विविध X 'फैनो' है यदि एंटीकैनोनिकल बंडल <math>K_X^*</math> [[पर्याप्त लाइन बंडल]] है। फ़ानो किस्मों को बीजगणितीय किस्मों के रूप में माना जा सकता है जो प्रक्षेप्य स्थान के समान हैं।


आयाम 2 में, बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक फ़ानो विविध (जिसे [[डेल टुकड़ा सतह]] के रूप में जाना जाता है) परिमेय है। 1970 के दशक में एक प्रमुख खोज यह थी कि आयाम 3 से शुरू होकर, कई फानो किस्में हैं जो परिमेय विविध नहीं हैं। विशेष रूप से, #CITEREFClemensGriffiths1972|Clemens-Griffiths (1972) द्वारा चिकनी घन 3-गुना परिमेय नहीं है, और #CITEREFIskovskihManin1971|Iskovskikh-Manin (1971) द्वारा चिकनी क्वार्टिक 3-गुना परिमेय नहीं है। बहरहाल, यह निर्धारित करने की समस्या कि वास्तव में कौन सी फ़ानो किस्में परिमेय हैं, हल होने से बहुत दूर हैं। उदाहरण के लिए, यह ज्ञात नहीं है कि इसमें कोई चिकनी घनी अतिसतह है या नहीं <math>\mathbb{P}^{n+1}</math> साथ {{nowrap|''n'' ≥ 4}} जो परिमेय नहीं है।
एक विविध को अशासित कहा जाता है यदि यह परिमेय घटता से आच्छादित है। एक अशासित विविध में न्यूनतम प्रारूप नहीं होता है, लेकिन एक अच्छा प्रतिस्थापी होता है, बिरकर, कैसिनी, हैकॉन और मैककर्नन ने दिखाया कि विशेषता शून्य के क्षेत्र में प्रत्येक अशासित विविधता एक [[फानो फाइबर समष्टि]] के लिए बीरेशनल है।{{efn|{{harvtxt|Birkar|Cascini|Hacon|McKernan|2010|loc=Corollary 1.3.3}}, implies that every uniruled variety in characteristic zero is birational to a Fano fiber space, using the easier result that a uniruled variety ''X'' is covered by a family of curves on which ''K<sub>X</sub>'' has negative degree. A reference for the latter fact is {{harvtxt|Debarre|2001|loc=Corollary 4.11}} and Example 4.7(1).}} यह फ़ानो फाइबर समष्टि और (सबसे दिलचस्प विशेष स्थिति के रूप में) [[फ़ानो विविध]] के बीरेशनल वर्गीकरण की समस्या की ओर जाता है। परिभाषा के अनुसार, एक प्रक्षेपी विविध X 'फैनो' है यदि एंटीकैनोनिकल बंडल <math>K_X^*</math> [[पर्याप्त लाइन बंडल|पर्याप्त]] है। फ़ानो विविधताओ को बीजगणितीय विविधताओ के रूप में माना जा सकता है जो प्रक्षेपी समष्‍टि के समान हैं।


== द्विवार्षिक ऑटोमोर्फिज़्म समूह ==
आयाम 2 में, बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक फ़ानो विविध (जिसे [[डेल टुकड़ा सतह|डेल पेज़ो सतह]] के रूप में जाना जाता है) परिमेय है। 1970 के दशक में एक प्रमुख खोज यह थी कि आयाम 3 से शुरू होकर, कई फानो विविधताए हैं जो [[परिमेय]] नहीं हैं। विशेष रूप से, समतल घन 3-गुना [[क्लेमेंस-ग्रिफिथ्स (1972)]] द्वारा परिमेय नहीं है, और समतल क्वार्टिक 3-गुना [[इस्कोस्किख-मैनिन (1971)]] द्वारा परिमेय नहीं है। बहरहाल, यह निर्धारित करने की समस्या कि वास्तव में कौन सी फ़ानो विविधताए परिमेय हैं, हल होने से बहुत दूर हैं। उदाहरण के लिए, यह ज्ञात नहीं है कि <math>\mathbb{P}^{n+1}</math> में {{nowrap|''n'' ≥ 4}} के साथ कोई समतल घनी अतिसतह है या नहीं जो परिमेय नहीं है।
बीजगणितीय किस्में व्यापक रूप से भिन्न होती हैं कि उनके पास कितने बिरेशनल ऑटोमोर्फिज्म हैं। कोडैरा आयाम की हर विविध अत्यंत कठोर है, इस अर्थ में कि इसका बायरेशनल ऑटोमोर्फिज़्म समूह परिमित है। दूसरे चरम पर, प्रोजेक्टिव स्पेस का बिरेशनल ऑटोमोर्फिज़्म समूह <math>\mathbb{P}^n</math> एक क्षेत्र के ऊपर, जिसे [[क्रेमोना समूह]] Cr के रूप में जाना जाता है<sub>''n''</sub>(के), के लिए बड़ा (एक अर्थ में, अनंत-आयामी) है {{nowrap|''n'' ≥ 2}}. के लिए {{nowrap|1=''n'' = 2}}, जटिल क्रेमोना समूह <math>Cr_2(\Complex)</math> द्विघात परिवर्तन द्वारा उत्पन्न होता है
 
== बीरेशनल स्‍वचालन समूह ==
बीजगणितीय विविधताए व्यापक रूप से भिन्न होती हैं क्योकि उनके पास कुछ बीरेशनल स्‍वचालन हैं। [[सामान्य प्रकार]] की हर विविध अत्यंत कठोर है, इस अर्थ में कि इसका बीरेशनल स्‍वचालन समूह परिमित है। दूसरे चरम पर, क्षेत्र k पर प्रक्षेपी समष्‍टि <math>\mathbb{P}^n</math> का बीरेशनल स्‍वचालन समूह, जिसे [[क्रेमोना समूह]] Cr<sub>''n''</sub>(k) के रूप में जाना जाता है, {{nowrap|''n'' ≥ 2}} के लिए बड़ा (एक मायने में, अनंत-आयामी) है। {{nowrap|1=''n'' = 2}} के लिए, सम्मिश्र क्रेमोना समूह <math>Cr_2(\Complex)</math> "द्विघात रूपांतरण"


: [x,y,z] ↦ [1/x, 1/y, 1/z]
: [x,y,z] ↦ [1/x, 1/y, 1/z]


एक साथ समूह के साथ <math>PGL(3,\Complex)</math> के automorphisms की <math>\mathbb{P}^2,</math> [[मैक्स नोथेर]] और [[गुइडो कास्टेलनुवो]] द्वारा। इसके विपरीत, क्रेमोना समूह आयामों में {{nowrap|''n'' ≥ 3}} बहुत अधिक रहस्य है: जनरेटर का कोई स्पष्ट सेट ज्ञात नहीं है।
द्वारा [[मैक्स नोथेर]] और [[गुइडो कास्टेलनुवो]] द्वारा <math>PGL(3,\Complex)</math> के स्‍वचालन समूह  <math>\mathbb{P}^2,</math> के साथ उत्पन्न होता है। इसके विपरीत, {{nowrap|''n'' ≥ 3}} में क्रेमोना समूह बहुत अधिक रहस्य है, जनित्र की कोई स्पष्ट स्थिति ज्ञात नहीं है।


#CITEREFIskovskihManin1971|Iskovskikh–Manin (1971) ने दिखाया कि एक चिकनी क्वार्टिक 3-गुना का बायरेशनल ऑटोमोर्फिज़्म समूह इसके ऑटोमोर्फिज़्म समूह के बराबर है, जो परिमित है। इस अर्थ में, क्वार्टिक 3-गुना परिमेय होने से बहुत दूर हैं, क्योंकि एक परिमेय विविधता का बायरेशनल ऑटोमोर्फिज़्म समूह बहुत बड़ा है। तब से कई अन्य फानो फाइबर स्थानों में द्विवार्षिक कठोरता की घटना की खोज की गई है। {{citation needed|date=April 2021}}
#[[इस्कोविसिख-मैनिन]] (1971) ने दिखाया कि एक सुचारू क्वार्टिक 3-गुना का बीरेशनल स्‍वचालन समूह इसके स्‍वचालन समूह के बराबर है, जो परिमित है। इस अर्थ में, क्वार्टिक 3-गुना परिमेय होने से बहुत दूर हैं, क्योंकि एक [[परिमेय विविधता]] का बीरेशनल स्‍वचालन समूह बहुत बड़ा है। तब से कई अन्य फानो फाइबर स्थानों में "बीरेशनल दृढ़ता" की इस घटना की खोज की गई है। {{citation needed|date=April 2021}}


== अनुप्रयोग ==
== अनुप्रयोग ==
बीरेशनल ज्यामिति ने ज्यामिति के अन्य क्षेत्रों में, विशेष रूप से बीजगणितीय ज्यामिति में पारंपरिक समस्याओं में अनुप्रयोग पाए है।
बीरेशनल ज्यामिति ने ज्यामिति के अन्य क्षेत्रों में, विशेष रूप से बीजगणितीय ज्यामिति में पारंपरिक समस्याओं में अनुप्रयोगों को पाया है।


प्रसिद्ध रूप से न्यूनतम प्रारूप का उपयोग सामान्य प्रकार की विविध के मोडुली समष्टि के निर्माण करने के लिए [[जानोस कॉलर]] और [[निकोलस शेफर्ड-बैरन]] द्वारा किया गया था, जिसे अब केएसबी [[मोडुली स्पेस|मोडुली समष्टि]] के रूप में जाना जाता है।{{sfn|Kollár|2013}}
प्रसिद्ध रूप से न्यूनतम प्रारूप का उपयोग सामान्य प्रकार की विविध के मोडुली समष्टि के निर्माण करने के लिए [[जानोस कॉलर]] और [[निकोलस शेफर्ड-बैरन]] द्वारा किया गया था, जिसे अब केएसबी [[मोडुली स्पेस|मोडुली समष्टि]] के रूप में जाना जाता है।{{sfn|Kollár|2013}}


बायरेशनल ज्योमेट्री ने हाल ही में काहलर-आइंस्टीन मापन के लिए सामान्य अस्तित्व परिणामों के माध्यम से [[फैनो किस्मों की के-स्थिरता|फैनो विविध की के-स्थिरता]] के अध्ययन में महत्वपूर्ण अनुप्रयोग पाया है। काहलर-आइंस्टीन मेट्रिक्स, फ़ानो किस्मों के स्पष्ट आविष्कारों के विकास में बायरेशनल पर कंप्यूटिंग द्वारा के-स्थिरता का परीक्षण करने के लिए मॉडल, और फानो किस्मों के मोडुली रिक्त स्थान के निर्माण में।{{sfn|Xu|2021}} बायरेशनल ज्योमेट्री में महत्वपूर्ण परिणाम जैसे कौचर बिरकर | फैनो किस्मों की सीमा के बिरकर के प्रमाण का उपयोग मोडुली स्पेस के लिए अस्तित्व के परिणामों को साबित करने के लिए किया गया है।
बीरेशनल ज्यामिति ने हाल ही में [[काहलर-आइंस्टीन मापन]] के लिए सामान्य अस्तित्व परिणामों के माध्यम से [[फैनो किस्मों की के-स्थिरता|फैनो विविध की के-स्थिरता]] के अध्ययन में , बीरेशनल प्रारूप पर गणना करके के-स्थिरता का परीक्षण करने के लिए फ़ानो विविध के सुस्पष्ट निश्चर के विकास में, और फ़ानो विविध के मोडुली समष्टि के निर्माण में महत्वपूर्ण अनुप्रयोगों को पाया है।{{sfn|Xu|2021}} बीरेशनल ज्यामिति में महत्वपूर्ण परिणाम जैसे बिरकर के फ़ानो विविध की सीमा के प्रमाण का उपयोग मोडुली समष्टि के लिए अस्तित्व के परिणामों को साबित करने के लिए किया गया है।


== यह भी देखें ==
== यह भी देखें ==
Line 131: Line 130:
{{refend}}
{{refend}}


{{DEFAULTSORT:Birational Geometry}}[[Category: बिरेशनल ज्योमेट्री | बिरेशनल ज्योमेट्री ]]
{{DEFAULTSORT:Birational Geometry}}
 
 


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements|Birational Geometry]]
[[Category:Created On 26/04/2023]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Birational Geometry]]
[[Category:Articles with unsourced statements from April 2021|Birational Geometry]]
[[Category:Created On 26/04/2023|Birational Geometry]]
[[Category:Lua-based templates|Birational Geometry]]
[[Category:Machine Translated Page|Birational Geometry]]
[[Category:Pages with script errors|Birational Geometry]]
[[Category:Templates Vigyan Ready|Birational Geometry]]
[[Category:Templates that add a tracking category|Birational Geometry]]
[[Category:Templates that generate short descriptions|Birational Geometry]]
[[Category:Templates using TemplateData|Birational Geometry]]
[[Category:बिरेशनल ज्योमेट्री| बिरेशनल ज्योमेट्री ]]

Latest revision as of 16:23, 16 October 2023

वृत्त द्विभाजित रूप से वास्तविक रेखा के समतुल्य है। उन दोनों के बीच एक द्विपक्षीय नक्शा त्रिविम प्रक्षेपण है, यहां चित्रित किया गया है।

गणित में, बीरेशनल ज्यामिति बीजगणितीय ज्यामिति का एक क्षेत्र है जिसका लक्ष्य यह निर्धारित करना है कि दो बीजगणितीय प्रकार निम्न-आयामी उपसमुच्चय के बाहर समरूप हैं। यह मानचित्रणों का अध्ययन करने के बराबर है जो बहुपदों के बजाय परिमेय फलनो द्वारा दिया जाता है, तथा मानचित्र परिभाषित करने में विफल हो सकता है जहां परिमेय फलनो में स्तंभ होते हैं।

बीरेशनल मानचित्र

परिमेय मानचित्र

एक विविध से एक परिमेय मानचित्रण (जिसे अलघुकरणीय समझा जाता है) दूसरी विविध के लिए , जिसे एक वियोजक तीर X Y के रूप में लिखा गया है, उसको एक अरिक्त- विवृत उपसमुच्चय से के आकारिकी के रूप में परिभाषित किया गया है। बीजगणितीय ज्यामिति में प्रयुक्त जरिस्की सांस्थिति विज्ञान की परिभाषा के अनुसार, एक अरिक्त- विवृत उपसमुच्चय में हमेशा सघन होता है , वास्तव में एक निम्न-आयामी उपसमुच्चय का पूरक होता है। वास्तव में, एक परिमेय मानचित्र को परिमेय फलनो का उपयोग करके निर्देशांक में लिखा जा सकता है।

बीरेशनल मानचित्र

X से Y तक का एक बीरेशनल मानचित्र एक परिमेय मानचित्र f : XY ऐसा है जैसे कि एक परिमेय मानचित्र YX f का व्युत्क्रम है। एक बीरेशनल मानचित्र एक समरूपता को X के एक गैर-रिक्त विवृत उपसमुच्चय से Y के एक गैर-रिक्त विवृत उपसमुच्चय के लिए प्रेरित करता है। इस मामले में, X और वाई को 'बीरेशनल' या 'बीरेशनल समकक्ष' कहा जाता है। बीजगणितीय शब्दों में, एक क्षेत्र k पर दो विविधताए द्विभाजित हैं और यदि उनके बीजगणितीय प्रकार के फलन क्षेत्र k के विस्तार क्षेत्रों के रूप में समरूपी हैं।

एक विशेष स्तिथि 'बीरेशनल आकारिता' है f : XY, जिसका अर्थ एक आकारिकी है जो बीरेशनल है। अर्थात्, f हर जगह परिभाषित है, लेकिन इसका व्युत्क्रम नहीं हो सकता है। आमतौर पर, ऐसा इसलिए होता है क्योंकि एक बीरेशनल आकारिता X की कुछ उप-विविधताओ को वाई में इंगित करता है।

बीरेशनल तुल्यता और परिमेयता

एक विविधता X को 'परिमेय विविधता' कहा जाता है यदि यह किसी आयाम के सजातीयउपसमष्‍टि (या समतुल्य,प्रक्षेपण स्थान ) के लिए बीरेशनल है। परिमेयता एक बहुत ही प्राकृतिक संपत्ति है, इसका मतलब है कि X ऋण कुछ निम्न-आयामी उपसमुच्चय को सजातीयउपसमष्‍टि ऋण कुछ निम्न-आयामी उपसमुच्चय से पहचाना जा सकता है।

समतल शंकु की बीरेशनल तुल्यता

उदाहरण के लिए, परिबंध तल में समीकरण वाला वृत्त एक परिमेय वक्र है, क्योंकि

द्वारा दिया गया एक परिमेय मानचित्र f : X है, जिसका परिमेय व्युत्क्रम g: X ⇢

द्वारा दिया गया है।

एक परिमेय संख्या के साथ मानचित्र f को लागू करने से पाइथैगोरसी त्रिक का एक व्यवस्थित निर्माण मिलता है।

परिमेय मानचित्र उस स्थान पर परिभाषित नहीं है जहाँ है। तो, जटिल सजातीय पंक्ति , विवृत उपसमुच्चय , पर एक आकारिकी है। इसी तरह, परिमेय मानचित्र g : X बिंदु (0,−1) में पर परिभाषित नहीं है।

स्मूथ चतुष्कोणों और Pn की बीरेशनल तुल्यता

अधिक आम तौर पर, त्रिविम प्रक्षेप द्वारा किसी भी आयाम n का एक स्मूथ चतुर्भुज (डिग्री 2) ऊनविम पृष्ठ X परिमेय है। (X के लिए एक क्षेत्र k ऊपर एक चतुर्भुज, X को एक k-परिमेय बिंदु माना जाना चाहिए, यदि k बीजगणितीय रूप से बंद है तो यह स्वचालित है।) त्रिविम प्रक्षेपण को परिभाषित करने के लिए, p को X में एक बिंदु होने दें। फिर X से p और q के माध्यम से रेखा में X में एक बिंदु q भेजकर p के माध्यम से X प्रक्षेपी समष्‍टि तक एक बीरेशनल मानचित्र दिया जाता है। यह एक बीरेशनल तुल्यता है, लेकिन विविधताओ की समरूपता नहीं है, क्योंकि यह परिभाषित करने में विफल रहता है q = p (और व्युत्क्रम नक्शा उन पंक्तियों पर परिभाषित करने में विफल रहता है जो p के माध्यम से X में समाहित हैं)।

चतुष्कोणीय सतह की बीरेशनल तुल्यता

सेग्रे अंत: स्थापन एक अंत: स्थापन देता है जो

द्वारा दिया गया है। छवि चतुर्भुज सतह में है। यह एक और प्रमाण देता है कि यह चतुर्भुज सतह परिमेय है, क्योंकि स्पष्ट रूप से परिमेय है, तथा के लिए एक खुला उपसमुच्चय समरूपी है।

न्यूनतम प्रारूप और विलक्षणताओं का संकल्प

प्रत्येक बीजगणितीय विविधता एक प्रक्षेपीय विविधता (चाउ की लेम्मा) के लिए द्विपक्षीय है। इसलिए, बीरेशनल वर्गीकरण के प्रयोजनों के लिए, यह केवल प्रक्षेपी विविधताओ के साथ काम करने के लिए पर्याप्त है, और यह आमतौर पर सबसे सुविधाजनक विन्यास है।

विलक्षणताओं के समाधान पर हिरोनाका की 1964 की प्रमेय बहुत गहरी है, विशेषता 0 (जैसे जटिल संख्या) के एक क्षेत्र में, प्रत्येक विविधता एक स्मूथ प्रक्षेप्य विविधता के लिए बीरेशनल है। यह देखते हुए, यह बीरेशनल तुल्यता तक समतल प्रक्षेप्य विविधताओ को वर्गीकृत करने के लिए पर्याप्त है।

आयाम 1 में, यदि दो चिकने प्रक्षेपी वक्र बीरेशनल हैं, तो वे समरूपी हैं। लेकिन यह विस्फोट निर्माण से कम से कम 2 आयाम में विफल रहता है। विस्फोट करके, कम से कम 2 आयाम की प्रत्येक समतल प्रक्षेपी विविधता अनंत रूप से कई बड़ी विविधताओ के लिए द्विभाजित है, उदाहरण के लिए बड़ी बेट्टी संख्याओं के साथ।

यह न्यूनतम प्रारूप के विचार की ओर जाता है, क्या प्रत्येक बीरेशनल तुल्यता वर्ग में एक अद्वितीय सरलतम विविधता है ? आधुनिक परिभाषा यह है कि यदि विहित रेखा बंडल KX में X में प्रत्येक वक्र पर गैर-नकारात्मक डिग्री है तो एक प्रक्षेपी विविध X 'न्यूनतम' है दूसरे शब्दों में, KX एनईएफ पंक्ति बंडल है। यह जांचना आसान है कि विस्फोटित विविधताए कभी भी न्यूनतम नहीं होती हैं।

यह धारणा बीजगणितीय सतहों (आयाम 2 की विविधताओ) के लिए पूरी तरह से काम करती है। आधुनिक शब्दों में, 1890-1910 से बीजगणितीय ज्यामिति के इतालवी स्कूल का एक केंद्रीय परिणाम, सतहों के वर्गीकरण का हिस्सा है, यह है कि प्रत्येक सतह X किसी वक्र C के लिए या न्यूनतम सतह Y के उत्पाद के लिए बीरेशनल है।[1] दो स्थितिया परस्पर अनन्य हैं, और यदि मौजूद है तो Y अद्वितीय है। जब Y मौजूद होता है, तो इसे X का न्यूनतम प्रारूप कहा जाता है।

बीरेशनल अपरिवर्तनशीलताए

सबसे पहले, यह स्पष्ट नहीं है कि कैसे दिखाया जाए कि कोई बीजगणितीय विविधताए हैं जो परिमेय नहीं हैं। इसे साबित करने के लिए, बीजगणितीय विविधताओ के कुछ बीरेशनल अपरिवर्तनशीलताओं की जरूरत है। एक बीरेशनल अपरिवर्तनशीलता किसी भी प्रकार की संख्या, रिंग, आदि है जो समान है, या समरूपी है, तथा सभी विविधताओ के लिए जो कि बीरेशनल समकक्ष हैं।

प्लुरिजेनेरा

बीरेशनल निश्चर का एक उपयोगी समुच्चय प्लुरिजेनेरा है। आयाम n की एक समतल विविध X के विहित बंडल का अर्थ यह है कि n-रूपों का रेखा बंडल KX = Ωn, जो कि X के स्पर्शरेखा बंडल की nवीं बाहरी शक्ति है। एक पूर्णांक d के लिए, KX की dवी प्रदिश शक्ति फिर से एक पंक्ति बंडल है। d ≥ 0 के लिए, वैश्विक वर्गों H0(X, KXd) के सदिश समष्टि में उल्लेखनीय संपत्ति है जो एक बीरेशनल मानचित्र f : XY समतल प्रक्षेप्य विविधताओ के बीच एक समरूपता H0(X, KXd) ≅ H0(Y, KYd) को प्रेरित करता है।[2]

यदि d ≥ 0 के लिए, डीटीएच 'प्लुरिजेनस' Pd को सदिश समष्टि H0(X, KXd) के आयाम के रूप में परिभाषित करें, तो प्लूरिजेनेरा समतल प्रक्षेपी विविधताओ के लिए बीरेशनल आक्रमणकारी हैं। विशेष रूप से, यदि कोई प्लूरिजेनस Pd साथ d > 0 शून्य नहीं है, तो X परिमेय नहीं है।

कोडैरा आयाम

कोडैरा आयाम एक मौलिक बीरेशनल अपरिवर्तनीय है, जो प्लुरिजेनेरा Pd के विकास को मापता है, क्योंकि d अनंत तक जाता है। कोडैरा आयाम आयाम n की सभी विविधताओ को कोडैरा आयाम −∞, 0, 1, ..., या n , n + 2 प्रकारों में विभाजित करता है। यह विभिन्न प्रकार की जटिलता का एक उपाय है, जिसमें प्रक्षेपी समष्‍टि कोडैरा आयाम -∞ है। सबसे जटिल विविधताए वे हैं जिनके कोडैरा आयाम उनके आयाम n के बराबर हैं, जिन्हें सामान्य प्रकार की विविधताए कहा जाता है।

1 का योग और कुछ हॉज नंबर

आम तौर पर अधिक, r ≥ 0 के साथ स्पर्शरेखा बंडल Ω1 की r-वें प्रदिश शक्ति के किसी भी प्राकृतिक योग

के लिए, वैश्विक वर्गों का सदिश समष्टि H0(X, E1)) समतल प्रक्षेप्य विविधताओ के लिए एक बीरेशनल अपरिवर्तनीय है। विशेष रूप से, हॉज नंबर

X के बीरेशनल अपरिवर्तनीय हैं। (अधिकांश अन्य हॉज नंबर hp,q बीरेशनल अपरिवर्तनीय नहीं हैं, जैसा कि विस्फोट करके दिखाया गया है।)

समतल प्रक्षेपी विविधताओ का मूल समूह

मूल समूह π1(X) समतल जटिल प्रक्षेपी विविधताओ के लिए एक बीरेशनल अपरिवर्तनीय है।

अब्रामोविच, कारू, मात्सुकी, और व्लोडार्कज़ीक (2002) द्वारा सिद्ध किया गया कमजोर गुणन प्रमेय कहता है कि दो समतल जटिल प्रक्षेपी विविधताओ के बीच किसी भी बीरेशनल मानचित्र को सूक्ष्म रूप से कई आवर्धित या समतल उप-विविधताओ के अवधमन में विघटित किया जा सकता है। यह जानना महत्वपूर्ण है, लेकिन यह निर्धारित करना अभी भी बहुत कठिन हो सकता है कि क्या दो समतल प्रक्षेपीय विविधताए बीरेशनल हैं।

उच्च आयामों में न्यूनतम प्रारूप

यदि विहित बंडल KX नेफ है तो प्रक्षेपी विविध X को 'न्यूनतम' कहा जाता है। X आयाम 2 के लिए, इस परिभाषा में समतल विविधताओ पर विचार करना पर्याप्त है। आयामों में कम से कम 3, न्यूनतम विविधताओ को कुछ हल्के विशिष्टताएं रखने की अनुमति दी जानी चाहिए, जिसके लिए KX अभी भी अच्छा व्यवहार करता है, इन्हें अंतिम विलक्षणताएँ कहा जाता है।

कहा जा रहा है कि, न्यूनतम प्रारूप अनुमान का अर्थ यह होगा कि हर विविध X या तो परिमेय वक्र से आच्छादित है या एक न्यूनतम विविधता Y के लिए बीरेशनल है। जब यह मौजूद होता है, तो Y को X का 'न्यूनतम प्रारूप' कहा जाता है।

न्यूनतम प्रारूप कम से कम 3 आयामों में अद्वितीय नहीं हैं, लेकिन कोई भी दो न्यूनतम विविधताए जो कि बीरेशनल हैं, वे बहुत करीब हैं। उदाहरण के लिए, वे कम से कम 2 सह आयाम के समरूपी बाहरी उपसमुच्चय हैं, और अधिक सटीक रूप से वे फ्लाप्स के अनुक्रम से संबंधित हैं। तो न्यूनतम प्रारूप अनुमान बीजगणितीय विविधताओ के बीरेशनल वर्गीकरण के बारे में मजबूत जानकारी देगा।

यह अनुमान मोरी द्वारा आयाम 3 में सिद्ध किया गया था।[3] उच्च आयामों में काफी प्रगति हुई है, हालांकि सामान्य समस्या बनी हुई है। विशेष रूप से, बिरकर, कैसिनी, हैकोन , और मैककर्नन (2010)[4] ने साबित किया कि विशेषता शून्य के क्षेत्र में सामान्य प्रकार की प्रत्येक विविध का एक न्यूनतम प्रारूप होता है।

अशासित विविधताए

एक विविध को अशासित कहा जाता है यदि यह परिमेय घटता से आच्छादित है। एक अशासित विविध में न्यूनतम प्रारूप नहीं होता है, लेकिन एक अच्छा प्रतिस्थापी होता है, बिरकर, कैसिनी, हैकॉन और मैककर्नन ने दिखाया कि विशेषता शून्य के क्षेत्र में प्रत्येक अशासित विविधता एक फानो फाइबर समष्टि के लिए बीरेशनल है।[lower-alpha 1] यह फ़ानो फाइबर समष्टि और (सबसे दिलचस्प विशेष स्थिति के रूप में) फ़ानो विविध के बीरेशनल वर्गीकरण की समस्या की ओर जाता है। परिभाषा के अनुसार, एक प्रक्षेपी विविध X 'फैनो' है यदि एंटीकैनोनिकल बंडल पर्याप्त है। फ़ानो विविधताओ को बीजगणितीय विविधताओ के रूप में माना जा सकता है जो प्रक्षेपी समष्‍टि के समान हैं।

आयाम 2 में, बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक फ़ानो विविध (जिसे डेल पेज़ो सतह के रूप में जाना जाता है) परिमेय है। 1970 के दशक में एक प्रमुख खोज यह थी कि आयाम 3 से शुरू होकर, कई फानो विविधताए हैं जो परिमेय नहीं हैं। विशेष रूप से, समतल घन 3-गुना क्लेमेंस-ग्रिफिथ्स (1972) द्वारा परिमेय नहीं है, और समतल क्वार्टिक 3-गुना इस्कोस्किख-मैनिन (1971) द्वारा परिमेय नहीं है। बहरहाल, यह निर्धारित करने की समस्या कि वास्तव में कौन सी फ़ानो विविधताए परिमेय हैं, हल होने से बहुत दूर हैं। उदाहरण के लिए, यह ज्ञात नहीं है कि में n ≥ 4 के साथ कोई समतल घनी अतिसतह है या नहीं जो परिमेय नहीं है।

बीरेशनल स्‍वचालन समूह

बीजगणितीय विविधताए व्यापक रूप से भिन्न होती हैं क्योकि उनके पास कुछ बीरेशनल स्‍वचालन हैं। सामान्य प्रकार की हर विविध अत्यंत कठोर है, इस अर्थ में कि इसका बीरेशनल स्‍वचालन समूह परिमित है। दूसरे चरम पर, क्षेत्र k पर प्रक्षेपी समष्‍टि का बीरेशनल स्‍वचालन समूह, जिसे क्रेमोना समूह Crn(k) के रूप में जाना जाता है, n ≥ 2 के लिए बड़ा (एक मायने में, अनंत-आयामी) है। n = 2 के लिए, सम्मिश्र क्रेमोना समूह "द्विघात रूपांतरण"

[x,y,z] ↦ [1/x, 1/y, 1/z]

द्वारा मैक्स नोथेर और गुइडो कास्टेलनुवो द्वारा के स्‍वचालन समूह के साथ उत्पन्न होता है। इसके विपरीत, n ≥ 3 में क्रेमोना समूह बहुत अधिक रहस्य है, जनित्र की कोई स्पष्ट स्थिति ज्ञात नहीं है।

  1. इस्कोविसिख-मैनिन (1971) ने दिखाया कि एक सुचारू क्वार्टिक 3-गुना का बीरेशनल स्‍वचालन समूह इसके स्‍वचालन समूह के बराबर है, जो परिमित है। इस अर्थ में, क्वार्टिक 3-गुना परिमेय होने से बहुत दूर हैं, क्योंकि एक परिमेय विविधता का बीरेशनल स्‍वचालन समूह बहुत बड़ा है। तब से कई अन्य फानो फाइबर स्थानों में "बीरेशनल दृढ़ता" की इस घटना की खोज की गई है।[citation needed]

अनुप्रयोग

बीरेशनल ज्यामिति ने ज्यामिति के अन्य क्षेत्रों में, विशेष रूप से बीजगणितीय ज्यामिति में पारंपरिक समस्याओं में अनुप्रयोगों को पाया है।

प्रसिद्ध रूप से न्यूनतम प्रारूप का उपयोग सामान्य प्रकार की विविध के मोडुली समष्टि के निर्माण करने के लिए जानोस कॉलर और निकोलस शेफर्ड-बैरन द्वारा किया गया था, जिसे अब केएसबी मोडुली समष्टि के रूप में जाना जाता है।[5]

बीरेशनल ज्यामिति ने हाल ही में काहलर-आइंस्टीन मापन के लिए सामान्य अस्तित्व परिणामों के माध्यम से फैनो विविध की के-स्थिरता के अध्ययन में , बीरेशनल प्रारूप पर गणना करके के-स्थिरता का परीक्षण करने के लिए फ़ानो विविध के सुस्पष्ट निश्चर के विकास में, और फ़ानो विविध के मोडुली समष्टि के निर्माण में महत्वपूर्ण अनुप्रयोगों को पाया है।[6] बीरेशनल ज्यामिति में महत्वपूर्ण परिणाम जैसे बिरकर के फ़ानो विविध की सीमा के प्रमाण का उपयोग मोडुली समष्टि के लिए अस्तित्व के परिणामों को साबित करने के लिए किया गया है।

यह भी देखें

उद्धरण



टिप्पणियाँ

  1. Birkar et al. (2010, Corollary 1.3.3), implies that every uniruled variety in characteristic zero is birational to a Fano fiber space, using the easier result that a uniruled variety X is covered by a family of curves on which KX has negative degree. A reference for the latter fact is Debarre (2001, Corollary 4.11) and Example 4.7(1).


संदर्भ