दोलन: Difference between revisions
(Created page with "{{short description|Repetitive variation of some measure about a central value}} {{redirect|Oscillator}}{{One source|date=November 2016}}File:Animated-mass-spring.gif|right|...") |
No edit summary |
||
| (16 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
{{short description|Repetitive variation of some measure about a central value}} | {{short description|Repetitive variation of some measure about a central value}} | ||
{{redirect| | {{redirect|थरथरानवाला}}[[File:Animated-mass-spring.gif|right|frame|स्प्रिंग-मास प्रणाली ऑसिलेटरी प्रणाली है]] | ||
दोलन | दोलन केंद्रीय मूल्य ( अधिकांशतः यांत्रिक संतुलन का बिंदु) के बारे में या दो या दो से अधिक अलग-अलग राज्यों के बीच कुछ माप के दोहराव या आवधिक कार्य भिन्नता है। दोलन के परिचित उदाहरणों में झूलता हुआ पेंडुलम और प्रत्यावर्ती धारा सम्मिलित हैं। दोलनों का उपयोग भौतिकी में जटिल अंतःक्रियाओं का अनुमान लगाने के लिए किया जा सकता है, जैसे कि परमाणुओं के बीच। | ||
दोलन न केवल यांत्रिक प्रणालियों में | दोलन न केवल यांत्रिक प्रणालियों में किंतु विज्ञान के लगभग हर क्षेत्र में गतिशील प्रणालियों में भी होते हैं: उदाहरण के लिए मानव हृदय की धड़कन (परिसंचरण के लिए), अर्थशास्त्र में व्यापार चक्र, पारिस्थितिकी में शिकारी-शिकार जनसंख्या चक्र, भूविज्ञान में भूतापीय गीजर, गिटार और अन्य स्ट्रिंग वाद्ययंत्रों में तारों का कंपन, मस्तिष्क में तंत्रिका कोशिकाओं की आवधिक फायरिंग, और खगोल विज्ञान में सेफिड चर सितारों की आवधिक सूजन। यांत्रिक दोलन का वर्णन करने के लिए ''कंपन'' शब्द का स्पष्ट रूप से उपयोग किया जाता है। | ||
== सरल हार्मोनिक == | ==सरल हार्मोनिक == | ||
{{Main| | {{Main|सरल आवर्त गति}} | ||
सबसे सरल यांत्रिक दोलन प्रणाली केवल वजन और तनाव के | सबसे सरल यांत्रिक दोलन प्रणाली रेखीय स्प्रिंग (उपकरण) से जुड़ा वजन है जो केवल वजन और तनाव (भौतिकी) के अधीन है। ऐसी प्रणाली को हवा की मेज या बर्फ की सतह पर अनुमानित किया जा सकता है। वसंत के स्थिर होने पर प्रणाली यांत्रिक संतुलन की स्थिति में होती है। यदि निकाय को संतुलन से विस्थापित कर दिया जाता है, तो द्रव्यमान पर शुद्ध पुनर्स्थापन बल होता है, जो इसे वापस संतुलन में लाने के लिए प्रवृत्त होता है। चूँकि , द्रव्यमान को वापस संतुलन की स्थिति में ले जाने में, इसने गति प्राप्त कर ली है जो इसे उस स्थिति से आगे ले जाती है, विपरीत अर्थ में नया पुनर्स्थापना बल स्थापित करती है। यदि स्थिर बल जैसे गुरुत्वाकर्षण को प्रणाली में जोड़ा जाता है, तो संतुलन का बिंदु स्थानांतरित हो जाता है। दोलन होने में लगने वाले समय को अधिकांशतः दोलन काल कहा जाता है। | ||
वे प्रणालियाँ जहाँ किसी पिंड पर पुनर्स्थापना बल उसके विस्थापन के सीधे आनुपातिक होता है, जैसे कि स्प्रिंग-मास प्रणाली की गतिशीलता (यांत्रिकी), गणितीय रूप से हार्मोनिक ऑसिलेटर सिंपल हार्मोनिक ऑसिलेटर द्वारा वर्णित की जाती है और नियमित अवधि (भौतिकी) गति होती है सरल हार्मोनिक गति के रूप में जाना जाता है। वसंत-द्रव्यमान प्रणाली में, दोलन होते हैं, क्योंकि स्थैतिक संतुलन विस्थापन पर, द्रव्यमान में गतिज ऊर्जा होती है जो अपने पथ के चरम पर वसंत में संग्रहीत संभावित ऊर्जा में परिवर्तित हो जाती है। वसंत-द्रव्यमान प्रणाली दोलन की कुछ सामान्य विशेषताओं को दर्शाती है, अर्थात् संतुलन का अस्तित्व और पुनर्स्थापना बल की उपस्थिति जो कि प्रणाली के संतुलन से विचलित होने पर और शक्तिशाली होती जाती है। | |||
वसंत-द्रव्यमान प्रणाली के स्थितियों में, हुक का नियम कहता है कि वसंत की पुनर्स्थापना बल है: | |||
<math>F=-kx</math> | <math>F=-kx</math> | ||
न्यूटन के | |||
न्यूटन के द्वितीय नियम या न्यूटन के द्वितीय नियम का प्रयोग करके अवकल समीकरण व्युत्पन्न किया जा सकता है। | |||
<math>\ddot{x} = -\frac km x = -\omega^2x</math>, | <math>\ddot{x} = -\frac km x = -\omega^2x</math>, | ||
जहाँ पे <math>\omega = \sqrt \frac km</math> | |||
इस अंतर समीकरण का समाधान | |||
इस अंतर समीकरण का समाधान साइनसॉइडल स्थिति फ़ंक्शन उत्पन्न करता है। | |||
<math>x(t) = A \cos (\omega t - \delta)</math> | <math>x(t) = A \cos (\omega t - \delta)</math> | ||
== | जहां दोलन की आवृत्ति है, ए आयाम है, और फ़ंक्शन का चरण बदलाव है। ये प्रणाली की प्रारंभिक स्थितियों से निर्धारित होते हैं। क्योंकि कोसाइन 1 और -1 के बीच असीम रूप से दोलन करता है, हमारा स्प्रिंग-मास प्रणाली बिना घर्षण के सदैव के लिए सकारात्मक और नकारात्मक आयाम के बीच दोलन करेगा। | ||
दो या तीन आयामों में, हार्मोनिक ऑसिलेटर | |||
== द्वि-आयामी दोलक == | |||
दो या तीन आयामों में, हार्मोनिक ऑसिलेटर आयाम के समान व्यवहार करते हैं। इसका सबसे सरल उदाहरण आइसोट्रॉपी थरथरानवाला है, जहां पुनर्स्थापना बल सभी दिशाओं में समान पुनर्स्थापन स्थिरांक के साथ संतुलन से विस्थापन के समानुपाती होता है। | |||
<math>F = -k\vec{r}</math> | <math>F = -k\vec{r}</math> | ||
यह | |||
यह समान समाधान उत्पन्न करता है, किन्तु अब हर दिशा के लिए अलग समीकरण है। | |||
<math>x(t) = A_x \cos(\omega t - \delta _x)</math>, | <math>x(t) = A_x \cos(\omega t - \delta _x)</math>, | ||
<math>y(t) = A_y \cos(\omega t - \delta_y)</math>, | <math>y(t) = A_y \cos(\omega t - \delta_y)</math>, | ||
[...] | [...] | ||
=== अनिसोट्रोपिक | === अनिसोट्रोपिक ऑसिलेटर्स === | ||
अनिसोट्रॉपी ऑसिलेटर्स के साथ, अलग-अलग दिशाओं में बहाल करने वाले बलों के अलग-अलग स्थिरांक होते हैं। समाधान आइसोट्रोपिक ऑसिलेटर्स के समान है, किन्तु प्रत्येक दिशा में अलग आवृत्ति होती है। दूसरे के सापेक्ष आवृत्तियों को बदलने से रोचक परिणाम मिल सकते हैं। उदाहरण के लिए, यदि दिशा में बारंबारता दूसरी दिशा की आवृत्ति से दोगुनी है, तो आकृति आठ पैटर्न निर्मित होता है। यदि आवृत्तियों का अनुपात अपरिमेय है, तो गति अर्ध-आवधिक फलन है। यह गति प्रत्येक अक्ष पर आवर्ती है, किन्तु r के संबंध में आवर्त नहीं है, और कभी भी दोहराई नहीं जाएगी।<ref name=":0">{{Cite book |last=Taylor |first=John R. |url=https://www.worldcat.org/oclc/55729992 |title=Classical mechanics |date=2005 |isbn=1-891389-22-X |location=Mill Valley, California |oclc=55729992}}</ref> | |||
== नम दोलन == | == नम दोलन == | ||
{{Main| | {{Main|लयबद्ध दोलक}} | ||
{{see also| | {{see also|विरोधी कंपन यौगिक}} | ||
सभी वास्तविक | सभी वास्तविक-विश्व थरथरानवाला प्रणाली थर्मोडायनामिक उत्क्रमणीयता हैं। इसका कारण है कि घर्षण या विद्युत प्रतिरोध जैसी अपव्यय प्रक्रियाएं होती हैं जो पर्यावरण में थरथरानवाला में संग्रहीत कुछ ऊर्जा को लगातार गर्मी में परिवर्तित करती हैं। इसे भिगोना कहा जाता है। इस प्रकार, समय के साथ दोलनों का क्षय होता है जब तक कि प्रणाली में ऊर्जा का कोई शुद्ध स्रोत न हो। इस क्षय प्रक्रिया का सबसे सरल वर्णन हार्मोनिक थरथरानवाला के दोलन क्षय द्वारा सचित्र किया जा सकता है। | ||
जब | जब प्रतिरोधी बल लगाया जाता है, जो स्थिति के पहले व्युत्पन्न पर निर्भर होता है, या इस स्थितियों में वेग पर निर्भर होता है, तो डंप किए गए ऑसीलेटर बनाए जाते हैं। न्यूटन के दूसरे नियम द्वारा निर्मित अवकल समीकरण इस प्रतिरोधक बल में इच्छानुसार स्थिरांक b के साथ जुड़ता है। यह उदाहरण वेग पर रैखिक निर्भरता मानता है। | ||
<math>m\ddot{x} + b\dot{x} + kx = 0</math> | <math>m\ddot{x} + b\dot{x} + kx = 0</math> | ||
इस समीकरण को पहले की तरह फिर से लिखा जा सकता है। | इस समीकरण को पहले की तरह फिर से लिखा जा सकता है। | ||
<math>\ddot{x} + 2 \beta \dot{x} + \omega_0^2x = 0</math>, | <math>\ddot{x} + 2 \beta \dot{x} + \omega_0^2x = 0</math>, | ||
जहाँ पे <math>2 \beta = \frac b m</math> | |||
यह सामान्य समाधान | |||
यह सामान्य समाधान उत्पन्न करता है: | |||
<math>x(t) = e^{- \beta t} (C_1e^{\omega _1 t} + C_2 e^{- \omega_1t})</math>, | <math>x(t) = e^{- \beta t} (C_1e^{\omega _1 t} + C_2 e^{- \omega_1t})</math>, | ||
जहाँ पे <math>\omega_1 = \sqrt{\beta^2 - \omega_0^2}</math> | |||
कोष्ठक के बाहर घातीय | |||
कोष्ठक के बाहर घातांकीय पद घातीय क्षय है और β अवमंदन गुणांक है। नम दोलकों की 3 श्रेणियां हैं: अंडर-डंप, जहां β <<sub>0</sub>; अधिक नमी, जहां β ><sub>0</sub>; और गंभीर रूप से भीग गया, जहां β =<sub>0</sub>. | |||
== | == प्रेरित दोलन == | ||
इसके | इसके अतिरिक्त , दोलन प्रणाली कुछ बाहरी बल के अधीन हो सकती है, जैसे कि जब एसी इलेक्ट्रॉनिक परिपथ बाहरी शक्ति स्रोत से जुड़ा होता है। इस स्थितियों में दोलन को संचालित दोलन कहा जाता है। | ||
इसका सबसे सरल उदाहरण | इसका सबसे सरल उदाहरण साइन वेव चलन बल के साथ स्प्रिंग-मास प्रणाली है। | ||
<math>\ddot{x} + 2 \beta\dot{x} + \omega_0^2x = f(t)</math>, | <math>\ddot{x} + 2 \beta\dot{x} + \omega_0^2x = f(t)</math>, जहाँ पे <math>f(t) = f_0 \cos(\omega t + \delta)</math> | ||
यह समाधान देता है: | यह समाधान देता है: | ||
<math>x(t) = A \cos(\omega t - \delta) + A_{tr} \cos(\omega_1 t - \delta_{tr})</math>, | <math>x(t) = A \cos(\omega t - \delta) + A_{tr} \cos(\omega_1 t - \delta_{tr})</math>, | ||
जहाँ पे <math>A = \sqrt{\frac {f_0^2} {(\omega_0^2 - \omega ^2) + 2 \beta \omega}}</math> तथा <math>\delta = \tan^{-1}(\frac {2 \beta \omega} {\omega_0^2 - \omega^2})</math> | |||
x(t) का दूसरा पद अवकल समीकरण का क्षणिक हल है। प्रणाली की प्रारंभिक स्थितियों का उपयोग करके क्षणिक समाधान पाया जा सकता है। | |||
कुछ | कुछ प्रणाली पर्यावरण से ऊर्जा हस्तांतरण से उत्साहित हो सकते हैं। यह स्थानांतरण सामान्यतः तब होता है जब प्रणाली कुछ द्रव प्रवाह में एम्बेडेड होते हैं। उदाहरण के लिए, वायुगतिकी में एरोएलास्टिक स्पंदन की घटना तब होती है जब विमान विंग के इच्छानुसार से छोटे विस्थापन (इसके संतुलन से) के परिणामस्वरूप वायु प्रवाह पर विंग के हमले के कोण में वृद्धि होती है और लिफ्ट के गुणांक में परिणामी वृद्धि होती है, और अधिक विस्थापन के लिए अग्रणी। पर्याप्त रूप से बड़े विस्थापन पर, पंख की कठोरता बहाल करने वाली शक्ति प्रदान करने के लिए हावी होती है जो दोलन को सक्षम करती है। | ||
=== अनुनाद === | === अनुनाद === | ||
एक नम | एक नम चालित दोलक में अनुनाद तब होता है जब ω = ω<sub>0</sub>, अर्थात , जब चलन बल आवृत्ति प्रणाली की प्राकृतिक आवृत्ति के बराबर होती है। जब ऐसा होता है, तो आयाम का हर छोटा हो जाता है, जो दोलनों के आयाम को अधिकतम करता है। | ||
== युग्मित दोलन == | ==युग्मित दोलन == | ||
[[File:Coupled oscillators.gif|frame|right| | [[File:Coupled oscillators.gif|frame|right|एक डोरी पर नियत समान अवधि वाले दो लोलक युग्मित थरथरानवाला की जोड़ी के रूप में कार्य करते हैं। दोलन दोनों के बीच बारी-बारी से होता है।]] | ||
{{main|इंजेक्शन लॉकिंग}} | |||
[[File:Huygens synchronization of two clocks (Experiment).jpg|thumbnail|left|100px|दो घड़ियों के हाइजेन्स तुल्यकालन का प्रायोगिक समुच्चय अप]] | |||
हार्मोनिक थरथरानवाला और इसके मॉडल की प्रणालियों में स्वतंत्रता (भौतिकी और रसायन विज्ञान) की ही डिग्री होती है। अधिक जटिल प्रणालियों में स्वतंत्रता की अधिक डिग्री होती है, उदाहरण के लिए, दो द्रव्यमान और तीन स्प्रिंग्स (प्रत्येक द्रव्यमान निश्चित बिंदुओं और दूसरे से जुड़ा होता है)। ऐसे स्थितियों में, प्रत्येक चर का व्यवहार दूसरों के व्यवहार को प्रभावित करता है। यह स्वतंत्रता की व्यक्तिगत डिग्री के दोलनों के युग्मन की ओर जाता है। उदाहरण के लिए, सामान्य दीवार पर लगे दो पेंडुलम घड़ियां (समान आवृत्ति की) सिंक्रनाइज़ हो जाएंगी। यह इंजेक्शन लॉकिंग पहली बार 1665 में क्रिस्टियान ह्यूजेंस द्वारा देखा गया था।<ref>{{cite book|author1=Strogatz, Steven|year=2003|title=Sync: The Emerging Science of Spontaneous Order|publisher=Hyperion Press|pages=106–109|isbn=0-786-86844-9}}</ref> यौगिक दोलनों की स्पष्ट गति सामान्यतः बहुत जटिल प्रतीत होती है किन्तु गति को सामान्य मोड में हल करके अधिक आर्थिक, कम्प्यूटेशनल रूप से सरल और अवधारणात्मक रूप से गहरा विवरण दिया जाता है। | |||
युग्मित थरथरानवाला का सबसे सरल रूप 3 वसंत, 2 द्रव्यमान प्रणाली है, जहां द्रव्यमान और वसंत स्थिरांक समान होते हैं। यह समस्या दोनों द्रव्यमानों के लिए न्यूटन के दूसरे नियम को प्राप्त करने से प्रारंभिक होता है। | |||
समीकरणों को तब | <math>m_1 \ddot{x}_1 = -(k_1 + k_2)x_1 + k_2x_2</math>, <math>m_2\ddot{x}_2 = k_2x_1 - (k_2+k_3)x_2</math>, | ||
समीकरणों को तब आव्युह रूप में सामान्यीकृत किया जाता है। | |||
<math>F = M\ddot{x} = kx</math>, | <math>F = M\ddot{x} = kx</math>, | ||
जहाँ पे <math>M=\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}</math>, <math>x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}</math>, तथा <math>k = \begin{bmatrix} k_1+k_2 & -k_2 \\ -k_2 & k_2+k_3 \end{bmatrix}</math> | |||
<math>m_1=m_2=m </math>, | k और m के मानों को आव्यूहों में प्रतिस्थापित किया जा सकता है। | ||
<math>m_1=m_2=m </math>, <math>k_1=k_2=k_3=k</math>, | |||
<math>M = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix}</math>, <math>k=\begin{bmatrix} 2k & -k \\ -k & 2k \end{bmatrix}</math> | <math>M = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix}</math>, <math>k=\begin{bmatrix} 2k & -k \\ -k & 2k \end{bmatrix}</math> | ||
इन | |||
इन आव्युह को अब सामान्य समाधान में प्लग किया जा सकता है। | |||
<math>(k-M \omega^2)a = 0</math> | <math>(k-M \omega^2)a = 0</math> | ||
<math>\begin{bmatrix} 2k-m \omega^2 & -k \\ -k & 2k - m \omega^2 \end{bmatrix} = 0</math> | <math>\begin{bmatrix} 2k-m \omega^2 & -k \\ -k & 2k - m \omega^2 \end{bmatrix} = 0</math> | ||
इस | |||
इस आव्युह का निर्धारक द्विघात समीकरण देता है। | |||
<math>(3k-m \omega^2)(k-m \omega^2)= 0</math> | <math>(3k-m \omega^2)(k-m \omega^2)= 0</math> | ||
<math>\omega_1 = \sqrt{\frac km}</math>, | <math>\omega_1 = \sqrt{\frac km}</math>, <math>\omega_2 = \sqrt{\frac {3k} m}</math> | ||
द्रव्यमान के प्रारंभिक बिंदु के आधार पर, इस प्रणाली में 2 संभावित आवृत्तियां (या दोनों का संयोजन) होती हैं। यदि द्रव्यमान को ही दिशा में उनके विस्थापन के साथ प्रारंभिक किया जाता है, तो आवृत्ति एकल द्रव्यमान प्रणाली की होती है, क्योंकि मध्य वसंत कभी विस्तारित नहीं होता है। यदि दो द्रव्यमानों को विपरीत दिशाओं में प्रारंभिक किया जाता है, तो दूसरी, तेज आवृत्ति प्रणाली की आवृत्ति होती है।<ref name=":0" /> | |||
अधिक विशेष | अधिक विशेष स्थितियों युग्मित थरथरानवाला हैं जहां ऊर्जा दो प्रकार के दोलनों के बीच वैकल्पिक होती है। प्रसिद्ध विल्बरफोर्स पेंडुलम है, जहां दोलन ऊर्ध्वाधर वसंत के बढ़ाव और उस वसंत के अंत में किसी वस्तु के घूमने के बीच वैकल्पिक होता है। | ||
युग्मित | युग्मित थरथरानवाला दो संबंधित, किन्तु अलग-अलग घटनाओं का सामान्य विवरण है। मामला यह है कि दोनों दोलन दूसरे को परस्पर प्रभावित करते हैं, जो सामान्यतः एकल, प्रवेशित दोलन राज्य की घटना की ओर जाता है, जहां दोनों समझौता आवृत्ति के साथ दोलन करते हैं। अन्य मामला यह है कि बाहरी दोलन आंतरिक दोलन को प्रभावित करता है, किन्तु इससे प्रभावित नहीं होता है। इस स्थितियों में तुल्यकालन के क्षेत्र, जिन्हें अर्नोल्ड जीभ के रूप में जाना जाता है, अत्यधिक जटिल घटनाओं को जन्म दे सकता है, उदाहरण के लिए अराजक गतिशीलता। | ||
== छोटा दोलन सन्निकटन == | == छोटा दोलन सन्निकटन == | ||
भौतिकी में, रूढ़िवादी बलों के | भौतिकी में, रूढ़िवादी बलों के समुच्चय और संतुलन बिंदु के साथ प्रणाली को संतुलन के निकट हार्मोनिक थरथरानवाला के रूप में अनुमानित किया जा सकता है। इसका उदाहरण लेनार्ड-जोन्स क्षमता है, जहां क्षमता निम्न द्वारा दी गई है: | ||
<math>U(r)=U_0 \left[ \left(\frac{r_0} r \right)^{12} - \left(\frac{r_0} r \right)^6 \right]</math> | <math>U(r)=U_0 \left[ \left(\frac{r_0} r \right)^{12} - \left(\frac{r_0} r \right)^6 \right]</math> | ||
फ़ंक्शन के संतुलन बिंदु | तब फ़ंक्शन के संतुलन बिंदु पाए जाते हैं। | ||
<math>\frac{dU}{dr} = 0 =U_0[-12 r_0^{12}r^{-13} + 6r_0^6r^{-7}]</math> | <math>\frac{dU}{dr} = 0 =U_0[-12 r_0^{12}r^{-13} + 6r_0^6r^{-7}]</math> | ||
<math>\Rightarrow r_0 \approx r</math> | <math>\Rightarrow r_0 \approx r</math> | ||
दूसरा व्युत्पन्न तब पाया जाता है, और प्रभावी संभावित | दूसरा व्युत्पन्न तब पाया जाता है, और प्रभावी संभावित स्थिरांक हुआ करता था। | ||
<math>\gamma_{eff} = \frac{d^2U}{dr^2} \vert_{r=r_0}=U_0 [12(13)r_0^{12}r^{-14}-6(7)r_0^6r^{-8}]</math> | <math>\gamma_{eff} = \frac{d^2U}{dr^2} \vert_{r=r_0}=U_0 [12(13)r_0^{12}r^{-14}-6(7)r_0^6r^{-8}]</math> | ||
<math>\gamma_{eff} = \frac{114 U_0}{r^2}</math> | <math>\gamma_{eff} = \frac{114 U_0}{r^2}</math> | ||
प्रणाली संतुलन बिंदु के पास दोलनों से गुजरेगी। इन दोलनों को बनाने वाला बल ऊपर के प्रभावी संभावित स्थिरांक से प्राप्त होता है। | |||
<math>F= - \gamma_{eff}(r-r_0) = m_{eff} \ddot r</math> | <math>F= - \gamma_{eff}(r-r_0) = m_{eff} \ddot r</math> | ||
इस अंतर समीकरण को | |||
इस अंतर समीकरण को साधारण हार्मोनिक थरथरानवाला के रूप में फिर से लिखा जा सकता है। | |||
<math>\ddot r + \frac {\gamma_{eff}} {m_{eff}} (r-r_0) = 0</math> | <math>\ddot r + \frac {\gamma_{eff}} {m_{eff}} (r-r_0) = 0</math> | ||
| Line 134: | Line 151: | ||
<math>\omega_0 = \sqrt { \frac {\gamma_{eff}} {m_{eff}}} = \sqrt {\frac {114 U_0} {r^2m_{eff}}}</math> | <math>\omega_0 = \sqrt { \frac {\gamma_{eff}} {m_{eff}}} = \sqrt {\frac {114 U_0} {r^2m_{eff}}}</math> | ||
या, सामान्य रूप में<ref>{{Cite web |date=2020-07-01 |title=23.7: Small Oscillations |url=https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Dourmashkin)/23%3A_Simple_Harmonic_Motion/23.07%3A_Small_Oscillations |access-date=2022-04-21 |website=Physics LibreTexts |language=en}}</ref> | या, सामान्य रूप में<ref>{{Cite web |date=2020-07-01 |title=23.7: Small Oscillations |url=https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Dourmashkin)/23%3A_Simple_Harmonic_Motion/23.07%3A_Small_Oscillations |access-date=2022-04-21 |website=Physics LibreTexts |language=en}}</ref> | ||
<math>\omega_0 = \sqrt{\frac {d^2U} {dU^2} \vert_{r=r_0}}</math> | <math>\omega_0 = \sqrt{\frac {d^2U} {dU^2} \vert_{r=r_0}}</math> | ||
प्रणाली के संभावित वक्र को देखकर इस सन्निकटन को बढ़िया ढंग से समझा जा सकता है। संभावित वक्र को पहाड़ी के रूप में सोचकर, जिसमें, यदि कोई गेंद को वक्र पर कहीं भी रखता है, तो गेंद संभावित वक्र के ढलान के साथ लुढ़क जाएगी। यह स्थितिज ऊर्जा और बल के बीच संबंध के कारण सत्य है। | |||
<math>\frac {dU} {dt} = - F(r)</math> | <math>\frac {dU} {dt} = - F(r)</math> | ||
इस तरह से क्षमता के बारे में सोचकर, कोई यह देखेगा कि किसी भी स्थानीय न्यूनतम पर कुआं है जिसमें गेंद आगे-पीछे लुढ़कती (दोलन) करती है। <math>r_{min}</math> तथा <math>r_{max}</math>. यह सन्निकटन केपलर कक्षा के बारे में सोचने के लिए भी उपयोगी है। | |||
{{ | ==सतत प्रणाली - तरंगें== | ||
{{main|लहर}} | |||
जैसे ही स्वतंत्रता की डिग्री की संख्या इच्छानुसार से बड़ी हो जाती है, प्रणाली सातत्य यांत्रिकी तक पहुंचती है; उदाहरणों में तार या पानी के शरीर की सतह सम्मिलित है। इस तरह की प्रणालियों में ( मौलिक सीमा में) सामान्य मोड की अनंत संख्या होती है और उनके दोलन तरंगों के रूप में होते हैं जो विशेष रूप से प्रचार कर सकते हैं। | |||
==गणित == | |||
{{main|दोलन (गणित)}} | |||
[[File:LimSup.svg|right|thumb|300px|एक अनुक्रम का दोलन (नीले रंग में दिखाया गया है) अनुक्रम की सीमा श्रेष्ठ और सीमा अवर के बीच का अंतर है।]] | |||
दोलन का गणित उस राशि के परिमाणीकरण से संबंधित है जो अनुक्रम या कार्य चरम सीमाओं के बीच स्थानांतरित होता है। कई संबंधित धारणाएँ हैं: वास्तविक संख्याओं के अनुक्रम का दोलन, बिंदु पर वास्तविक-मूल्यवान फ़ंक्शन (गणित) का दोलन, और अंतराल (गणित) (या खुले समुच्चय ) पर फ़ंक्शन का दोलन। | |||
== उदाहरण == | == उदाहरण == | ||
=== | === यांत्रिक === | ||
{{div col|colwidth=22em}} | {{div col|colwidth=22em}} | ||
*डबल पेंडुलम | *डबल पेंडुलम | ||
*फौकॉल्ट पेंडुलम | *फौकॉल्ट पेंडुलम | ||
*हेल्महोल्ट्ज़ | *हेल्महोल्ट्ज़ प्रतिध्वनि | ||
*सूर्य ( | *सूर्य में दोलन (हेलिओसिस्मोलॉजी), तारे (क्षुद्रग्रह विज्ञान) और न्यूट्रॉन-स्टार दोलन। | ||
*क्वांटम हार्मोनिक | *क्वांटम हार्मोनिक थरथरानवाला | ||
* | * स्विंग (सीट) | ||
*तार उपकरण | *तार उपकरण | ||
* | * मरोड़ कंपन | ||
*ट्यूनिंग कांटा | *ट्यूनिंग कांटा | ||
* | *कंपन स्ट्रिंग | ||
* | *विलबरफोर्स पेंडुलम | ||
*लीवर | *लीवर एस्केप | ||
{{div col end}} | {{div col end}} | ||
=== विद्युत === | === विद्युत === | ||
{{Main| | {{Main|इलेक्ट्रॉनिक ऑसिलेटर}} | ||
{{div col|colwidth=22em}} | {{div col|colwidth=22em}} | ||
*प्रत्यावर्ती धारा | *प्रत्यावर्ती धारा | ||
*आर्मस्ट्रांग (या | *आर्मस्ट्रांग थरथरानवाला|आर्मस्ट्रांग (या टिकलर या मीस्नर) थरथरानवाला | ||
* | *अस्थिर | ||
*थरथरानवाला | *अवरुद्ध थरथरानवाला | ||
*बटलर थरथरानवाला | *बटलर थरथरानवाला | ||
* | *ताली थरथरानवाला | ||
* | *कोल्पिट्स थरथरानवाला | ||
*विलंब-रेखा थरथरानवाला | *विलंब-रेखा थरथरानवाला | ||
*इलेक्ट्रॉनिक थरथरानवाला | *इलेक्ट्रॉनिक थरथरानवाला | ||
*विस्तारित बातचीत थरथरानवाला | *विस्तारित बातचीत थरथरानवाला | ||
*हार्टले | *हार्टले थरथरानवाला | ||
* | *थरथरानवाला | ||
*चरण-शिफ्ट | *चरण-शिफ्ट थरथरानवाला | ||
*पियर्स | *पियर्स थरथरानवाला | ||
*विश्राम थरथरानवाला | *विश्राम थरथरानवाला | ||
*आरएलसी सर्किट | *आरएलसी सर्किट | ||
*रॉयर | *रॉयर थरथरानवाला | ||
* | *वास्कस थरथरानवाला | ||
*वीन ब्रिज | *वीन ब्रिज थरथरानवाला | ||
{{div col end}} | {{div col end}} | ||
=== इलेक्ट्रो-मैकेनिकल === | === इलेक्ट्रो-मैकेनिकल === | ||
*क्रिस्टल | *क्रिस्टल थरथरानवाला | ||
=== ऑप्टिकल === | === ऑप्टिकल === | ||
{{div col|colwidth=22em}} | {{div col|colwidth=22em}} | ||
*लेजर ( | *लेजर (आदेश 10 . की आवृत्ति के साथ विद्युत चुम्बकीय क्षेत्र का दोलन<sup>15</sup> हर्ट्ज) | ||
*ऑसिलेटर टोडा या सेल्फ-पल्सेशन ( | *ऑसिलेटर टोडा या सेल्फ-पल्सेशन (आवृत्ति 10 . पर लेजर की आउटपुट पावर का स्पंदन)<sup>4</sup> हर्ट्ज - 10<sup>6</sup> हर्ट्ज क्षणिक शासन में) | ||
*क्वांटम थरथरानवाला एक ऑप्टिकल स्थानीय थरथरानवाला, साथ ही क्वांटम ऑप्टिक्स में एक सामान्य मॉडल | *क्वांटम थरथरानवाला एक ऑप्टिकल स्थानीय थरथरानवाला, साथ ही क्वांटम ऑप्टिक्स में एक सामान्य मॉडल का उल्लेख कर सकता है। | ||
{{div col end}} | {{div col end}} | ||
=== जैविक === | === जैविक === | ||
{{div col|colwidth=22em}} | {{div col|colwidth=22em}} | ||
*सर्कैडियन | *सर्कैडियन रिदम | ||
*सर्कैडियन | *सर्कैडियन थरथरानवाला | ||
*लोटका - | *लोटका-वोल्टेरा समीकरण | ||
*तंत्रिका दोलन | *तंत्रिका दोलन | ||
* | *ऑसिलेटिंग जीन | ||
*विभाजन घड़ी | *विभाजन घड़ी | ||
{{div col end}} | {{div col end}} | ||
=== मानव दोलन === | === मानव दोलन === | ||
| Line 224: | Line 236: | ||
*तंत्रिका दोलन | *तंत्रिका दोलन | ||
*इंसुलिन रिलीज दोलन | *इंसुलिन रिलीज दोलन | ||
* | *यौवन#अंतःस्रावी_परिप्रेक्ष्य | ||
*पायलट-प्रेरित दोलन | *पायलट-प्रेरित दोलन | ||
*आवाज | *आवाज उत्पादन | ||
{{div col end}} | {{div col end}} | ||
आर्थिक और सामाजिक | |||
{{div col|colwidth=22em}} | {{div col|colwidth=22em}} | ||
*व्यापारिक चक्र | *व्यापारिक चक्र | ||
| Line 238: | Line 249: | ||
{{div col end}} | {{div col end}} | ||
===जलवायु और भूभौतिकी === | |||
=== जलवायु और भूभौतिकी === | |||
{{div col|colwidth=22em}} | {{div col|colwidth=22em}} | ||
*अटलांटिक | *अटलांटिक बहु दशकीय दोलन | ||
* | *चांडलर डगमगाने | ||
*जलवायु दोलन | *जलवायु दोलन | ||
* | *अल नीनो-दक्षिणी दोलन | ||
* | *प्रशांत दशकीय दोलन | ||
*अर्ध- | *अर्ध-द्विवार्षिक दोलन | ||
{{div col end}} | {{div col end}} | ||
===खगोल भौतिकी === | |||
*न्यूट्रॉन-स्टार दोलन | |||
=== खगोल भौतिकी === | |||
*न्यूट्रॉन-स्टार दोलन | |||
*चक्रीय मॉडल | *चक्रीय मॉडल | ||
=== क्वांटम | === क्वांटम यांत्रिक === | ||
*तटस्थ कण दोलन, | *तटस्थ कण दोलन, उदा. न्यूट्रिनो दोलन | ||
*क्वांटम हार्मोनिक | *क्वांटम हार्मोनिक थरथरानवाला | ||
=== रासायनिक === | ===रासायनिक === | ||
{{div col|colwidth=22em}} | {{div col|colwidth=22em}} | ||
* | *बेलौसोव-ज़ाबोटिंस्की प्रतिक्रिया | ||
* | *बुध धड़कता दिल | ||
* ब्रिग्स - | * ब्रिग्स-रौशर प्रतिक्रिया | ||
* | * ब्रे-लिभाफ्स्की प्रतिक्रिया | ||
{{div col end}} | {{div col end}} | ||
=== कंप्यूटिंग === | |||
*थरथरानवाला (सेलुलर_ऑटोमेटन) | |||
==यह भी देखें== | |||
== यह भी देखें == | |||
{{div col|colwidth=22em}} | {{div col|colwidth=22em}} | ||
* | *एंटीरेसोनेंस | ||
*बीट (ध्वनिकी) | * बीट (ध्वनिकी) | ||
*बिबो स्थिरता | *बिबो स्थिरता | ||
* | *क्रिटिकल स्पीड | ||
* | *साइकिल (संगीत) | ||
* | *गतिशील प्रणाली | ||
*भूकम्प वास्तुविद्या | *भूकम्प वास्तुविद्या | ||
*प्रतिपुष्टि | *प्रतिपुष्टि | ||
*समान | *समान दूरी वाले डेटा में आवधिकता की गणना के लिए फूरियर रूपांतरण | ||
*आवृत्ति | *आवृत्ति | ||
* | *छिपी हुई हलचल | ||
*असमान | *असमान दूरी वाले डेटा में आवधिकता की गणना के लिए कम से कम वर्णक्रमीय विश्लेषण | ||
*थरथरानवाला चरण शोर | *थरथरानवाला चरण शोर | ||
*आवधिक कार्य | *आवधिक कार्य | ||
*चरण शोर | *चरण शोर | ||
* | *क्वासिपरियोडिसिटी | ||
*पारस्परिक गति | *पारस्परिक गति | ||
* | *गुंजयमान यंत्र | ||
*ताल | *ताल | ||
*मौसमी | *मौसमी | ||
*आत्म- | *आत्म-उत्तेजना | ||
*संकेतक उत्पादक | *संकेतक उत्पादक | ||
* | *निचोड़ना | ||
*अजीब आकर्षण | *अजीब आकर्षण | ||
*संरचनात्मक स्थिरता | *संरचनात्मक स्थिरता | ||
*ट्यून्ड मास | *ट्यून्ड मास डैम्पर | ||
*कंपन | *कंपन | ||
*वाइब्रेटर ( | *वाइब्रेटर (यांत्रिक) | ||
{{div col end}} | {{div col end}} | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*{{Commonscat-inline}} | *{{Commonscat-inline}} | ||
*[http://www.lightandmatter.com/html_books/3vw/ch01/ch01.html Vibrations] – a chapter from an online textbook | *[http://www.lightandmatter.com/html_books/3vw/ch01/ch01.html Vibrations] – a chapter from an online textbook | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category: Machine Translated Page]] | [[Category:Missing redirects]] | ||
[[Category:Multi-column templates]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:दोलन| ]] | |||
Latest revision as of 18:25, 15 April 2023
दोलन केंद्रीय मूल्य ( अधिकांशतः यांत्रिक संतुलन का बिंदु) के बारे में या दो या दो से अधिक अलग-अलग राज्यों के बीच कुछ माप के दोहराव या आवधिक कार्य भिन्नता है। दोलन के परिचित उदाहरणों में झूलता हुआ पेंडुलम और प्रत्यावर्ती धारा सम्मिलित हैं। दोलनों का उपयोग भौतिकी में जटिल अंतःक्रियाओं का अनुमान लगाने के लिए किया जा सकता है, जैसे कि परमाणुओं के बीच।
दोलन न केवल यांत्रिक प्रणालियों में किंतु विज्ञान के लगभग हर क्षेत्र में गतिशील प्रणालियों में भी होते हैं: उदाहरण के लिए मानव हृदय की धड़कन (परिसंचरण के लिए), अर्थशास्त्र में व्यापार चक्र, पारिस्थितिकी में शिकारी-शिकार जनसंख्या चक्र, भूविज्ञान में भूतापीय गीजर, गिटार और अन्य स्ट्रिंग वाद्ययंत्रों में तारों का कंपन, मस्तिष्क में तंत्रिका कोशिकाओं की आवधिक फायरिंग, और खगोल विज्ञान में सेफिड चर सितारों की आवधिक सूजन। यांत्रिक दोलन का वर्णन करने के लिए कंपन शब्द का स्पष्ट रूप से उपयोग किया जाता है।
सरल हार्मोनिक
सबसे सरल यांत्रिक दोलन प्रणाली रेखीय स्प्रिंग (उपकरण) से जुड़ा वजन है जो केवल वजन और तनाव (भौतिकी) के अधीन है। ऐसी प्रणाली को हवा की मेज या बर्फ की सतह पर अनुमानित किया जा सकता है। वसंत के स्थिर होने पर प्रणाली यांत्रिक संतुलन की स्थिति में होती है। यदि निकाय को संतुलन से विस्थापित कर दिया जाता है, तो द्रव्यमान पर शुद्ध पुनर्स्थापन बल होता है, जो इसे वापस संतुलन में लाने के लिए प्रवृत्त होता है। चूँकि , द्रव्यमान को वापस संतुलन की स्थिति में ले जाने में, इसने गति प्राप्त कर ली है जो इसे उस स्थिति से आगे ले जाती है, विपरीत अर्थ में नया पुनर्स्थापना बल स्थापित करती है। यदि स्थिर बल जैसे गुरुत्वाकर्षण को प्रणाली में जोड़ा जाता है, तो संतुलन का बिंदु स्थानांतरित हो जाता है। दोलन होने में लगने वाले समय को अधिकांशतः दोलन काल कहा जाता है।
वे प्रणालियाँ जहाँ किसी पिंड पर पुनर्स्थापना बल उसके विस्थापन के सीधे आनुपातिक होता है, जैसे कि स्प्रिंग-मास प्रणाली की गतिशीलता (यांत्रिकी), गणितीय रूप से हार्मोनिक ऑसिलेटर सिंपल हार्मोनिक ऑसिलेटर द्वारा वर्णित की जाती है और नियमित अवधि (भौतिकी) गति होती है सरल हार्मोनिक गति के रूप में जाना जाता है। वसंत-द्रव्यमान प्रणाली में, दोलन होते हैं, क्योंकि स्थैतिक संतुलन विस्थापन पर, द्रव्यमान में गतिज ऊर्जा होती है जो अपने पथ के चरम पर वसंत में संग्रहीत संभावित ऊर्जा में परिवर्तित हो जाती है। वसंत-द्रव्यमान प्रणाली दोलन की कुछ सामान्य विशेषताओं को दर्शाती है, अर्थात् संतुलन का अस्तित्व और पुनर्स्थापना बल की उपस्थिति जो कि प्रणाली के संतुलन से विचलित होने पर और शक्तिशाली होती जाती है।
वसंत-द्रव्यमान प्रणाली के स्थितियों में, हुक का नियम कहता है कि वसंत की पुनर्स्थापना बल है:
न्यूटन के द्वितीय नियम या न्यूटन के द्वितीय नियम का प्रयोग करके अवकल समीकरण व्युत्पन्न किया जा सकता है।
,
जहाँ पे
इस अंतर समीकरण का समाधान साइनसॉइडल स्थिति फ़ंक्शन उत्पन्न करता है।
जहां दोलन की आवृत्ति है, ए आयाम है, और फ़ंक्शन का चरण बदलाव है। ये प्रणाली की प्रारंभिक स्थितियों से निर्धारित होते हैं। क्योंकि कोसाइन 1 और -1 के बीच असीम रूप से दोलन करता है, हमारा स्प्रिंग-मास प्रणाली बिना घर्षण के सदैव के लिए सकारात्मक और नकारात्मक आयाम के बीच दोलन करेगा।
द्वि-आयामी दोलक
दो या तीन आयामों में, हार्मोनिक ऑसिलेटर आयाम के समान व्यवहार करते हैं। इसका सबसे सरल उदाहरण आइसोट्रॉपी थरथरानवाला है, जहां पुनर्स्थापना बल सभी दिशाओं में समान पुनर्स्थापन स्थिरांक के साथ संतुलन से विस्थापन के समानुपाती होता है।
यह समान समाधान उत्पन्न करता है, किन्तु अब हर दिशा के लिए अलग समीकरण है।
,
,
[...]
अनिसोट्रोपिक ऑसिलेटर्स
अनिसोट्रॉपी ऑसिलेटर्स के साथ, अलग-अलग दिशाओं में बहाल करने वाले बलों के अलग-अलग स्थिरांक होते हैं। समाधान आइसोट्रोपिक ऑसिलेटर्स के समान है, किन्तु प्रत्येक दिशा में अलग आवृत्ति होती है। दूसरे के सापेक्ष आवृत्तियों को बदलने से रोचक परिणाम मिल सकते हैं। उदाहरण के लिए, यदि दिशा में बारंबारता दूसरी दिशा की आवृत्ति से दोगुनी है, तो आकृति आठ पैटर्न निर्मित होता है। यदि आवृत्तियों का अनुपात अपरिमेय है, तो गति अर्ध-आवधिक फलन है। यह गति प्रत्येक अक्ष पर आवर्ती है, किन्तु r के संबंध में आवर्त नहीं है, और कभी भी दोहराई नहीं जाएगी।[1]
नम दोलन
सभी वास्तविक-विश्व थरथरानवाला प्रणाली थर्मोडायनामिक उत्क्रमणीयता हैं। इसका कारण है कि घर्षण या विद्युत प्रतिरोध जैसी अपव्यय प्रक्रियाएं होती हैं जो पर्यावरण में थरथरानवाला में संग्रहीत कुछ ऊर्जा को लगातार गर्मी में परिवर्तित करती हैं। इसे भिगोना कहा जाता है। इस प्रकार, समय के साथ दोलनों का क्षय होता है जब तक कि प्रणाली में ऊर्जा का कोई शुद्ध स्रोत न हो। इस क्षय प्रक्रिया का सबसे सरल वर्णन हार्मोनिक थरथरानवाला के दोलन क्षय द्वारा सचित्र किया जा सकता है।
जब प्रतिरोधी बल लगाया जाता है, जो स्थिति के पहले व्युत्पन्न पर निर्भर होता है, या इस स्थितियों में वेग पर निर्भर होता है, तो डंप किए गए ऑसीलेटर बनाए जाते हैं। न्यूटन के दूसरे नियम द्वारा निर्मित अवकल समीकरण इस प्रतिरोधक बल में इच्छानुसार स्थिरांक b के साथ जुड़ता है। यह उदाहरण वेग पर रैखिक निर्भरता मानता है।
इस समीकरण को पहले की तरह फिर से लिखा जा सकता है।
,
जहाँ पे
यह सामान्य समाधान उत्पन्न करता है:
,
जहाँ पे
कोष्ठक के बाहर घातांकीय पद घातीय क्षय है और β अवमंदन गुणांक है। नम दोलकों की 3 श्रेणियां हैं: अंडर-डंप, जहां β <0; अधिक नमी, जहां β >0; और गंभीर रूप से भीग गया, जहां β =0.
प्रेरित दोलन
इसके अतिरिक्त , दोलन प्रणाली कुछ बाहरी बल के अधीन हो सकती है, जैसे कि जब एसी इलेक्ट्रॉनिक परिपथ बाहरी शक्ति स्रोत से जुड़ा होता है। इस स्थितियों में दोलन को संचालित दोलन कहा जाता है।
इसका सबसे सरल उदाहरण साइन वेव चलन बल के साथ स्प्रिंग-मास प्रणाली है।
, जहाँ पे यह समाधान देता है:
,
जहाँ पे तथा
x(t) का दूसरा पद अवकल समीकरण का क्षणिक हल है। प्रणाली की प्रारंभिक स्थितियों का उपयोग करके क्षणिक समाधान पाया जा सकता है।
कुछ प्रणाली पर्यावरण से ऊर्जा हस्तांतरण से उत्साहित हो सकते हैं। यह स्थानांतरण सामान्यतः तब होता है जब प्रणाली कुछ द्रव प्रवाह में एम्बेडेड होते हैं। उदाहरण के लिए, वायुगतिकी में एरोएलास्टिक स्पंदन की घटना तब होती है जब विमान विंग के इच्छानुसार से छोटे विस्थापन (इसके संतुलन से) के परिणामस्वरूप वायु प्रवाह पर विंग के हमले के कोण में वृद्धि होती है और लिफ्ट के गुणांक में परिणामी वृद्धि होती है, और अधिक विस्थापन के लिए अग्रणी। पर्याप्त रूप से बड़े विस्थापन पर, पंख की कठोरता बहाल करने वाली शक्ति प्रदान करने के लिए हावी होती है जो दोलन को सक्षम करती है।
अनुनाद
एक नम चालित दोलक में अनुनाद तब होता है जब ω = ω0, अर्थात , जब चलन बल आवृत्ति प्रणाली की प्राकृतिक आवृत्ति के बराबर होती है। जब ऐसा होता है, तो आयाम का हर छोटा हो जाता है, जो दोलनों के आयाम को अधिकतम करता है।
युग्मित दोलन
हार्मोनिक थरथरानवाला और इसके मॉडल की प्रणालियों में स्वतंत्रता (भौतिकी और रसायन विज्ञान) की ही डिग्री होती है। अधिक जटिल प्रणालियों में स्वतंत्रता की अधिक डिग्री होती है, उदाहरण के लिए, दो द्रव्यमान और तीन स्प्रिंग्स (प्रत्येक द्रव्यमान निश्चित बिंदुओं और दूसरे से जुड़ा होता है)। ऐसे स्थितियों में, प्रत्येक चर का व्यवहार दूसरों के व्यवहार को प्रभावित करता है। यह स्वतंत्रता की व्यक्तिगत डिग्री के दोलनों के युग्मन की ओर जाता है। उदाहरण के लिए, सामान्य दीवार पर लगे दो पेंडुलम घड़ियां (समान आवृत्ति की) सिंक्रनाइज़ हो जाएंगी। यह इंजेक्शन लॉकिंग पहली बार 1665 में क्रिस्टियान ह्यूजेंस द्वारा देखा गया था।[2] यौगिक दोलनों की स्पष्ट गति सामान्यतः बहुत जटिल प्रतीत होती है किन्तु गति को सामान्य मोड में हल करके अधिक आर्थिक, कम्प्यूटेशनल रूप से सरल और अवधारणात्मक रूप से गहरा विवरण दिया जाता है।
युग्मित थरथरानवाला का सबसे सरल रूप 3 वसंत, 2 द्रव्यमान प्रणाली है, जहां द्रव्यमान और वसंत स्थिरांक समान होते हैं। यह समस्या दोनों द्रव्यमानों के लिए न्यूटन के दूसरे नियम को प्राप्त करने से प्रारंभिक होता है।
, ,
समीकरणों को तब आव्युह रूप में सामान्यीकृत किया जाता है।
,
जहाँ पे , , तथा
k और m के मानों को आव्यूहों में प्रतिस्थापित किया जा सकता है।
, ,
,
इन आव्युह को अब सामान्य समाधान में प्लग किया जा सकता है।
इस आव्युह का निर्धारक द्विघात समीकरण देता है।
,
द्रव्यमान के प्रारंभिक बिंदु के आधार पर, इस प्रणाली में 2 संभावित आवृत्तियां (या दोनों का संयोजन) होती हैं। यदि द्रव्यमान को ही दिशा में उनके विस्थापन के साथ प्रारंभिक किया जाता है, तो आवृत्ति एकल द्रव्यमान प्रणाली की होती है, क्योंकि मध्य वसंत कभी विस्तारित नहीं होता है। यदि दो द्रव्यमानों को विपरीत दिशाओं में प्रारंभिक किया जाता है, तो दूसरी, तेज आवृत्ति प्रणाली की आवृत्ति होती है।[1]
अधिक विशेष स्थितियों युग्मित थरथरानवाला हैं जहां ऊर्जा दो प्रकार के दोलनों के बीच वैकल्पिक होती है। प्रसिद्ध विल्बरफोर्स पेंडुलम है, जहां दोलन ऊर्ध्वाधर वसंत के बढ़ाव और उस वसंत के अंत में किसी वस्तु के घूमने के बीच वैकल्पिक होता है।
युग्मित थरथरानवाला दो संबंधित, किन्तु अलग-अलग घटनाओं का सामान्य विवरण है। मामला यह है कि दोनों दोलन दूसरे को परस्पर प्रभावित करते हैं, जो सामान्यतः एकल, प्रवेशित दोलन राज्य की घटना की ओर जाता है, जहां दोनों समझौता आवृत्ति के साथ दोलन करते हैं। अन्य मामला यह है कि बाहरी दोलन आंतरिक दोलन को प्रभावित करता है, किन्तु इससे प्रभावित नहीं होता है। इस स्थितियों में तुल्यकालन के क्षेत्र, जिन्हें अर्नोल्ड जीभ के रूप में जाना जाता है, अत्यधिक जटिल घटनाओं को जन्म दे सकता है, उदाहरण के लिए अराजक गतिशीलता।
छोटा दोलन सन्निकटन
भौतिकी में, रूढ़िवादी बलों के समुच्चय और संतुलन बिंदु के साथ प्रणाली को संतुलन के निकट हार्मोनिक थरथरानवाला के रूप में अनुमानित किया जा सकता है। इसका उदाहरण लेनार्ड-जोन्स क्षमता है, जहां क्षमता निम्न द्वारा दी गई है:
तब फ़ंक्शन के संतुलन बिंदु पाए जाते हैं।
दूसरा व्युत्पन्न तब पाया जाता है, और प्रभावी संभावित स्थिरांक हुआ करता था।
प्रणाली संतुलन बिंदु के पास दोलनों से गुजरेगी। इन दोलनों को बनाने वाला बल ऊपर के प्रभावी संभावित स्थिरांक से प्राप्त होता है।
इस अंतर समीकरण को साधारण हार्मोनिक थरथरानवाला के रूप में फिर से लिखा जा सकता है।
इस प्रकार, छोटे दोलनों की आवृत्ति है:
या, सामान्य रूप में[3]
प्रणाली के संभावित वक्र को देखकर इस सन्निकटन को बढ़िया ढंग से समझा जा सकता है। संभावित वक्र को पहाड़ी के रूप में सोचकर, जिसमें, यदि कोई गेंद को वक्र पर कहीं भी रखता है, तो गेंद संभावित वक्र के ढलान के साथ लुढ़क जाएगी। यह स्थितिज ऊर्जा और बल के बीच संबंध के कारण सत्य है।
इस तरह से क्षमता के बारे में सोचकर, कोई यह देखेगा कि किसी भी स्थानीय न्यूनतम पर कुआं है जिसमें गेंद आगे-पीछे लुढ़कती (दोलन) करती है। तथा . यह सन्निकटन केपलर कक्षा के बारे में सोचने के लिए भी उपयोगी है।
सतत प्रणाली - तरंगें
जैसे ही स्वतंत्रता की डिग्री की संख्या इच्छानुसार से बड़ी हो जाती है, प्रणाली सातत्य यांत्रिकी तक पहुंचती है; उदाहरणों में तार या पानी के शरीर की सतह सम्मिलित है। इस तरह की प्रणालियों में ( मौलिक सीमा में) सामान्य मोड की अनंत संख्या होती है और उनके दोलन तरंगों के रूप में होते हैं जो विशेष रूप से प्रचार कर सकते हैं।
गणित
दोलन का गणित उस राशि के परिमाणीकरण से संबंधित है जो अनुक्रम या कार्य चरम सीमाओं के बीच स्थानांतरित होता है। कई संबंधित धारणाएँ हैं: वास्तविक संख्याओं के अनुक्रम का दोलन, बिंदु पर वास्तविक-मूल्यवान फ़ंक्शन (गणित) का दोलन, और अंतराल (गणित) (या खुले समुच्चय ) पर फ़ंक्शन का दोलन।
उदाहरण
यांत्रिक
- डबल पेंडुलम
- फौकॉल्ट पेंडुलम
- हेल्महोल्ट्ज़ प्रतिध्वनि
- सूर्य में दोलन (हेलिओसिस्मोलॉजी), तारे (क्षुद्रग्रह विज्ञान) और न्यूट्रॉन-स्टार दोलन।
- क्वांटम हार्मोनिक थरथरानवाला
- स्विंग (सीट)
- तार उपकरण
- मरोड़ कंपन
- ट्यूनिंग कांटा
- कंपन स्ट्रिंग
- विलबरफोर्स पेंडुलम
- लीवर एस्केप
विद्युत
- प्रत्यावर्ती धारा
- आर्मस्ट्रांग थरथरानवाला|आर्मस्ट्रांग (या टिकलर या मीस्नर) थरथरानवाला
- अस्थिर
- अवरुद्ध थरथरानवाला
- बटलर थरथरानवाला
- ताली थरथरानवाला
- कोल्पिट्स थरथरानवाला
- विलंब-रेखा थरथरानवाला
- इलेक्ट्रॉनिक थरथरानवाला
- विस्तारित बातचीत थरथरानवाला
- हार्टले थरथरानवाला
- थरथरानवाला
- चरण-शिफ्ट थरथरानवाला
- पियर्स थरथरानवाला
- विश्राम थरथरानवाला
- आरएलसी सर्किट
- रॉयर थरथरानवाला
- वास्कस थरथरानवाला
- वीन ब्रिज थरथरानवाला
इलेक्ट्रो-मैकेनिकल
- क्रिस्टल थरथरानवाला
ऑप्टिकल
- लेजर (आदेश 10 . की आवृत्ति के साथ विद्युत चुम्बकीय क्षेत्र का दोलन15 हर्ट्ज)
- ऑसिलेटर टोडा या सेल्फ-पल्सेशन (आवृत्ति 10 . पर लेजर की आउटपुट पावर का स्पंदन)4 हर्ट्ज - 106 हर्ट्ज क्षणिक शासन में)
- क्वांटम थरथरानवाला एक ऑप्टिकल स्थानीय थरथरानवाला, साथ ही क्वांटम ऑप्टिक्स में एक सामान्य मॉडल का उल्लेख कर सकता है।
जैविक
- सर्कैडियन रिदम
- सर्कैडियन थरथरानवाला
- लोटका-वोल्टेरा समीकरण
- तंत्रिका दोलन
- ऑसिलेटिंग जीन
- विभाजन घड़ी
मानव दोलन
- तंत्रिका दोलन
- इंसुलिन रिलीज दोलन
- यौवन#अंतःस्रावी_परिप्रेक्ष्य
- पायलट-प्रेरित दोलन
- आवाज उत्पादन
आर्थिक और सामाजिक
- व्यापारिक चक्र
- पीढ़ी का अंतर
- माल्थुसियन अर्थशास्त्र
- समाचार चक्र
जलवायु और भूभौतिकी
- अटलांटिक बहु दशकीय दोलन
- चांडलर डगमगाने
- जलवायु दोलन
- अल नीनो-दक्षिणी दोलन
- प्रशांत दशकीय दोलन
- अर्ध-द्विवार्षिक दोलन
खगोल भौतिकी
- न्यूट्रॉन-स्टार दोलन
- चक्रीय मॉडल
क्वांटम यांत्रिक
- तटस्थ कण दोलन, उदा. न्यूट्रिनो दोलन
- क्वांटम हार्मोनिक थरथरानवाला
रासायनिक
- बेलौसोव-ज़ाबोटिंस्की प्रतिक्रिया
- बुध धड़कता दिल
- ब्रिग्स-रौशर प्रतिक्रिया
- ब्रे-लिभाफ्स्की प्रतिक्रिया
कंप्यूटिंग
- थरथरानवाला (सेलुलर_ऑटोमेटन)
यह भी देखें
- एंटीरेसोनेंस
- बीट (ध्वनिकी)
- बिबो स्थिरता
- क्रिटिकल स्पीड
- साइकिल (संगीत)
- गतिशील प्रणाली
- भूकम्प वास्तुविद्या
- प्रतिपुष्टि
- समान दूरी वाले डेटा में आवधिकता की गणना के लिए फूरियर रूपांतरण
- आवृत्ति
- छिपी हुई हलचल
- असमान दूरी वाले डेटा में आवधिकता की गणना के लिए कम से कम वर्णक्रमीय विश्लेषण
- थरथरानवाला चरण शोर
- आवधिक कार्य
- चरण शोर
- क्वासिपरियोडिसिटी
- पारस्परिक गति
- गुंजयमान यंत्र
- ताल
- मौसमी
- आत्म-उत्तेजना
- संकेतक उत्पादक
- निचोड़ना
- अजीब आकर्षण
- संरचनात्मक स्थिरता
- ट्यून्ड मास डैम्पर
- कंपन
- वाइब्रेटर (यांत्रिक)
संदर्भ
- ↑ 1.0 1.1 Taylor, John R. (2005). Classical mechanics. Mill Valley, California. ISBN 1-891389-22-X. OCLC 55729992.
{{cite book}}: CS1 maint: location missing publisher (link) - ↑ Strogatz, Steven (2003). Sync: The Emerging Science of Spontaneous Order. Hyperion Press. pp. 106–109. ISBN 0-786-86844-9.
- ↑ "23.7: Small Oscillations". Physics LibreTexts (in English). 2020-07-01. Retrieved 2022-04-21.
बाहरी संबंध
Media related to दोलन at Wikimedia Commons- Vibrations – a chapter from an online textbook

