ऊष्मागतिकी विभव: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(20 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{Short description|Scalar physical quantities representing system states}}
{{Short description|Scalar physical quantities representing system states}}
{{Use American English|date = February 2019}}
 
{{Thermodynamics|cTopic=Potentials}}
{{Thermodynamics|cTopic=Potentials}}
ऊष्मागतिकी विभव (या अधिक त्रुटिहीन रूप से, एक ऊष्मागतिकी संभावित ऊर्जा)<ref name="ISO 80000-5 20.4">ISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.4 Helmholtz energy, Helmholtz function</ref><ref name="ISO 80000-5 20.5">ISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.5, Gibbs energy, Gibbs function</ref> [[अदिश]] मात्रा है, जिसका प्रयोग एक प्रणाली की ऊष्मागतिकी [[अवस्था]] को निरूपण करने में किया जाता है। जिस प्रकार [[यांत्रिकी]] में जहां संभावित ऊर्जा को कार्य करने की विभव के रूप में परिभाषित किया जाता है उसी प्रकार विभिन्न संविभवओं के भिन्न-भिन्न अर्थ होते हैं। ऊष्मागतिक संभाव्यताओं की संकल्पना को 1886 में [[पियरे ड्यूहेम]] ने प्रारंभ किया तथा [[योशिय्याह विलार्ड गिब्स]] ने अपने पत्रों में मौलिक फंक्शन शब्द का उपयोग किया था।
एक मुख्य ऊष्मागतिकी विभव जिसकी भौतिक व्याख्या है, [[आंतरिक ऊर्जा]] {{mvar|U}} है। यह [[रूढ़िवादी बलों]] की दी गई प्रणाली के विन्यास की ऊर्जा है (इसीलिए इसे संभावित कहा जाता है) और मात्र संदर्भों (या डेटा) के परिभाषित समूह के संबंध में इसका अर्थ होता है। अन्य सभी ऊष्मागतिकी ऊर्जा विभव के लिए अभिव्यक्ति {{mvar|U}} के लिए एक अभिव्यक्ति से लीजेंड्रे ट्रांसफॉर्म के माध्यम से व्युत्पन्न हैं। दूसरे शब्दों में, प्रत्येक ऊष्मागतिकी विभव अन्य ऊष्मागतिकी विभव के बराबर होती है; प्रत्येक विभव दूसरों की एक भिन्न अभिव्यक्ति होती है।
[[ऊष्मप्रवैगिकी]] में, बाह्य बल, जैसे [[गुरुत्वाकर्षण]], को ऊष्मप्रवैगिकी विभव के अतिरिक्त कुल ऊर्जा में योगदान के रूप में गिना जाता है। उदाहरण के लिए, माउंट एवरेस्ट के शीर्ष पर बैठे भाप इंजन में काम कर रहे तरल पदार्थ में मारियाना ट्रेंच के तल की तुलना में गुरुत्वाकर्षण के कारण कुल ऊर्जा अधिक होती है, लेकिन वही ऊष्मागतिकी विभव होती है। ऐसा इसलिए है क्योंकि गुरुत्वाकर्षण संभावित ऊर्जा आंतरिक ऊर्जा जैसे ऊष्मागतिकी विभव के अतिरिक्त कुल ऊर्जा से संबंधित है। 
== विवरण और व्याख्या ==
Five common thermodynamic potentials are:<ref name="Alberty 2001 p1353">Alberty (2001) p. 1353</ref>
<noinclude><!--
This template is parameterized to allow suppression of any of the rows. By default, ie with no parameters, all rows are shown. Suppression is done by adding a parameter as follows:
noU=1 - Suppress internal energy
noF=1 - Suppress Helmholtz
noH=1 - Suppress enthalpy
noG=1 - Suppress Gibbs
noO=1 - Suppress Landau
For example:
{{Table of thermodynamic potentials|noU=1}}
would show all rows except internal energy.
The value 1 is arbitrary, it could be anything.
This functionality was provided as not all articles which use this table require all the rows
--></noinclude>
{| class="wikitable"
|-
! नाम
! प्रतीक
! सूत्र
! प्राकृतिक चर
|- {{#if: {{{noU|}}} | style="display:none" |}}
| [[आंतरिक ऊर्जा]]
| style="text-align:center;" | <math>U</math>
| <math>\int \left( T \, \mathrm{d}S - p \, \mathrm{d}V + \sum_i \mu_i \mathrm{d}N_i \right)</math>
| style="text-align:center;" | <math>S, V, \{N_i\}</math>
|- {{#if: {{{noF|}}} | style="display:none" |}}
| [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]]
| style="text-align:center;" | <math>F</math>
| <math>U - TS</math>
| style="text-align:center;" | <math>T, V, \{N_i\}</math>


|- {{#if: {{{noH|}}} | style="display:none" |}}
| [[तापीय धारिता]]
| style="text-align:center;" | <math>H</math>
| <math>U + pV</math>
| style="text-align:center;" | <math>S, p, \{N_i\}</math>


ऊष्मागतिकी क्षमता (या अधिक यथार्थ रूप में ऊष्मागतिक विभव ऊर्जा)<ref name="ISO 80000-5 20.4">ISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.4 Helmholtz energy, Helmholtz function</ref><ref name="ISO 80000-5 20.5">ISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.5, Gibbs energy, Gibbs function</ref> एक [[अदिश]] मात्रा है जिसका प्रयोग एक प्रणाली की ऊष्मागतिकी [[अवस्था]] को निरूपण करने में किया जाता है। जिस प्रकार [[यांत्रिकी]] में जहां संभावित ऊर्जा को कार्य करने की क्षमता के रूप में परिभाषित किया जाता है उसी प्रकार विभिन्न संक्षमताओं के अलग-अलग अर्थ होते हैं। ऊष्मागतिक संभाव्यताओं की संकल्पना को 1886 में [[पियरे ड्यूहेम]] ने प्रारंभ किया था। [[योशिय्याह विलार्ड गिब्स]] ने अपने पत्रों में मौलिक कार्यों शब्द का इस्तेमाल किया।
|- {{#if: {{{noG|}}} | style="display:none" |}}
| [[गिब्स मुक्त ऊर्जा]]
| style="text-align:center;" | <math>G</math>
| <math>U + pV - TS</math>
| style="text-align:center;" | <math>T, p, \{N_i\}</math>


एक मुख्य थर्माइडैनामिक क्षमता जिसमें भौतिक व्याख्या होती है वह [[आंतरिक ऊर्जा]] है {{mvar|U}}। टी [[रूढ़िवादी बलों]] की एक प्रदत्त प्रणाली के विन्यास की ऊर्जा है (इसीलिए इसे संभाव्य कहा जाता है) और केवल परिभाषित संदर्भ समुच्चय (या डेटा) के संदर्भ में इसका अर्थ है। अन्य सभी ऊष्मप्रवैगिकी ऊर्जा क्षमता के लिए एक्सप्रेशन यू के लिए एक एक्सप्रेशन से लीजेंड्रे ट्रांसफॉर्म के माध्यम से व्युत्पन्न हैं। दूसरे शब्दों में प्रत्येक तापीय क्षमता अन्य तापीय क्षमता के बराबर होती है;प्रत्येक क्षमता दूसरों की एक अलग अभिव्यक्ति है।
|- {{#if: {{{noO|}}} | style="display:none" |}}
| लैंडौ क्षमता, या भव्य क्षमता, or <br/>भव्य क्षमता
| style="text-align:center;" | <math>\Omega</math>, <math>\Phi_\text{G}</math>
| <math>U - T S -</math><math>\sum_i\,</math><math>\mu_i N_i</math>
| style="text-align:center;" | <math>T, V, \{\mu_i\}</math>


[[ऊष्मागतिकी]] में [[गुरुत्वाकर्षण]] जैसी बाह्य शक्तियों को ऊष्मागतिकी की क्षमता की अपेक्षा कुल ऊर्जा में योगदान के रूप में गिना जाता है। उदाहरण के लिए एवरेस्ट के शिखर पर बैठे भाप के इंजन में काम कर रहे तरल की शक्ति मारियाना खाई के तल पर स्थित गुरुत्वाकर्षण के कारण अधिक होती है लेकिन उतनी ही ऊष्मागतिकी शक्ति है। इसका कारण यह है कि गुरुत्वाकर्षण क्षमता की ऊर्जा तापीय ऊर्जा की बजाय आंतरिक ऊर्जा की कुल ऊर्जा से संबंधित है।
|}
<noinclude>


== विवरण और व्याख्या ==
</noinclude>
पाँच सामान्य थर्मोडायनामिक क्षमताएँ हैं:<ref name="Alberty 2001 p1353">Alberty (2001) p. 1353</ref>
 
{{table of thermodynamic potentials}}
 
 
 
जहां टी = [[तापमान]], एस = [[एन्ट्रापी]], पी = [[दबाव]], वी = [[आयतन (थर्मोडायनामिक्स)|आयतन (ऊष्मागतिकी्स)]] है। {{mvar|N<sub>i</sub>}} प्रणाली में {{mvar|i}} प्रकार के कणों की संख्या है और {{mvar|&mu;<sub>i</sub>}}, {{mvar|i}}-प्रकार के कण के लिए [[रासायनिक क्षमता|रासायनिक विभव]] है। सभी {{mvar|N<sub>i</sub>}} के समूह को भी प्राकृतिक चर के रूप में सम्मलित किया गया है, लेकिन इसे अनदेखा किया जा सकता है जब कोई रासायनिक प्रतिक्रिया नहीं हो रही है जो उन्हें बदलने का कारण बनती है। हेल्महोल्ट्ज़ मुक्त ऊर्जा आईएसओ/आईईसी मानक में है जिसे हेल्महोल्ट्ज़ ऊर्जा<ref name="ISO 80000-5 20.4"/> या हेल्महोल्ट्ज़ फ़ंक्शन कहा जाता है। इसे अधिकांशतः प्रतीक {{mvar|F}} द्वारा दर्शाया जाता है, लेकिन {{mvar|A}} का उपयोग [[आईयूपीऐसी]],<ref>Alberty (2001) p. 1376</ref> [[आईएसओ]] और अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन द्वारा पसंद किया जाता है।<ref>ISO/IEC 80000-5:2007, item 5-20.4</ref>


कहाँ {{mvar|T}} = [[तापमान]], {{mvar|S}} = [[एन्ट्रापी]], {{mvar|p}} = [[दबाव]], {{mvar|V}} = [[आयतन (थर्मोडायनामिक्स)]]। {{mvar|N<sub>i</sub>}} प्रकार के कणों की संख्या है {{mvar|i}} सिस्टम में और {{mvar|&mu;<sub>i</sub>}} एक के लिए [[रासायनिक क्षमता]] है {{mvar|i}}-प्रकार का कण। सभी का सेट {{mvar|N<sub>i</sub>}} को प्राकृतिक चर के रूप में भी शामिल किया गया है लेकिन इसे अनदेखा किया जा सकता है जब कोई रासायनिक प्रतिक्रिया नहीं हो रही है जो उन्हें बदलने का कारण बनती है। हेल्महोल्ट्ज़ मुक्त ऊर्जा आईएसओ/आईईसी मानक में है जिसे हेल्महोल्ट्ज़ ऊर्जा कहा जाता है<ref name="ISO 80000-5 20.4"/>या हेल्महोल्ट्ज़ समारोह। इसे अक्सर प्रतीक द्वारा दर्शाया जाता है {{mvar|F}}, लेकिन का उपयोग {{mvar|A}} [[IUPAC]] द्वारा पसंद किया जाता है,<ref>Alberty (2001) p. 1376</ref> [[आईएसओ]] और अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन।<ref>ISO/IEC 80000-5:2007, item 5-20.4</ref>
ये पांच सामान्य विभवएं सभी संभावित ऊर्जाएं हैं, लेकिन [[एन्ट्रापी]] विभवएं भी हैं। [[थर्मोडायनामिक वर्ग|ऊष्मागतिकी वर्ग]] का उपयोग कुछ संभावनाओं को वापस बुलाने और प्राप्त करने के लिए एक उपकरण के रूप में किया जा सकता है।
ये पांच सामान्य क्षमताएं सभी संभावित ऊर्जाएं हैं, लेकिन [[मुक्त एन्ट्रापी]] भी हैं। [[थर्मोडायनामिक वर्ग]] का उपयोग कुछ संभावनाओं को वापस बुलाने और प्राप्त करने के लिए एक उपकरण के रूप में किया जा सकता है।


जिस प्रकार यांत्रिकी में, जहाँ स्थितिज ऊर्जा को कार्य करने की क्षमता के रूप में परिभाषित किया जाता है, उसी प्रकार विभिन्न विभवों के अलग-अलग अर्थ होते हैं जैसे कि नीचे दिया गया है:
जिस प्रकार यांत्रिकी में, जहाँ स्थितिज ऊर्जा को कार्य करने की विभव के रूप में परिभाषित किया जाता है, उसी प्रकार विभिन्न विभवों के भिन्न-भिन्न अर्थ होते हैं जैसे कि नीचे दिया गया है:
* आंतरिक ऊर्जा ({{mvar|U}}) कार्य करने की क्षमता और ऊष्मा मुक्त करने की क्षमता है।
* आंतरिक ऊर्जा ({{mvar|U}}) कार्य करने की विभव और ऊष्मा मुक्त करने की विभव है।
* [[गिब्स मुक्त ऊर्जा]]<ref name="ISO 80000-5 20.5"/>({{mvar|G}}) गैर-यांत्रिक कार्य करने की क्षमता है।
* [[गिब्स मुक्त ऊर्जा]]<ref name="ISO 80000-5 20.5"/>({{mvar|G}}) गैर-यांत्रिक कार्य करने की विभव है।
* [[तापीय धारिता]] ({{mvar|H}}) गैर-यांत्रिक कार्य करने की क्षमता और ऊष्मा मुक्त करने की क्षमता है।
* [[तापीय धारिता]] ({{mvar|H}}) गैर-यांत्रिक कार्य करने की विभव और ऊष्मा मुक्त करने की विभव है।
* [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]]<ref name="ISO 80000-5 20.4"/>({{mvar|F}}) यांत्रिक कार्य और गैर-यांत्रिक कार्य करने की क्षमता है।
* [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]]<ref name="ISO 80000-5 20.4"/>({{mvar|F}}) यांत्रिक कार्य और गैर-यांत्रिक कार्य करने की विभव है।
इन अर्थों से (जो वास्तव में विशिष्ट परिस्थितियों में लागू होते हैं, जैसे निरंतर दबाव, तापमान, आदि), सकारात्मक परिवर्तनों के लिए (जैसे, {{math|Δ''U'' > 0}}), हम कह सकते हैं कि {{math|Δ''U''}} सिस्टम में जोड़ी गई ऊर्जा है, {{math|Δ''F''}} उस पर किया गया कुल कार्य है, {{math|Δ''G''}} उस पर किया जाने वाला गैर-यांत्रिक कार्य है, और {{math|Δ''H''}} तंत्र पर किए गए गैर-यांत्रिक कार्य और उसे दी गई ऊष्मा का योग है। [[रासायनिक संतुलन]] की गणना करते समय, या रासायनिक प्रतिक्रिया में सामग्रियों के गुणों को मापते समय थर्मोडायनामिक क्षमता बहुत उपयोगी होती है। रासायनिक प्रतिक्रियाएँ आमतौर पर कुछ बाधाओं जैसे निरंतर दबाव और तापमान, या निरंतर एन्ट्रापी और आयतन के तहत होती हैं, और जब यह सच होता है, तो एक समान थर्मोडायनामिक क्षमता होती है जो खेल में आती है। जैसे यांत्रिकी में, प्रणाली एक संभावित और संतुलन के कम मूल्य की ओर प्रवृत्त होगी, इन बाधाओं के तहत, क्षमता अपरिवर्तनीय न्यूनतम मान लेगी। थर्मोडायनामिक क्षमता का उपयोग उपयुक्त बाधा के तहत थर्मोडायनामिक सिस्टम से उपलब्ध ऊर्जा की कुल मात्रा का अनुमान लगाने के लिए भी किया जा सकता है।
इन अर्थों से (जो वास्तव में विशिष्ट परिस्थितियों में लागू होते हैं, जैसे निरंतर दबाव, तापमान, आदि), सकारात्मक परिवर्तनों के लिए (जैसे, {{math|Δ''U'' > 0}}), हम कह सकते हैं कि {{math|Δ''U''}} प्रणाली में जोड़ी गई ऊर्जा है, {{math|Δ''F''}} उस पर किया गया कुल कार्य है, {{math|Δ''G''}} उस पर किया जाने वाला गैर-यांत्रिक कार्य है, और {{math|Δ''H''}} तंत्र पर किए गए गैर-यांत्रिक कार्य और उसे दी गई ऊष्मा का योग है। [[रासायनिक संतुलन]] की गणना करते समय, या रासायनिक प्रतिक्रिया में सामग्रियों के गुणों को मापते समय ऊष्मागतिकी विभव बहुत उपयोगी होती है। रासायनिक प्रतिक्रियाएँ सामान्यतः कुछ बाधाओं जैसे निरंतर दबाव और तापमान, या निरंतर एन्ट्रापी और आयतन के अनुसार होती हैं, और जब यह सच होता है, तो एक समान ऊष्मागतिकी विभव होती है जो खेल में आती है। जैसे यांत्रिकी में, प्रणाली एक संभावित और संतुलन के कम मूल्य की ओर प्रवृत्त होगी, इन बाधाओं के अनुसार, विभव अपरिवर्तनीय न्यूनतम मान लेगी ऊष्मागतिकी विभव का उपयोग उपयुक्त बाधा के अनुसार ऊष्मागतिकी प्रणाली से उपलब्ध ऊर्जा की कुल मात्रा का अनुमान लगाने के लिए भी किया जा सकता है।


विशेष रूप से: (व्युत्पन्न के लिए [[न्यूनतम ऊर्जा का सिद्धांत]] देखें)<ref>Callen (1985) p. 153</ref>
विशेष रूप से: (व्युत्पन्न के लिए [[न्यूनतम ऊर्जा का सिद्धांत]] देखें)<ref>Callen (1985) p. 153</ref>
Line 29: Line 90:
* जब दबाव {{mvar|p}} और एक बंद प्रणाली के बाहरी मापदंडों को स्थिर रखा जाता है, थैलेपी {{mvar|H}} घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है।
* जब दबाव {{mvar|p}} और एक बंद प्रणाली के बाहरी मापदंडों को स्थिर रखा जाता है, थैलेपी {{mvar|H}} घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है।
* जब तापमान {{mvar|T}}, दबाव {{mvar|p}} और एक बंद प्रणाली के बाहरी मापदंडों को स्थिर रखा जाता है, गिब्स मुक्त ऊर्जा {{mvar|G}} घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है।
* जब तापमान {{mvar|T}}, दबाव {{mvar|p}} और एक बंद प्रणाली के बाहरी मापदंडों को स्थिर रखा जाता है, गिब्स मुक्त ऊर्जा {{mvar|G}} घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है।


== प्राकृतिक चर ==
== प्राकृतिक चर ==
प्रत्येक उष्मागतिक क्षमता के लिए, ऊष्मप्रवैगिकी चर होते हैं जिन्हें उष्मागतिक संतुलन स्थिति में संभावित मूल्य निर्दिष्ट करने के लिए स्थिर रखने की आवश्यकता होती है, जैसे गणितीय कार्य के लिए स्वतंत्र चर। इन चरों को उस क्षमता के प्राकृतिक चर कहा जाता है।<ref name="Alberty 2001 p1352">Alberty (2001) p. 1352</ref> संतुलन पर संभावित मूल्य निर्दिष्ट करने के लिए न केवल प्राकृतिक चर महत्वपूर्ण हैं, बल्कि इसलिए भी कि अगर उष्मागतिक क्षमता को उसके प्राकृतिक चर के कार्य के रूप में निर्धारित किया जा सकता है, सिस्टम के सभी उष्मागतिक गुणों को उसके प्राकृतिक चर के संबंध में उस क्षमता के आंशिक डेरिवेटिव लेकर पाया जा सकता है और यह चर के किसी अन्य संयोजन के लिए सही नहीं है। यदि ऊष्मागतिकी क्षमता को इसके प्राकृतिक चरों के फलन के रूप में नहीं दिया जाता तो वह साधारणतया इस तंत्र के सभी ऊष्मागतिकी गुणों का उत्पाहदन नहीं कर सकता।
प्रत्येक उष्मागतिक विभव के लिए, ऊष्मप्रवैगिकी चर होते हैं जिन्हें उष्मागतिक संतुलन स्थिति में संभावित मूल्य निर्दिष्ट करने के लिए स्थिर रखने की आवश्यकता होती है, जैसे गणितीय कार्य के लिए स्वतंत्र चर, इन चरों को उस विभव के प्राकृतिक चर कहा जाता है।<ref name="Alberty 2001 p1352">Alberty (2001) p. 1352</ref> संतुलन पर संभावित मूल्य निर्दिष्ट करने के लिए न मात्र प्राकृतिक चर महत्वपूर्ण हैं, अपितु इसलिए भी कि यदि उष्मागतिक विभव को उसके प्राकृतिक चर के कार्य के रूप में निर्धारित किया जा सकता है, प्रणाली के सभी उष्मागतिक गुणों को उसके प्राकृतिक चर के संबंध में उस विभव के आंशिक डेरिवेटिव लेकर पाया जा सकता है और यह चर के किसी अन्य संयोजन के लिए उत्तम नहीं है। यदि ऊष्मागतिकी विभव को इसके प्राकृतिक चरों के फलन के रूप में नहीं दिया जाता तो वह साधारणतया इस तंत्र के सभी ऊष्मागतिकी गुणों का उत्पाहदन नहीं कर सकता है।


उपरोक्त चार ऊष्मागतिकी क्षमताओं में से प्रत्येक के लिए प्राकृतिक चर का सेट टी, एस, पी, वी चर के संयोजन से बनता है, [[संयुग्मी चरों]] को छोड़कर ऊर्जा के लिए संयुग्मित चर सहित संभावित के लिए टी - एस अथवा पी - वी चरों की कोई प्राकृतिक चर नहीं है। इस नियम के लिए एक अपवाद Ni-μi संयुग्म जोड़े हैं क्योंकि थर्मोडायनामिक क्षमता में इन्हें अनदेखा करने का कोई कारण नहीं है, और वास्तव में हम प्रत्येक प्रजाति के लिए चार संभावितों को अतिरिक्त रूप से परिभाषित कर सकते हैं।<ref>Alberty (2001) p. 1355</ref> आईयूपीएसी नोटेशन का उपयोग करना जिसमें ब्रैकेट में प्राकृतिक चर होते हैं (मुख्य चार के अलावा), हमारे पास है:  
उपरोक्त चार ऊष्मागतिकी विभवओं में से प्रत्येक के लिए प्राकृतिक चर का समूह टी, एस, पी, वी चर के संयोजन से बनता है, [[संयुग्मी चरों]] को छोड़कर ऊर्जा के लिए संयुग्मित चर सहित संभावित के लिए टी - एस अथवा पी - वी चरों की कोई प्राकृतिक चर नहीं है। इस नियम के लिए एक अपवाद Ni-μi संयुग्म जोड़े हैं क्योंकि ऊष्मागतिकी विभव में इन्हें अनदेखा करने का कोई कारण नहीं है, और वास्तव में हम प्रत्येक प्रजाति के लिए चार संभावितों को अतिरिक्त रूप से परिभाषित कर सकते हैं।<ref>Alberty (2001) p. 1355</ref> आईयूपीएसी अंकन का उपयोग करना जिसमें ब्रैकेट में प्राकृतिक चर होते हैं (मुख्य चार के अतिरिक्त), जो हमारे पास है:  


{| class="wikitable"
{| class="wikitable"
|-
|-
!Thermodynamic potential name
!ऊष्मागतिकी संभावित नाम
! Formula
! सूत्र
! Natural variables
! प्राकृतिक चर
|-
|-
|[[Internal energy]]
|[[Internal energy|आंतरिक ऊर्जा]]
|<math>U[\mu_j] = U-\mu_jN_j</math>
|<math>U[\mu_j] = U-\mu_jN_j</math>
| align="center" |<math>S,V,\{N_{i\ne j}\},\mu_j</math>
| align="center" |<math>S,V,\{N_{i\ne j}\},\mu_j</math>
|-
|-
|[[Helmholtz free energy]]  
|[[Helmholtz free energy|हेल्महोल्ट्ज़ मुक्त ऊर्जा]]
|<math>F[\mu_j] = U-TS-\mu_jN_j</math>
|<math>F[\mu_j] = U-TS-\mu_jN_j</math>
| align="center" |<math>T,V,\{N_{i\ne j}\},\mu_j</math>
| align="center" |<math>T,V,\{N_{i\ne j}\},\mu_j</math>
|-
|-
|[[Enthalpy]]
|[[Enthalpy|तापीय धारिता]]
|<math>H[\mu_j] = U+pV-\mu_jN_j</math>
|<math>H[\mu_j] = U+pV-\mu_jN_j</math>
| align="center" |<math>S,p,\{N_{i\ne j}\},\mu_j</math>
| align="center" |<math>S,p,\{N_{i\ne j}\},\mu_j</math>
|-
|-
|[[Gibbs free energy|Gibbs energy]]
|[[Gibbs free energy|गिब्स ऊर्जा]]
|<math>G[\mu_j] = U+pV-TS-\mu_jN_j</math>
|<math>G[\mu_j] = U+pV-TS-\mu_jN_j</math>
| align="center" |<math>T,p,\{N_{i\ne j}\},\mu_j</math>
| align="center" |<math>T,p,\{N_{i\ne j}\},\mu_j</math>
|}
|}


यदि मात्र एक प्रजाति है, तो हम कर चुके हैं। परंतु यदि दो प्रजातियां होंगी तो उसमें और भी अधिक संभावनाएं होंगी जैसे कि <math>U[\mu_1,\mu_2] = U-\mu_1 N_1-\mu_2 N_2</math> और इसी प्रकार यदि ऊष्मागतिकी स्थान के डी आयाम हैं तो {{math|2<sup>''D''</sup>}} अद्वितीय ऊष्मागतिकी विभव है। सबसे सरल उदाहरण के लिए एक एकल चरण आदर्श गैस के तीन आयाम होंगे जिसमें आठ ऊष्मागतिकी की संभाविक अधिकार होता है।


यदि केवल एक प्रजाति है, तो हम कर चुके हैं। परंतु यदि दो प्रजातियां होंगी तो उसमें और भी अधिक संभावनाएं होंगी जैसे कि <math>U[\mu_1,\mu_2] = U-\mu_1 N_1-\mu_2 N_2</math> और इसी तरह। यदि थर्मोडायनेमिक स्थान के डी आयाम हैं तो 2 डी अद्वितीय थर्मोडायनेमिक क्षमता है। सबसे सरल उदाहरण के लिए एक एकल चरण आदर्श गैस के तीन आयाम होंगे जिसमें आठ ऊष्मागतिकी की संभाविक शक्ति होगी।
== मौलिक समीकरण ==
{{main|मौलिक ऊष्मागतिकी संबंध}}


== मौलिक समीकरण ==
ऊष्मप्रवैगिकी विभव की परिभाषाओं को विभेदित किया जा सकता है और ऊष्मप्रवैगिकी के पहले और दूसरे नियमों के साथ-साथ अंतर समीकरणों का एक समूह जिसे मौलिक समीकरणों के रूप में जाना जाता है।<ref name="Alberty 2001 p1354">Alberty (2001) p. 1354</ref> (वास्तव में वे सभी एक ही मौलिक ऊष्मागतिकी संबंध के भाव हैं, लेकिन भिन्न-भिन्न चर में व्यक्त किए जाते हैं।) ऊष्मागतिकी्स के पहले नियम से, आंतरिक ऊर्जा में कोई अंतर परिवर्तन प्रणाली में नवीनतम कणों को जोड़ने के कारण किसी भी बदलाव के साथ-साथ पर्यावरण पर प्रणाली द्वारा किए गए काम से घटाए गए प्रणाली में बहने वाली गर्मी के योग के रूप में लिखा जा सकता है:
{{main|Fundamental thermodynamic relation}}
ऊष्मप्रवैगिकी क्षमता की परिभाषाओं को विभेदित किया जा सकता है और ऊष्मप्रवैगिकी के पहले और दूसरे नियमों के साथ-साथ अंतर समीकरणों का एक सेट जिसे मौलिक समीकरणों के रूप में जाना जाता है।<ref name="Alberty 2001 p1354">Alberty (2001) p. 1354</ref> (वास्तव में वे सभी एक ही मौलिक थर्मोडायनामिक संबंध के भाव हैं, लेकिन अलग-अलग चर में व्यक्त किए जाते हैं।) थर्मोडायनामिक्स के पहले नियम से, आंतरिक ऊर्जा में कोई अंतर परिवर्तन {{mvar|U}सिस्टम में नए कणों को जोड़ने के कारण किसी भी बदलाव के साथ-साथ पर्यावरण पर सिस्टम द्वारा किए गए काम से घटाए गए सिस्टम में बहने वाली गर्मी के योग के रूप में लिखा जा सकता है:


:<math>\mathrm{d}U = \delta Q - \delta W+\sum_i \mu_i\,\mathrm{d}N_i</math>
:<math>\mathrm{d}U = \delta Q - \delta W+\sum_i \mu_i\,\mathrm{d}N_i</math>
कहाँ {{math|''δQ''}} प्रणाली में अतिसूक्ष्म ऊष्मा प्रवाह है, और {{math|''δW''}} तंत्र द्वारा किया गया अतिसूक्ष्म कार्य है, {{mvar|&mu;<sub>i</sub>}} कण प्रकार की रासायनिक क्षमता है {{mvar|i}} और {{mvar|N<sub>i</sub>}} प्रकार की संख्या है {{mvar|i}} कण। (कोई भी नहीं {{math|''δQ''}} और न {{math|''δW''}} [[सटीक अंतर]] हैं, यानी, वे थर्मोडायनामिक प्रक्रिया पथ-निर्भर हैं। इसलिए, इन चरों में छोटे परिवर्तन के साथ प्रतिनिधित्व किया जाता है {{math|<VAR>&delta;</VAR>}} इसके बजाय {{math|d}}.)
जहाँ {{math|''δQ''}} प्रणाली में अतिसूक्ष्म ऊष्मा प्रवाह है, और {{math|''δW''}} प्रणाली द्वारा किया गया अतिसूक्ष्म कार्य है, {{mvar|&mu;<sub>i</sub>}} कण प्रकार {{mvar|i}} की रासायनिक विभव है और {{mvar|N<sub>i</sub>}} प्रकार {{mvar|i}} कणों की संख्या है। (न तो {{math|''δQ''}} और न ही {{math|''δW''}} [[सटीक अंतर|त्रुटिहीन अंतर]] अंतर हैं, यानी, वे ऊष्मागतिकी प्रक्रिया पथ-निर्भर हैं। इन चरों में छोटे परिवर्तन, इसलिए, {{math|d}} के बजाय {{math|<VAR>&delta;</VAR>}} के साथ दर्शाए जाते हैं।)


ऊष्मप्रवैगिकी के दूसरे नियम के द्वारा, हम राज्य कार्यों और उनके अंतरों के संदर्भ में आंतरिक ऊर्जा परिवर्तन को व्यक्त कर सकते हैं। प्रतिवर्ती परिवर्तनों के मामले में हमारे पास:
ऊष्मप्रवैगिकी के दूसरे नियम के द्वारा, हम स्टेट फंक्शन और उनके अंतरों के संदर्भ में आंतरिक ऊर्जा परिवर्तन को व्यक्त कर सकते हैं। प्रतिवर्ती परिवर्तनों के स्थिति में हमारे पास:


:<math>\delta Q = T\,\mathrm{d}S</math>
:<math>\delta Q = T\,\mathrm{d}S</math>
:<math>\delta W = p\,\mathrm{d}V</math>
:<math>\delta W = p\,\mathrm{d}V</math>
कहाँ
जहाँ
: {{mvar|T}} तापमान है,
: {{mvar|T}} तापमान है,
: {{mvar|S}} एंट्रॉपी है,
: {{mvar|S}} एंट्रॉपी है,
: {{mvar|p}} दबाव है,
: {{mvar|p}} दबाव है,
और {{mvar|V}} वॉल्यूम (थर्मोडायनामिक्स) है, और समानता प्रतिवर्ती प्रक्रियाओं के लिए है।
और {{mvar|V}} वॉल्यूम (ऊष्मागतिकी्स) है, और समानता प्रतिवर्ती प्रक्रियाओं के लिए है।


यह क्वासिस्टेटिक रिवर्सिबल परिवर्तन के मामले में आंतरिक ऊर्जा के मानक अंतर रूप की ओर जाता है:
यह क्वासिस्टेटिक रिवर्सिबल परिवर्तन के स्थिति में आंतरिक ऊर्जा के मानक अंतर रूप की ओर जाता है:


:<math>\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V+\sum_i \mu_i\,\mathrm{d}N_i</math>
:<math>\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V+\sum_i \mu_i\,\mathrm{d}N_i</math>
तब से {{mvar|U}}, {{mvar|S}} और {{mvar|V}} राज्य के थर्मोडायनामिक कार्य हैं (जिन्हें राज्य कार्य भी कहा जाता है), उपरोक्त संबंध मनमाना गैर-प्रतिवर्ती परिवर्तनों के लिए भी लागू होता है। अगर सिस्टम में केवल वॉल्यूम की तुलना में अधिक बाहरी चर हैं जो बदल सकते हैं, मौलिक थर्मोडायनामिक संबंध सामान्यीकरण करता है:
तब से {{mvar|U}}, {{mvar|S}} और {{mvar|V}} स्टेट के ऊष्मागतिकी कार्य हैं (जिन्हें स्टेट कार्य भी कहा जाता है), उपरोक्त संबंध मनमाना गैर-प्रतिवर्ती परिवर्तनों के लिए भी लागू होता है। यदि प्रणाली में मात्र वॉल्यूम की तुलना में अधिक बाहरी चर हैं जो बदल सकते हैं, मौलिक ऊष्मागतिकी संबंध सामान्यीकरण करता है:


:<math>dU = T\,\mathrm{d}S - p\,\mathrm{d}V + \sum_j \mu_j\,\mathrm{d}N_j + \sum_i X_i \, \mathrm{d}x_{i} </math>
:<math>dU = T\,\mathrm{d}S - p\,\mathrm{d}V + \sum_j \mu_j\,\mathrm{d}N_j + \sum_i X_i \, \mathrm{d}x_{i} </math>
यहां ही {{mvar|X<sub>i</sub>}} बाहरी चरों के अनुरूप [[सामान्यीकृत बल]] हैं {{mvar|x<sub>i</sub>}}.<ref>For example, ionic species ''N<sub>j</sub>'' (measured in [[Mole (unit)|moles]]) held at a certain potential ''V<sub>j</sub>'' will include the term <math>\sum_j V_j \mathrm{d}q_j = F\sum_j V_j z_j \mathrm{d}N_j</math> where ''F'' is the [[Faraday constant]] and ''z<sub>j</sub>'' is the multiple of the elementary charge of the ion.</ref>
यहाँ {{mvar|X<sub>i</sub>}} बाहरी चर {{mvar|x<sub>i</sub>}} के अनुरूप [[सामान्यीकृत बल]] हैं।<ref>For example, ionic species ''N<sub>j</sub>'' (measured in [[Mole (unit)|moles]]) held at a certain potential ''V<sub>j</sub>'' will include the term <math>\sum_j V_j \mathrm{d}q_j = F\sum_j V_j z_j \mathrm{d}N_j</math> where ''F'' is the [[Faraday constant]] and ''z<sub>j</sub>'' is the multiple of the elementary charge of the ion.</ref>
लीजेंड्रे ट्रांसफॉर्मेशन को बार-बार लागू करते हुए, निम्नलिखित अंतर संबंध चार संभावितों (मौलिक थर्मोडायनामिक समीकरण या मौलिक थर्मोडायनामिक संबंध) के लिए धारण करते हैं:


{| border="0" cellpadding="2" style="margin: 0 0 1em 1em"
लीजेंड्रे परिवर्तन को बार-बार लागू करते हुए, निम्नलिखित अंतर संबंध चार संभावितों (मौलिक ऊष्मागतिकी समीकरण या मौलिक ऊष्मागतिकी संबंध) के लिए धारण करते हैं:
 
{| border="0" cellpadding="2" style="margin: 0 0 1em 1em"
|-  
|-  
| <math>\mathrm{d}U</math>||<math>\!\!=</math>  ||               ||<math>T\mathrm{d}S</math>
| <math>\mathrm{d}U</math>||<math>\!\!=</math>  || ||<math>T\mathrm{d}S</math>
||<math>-</math> ||<math>p\mathrm{d}V</math>||<math>+\sum_i \mu_i \,\mathrm{d}N_i</math>
||<math>-</math> ||<math>p\mathrm{d}V</math>||<math>+\sum_i \mu_i \,\mathrm{d}N_i</math>
|-  
|-  
Line 95: Line 168:
||<math>-</math> ||<math>p\mathrm{d}V</math>||<math>+\sum_i \mu_i \,\mathrm{d}N_i</math>
||<math>-</math> ||<math>p\mathrm{d}V</math>||<math>+\sum_i \mu_i \,\mathrm{d}N_i</math>
|-
|-
| <math>\mathrm{d}H</math>||<math>\!\!=</math>  ||               ||<math>T\,\mathrm{d}S</math>
| <math>\mathrm{d}H</math>||<math>\!\!=</math>  || ||<math>T\,\mathrm{d}S</math>
||<math>+</math> ||<math>V\mathrm{d}p</math>||<math>+\sum_i \mu_i \,\mathrm{d}N_i</math>
||<math>+</math> ||<math>V\mathrm{d}p</math>||<math>+\sum_i \mu_i \,\mathrm{d}N_i</math>
|-  
|-  
Line 101: Line 174:
||<math>+</math> ||<math>V\mathrm{d}p</math>||<math>+\sum_i \mu_i \,\mathrm{d}N_i</math>
||<math>+</math> ||<math>V\mathrm{d}p</math>||<math>+\sum_i \mu_i \,\mathrm{d}N_i</math>
|}
|}
उपरोक्त समीकरणों में से प्रत्येक के दायीं ओर के अपरिमित गुण बायीं ओर की क्षमता के प्राकृतिक चर हैं। सिस्टम के अन्य थर्मोडायनामिक क्षमता के लिए समान समीकरण विकसित किए जा सकते हैं। प्रत्येक थर्मोडायनामिक क्षमता के लिए एक मूलभूत समीकरण होगा, जिसके परिणामस्वरूप कुल होगा {{math|2<sup>''D''</sup>}} मौलिक समीकरण।
उपरोक्त समीकरणों में से प्रत्येक के दायीं ओर के अपरिमित गुण बायीं ओर की विभव के प्राकृतिक चर हैं। प्रणाली के अन्य ऊष्मागतिकी विभव के लिए समान समीकरण विकसित किए जा सकते हैं। प्रत्येक ऊष्मागतिकी विभव के लिए एक मूलभूत समीकरण होगा, जिसके परिणामस्वरूप कुल {{math|2<sup>''D''</sup>}} मौलिक समीकरण होता है।


चार ऊष्मप्रवैगिकी क्षमता के बीच के अंतर को निम्नानुसार संक्षेपित किया जा सकता है:
चार ऊष्मप्रवैगिकी विभव के बीच के अंतर को निम्नानुसार संक्षेपित किया जा सकता है:


:<math>\mathrm{d}(pV) = \mathrm{d}H - \mathrm{d}U = \mathrm{d}G - \mathrm{d}F </math>
:<math>\mathrm{d}(pV) = \mathrm{d}H - \mathrm{d}U = \mathrm{d}G - \mathrm{d}F </math>
Line 109: Line 182:




== राज्य के समीकरण ==
== स्टेट के समीकरण ==
हम उपरोक्त समीकरणों का उपयोग कुछ थर्मोडायनामिक मापदंडों की कुछ विभेदक परिभाषाओं को प्राप्त करने के लिए कर सकते हैं। अगर हम परिभाषित करते हैं {{math|&Phi;}} थर्मोडायनामिक क्षमता में से किसी के लिए खड़े होने के लिए, उपरोक्त समीकरण इस प्रकार के हैं:
हम उपरोक्त समीकरणों का उपयोग कुछ ऊष्मागतिकी मापदंडों की कुछ विभेदक परिभाषाओं को प्राप्त करने के लिए कर सकते हैं। यदि हम परिभाषित करते हैं {{math|&Phi;}} ऊष्मागतिकी विभव में से किसी के लिए खड़े होने के लिए, उपरोक्त समीकरण इस प्रकार के हैं:


:<math>\mathrm{d}\Phi=\sum_i x_i\,\mathrm{d}y_i</math>
:<math>\mathrm{d}\Phi=\sum_i x_i\,\mathrm{d}y_i</math>
कहाँ {{mvar|x<sub>i</sub>}} और {{mvar|y<sub>i</sub>}} संयुग्म जोड़े हैं, और {{mvar|y<sub>i</sub>}} क्षमता के प्राकृतिक चर हैं {{math|&Phi;}}. [[श्रृंखला नियम]] से यह इस प्रकार है:
जहाँ {{mvar|x<sub>i</sub>}} और {{mvar|y<sub>i</sub>}} संयुग्म जोड़े हैं, और {{mvar|y<sub>i</sub>}} विभव के प्राकृतिक चर हैं {{math|&Phi;}}. [[श्रृंखला नियम]] से यह इस प्रकार है:


:<math>x_j=\left(\frac{\partial \Phi}{\partial y_j}\right)_{\{y_{i\ne j}\}}</math>
:<math>x_j=\left(\frac{\partial \Phi}{\partial y_j}\right)_{\{y_{i\ne j}\}}</math>
कहाँ {{math|{''y''<sub>''i'' ≠ ''j''</sub><nowiki>}</nowiki>}} के सभी प्राकृतिक चरों का समुच्चय है {{math|&Phi;}} के अलावा {{mvar|y<sub>j</sub>}} जिन्हें स्थिरांक के रूप में रखा जाता है। यह उनके प्राकृतिक चर के संबंध में क्षमता के डेरिवेटिव के संदर्भ में विभिन्न थर्मोडायनामिक मापदंडों के लिए अभिव्यक्ति उत्पन्न करता है। इन समीकरणों को राज्य के समीकरण के रूप में जाना जाता है क्योंकि वे थर्मोडायनामिक राज्य के पैरामीटर निर्दिष्ट करते हैं।<ref>Callen (1985) p. 37</ref> अगर हम खुद को संभावनाओं तक सीमित रखते हैं {{mvar|U}} (आंतरिक ऊर्जा), {{mvar|F}} (हेल्महोल्ट्ज़ मुक्त ऊर्जा), {{mvar|H}} (एन्थैल्पी) और {{mvar|G}} (गिब्स मुक्त ऊर्जा), तो हमारे पास अवस्था के निम्नलिखित समीकरण हैं (प्राकृतिक चरों को दर्शाने वाले सबस्क्रिप्ट जिन्हें स्थिरांक के रूप में रखा जाता है):
जहाँ {{math|{''y''<sub>''i'' ≠ ''j''</sub><nowiki>}</nowiki>}} के सभी प्राकृतिक चरों का समुच्चय है {{math|&Phi;}} के अतिरिक्त {{mvar|y<sub>j</sub>}} जिन्हें स्थिरांक के रूप में रखा जाता है। यह उनके प्राकृतिक चर के संबंध में विभव के डेरिवेटिव के संदर्भ में विभिन्न ऊष्मागतिकी मापदंडों के लिए अभिव्यक्ति उत्पन्न करता है। इन समीकरणों को स्टेट के समीकरण के रूप में जाना जाता है क्योंकि वे ऊष्मागतिकी स्टेट के पैरामीटर निर्दिष्ट करते हैं।<ref>Callen (1985) p. 37</ref> यदि हम खुद को संभावनाओं तक सीमित रखते हैं {{mvar|U}} (आंतरिक ऊर्जा), {{mvar|F}} (हेल्महोल्ट्ज़ मुक्त ऊर्जा), {{mvar|H}} (एन्थैल्पी) और {{mvar|G}} (गिब्स मुक्त ऊर्जा), तो हमारे पास अवस्था के निम्नलिखित समीकरण हैं (प्राकृतिक चरों को दर्शाने वाले सबस्क्रिप्ट जिन्हें स्थिरांक के रूप में रखा जाता है):


:<math>
:<math>
Line 138: Line 211:
\left(\frac{\partial \phi}{\partial N_j}\right)_{X,Y,\{N_{i\ne j}\}}
\left(\frac{\partial \phi}{\partial N_j}\right)_{X,Y,\{N_{i\ne j}\}}
</math>
</math>
जहां, अंतिम समीकरण में, {{mvar|ϕ}} थर्मोडायनामिक क्षमता में से कोई भी है ({{mvar|U}}, {{mvar|F}}, {{mvar|H}}, या {{mvar|G}}), और <math>{X,Y,\{N_{i\ne j}\}}</math> को छोड़कर, उस क्षमता के लिए प्राकृतिक चरों का समुच्चय है {{mvar|N<sub>i</sub>}}. यदि हम सभी थर्मोडायनामिक क्षमता का उपयोग करते हैं, तो हमारे पास स्थिति के अधिक समीकरण होंगे जैसे कि
जहां, अंतिम समीकरण में, {{mvar|ϕ}} ऊष्मागतिकी विभव में से कोई भी है ({{mvar|U}}, {{mvar|F}}, {{mvar|H}}, या {{mvar|G}}), और <math>{X,Y,\{N_{i\ne j}\}}</math> को छोड़कर, उस विभव के लिए प्राकृतिक चरों का समुच्चय है {{mvar|N<sub>i</sub>}}. यदि हम सभी ऊष्मागतिकी विभव का उपयोग करते हैं, तो हमारे पास स्थिति के अधिक समीकरण होंगे जैसे कि


:<math>
:<math>
-N_j=\left(\frac{\partial U[\mu_j]}{\partial \mu_j}\right)_{S,V,\{N_{i\ne j}\}}
-N_j=\left(\frac{\partial U[\mu_j]}{\partial \mu_j}\right)_{S,V,\{N_{i\ne j}\}}
</math>
</math>
और इसी तरह। सभी में, यदि थर्मोडायनामिक स्थान है {{mvar|D}} आयाम, तो वहाँ होगा {{mvar|D}} प्रत्येक क्षमता के लिए समीकरण, जिसके परिणामस्वरूप कुल योग होता है {{math|''D'' 2<sup>''D''</sup>}} राज्य के समीकरण क्योंकि {{math|2<sup>''D''</sup>}} थर्मोडायनामिक क्षमताएं मौजूद हैं। अगर {{mvar|D}} किसी विशेष क्षमता के लिए राज्य के समीकरण ज्ञात हैं, तो उस क्षमता के लिए मौलिक समीकरण (यानी, थर्मोडायनामिक क्षमता का सटीक अंतर) निर्धारित किया जा सकता है। इसका मतलब यह है कि प्रणाली के बारे में सभी उष्मागतिक जानकारी ज्ञात हो जाएगी क्योंकि किसी भी अन्य क्षमता के लिए मौलिक समीकरणों को लेजेंड्रे परिवर्तन के माध्यम से पाया जा सकता है और संभावित के आंशिक डेरिवेटिव के रूप में प्रत्येक क्षमता के लिए राज्य के संबंधित समीकरणों को भी पाया जा सकता है।
और इसी प्रकार सभी में, यदि ऊष्मागतिकी स्थान {{mvar|D}} आयाम है, तो वहाँ होगा {{mvar|D}} प्रत्येक विभव के लिए समीकरण, जिसके परिणामस्वरूप कुल योग होता है {{math|''D'' 2<sup>''D''</sup>}} स्टेट के समीकरण क्योंकि {{math|2<sup>''D''</sup>}} ऊष्मागतिकी विभवएं उपलब्ध हैं। यदि {{mvar|D}} किसी विशेष विभव के लिए स्टेट के समीकरण ज्ञात हैं, तो उस विभव के लिए मौलिक समीकरण (अर्थात, ऊष्मागतिकी विभव का त्रुटिहीन अंतर) निर्धारित किया जा सकता है। इसका मतलब यह है कि प्रणाली के बारे में सभी उष्मागतिक जानकारी ज्ञात हो जाएगी क्योंकि किसी भी अन्य विभव के लिए मौलिक समीकरणों को लेजेंड्रे परिवर्तन के माध्यम से पाया जा सकता है और संभावित के आंशिक डेरिवेटिव के रूप में प्रत्येक विभव के लिए स्टेट के संबंधित समीकरणों को भी पाया जा सकता है।


== थर्मोडायनामिक क्षमता का मापन ==
== ऊष्मागतिकी विभव का मापन ==


राज्य के उपरोक्त समीकरण शारीरिक रूप से मापने योग्य मापदंडों का उपयोग करके थर्मोडायनामिक क्षमता में प्रयोगात्मक रूप से परिवर्तन को मापने के तरीकों का सुझाव देते हैं। उदाहरण के लिए मुक्त ऊर्जा भाव
स्टेट के उपरोक्त समीकरण शारीरिक रूप से मापने योग्य मापदंडों का उपयोग करके ऊष्मागतिकी विभव में प्रयोगात्मक रूप से परिवर्तन को मापने के तरीकों का सुझाव देते हैं। उदाहरण के लिए मुक्त ऊर्जा भाव


:<math>
:<math>
Line 161: Line 234:
:<math>
:<math>
\Delta G = \int_{P1}^{P2}V\,\mathrm{d}p\,\,\,\,
\Delta G = \int_{P1}^{P2}V\,\mathrm{d}p\,\,\,\,
</math>(निरंतर टी पर, {एन<sub>j</sub>} )
</math>(निरंतर टी पर, {N<sub>j</sub>} )


:<math>
:<math>
\Delta F = -\int_{V1}^{V2}p\,\mathrm{d}V\,\,\,\,
\Delta F = -\int_{V1}^{V2}p\,\mathrm{d}V\,\,\,\,
</math>(निरंतर टी पर, {एन<sub>j</sub>} )
</math>(निरंतर टी पर, {N<sub>j</sub>} )
 
जिसे दबाव, तापमान और आयतन के मापने योग्य चर की देख-रेख के द्वारा मापा जा सकता है। थैलेपी और (जो गर्मी की मात्रा को मापता है ΔQ एक प्रणाली द्वारा जारी या अवशोषित) आंतरिक ऊर्जा में परिवर्तन [[उष्मामिति]] द्वारा मापा जा सकता है।


जिसे दबाव, तापमान और आयतन के मापने योग्य चर की निगरानी के द्वारा मापा जा सकता है। थैलेपी और आंतरिक ऊर्जा में परिवर्तन [[उष्मामिति]] द्वारा मापा जा सकता है (जो गर्मी की मात्रा को मापता है ΔQ एक प्रणाली द्वारा जारी या अवशोषित)। भाव
भाव


:<math>
:<math>
Line 177: Line 252:
:<math>
:<math>
\Delta H = \int_{S1}^{S2}T\,\mathrm{d}S = \Delta Q\,\,\,\,
\Delta H = \int_{S1}^{S2}T\,\mathrm{d}S = \Delta Q\,\,\,\,
</math>(निरंतर पी पर, {एन<sub>j</sub>} )
</math>(निरंतर पी पर, {N<sub>j</sub>} )


:<math>
:<math>
\Delta U = \int_{S1}^{S2}T\,\mathrm{d}S = \Delta Q\,\,\,\,
\Delta U = \int_{S1}^{S2}T\,\mathrm{d}S = \Delta Q\,\,\,\,
</math>(स्थिर वी पर, {एन<sub>j</sub>} )
</math>(स्थिर वी पर, {N<sub>j</sub>} )


ध्यान दें कि ये माप स्थिरांक {N पर बनाए गए हैं<sub>j</sub>} और इसलिए उन स्थितियों पर लागू नहीं होते जिनमें रासायनिक प्रतिक्रियाएँ होती हैं।
ध्यान दें कि ये माप स्थिरांक {N<sub>j</sub> पर बनाए गए हैं} और इसलिए उन स्थितियों पर लागू नहीं होते जिनमें रासायनिक प्रतिक्रियाएँ होती हैं।


== मैक्सवेल संबंध ==
== मैक्सवेल संबंध ==
{{Main|Maxwell relations}}
{{Main|मैक्सवेल संबंध}}


पुन: परिभाषित करें {{mvar|x<sub>i</sub>}} और {{mvar|y<sub>i</sub>}} संयुग्म जोड़े होने के लिए, और {{mvar|y<sub>i</sub>}} कुछ क्षमता के प्राकृतिक चर होने के लिए {{math|&Phi;}}. हम राज्य समीकरणों के क्रॉस डिफरेंशियल ले सकते हैं, जो निम्नलिखित संबंधों का पालन करते हैं:
पुन: परिभाषित करें {{mvar|x<sub>i</sub>}} और {{mvar|y<sub>i</sub>}} संयुग्म जोड़े होने के लिए, और {{mvar|y<sub>i</sub>}} कुछ विभव के प्राकृतिक चर होने के लिए {{math|&Phi;}}, हम स्टेट समीकरणों के क्रॉस डिफरेंशियल ले सकते हैं, जो निम्नलिखित संबंधों का पालन करते हैं:


:<math>
:<math>
Line 201: Line 276:
\right)_{\{y_{i\ne k}\}}
\right)_{\{y_{i\ne k}\}}
</math>
</math>
इनसे हमें [[मैक्सवेल संबंध]] मिलते हैं।<ref name="Alberty 2001 p1353"/><ref>Callen (1985) p. 181</ref> वहां {{sfrac|(''D'' − 1)|2}} उनमें से प्रत्येक क्षमता के लिए कुल दे रही है {{sfrac|''D''(''D'' − 1)|2}} सभी में समीकरण। अगर हम खुद को प्रतिबंधित करते हैं {{mvar|U}}, {{mvar|F}}, {{mvar|H}}, {{mvar|G}}
इनसे हमें [[मैक्सवेल संबंध]] मिलते हैं।<ref name="Alberty 2001 p1353"/><ref>Callen (1985) p. 181</ref> वहां {{sfrac|(''D'' − 1)|2}} उनमें से प्रत्येक विभव के लिए कुल {{sfrac|''D''(''D'' − 1)|2}} दे रही है सभी में समीकरण, यदि हम खुद को प्रतिबंधित करते हैं {{mvar|U}}, {{mvar|F}}, {{mvar|H}}, {{mvar|G}}


:<math>
:<math>
Line 219: Line 294:
-\left(\frac{\partial V}{\partial T}\right)_{p,\{N_i\}}
-\left(\frac{\partial V}{\partial T}\right)_{p,\{N_i\}}
</math>
</math>
रासायनिक क्षमता से जुड़े राज्य के समीकरणों का उपयोग करके हमें समीकरण मिलते हैं जैसे:
रासायनिक विभव से जुड़े स्टेट के समीकरणों का उपयोग करके हमें समीकरण मिलते हैं जैसे:


:<math>
:<math>
Line 238: Line 313:


== यूलर संबंध ==
== यूलर संबंध ==
पुन: परिभाषित करें {{mvar|x<sub>i</sub>}} और {{mvar|y<sub>i</sub>}} संयुग्म जोड़े होने के लिए, और {{mvar|y<sub>i</sub>}} आंतरिक ऊर्जा के प्राकृतिक चर होने के लिए।
पुन: परिभाषित करें {{mvar|x<sub>i</sub>}} और {{mvar|y<sub>i</sub>}} संयुग्म जोड़े होने के लिए, और {{mvar|y<sub>i</sub>}} आंतरिक ऊर्जा के प्राकृतिक चर होने के लिए, चूंकि आंतरिक ऊर्जा के सभी प्राकृतिक चर {{mvar|U}} [[व्यापक मात्रा]] हैं
चूंकि आंतरिक ऊर्जा के सभी प्राकृतिक चर {{mvar|U}} [[व्यापक मात्रा]] हैं


:<math>U(\{\alpha y_i\})=\alpha U(\{y_i\})</math>
:<math>U(\{\alpha y_i\})=\alpha U(\{y_i\})</math>
यह सजातीय कार्य | यूलर के सजातीय कार्य प्रमेय से अनुसरण करता है कि आंतरिक ऊर्जा को इस प्रकार लिखा जा सकता है:
यह सजातीय कार्य यूलर के सजातीय कार्य प्रमेय से अनुसरण करता है कि आंतरिक ऊर्जा को इस प्रकार लिखा जा सकता है:


:<math>U(\{y_i\})=\sum_j y_j\left(\frac{\partial U}{\partial y_j}\right)_{\{y_{i\ne j}\}}</math>
:<math>U(\{y_i\})=\sum_j y_j\left(\frac{\partial U}{\partial y_j}\right)_{\{y_{i\ne j}\}}</math>
राज्य के समीकरणों से, हमारे पास है:
स्टेट के समीकरणों से, हमारे पास है:


:<math>U=TS-pV+\sum_i \mu_i N_i</math>
:<math>U=TS-pV+\sum_i \mu_i N_i</math>
इस सूत्र को एक यूलर संबंध के रूप में जाना जाता है, क्योंकि सजातीय कार्यों पर यूलर का प्रमेय इसकी ओर ले जाता है।<ref>Callen, H.B. (1960/1985).''Thermodynamics and an Introduction to Thermostatistics'', second edition, John Wiley & Sons, Hoboken NY, {{ISBN|9780471862567}}, pp. 59–60.</ref><ref>Bailyn, M. (1994). ''A Survey of Thermodynamics'', American Institute of Physics, AIP Press, Woodbury NY, {{ISBN|0883187973}}, pp. 215–216.</ref> (उष्मप्रवैगिकी की जांच में [[लियोनहार्ड यूलर]] द्वारा इसकी खोज नहीं की गई थी, जो उनके समय में मौजूद नहीं थी।)
इस सूत्र को एक यूलर संबंध के रूप में जाना जाता है, क्योंकि सजातीय फंक्शन पर यूलर का प्रमेय इसकी ओर ले जाता है।<ref>Callen, H.B. (1960/1985).''Thermodynamics and an Introduction to Thermostatistics'', second edition, John Wiley & Sons, Hoboken NY, {{ISBN|9780471862567}}, pp. 59–60.</ref><ref>Bailyn, M. (1994). ''A Survey of Thermodynamics'', American Institute of Physics, AIP Press, Woodbury NY, {{ISBN|0883187973}}, pp. 215–216.</ref> (उष्मप्रवैगिकी की जांच में [[लियोनहार्ड यूलर]] द्वारा इसकी खोज नहीं की गई थी, जो उनके समय में उपलब्ध नहीं थी।)


हमारे पास मौजूद अन्य मुख्य संभावनाओं के भावों में प्रतिस्थापित करना:
हमारे पास उपलब्ध अन्य मुख्य संभावनाओं के भावों में प्रतिस्थापित करना:


:<math>F=  -pV+\sum_i \mu_i N_i</math>
:<math>F=  -pV+\sum_i \mu_i N_i</math>
:<math>H=TS  +\sum_i \mu_i N_i</math>
:<math>H=TS  +\sum_i \mu_i N_i</math>
:<math>G=      \sum_i \mu_i N_i</math>
:<math>G=      \sum_i \mu_i N_i</math>
जैसा कि उपरोक्त अनुभागों में है, इस प्रक्रिया को अन्य सभी उष्मागतिकीय विभवों पर किया जा सकता है। इस प्रकार, एक अन्य यूलर संबंध है, जो आंतरिक ऊर्जा और अन्य व्यापक चरों के फलन के रूप में एन्ट्रापी की अभिव्यक्ति पर आधारित है। फिर भी अन्य यूलर संबंध ऊर्जा या एन्ट्रापी के लिए अन्य मौलिक समीकरणों के लिए हैं, कुछ गहन राज्य चर सहित अन्य राज्य चर के संबंधित कार्यों के रूप में।<ref>Callen, H.B. (1960/1985).''Thermodynamics and an Introduction to Thermostatistics'', second edition, John Wiley & Sons, Hoboken NY, {{ISBN|9780471862567}}, pp. 137–148.</ref>
जैसा कि उपरोक्त अनुभागों में है, इस प्रक्रिया को अन्य सभी उष्मागतिकीय विभवों पर किया जा सकता है। इस प्रकार, एक अन्य यूलर संबंध है, जो आंतरिक ऊर्जा और अन्य व्यापक चरों के फलन के रूप में एन्ट्रापी की अभिव्यक्ति पर आधारित है। फिर भी अन्य यूलर संबंध ऊर्जा या एन्ट्रापी के लिए अन्य मौलिक समीकरणों के लिए हैं, कुछ गहन स्टेट चर सहित अन्य स्टेट चर के संबंधित फंक्शन के रूप में होते है।<ref>Callen, H.B. (1960/1985).''Thermodynamics and an Introduction to Thermostatistics'', second edition, John Wiley & Sons, Hoboken NY, {{ISBN|9780471862567}}, pp. 137–148.</ref>




== गिब्स-डुहेम संबंध ==
== गिब्स-डुहेम संबंध ==
गिब्स-डुहेम समीकरण को बुनियादी उष्मागतिक अवस्था समीकरणों से प्राप्त करना सीधा है।<ref name="Alberty 2001 p1354"/><ref>Moran & Shapiro, p. 538</ref><ref>Callen (1985) p. 60</ref> किसी भी ऊष्मप्रवैगिकी संभावित परिभाषा को उसके यूलर संबंध अभिव्यक्ति के साथ समानता देने पर:
गिब्स-डुहेम समीकरण को मौलिक उष्मागतिक अवस्था समीकरणों से प्राप्त करना सीधा है।<ref name="Alberty 2001 p1354"/><ref>Moran & Shapiro, p. 538</ref><ref>Callen (1985) p. 60</ref> किसी भी ऊष्मप्रवैगिकी संभावित परिभाषा को उसके यूलर संबंध अभिव्यक्ति के साथ समानता देने पर:


:<math>U=TS-PV+\sum_i \mu_i N_i</math>
:<math>U=TS-PV+\sum_i \mu_i N_i</math>
Line 265: Line 339:


:<math>\mathrm{d}U=T\mathrm{d}S-P\mathrm{d}V+\sum_i\mu_i\,\mathrm{d}N_i</math>
:<math>\mathrm{d}U=T\mathrm{d}S-P\mathrm{d}V+\sum_i\mu_i\,\mathrm{d}N_i</math>
पैदावार:
उत्पन्न:


:<math>0=S\mathrm{d}T-V\mathrm{d}P+\sum_i N_i \mathrm{d}\mu_i</math>
:<math>0=S\mathrm{d}T-V\mathrm{d}P+\sum_i N_i \mathrm{d}\mu_i</math>
जो गिब्स-डुहेम संबंध है। गिब्स-ड्यूहेम प्रणाली के गहन मापदंडों के बीच एक संबंध है। यह इस प्रकार है कि एक सरल प्रणाली के साथ {{mvar|I}} घटक होंगे {{math|''I'' + 1}} स्वतंत्र पैरामीटर, या स्वतंत्रता की डिग्री। उदाहरण के लिए, एक घटक के साथ एक सरल प्रणाली में दो डिग्री स्वतंत्रता होगी, और उदाहरण के लिए दबाव और मात्रा जैसे केवल दो पैरामीटर द्वारा निर्दिष्ट किया जा सकता है। कानून का नाम योशिय्याह विलार्ड गिब्स और पियरे ड्यूहेम के नाम पर रखा गया है।
जो गिब्स-डुहेम संबंध है। गिब्स-ड्यूहेम प्रणाली के गहन मापदंडों के बीच एक संबंध है। यह इस प्रकार है कि एक सरल प्रणाली के साथ {{mvar|I}} घटक होंगे {{math|''I'' + 1}} स्वतंत्र पैरामीटर, या स्वतंत्रता की घात, उदाहरण के लिए, एक घटक के साथ एक सरल प्रणाली में दो घात स्वतंत्रता होगी, और उदाहरण के लिए दबाव और मात्रा जैसे मात्र दो पैरामीटर द्वारा निर्दिष्ट किया जा सकता है। कानून का नाम योशिय्याह विलार्ड गिब्स और पियरे ड्यूहेम के नाम पर रखा गया है।


== स्थिरता की स्थिति ==
== स्थिरता की स्थिति ==
चूंकि आंतरिक ऊर्जा एन्ट्रापी और आयतन का एक उत्तल कार्य है, इसलिए स्थिरता की स्थिति के लिए आवश्यक है कि एन्ट्रापी या आयतन के साथ आंतरिक ऊर्जा का दूसरा व्युत्पन्न सकारात्मक हो। इसे आमतौर पर व्यक्त किया जाता है <math>d^2U>0</math>. चूंकि एन्ट्रॉपी का अधिकतम सिद्धांत आंतरिक ऊर्जा के न्यूनतम सिद्धांत के बराबर है, स्थिरता या थर्मोडायनामिक संतुलन के लिए संयुक्त मानदंड के रूप में व्यक्त किया गया है <math>d^2U>0</math> और <math>dU=0</math> मापदंडों, एन्ट्रापी और वॉल्यूम के लिए। यह के समान है <math>d^2S<0</math> और <math>dS=0</math> संतुलन पर एन्ट्रापी के लिए शर्त।<ref>{{Cite book |last=W. |first=Tschoegl, N. |url=http://worldcat.org/oclc/1003633034 |title=संतुलन और स्थिर-राज्य ऊष्मप्रवैगिकी के मूल सिद्धांत|isbn=978-0-444-50426-5 |oclc=1003633034}}</ref> एक ही अवधारणा को विभिन्न थर्मोडायनामिक क्षमता की पहचान करके लागू किया जा सकता है कि क्या वे अपने संबंधित चर के उत्तल कार्य या अवतल कार्य हैं।
चूंकि आंतरिक ऊर्जा एन्ट्रापी और आयतन का एक उत्तल कार्य है, इसलिए स्थिरता की स्थिति के लिए आवश्यक है कि एन्ट्रापी या आयतन के साथ आंतरिक ऊर्जा का दूसरा व्युत्पन्न सकारात्मक हो। इसे सामान्यतः <math>d^2U>0</math> व्यक्त किया जाता है, चूंकि एन्ट्रॉपी का अधिकतम सिद्धांत आंतरिक ऊर्जा के न्यूनतम सिद्धांत के बराबर है, स्थिरता या ऊष्मागतिकी संतुलन के लिए संयुक्त मानदंड के रूप में व्यक्त किया गया है, <math>d^2U>0</math> और <math>dU=0</math> मापदंडों, एन्ट्रापी और वॉल्यूम के लिए यह <math>d^2S<0</math> के समान है और <math>dS=0</math> संतुलन पर एन्ट्रापी के लिए शर्त<ref>{{Cite book |last=W. |first=Tschoegl, N. |url=http://worldcat.org/oclc/1003633034 |title=संतुलन और स्थिर-राज्य ऊष्मप्रवैगिकी के मूल सिद्धांत|isbn=978-0-444-50426-5 |oclc=1003633034}}</ref> एक ही अवधारणा को विभिन्न ऊष्मागतिकी विभव की पहचान करके लागू किया जा सकता है कि क्या वे अपने संबंधित चर के उत्तल कार्य या अवतल कार्य हैं।


<math>\biggl({\partial^2F\over\partial T^2}\biggr)_{V,N}\leq0</math> और <math>\biggl({\partial^2F\over\partial V^2}\biggr)_{T,N}\geq0</math>
<math>\biggl({\partial^2F\over\partial T^2}\biggr)_{V,N}\leq0</math> और <math>\biggl({\partial^2F\over\partial V^2}\biggr)_{T,N}\geq0</math>
जहां हेल्महोल्ट्ज़ ऊर्जा तापमान का अवतल कार्य और आयतन का उत्तल कार्य है।
जहां हेल्महोल्ट्ज़ ऊर्जा तापमान का अवतल कार्य और आयतन का उत्तल कार्य है।


<math>\biggl({\partial^2H\over\partial P^2}\biggr)_{S,N}\leq0</math> और <math>\biggl({\partial^2H\over\partial S^2}\biggr)_{P,N}\geq0</math>
<math>\biggl({\partial^2H\over\partial P^2}\biggr)_{S,N}\leq0</math> और <math>\biggl({\partial^2H\over\partial S^2}\biggr)_{P,N}\geq0</math>
जहाँ एन्थैल्पी दाब का अवतल फलन और एन्ट्रापी का उत्तल फलन है।
जहाँ एन्थैल्पी दाब का अवतल फलन और एन्ट्रापी का उत्तल फलन है।


<math>\biggl({\partial^2G\over\partial T^2}\biggr)_{P,N}\leq0</math> और <math>\biggl({\partial^2G\over\partial P^2}\biggr)_{T,N}\leq0</math>
<math>\biggl({\partial^2G\over\partial T^2}\biggr)_{P,N}\leq0</math> और <math>\biggl({\partial^2G\over\partial P^2}\biggr)_{T,N}\leq0</math>
जहां तापीय धारिता दबाव और तापमान दोनों का एक अवतल कार्य है।
जहां तापीय धारिता दबाव और तापमान दोनों का एक अवतल कार्य है।


सामान्य तौर पर थर्मोडायनामिक क्षमता ([[आंतरिक]] ऊर्जा और इसके लीजेंड्रे परिवर्तन), आंतरिक के उत्तल कार्य और आंतरिक के अवतल कार्य हैं। स्थिरता की स्थिति यह बताती है कि इज़ोटेर्माल संपीड्यता सकारात्मक है और गैर-ऋणात्मक तापमान के लिए, <math>C_P>C_V</math>.<ref>{{Cite book |last=Callen |first=Herbert B. |url=https://www.worldcat.org/oclc/663862636 |title=थर्मोडायनामिक्स और थर्मोस्टेटिस्टिक्स का परिचय|date=2005 |publisher=John Wiley & Sons |isbn=978-81-265-0812-9 |edition=2nd |location=New Delhi |pages=203-210 |oclc=663862636}}</ref>
सामान्यतः ऊष्मागतिकी विभव ([[आंतरिक]] ऊर्जा और इसके लीजेंड्रे परिवर्तन), आंतरिक के उत्तल कार्य और आंतरिक के अवतल कार्य हैं। स्थिरता की स्थिति यह बताती है कि इज़ोटेर्माल संपीड्यता सकारात्मक है और गैर-ऋणात्मक तापमान के लिए, <math>C_P>C_V</math>है।<ref>{{Cite book |last=Callen |first=Herbert B. |url=https://www.worldcat.org/oclc/663862636 |title=थर्मोडायनामिक्स और थर्मोस्टेटिस्टिक्स का परिचय|date=2005 |publisher=John Wiley & Sons |isbn=978-81-265-0812-9 |edition=2nd |location=New Delhi |pages=203-210 |oclc=663862636}}</ref>
 
 
== रासायनिक प्रतिक्रियाएँ ==
== रासायनिक प्रतिक्रियाएँ ==
इन मात्राओं में परिवर्तन उस डिग्री का आकलन करने के लिए उपयोगी होते हैं जिस पर रासायनिक प्रतिक्रिया आगे बढ़ेगी। प्रासंगिक मात्रा प्रतिक्रिया की स्थिति पर निर्भर करती है, जैसा कि निम्न तालिका में दिखाया गया है। {{math|Δ}} क्षमता में परिवर्तन को दर्शाता है और संतुलन में परिवर्तन शून्य होगा।
इन मात्राओं में परिवर्तन उस घात का आकलन करने के लिए उपयोगी होते हैं जिस पर रासायनिक प्रतिक्रिया आगे बढ़ेगी प्रासंगिक मात्रा प्रतिक्रिया की स्थिति पर निर्भर करती है, जैसा कि निम्न तालिका में दिखाया गया है। {{math|Δ}} विभव में परिवर्तन को दर्शाता है और संतुलन में परिवर्तन शून्य होता है।


{| class="wikitable"
{| class="wikitable"
! !! Constant {{mvar|V}} !! Constant {{mvar|p}}
! !! सतत {{mvar|V}} !! सतत {{mvar|p}}
|-
|-
! Constant {{mvar|S}}
! सतत {{mvar|S}}
| {{math|Δ''U''}} || {{math|Δ''H''}}
| {{math|Δ''U''}} || {{math|Δ''H''}}
|-
|-
! Constant {{mvar|T}}
! सतत {{mvar|T}}
| {{math|Δ''F''}} || {{math|Δ''G''}}
| {{math|Δ''F''}} || {{math|Δ''G''}}
|}
|}
आमतौर पर कोई व्यक्ति प्रतिक्रियाओं को स्थिर मानता है {{mvar|p}} और {{mvar|T}}, इसलिए रासायनिक प्रतिक्रियाओं के अध्ययन में गिब्स मुक्त ऊर्जा सबसे उपयोगी क्षमता है।
सामान्यतः कोई व्यक्ति प्रतिक्रियाओं को स्थिर मानता है {{mvar|p}} और {{mvar|T}}, इसलिए रासायनिक प्रतिक्रियाओं के अध्ययन में गिब्स मुक्त ऊर्जा सबसे उपयोगी विभव है।


== यह भी देखें ==
== यह भी देखें ==
Line 334: Line 409:
* [http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thepot.html Thermodynamic Potentials] – Georgia State University
* [http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thepot.html Thermodynamic Potentials] – Georgia State University
* [https://arxiv.org/abs/physics/0004055 Chemical Potential Energy: The 'Characteristic' vs the Concentration-Dependent Kind]
* [https://arxiv.org/abs/physics/0004055 Chemical Potential Energy: The 'Characteristic' vs the Concentration-Dependent Kind]
{{Statistical mechanics topics}}
{{Authority control}}
{{Authority control}}
[[Category: ऊष्मप्रवैगिकी]] [[Category: क्षमता]] [[Category: थर्मोडायनामिक समीकरण]]


[[Category: Machine Translated Page]]
[[Category:Chemistry sidebar templates]]
[[Category:Collapse templates]]
[[Category:Created On 09/03/2023]]
[[Category:Created On 09/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mechanics templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Physics sidebar templates]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 17:44, 7 April 2023

ऊष्मागतिकी विभव (या अधिक त्रुटिहीन रूप से, एक ऊष्मागतिकी संभावित ऊर्जा)[1][2] अदिश मात्रा है, जिसका प्रयोग एक प्रणाली की ऊष्मागतिकी अवस्था को निरूपण करने में किया जाता है। जिस प्रकार यांत्रिकी में जहां संभावित ऊर्जा को कार्य करने की विभव के रूप में परिभाषित किया जाता है उसी प्रकार विभिन्न संविभवओं के भिन्न-भिन्न अर्थ होते हैं। ऊष्मागतिक संभाव्यताओं की संकल्पना को 1886 में पियरे ड्यूहेम ने प्रारंभ किया तथा योशिय्याह विलार्ड गिब्स ने अपने पत्रों में मौलिक फंक्शन शब्द का उपयोग किया था।

एक मुख्य ऊष्मागतिकी विभव जिसकी भौतिक व्याख्या है, आंतरिक ऊर्जा U है। यह रूढ़िवादी बलों की दी गई प्रणाली के विन्यास की ऊर्जा है (इसीलिए इसे संभावित कहा जाता है) और मात्र संदर्भों (या डेटा) के परिभाषित समूह के संबंध में इसका अर्थ होता है। अन्य सभी ऊष्मागतिकी ऊर्जा विभव के लिए अभिव्यक्ति U के लिए एक अभिव्यक्ति से लीजेंड्रे ट्रांसफॉर्म के माध्यम से व्युत्पन्न हैं। दूसरे शब्दों में, प्रत्येक ऊष्मागतिकी विभव अन्य ऊष्मागतिकी विभव के बराबर होती है; प्रत्येक विभव दूसरों की एक भिन्न अभिव्यक्ति होती है।

ऊष्मप्रवैगिकी में, बाह्य बल, जैसे गुरुत्वाकर्षण, को ऊष्मप्रवैगिकी विभव के अतिरिक्त कुल ऊर्जा में योगदान के रूप में गिना जाता है। उदाहरण के लिए, माउंट एवरेस्ट के शीर्ष पर बैठे भाप इंजन में काम कर रहे तरल पदार्थ में मारियाना ट्रेंच के तल की तुलना में गुरुत्वाकर्षण के कारण कुल ऊर्जा अधिक होती है, लेकिन वही ऊष्मागतिकी विभव होती है। ऐसा इसलिए है क्योंकि गुरुत्वाकर्षण संभावित ऊर्जा आंतरिक ऊर्जा जैसे ऊष्मागतिकी विभव के अतिरिक्त कुल ऊर्जा से संबंधित है।

विवरण और व्याख्या

Five common thermodynamic potentials are:[3]

नाम प्रतीक सूत्र प्राकृतिक चर
आंतरिक ऊर्जा
हेल्महोल्ट्ज़ मुक्त ऊर्जा
तापीय धारिता
गिब्स मुक्त ऊर्जा
लैंडौ क्षमता, या भव्य क्षमता, or
भव्य क्षमता
,




जहां टी = तापमान, एस = एन्ट्रापी, पी = दबाव, वी = आयतन (ऊष्मागतिकी्स) है। Ni प्रणाली में i प्रकार के कणों की संख्या है और μi, i-प्रकार के कण के लिए रासायनिक विभव है। सभी Ni के समूह को भी प्राकृतिक चर के रूप में सम्मलित किया गया है, लेकिन इसे अनदेखा किया जा सकता है जब कोई रासायनिक प्रतिक्रिया नहीं हो रही है जो उन्हें बदलने का कारण बनती है। हेल्महोल्ट्ज़ मुक्त ऊर्जा आईएसओ/आईईसी मानक में है जिसे हेल्महोल्ट्ज़ ऊर्जा[1] या हेल्महोल्ट्ज़ फ़ंक्शन कहा जाता है। इसे अधिकांशतः प्रतीक F द्वारा दर्शाया जाता है, लेकिन A का उपयोग आईयूपीऐसी,[4] आईएसओ और अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन द्वारा पसंद किया जाता है।[5]

ये पांच सामान्य विभवएं सभी संभावित ऊर्जाएं हैं, लेकिन एन्ट्रापी विभवएं भी हैं। ऊष्मागतिकी वर्ग का उपयोग कुछ संभावनाओं को वापस बुलाने और प्राप्त करने के लिए एक उपकरण के रूप में किया जा सकता है।

जिस प्रकार यांत्रिकी में, जहाँ स्थितिज ऊर्जा को कार्य करने की विभव के रूप में परिभाषित किया जाता है, उसी प्रकार विभिन्न विभवों के भिन्न-भिन्न अर्थ होते हैं जैसे कि नीचे दिया गया है:

इन अर्थों से (जो वास्तव में विशिष्ट परिस्थितियों में लागू होते हैं, जैसे निरंतर दबाव, तापमान, आदि), सकारात्मक परिवर्तनों के लिए (जैसे, ΔU > 0), हम कह सकते हैं कि ΔU प्रणाली में जोड़ी गई ऊर्जा है, ΔF उस पर किया गया कुल कार्य है, ΔG उस पर किया जाने वाला गैर-यांत्रिक कार्य है, और ΔH तंत्र पर किए गए गैर-यांत्रिक कार्य और उसे दी गई ऊष्मा का योग है। रासायनिक संतुलन की गणना करते समय, या रासायनिक प्रतिक्रिया में सामग्रियों के गुणों को मापते समय ऊष्मागतिकी विभव बहुत उपयोगी होती है। रासायनिक प्रतिक्रियाएँ सामान्यतः कुछ बाधाओं जैसे निरंतर दबाव और तापमान, या निरंतर एन्ट्रापी और आयतन के अनुसार होती हैं, और जब यह सच होता है, तो एक समान ऊष्मागतिकी विभव होती है जो खेल में आती है। जैसे यांत्रिकी में, प्रणाली एक संभावित और संतुलन के कम मूल्य की ओर प्रवृत्त होगी, इन बाधाओं के अनुसार, विभव अपरिवर्तनीय न्यूनतम मान लेगी ऊष्मागतिकी विभव का उपयोग उपयुक्त बाधा के अनुसार ऊष्मागतिकी प्रणाली से उपलब्ध ऊर्जा की कुल मात्रा का अनुमान लगाने के लिए भी किया जा सकता है।

विशेष रूप से: (व्युत्पन्न के लिए न्यूनतम ऊर्जा का सिद्धांत देखें)[6]

  • जब एन्ट्रॉपी S और एक बंद प्रणाली के बाहरी मापदंडों (जैसे आयतन) को स्थिर रखा जाता है, आंतरिक ऊर्जा U घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है। यह ऊष्मप्रवैगिकी के पहले और दूसरे नियम का अनुसरण करता है और इसे न्यूनतम ऊर्जा का सिद्धांत कहा जाता है। इस सिद्धांत से निम्नलिखित तीन कथन सीधे व्युत्पन्न हैं।
  • जब तापमान T और एक बंद प्रणाली के बाहरी मापदंडों को स्थिर रखा जाता है, हेल्महोल्ट्ज़ मुक्त ऊर्जा F घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है।
  • जब दबाव p और एक बंद प्रणाली के बाहरी मापदंडों को स्थिर रखा जाता है, थैलेपी H घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है।
  • जब तापमान T, दबाव p और एक बंद प्रणाली के बाहरी मापदंडों को स्थिर रखा जाता है, गिब्स मुक्त ऊर्जा G घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है।







प्राकृतिक चर

प्रत्येक उष्मागतिक विभव के लिए, ऊष्मप्रवैगिकी चर होते हैं जिन्हें उष्मागतिक संतुलन स्थिति में संभावित मूल्य निर्दिष्ट करने के लिए स्थिर रखने की आवश्यकता होती है, जैसे गणितीय कार्य के लिए स्वतंत्र चर, इन चरों को उस विभव के प्राकृतिक चर कहा जाता है।[7] संतुलन पर संभावित मूल्य निर्दिष्ट करने के लिए न मात्र प्राकृतिक चर महत्वपूर्ण हैं, अपितु इसलिए भी कि यदि उष्मागतिक विभव को उसके प्राकृतिक चर के कार्य के रूप में निर्धारित किया जा सकता है, प्रणाली के सभी उष्मागतिक गुणों को उसके प्राकृतिक चर के संबंध में उस विभव के आंशिक डेरिवेटिव लेकर पाया जा सकता है और यह चर के किसी अन्य संयोजन के लिए उत्तम नहीं है। यदि ऊष्मागतिकी विभव को इसके प्राकृतिक चरों के फलन के रूप में नहीं दिया जाता तो वह साधारणतया इस तंत्र के सभी ऊष्मागतिकी गुणों का उत्पाहदन नहीं कर सकता है।

उपरोक्त चार ऊष्मागतिकी विभवओं में से प्रत्येक के लिए प्राकृतिक चर का समूह टी, एस, पी, वी चर के संयोजन से बनता है, संयुग्मी चरों को छोड़कर ऊर्जा के लिए संयुग्मित चर सहित संभावित के लिए टी - एस अथवा पी - वी चरों की कोई प्राकृतिक चर नहीं है। इस नियम के लिए एक अपवाद Ni-μi संयुग्म जोड़े हैं क्योंकि ऊष्मागतिकी विभव में इन्हें अनदेखा करने का कोई कारण नहीं है, और वास्तव में हम प्रत्येक प्रजाति के लिए चार संभावितों को अतिरिक्त रूप से परिभाषित कर सकते हैं।[8] आईयूपीएसी अंकन का उपयोग करना जिसमें ब्रैकेट में प्राकृतिक चर होते हैं (मुख्य चार के अतिरिक्त), जो हमारे पास है:

ऊष्मागतिकी संभावित नाम सूत्र प्राकृतिक चर
आंतरिक ऊर्जा
हेल्महोल्ट्ज़ मुक्त ऊर्जा
तापीय धारिता
गिब्स ऊर्जा

यदि मात्र एक प्रजाति है, तो हम कर चुके हैं। परंतु यदि दो प्रजातियां होंगी तो उसमें और भी अधिक संभावनाएं होंगी जैसे कि और इसी प्रकार यदि ऊष्मागतिकी स्थान के डी आयाम हैं तो 2D अद्वितीय ऊष्मागतिकी विभव है। सबसे सरल उदाहरण के लिए एक एकल चरण आदर्श गैस के तीन आयाम होंगे जिसमें आठ ऊष्मागतिकी की संभाविक अधिकार होता है।

मौलिक समीकरण

ऊष्मप्रवैगिकी विभव की परिभाषाओं को विभेदित किया जा सकता है और ऊष्मप्रवैगिकी के पहले और दूसरे नियमों के साथ-साथ अंतर समीकरणों का एक समूह जिसे मौलिक समीकरणों के रूप में जाना जाता है।[9] (वास्तव में वे सभी एक ही मौलिक ऊष्मागतिकी संबंध के भाव हैं, लेकिन भिन्न-भिन्न चर में व्यक्त किए जाते हैं।) ऊष्मागतिकी्स के पहले नियम से, आंतरिक ऊर्जा में कोई अंतर परिवर्तन प्रणाली में नवीनतम कणों को जोड़ने के कारण किसी भी बदलाव के साथ-साथ पर्यावरण पर प्रणाली द्वारा किए गए काम से घटाए गए प्रणाली में बहने वाली गर्मी के योग के रूप में लिखा जा सकता है:

जहाँ δQ प्रणाली में अतिसूक्ष्म ऊष्मा प्रवाह है, और δW प्रणाली द्वारा किया गया अतिसूक्ष्म कार्य है, μi कण प्रकार i की रासायनिक विभव है और Ni प्रकार i कणों की संख्या है। (न तो δQ और न ही δW त्रुटिहीन अंतर अंतर हैं, यानी, वे ऊष्मागतिकी प्रक्रिया पथ-निर्भर हैं। इन चरों में छोटे परिवर्तन, इसलिए, d के बजाय δ के साथ दर्शाए जाते हैं।)

ऊष्मप्रवैगिकी के दूसरे नियम के द्वारा, हम स्टेट फंक्शन और उनके अंतरों के संदर्भ में आंतरिक ऊर्जा परिवर्तन को व्यक्त कर सकते हैं। प्रतिवर्ती परिवर्तनों के स्थिति में हमारे पास:

जहाँ

T तापमान है,
S एंट्रॉपी है,
p दबाव है,

और V वॉल्यूम (ऊष्मागतिकी्स) है, और समानता प्रतिवर्ती प्रक्रियाओं के लिए है।

यह क्वासिस्टेटिक रिवर्सिबल परिवर्तन के स्थिति में आंतरिक ऊर्जा के मानक अंतर रूप की ओर जाता है:

तब से U, S और V स्टेट के ऊष्मागतिकी कार्य हैं (जिन्हें स्टेट कार्य भी कहा जाता है), उपरोक्त संबंध मनमाना गैर-प्रतिवर्ती परिवर्तनों के लिए भी लागू होता है। यदि प्रणाली में मात्र वॉल्यूम की तुलना में अधिक बाहरी चर हैं जो बदल सकते हैं, मौलिक ऊष्मागतिकी संबंध सामान्यीकरण करता है:

यहाँ Xi बाहरी चर xi के अनुरूप सामान्यीकृत बल हैं।[10]

लीजेंड्रे परिवर्तन को बार-बार लागू करते हुए, निम्नलिखित अंतर संबंध चार संभावितों (मौलिक ऊष्मागतिकी समीकरण या मौलिक ऊष्मागतिकी संबंध) के लिए धारण करते हैं:

उपरोक्त समीकरणों में से प्रत्येक के दायीं ओर के अपरिमित गुण बायीं ओर की विभव के प्राकृतिक चर हैं। प्रणाली के अन्य ऊष्मागतिकी विभव के लिए समान समीकरण विकसित किए जा सकते हैं। प्रत्येक ऊष्मागतिकी विभव के लिए एक मूलभूत समीकरण होगा, जिसके परिणामस्वरूप कुल 2D मौलिक समीकरण होता है।

चार ऊष्मप्रवैगिकी विभव के बीच के अंतर को निम्नानुसार संक्षेपित किया जा सकता है:


स्टेट के समीकरण

हम उपरोक्त समीकरणों का उपयोग कुछ ऊष्मागतिकी मापदंडों की कुछ विभेदक परिभाषाओं को प्राप्त करने के लिए कर सकते हैं। यदि हम परिभाषित करते हैं Φ ऊष्मागतिकी विभव में से किसी के लिए खड़े होने के लिए, उपरोक्त समीकरण इस प्रकार के हैं:

जहाँ xi और yi संयुग्म जोड़े हैं, और yi विभव के प्राकृतिक चर हैं Φ. श्रृंखला नियम से यह इस प्रकार है:

जहाँ {yi ≠ j} के सभी प्राकृतिक चरों का समुच्चय है Φ के अतिरिक्त yj जिन्हें स्थिरांक के रूप में रखा जाता है। यह उनके प्राकृतिक चर के संबंध में विभव के डेरिवेटिव के संदर्भ में विभिन्न ऊष्मागतिकी मापदंडों के लिए अभिव्यक्ति उत्पन्न करता है। इन समीकरणों को स्टेट के समीकरण के रूप में जाना जाता है क्योंकि वे ऊष्मागतिकी स्टेट के पैरामीटर निर्दिष्ट करते हैं।[11] यदि हम खुद को संभावनाओं तक सीमित रखते हैं U (आंतरिक ऊर्जा), F (हेल्महोल्ट्ज़ मुक्त ऊर्जा), H (एन्थैल्पी) और G (गिब्स मुक्त ऊर्जा), तो हमारे पास अवस्था के निम्नलिखित समीकरण हैं (प्राकृतिक चरों को दर्शाने वाले सबस्क्रिप्ट जिन्हें स्थिरांक के रूप में रखा जाता है):

जहां, अंतिम समीकरण में, ϕ ऊष्मागतिकी विभव में से कोई भी है (U, F, H, या G), और को छोड़कर, उस विभव के लिए प्राकृतिक चरों का समुच्चय है Ni. यदि हम सभी ऊष्मागतिकी विभव का उपयोग करते हैं, तो हमारे पास स्थिति के अधिक समीकरण होंगे जैसे कि

और इसी प्रकार सभी में, यदि ऊष्मागतिकी स्थान D आयाम है, तो वहाँ होगा D प्रत्येक विभव के लिए समीकरण, जिसके परिणामस्वरूप कुल योग होता है D 2D स्टेट के समीकरण क्योंकि 2D ऊष्मागतिकी विभवएं उपलब्ध हैं। यदि D किसी विशेष विभव के लिए स्टेट के समीकरण ज्ञात हैं, तो उस विभव के लिए मौलिक समीकरण (अर्थात, ऊष्मागतिकी विभव का त्रुटिहीन अंतर) निर्धारित किया जा सकता है। इसका मतलब यह है कि प्रणाली के बारे में सभी उष्मागतिक जानकारी ज्ञात हो जाएगी क्योंकि किसी भी अन्य विभव के लिए मौलिक समीकरणों को लेजेंड्रे परिवर्तन के माध्यम से पाया जा सकता है और संभावित के आंशिक डेरिवेटिव के रूप में प्रत्येक विभव के लिए स्टेट के संबंधित समीकरणों को भी पाया जा सकता है।

ऊष्मागतिकी विभव का मापन

स्टेट के उपरोक्त समीकरण शारीरिक रूप से मापने योग्य मापदंडों का उपयोग करके ऊष्मागतिकी विभव में प्रयोगात्मक रूप से परिवर्तन को मापने के तरीकों का सुझाव देते हैं। उदाहरण के लिए मुक्त ऊर्जा भाव

और

प्राप्त करने के लिए निरंतर तापमान और मात्रा में एकीकृत किया जा सकता है:

(निरंतर टी पर, {Nj} )
(निरंतर टी पर, {Nj} )

जिसे दबाव, तापमान और आयतन के मापने योग्य चर की देख-रेख के द्वारा मापा जा सकता है। थैलेपी और (जो गर्मी की मात्रा को मापता है ΔQ एक प्रणाली द्वारा जारी या अवशोषित) आंतरिक ऊर्जा में परिवर्तन उष्मामिति द्वारा मापा जा सकता है।

भाव

एकीकृत किया जा सकता है:

(निरंतर पी पर, {Nj} )
(स्थिर वी पर, {Nj} )

ध्यान दें कि ये माप स्थिरांक {Nj पर बनाए गए हैं} और इसलिए उन स्थितियों पर लागू नहीं होते जिनमें रासायनिक प्रतिक्रियाएँ होती हैं।

मैक्सवेल संबंध

पुन: परिभाषित करें xi और yi संयुग्म जोड़े होने के लिए, और yi कुछ विभव के प्राकृतिक चर होने के लिए Φ, हम स्टेट समीकरणों के क्रॉस डिफरेंशियल ले सकते हैं, जो निम्नलिखित संबंधों का पालन करते हैं:

इनसे हमें मैक्सवेल संबंध मिलते हैं।[3][12] वहां (D − 1)/2 उनमें से प्रत्येक विभव के लिए कुल D(D − 1)/2 दे रही है सभी में समीकरण, यदि हम खुद को प्रतिबंधित करते हैं U, F, H, G

रासायनिक विभव से जुड़े स्टेट के समीकरणों का उपयोग करके हमें समीकरण मिलते हैं जैसे:

और अन्य विभवों का उपयोग करके हम समीकरण प्राप्त कर सकते हैं जैसे:


यूलर संबंध

पुन: परिभाषित करें xi और yi संयुग्म जोड़े होने के लिए, और yi आंतरिक ऊर्जा के प्राकृतिक चर होने के लिए, चूंकि आंतरिक ऊर्जा के सभी प्राकृतिक चर U व्यापक मात्रा हैं

यह सजातीय कार्य यूलर के सजातीय कार्य प्रमेय से अनुसरण करता है कि आंतरिक ऊर्जा को इस प्रकार लिखा जा सकता है:

स्टेट के समीकरणों से, हमारे पास है:

इस सूत्र को एक यूलर संबंध के रूप में जाना जाता है, क्योंकि सजातीय फंक्शन पर यूलर का प्रमेय इसकी ओर ले जाता है।[13][14] (उष्मप्रवैगिकी की जांच में लियोनहार्ड यूलर द्वारा इसकी खोज नहीं की गई थी, जो उनके समय में उपलब्ध नहीं थी।)

हमारे पास उपलब्ध अन्य मुख्य संभावनाओं के भावों में प्रतिस्थापित करना:

जैसा कि उपरोक्त अनुभागों में है, इस प्रक्रिया को अन्य सभी उष्मागतिकीय विभवों पर किया जा सकता है। इस प्रकार, एक अन्य यूलर संबंध है, जो आंतरिक ऊर्जा और अन्य व्यापक चरों के फलन के रूप में एन्ट्रापी की अभिव्यक्ति पर आधारित है। फिर भी अन्य यूलर संबंध ऊर्जा या एन्ट्रापी के लिए अन्य मौलिक समीकरणों के लिए हैं, कुछ गहन स्टेट चर सहित अन्य स्टेट चर के संबंधित फंक्शन के रूप में होते है।[15]


गिब्स-डुहेम संबंध

गिब्स-डुहेम समीकरण को मौलिक उष्मागतिक अवस्था समीकरणों से प्राप्त करना सीधा है।[9][16][17] किसी भी ऊष्मप्रवैगिकी संभावित परिभाषा को उसके यूलर संबंध अभिव्यक्ति के साथ समानता देने पर:

विभेद करना, और दूसरे कानून का उपयोग करना:

उत्पन्न:

जो गिब्स-डुहेम संबंध है। गिब्स-ड्यूहेम प्रणाली के गहन मापदंडों के बीच एक संबंध है। यह इस प्रकार है कि एक सरल प्रणाली के साथ I घटक होंगे I + 1 स्वतंत्र पैरामीटर, या स्वतंत्रता की घात, उदाहरण के लिए, एक घटक के साथ एक सरल प्रणाली में दो घात स्वतंत्रता होगी, और उदाहरण के लिए दबाव और मात्रा जैसे मात्र दो पैरामीटर द्वारा निर्दिष्ट किया जा सकता है। कानून का नाम योशिय्याह विलार्ड गिब्स और पियरे ड्यूहेम के नाम पर रखा गया है।

स्थिरता की स्थिति

चूंकि आंतरिक ऊर्जा एन्ट्रापी और आयतन का एक उत्तल कार्य है, इसलिए स्थिरता की स्थिति के लिए आवश्यक है कि एन्ट्रापी या आयतन के साथ आंतरिक ऊर्जा का दूसरा व्युत्पन्न सकारात्मक हो। इसे सामान्यतः व्यक्त किया जाता है, चूंकि एन्ट्रॉपी का अधिकतम सिद्धांत आंतरिक ऊर्जा के न्यूनतम सिद्धांत के बराबर है, स्थिरता या ऊष्मागतिकी संतुलन के लिए संयुक्त मानदंड के रूप में व्यक्त किया गया है, और मापदंडों, एन्ट्रापी और वॉल्यूम के लिए यह के समान है और संतुलन पर एन्ट्रापी के लिए शर्त[18] एक ही अवधारणा को विभिन्न ऊष्मागतिकी विभव की पहचान करके लागू किया जा सकता है कि क्या वे अपने संबंधित चर के उत्तल कार्य या अवतल कार्य हैं।

और

जहां हेल्महोल्ट्ज़ ऊर्जा तापमान का अवतल कार्य और आयतन का उत्तल कार्य है।

और

जहाँ एन्थैल्पी दाब का अवतल फलन और एन्ट्रापी का उत्तल फलन है।

और

जहां तापीय धारिता दबाव और तापमान दोनों का एक अवतल कार्य है।

सामान्यतः ऊष्मागतिकी विभव (आंतरिक ऊर्जा और इसके लीजेंड्रे परिवर्तन), आंतरिक के उत्तल कार्य और आंतरिक के अवतल कार्य हैं। स्थिरता की स्थिति यह बताती है कि इज़ोटेर्माल संपीड्यता सकारात्मक है और गैर-ऋणात्मक तापमान के लिए, है।[19]

रासायनिक प्रतिक्रियाएँ

इन मात्राओं में परिवर्तन उस घात का आकलन करने के लिए उपयोगी होते हैं जिस पर रासायनिक प्रतिक्रिया आगे बढ़ेगी प्रासंगिक मात्रा प्रतिक्रिया की स्थिति पर निर्भर करती है, जैसा कि निम्न तालिका में दिखाया गया है। Δ विभव में परिवर्तन को दर्शाता है और संतुलन में परिवर्तन शून्य होता है।

सतत V सतत p
सतत S ΔU ΔH
सतत T ΔF ΔG

सामान्यतः कोई व्यक्ति प्रतिक्रियाओं को स्थिर मानता है p और T, इसलिए रासायनिक प्रतिक्रियाओं के अध्ययन में गिब्स मुक्त ऊर्जा सबसे उपयोगी विभव है।

यह भी देखें

  • कूम्बर का रिश्ता

टिप्पणियाँ

  1. 1.0 1.1 1.2 ISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.4 Helmholtz energy, Helmholtz function
  2. 2.0 2.1 ISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.5, Gibbs energy, Gibbs function
  3. 3.0 3.1 Alberty (2001) p. 1353
  4. Alberty (2001) p. 1376
  5. ISO/IEC 80000-5:2007, item 5-20.4
  6. Callen (1985) p. 153
  7. Alberty (2001) p. 1352
  8. Alberty (2001) p. 1355
  9. 9.0 9.1 Alberty (2001) p. 1354
  10. For example, ionic species Nj (measured in moles) held at a certain potential Vj will include the term where F is the Faraday constant and zj is the multiple of the elementary charge of the ion.
  11. Callen (1985) p. 37
  12. Callen (1985) p. 181
  13. Callen, H.B. (1960/1985).Thermodynamics and an Introduction to Thermostatistics, second edition, John Wiley & Sons, Hoboken NY, ISBN 9780471862567, pp. 59–60.
  14. Bailyn, M. (1994). A Survey of Thermodynamics, American Institute of Physics, AIP Press, Woodbury NY, ISBN 0883187973, pp. 215–216.
  15. Callen, H.B. (1960/1985).Thermodynamics and an Introduction to Thermostatistics, second edition, John Wiley & Sons, Hoboken NY, ISBN 9780471862567, pp. 137–148.
  16. Moran & Shapiro, p. 538
  17. Callen (1985) p. 60
  18. W., Tschoegl, N. संतुलन और स्थिर-राज्य ऊष्मप्रवैगिकी के मूल सिद्धांत. ISBN 978-0-444-50426-5. OCLC 1003633034.{{cite book}}: CS1 maint: multiple names: authors list (link)
  19. Callen, Herbert B. (2005). थर्मोडायनामिक्स और थर्मोस्टेटिस्टिक्स का परिचय (2nd ed.). New Delhi: John Wiley & Sons. pp. 203–210. ISBN 978-81-265-0812-9. OCLC 663862636.


संदर्भ


अग्रिम पठन

  • McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3
  • Thermodynamics, From Concepts to Applications (2nd Edition), A. Shavit, C. Gutfinger, CRC Press (Taylor and Francis Group, USA), 2009, ISBN 9781420073683
  • Chemical Thermodynamics, D.J.G. Ives, University Chemistry, Macdonald Technical and Scientific, 1971, ISBN 0-356-03736-3
  • Elements of Statistical Thermodynamics (2nd Edition), L.K. Nash, Principles of Chemistry, Addison-Wesley, 1974, ISBN 0-201-05229-6
  • Statistical Physics (2nd Edition), F. Mandl, Manchester Physics, John Wiley & Sons, 2008, ISBN 9780471566588


बाहरी संबंध