बेल बहुपद: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 29: Line 29:
== संयुक्त अर्थ ==
== संयुक्त अर्थ ==


घातीय बेल बहुपद एक सेट को विभाजित करने के तरीकों से संबंधित जानकारी को कूटबद्ध करता है। उदाहरण के लिए, यदि हम एक सेट {A, B, C} पर विचार करते हैं, तो इसे दो गैर-खाली, गैर-अतिव्यापी उपसमुच्चय में विभाजित किया जा सकता है, जिसे 3 अलग-अलग तरीकों से भागों या ब्लॉकों के रूप में भी जाना जाता है:
घातीय बेल बहुपद एक सेट को विभाजित करने के विधियों से संबंधित जानकारी को कूटबद्ध करता है। उदाहरण के लिए, यदि हम एक सेट {A, B, C} पर विचार करते हैं, तो इसे दो गैर-खाली, गैर-अतिव्यापी उपसमुच्चय में विभाजित किया जा सकता है, जिसे 3 अलग-अलग विधियों से भागों या ब्लॉकों के रूप में भी जाना जाता है:


:{{A}, {B, C}}
:{{A}, {B, C}}
Line 37: Line 37:


:<math>B_{3,2}(x_1,x_2) = 3 x_1 x_2. </math>
:<math>B_{3,2}(x_1,x_2) = 3 x_1 x_2. </math>
यहाँ, बी की सदस्यताएँ<sub>3,2</sub> हमें बताता है कि हम 3 तत्वों के साथ सेट के विभाजन को 2 ब्लॉकों में विभाजित करने पर विचार कर रहे हैं। प्रत्येक एक्स की सबस्क्रिप्ट<sub>i</sub> किसी दिए गए विभाजन में i तत्वों (या आकार i के ब्लॉक) के साथ ब्लॉक की उपस्थिति को दर्शता है। तो यहाँ, एक्स<sub>2</sub> दो तत्वों के साथ एक ब्लॉक की उपस्थिति को दर्शता करता है। इसी प्रकार, एक्स<sub>1</sub> एकल तत्व वाले ब्लॉक की उपस्थिति को दर्शता है। x का प्रतिपादक<sub>i</sub><sup>j</sup> दर्शता है कि एकल विभाजन में आकार i के ऐसे j ब्लॉक हैं। यहाँ, चूँकि दोनों x<sub>1</sub> और एक्स<sub>2</sub> प्रतिपादक 1 है, यह दर्शता करता है कि दिए गए विभाजन में केवल एक ऐसा ब्लॉक है। [[एकपद]] का गुणांक दर्शता करता है कि ऐसे कितने विभाजन हैं। हमारे स्थितियों के लिए, 3 तत्वों के साथ 2 ब्लॉकों में एक सेट के 3 विभाजन हैं, जहां प्रत्येक विभाजन में तत्वों को 1 और 2 के आकार के दो ब्लॉकों में विभाजित किया गया है।
यहाँ, B<sub>3,2</sub> की सदस्यताएँ हमें बताता है कि हम 3 तत्वों के साथ सेट के विभाजन को 2 ब्लॉकों में विभाजित करने पर विचार कर रहे हैं। प्रत्येक x<sub>i</sub> की सबस्क्रिप्ट किसी दिए गए विभाजन में i तत्वों (या आकार i के ब्लॉक) के साथ ब्लॉक की उपस्थिति को दर्शता है। तो यहाँ, x<sub>2</sub> दो तत्वों के साथ एक ब्लॉक की उपस्थिति को दर्शता करता है। इसी प्रकार, x<sub>1</sub> एकल तत्व वाले ब्लॉक की उपस्थिति को दर्शता है। x का प्रतिपादक<sub>i</sub><sup>j</sup> दर्शता है कि एकल विभाजन में आकार i के ऐसे j ब्लॉक हैं। यहाँ, चूँकि दोनों x<sub>1</sub> और x<sub>2</sub> प्रतिपादक 1 है, यह दर्शता करता है कि दिए गए विभाजन में केवल एक ऐसा ब्लॉक है। [[एकपद]] का गुणांक दर्शता करता है कि ऐसे कितने विभाजन हैं। हमारे स्थितियों के लिए, 3 तत्वों के साथ 2 ब्लॉकों में एक सेट के 3 विभाजन हैं, जहां प्रत्येक विभाजन में तत्वों को 1 और 2 के आकार के दो ब्लॉकों में विभाजित किया गया है।


चूँकि किसी भी समुच्चय को एक ही ब्लॉक में केवल एक तरीके से विभाजित किया जा सकता है, उपरोक्त व्याख्या का अर्थ होगा कि B<sub>''n'',1</sub> = एक्स<sub>''n''</sub>. इसी प्रकार, चूंकि केवल एक ही विधि है कि n तत्वों वाले एक सेट को n सिंगलटन में विभाजित किया जाए, B<sub>''n'',''n''</sub> = एक्स<sub>1</sub><sup>एन</sup>.
चूँकि किसी भी समुच्चय को एक ही ब्लॉक में केवल एक तरीके से विभाजित किया जा सकता है, उपरोक्त व्याख्या का अर्थ होगा कि B<sub>''n'',1</sub> = x<sub>''n''</sub>. इसी प्रकार, चूंकि केवल एक ही विधि है कि n तत्वों वाले एक सेट को n सिंगलटन में विभाजित किया जाए, B<sub>''n'',''n''</sub> = x<sub>1</sub><sup>n</sup>.


अधिक जटिल उदाहरण के रूप में, विचार करें
अधिक जटिल उदाहरण के रूप में, विचार करें
Line 46: Line 46:
यह हमें बताता है कि यदि 6 तत्वों के एक सेट को 2 ब्लॉकों में विभाजित किया जाता है, तो हमारे पास आकार 1 और 5 के ब्लॉक के साथ 6 विभाजन, आकार 4 और 2 के ब्लॉक वाले 15 विभाजन और 3 आकार के 2 ब्लॉक वाले 10 विभाजन हो सकते हैं।
यह हमें बताता है कि यदि 6 तत्वों के एक सेट को 2 ब्लॉकों में विभाजित किया जाता है, तो हमारे पास आकार 1 और 5 के ब्लॉक के साथ 6 विभाजन, आकार 4 और 2 के ब्लॉक वाले 15 विभाजन और 3 आकार के 2 ब्लॉक वाले 10 विभाजन हो सकते हैं।


एकपदी में सबस्क्रिप्ट का योग तत्वों की कुल संख्या के बराबर है। इस प्रकार, आंशिक बेल बहुपद में दिखाई देने वाले मोनोमियल्स की संख्या उन तरीकों की संख्या के बराबर होती है, जिन्हें पूर्णांक n को k धनात्मक पूर्णांकों के योग के रूप में व्यक्त किया जा सकता है। यह n के k भागों में [[पूर्णांक विभाजन]] के समान है। उदाहरण के लिए, उपरोक्त उदाहरणों में, पूर्णांक 3 को केवल 2+1 के रूप में दो भागों में विभाजित किया जा सकता है। इस प्रकार, B में केवल एक एकपदी है<sub>3,2</sub>. चूंकि, पूर्णांक 6 को 5+1, 4+2 और 3+3 के रूप में दो भागों में विभाजित किया जा सकता है। इस प्रकार, B में तीन एकपदी हैं<sub>6,2</sub>. वास्तव में, एक मोनोमियल में वेरिएबल्स के सबस्क्रिप्ट वही होते हैं जो पूर्णांक विभाजन द्वारा दिए गए होते हैं, जो विभिन्न ब्लॉकों के आकार को दर्शाते हैं। एक पूर्ण बेल बहुपद बी में दिखाई देने वाले एकपदों की कुल संख्या<sub>n</sub>इस प्रकार n के पूर्णांक विभाजनों की कुल संख्या के बराबर है।
एकपदी में सबस्क्रिप्ट का योग तत्वों की कुल संख्या के बराबर है। इस प्रकार, आंशिक बेल बहुपद में दिखाई देने वाले मोनोमियल्स की संख्या उन विधियों की संख्या के बराबर होती है, जिन्हें पूर्णांक n को k धनात्मक पूर्णांकों के योग के रूप में व्यक्त किया जा सकता है। यह n के k भागों में [[पूर्णांक विभाजन]] के समान है। उदाहरण के लिए, उपरोक्त उदाहरणों में, पूर्णांक 3 को केवल 2+1 के रूप में दो भागों में विभाजित किया जा सकता है। इस प्रकार, B<sub>3,2</sub> में केवल एक एकपदी है. चूंकि, पूर्णांक 6 को 5+1, 4+2 और 3+3 के रूप में दो भागों में विभाजित किया जा सकता है। इस प्रकार, B<sub>6,2</sub> में तीन एकपदी हैं. वास्तव में, एक मोनोमियल में वेरिएबल्स के सबस्क्रिप्ट वही होते हैं जो पूर्णांक विभाजन द्वारा दिए गए होते हैं, जो विभिन्न ब्लॉकों के आकार को दर्शाते हैं। एक पूर्ण बेल बहुपद B<sub>n</sub> में दिखाई देने वाले एकपदों की कुल संख्या इस प्रकार n के पूर्णांक विभाजनों की कुल संख्या के बराबर है।


साथ ही प्रत्येक मोनोमियल की डिग्री, जो मोनोमियल में प्रत्येक चर के घातांक का योग है, सेट में विभाजित ब्लॉकों की संख्या के बराबर है। अर्थात जे<sub>1</sub> + जे<sub>2</sub> + ... = के। इस प्रकार, एक पूर्ण बेल बहुपद बी दिया गया<sub>n</sub>, हम आंशिक बेल बहुपद बी को अलग कर सकते हैं<sub>n,k</sub>डिग्री k वाले उन सभी एकपदों को एकत्रित करके।
साथ ही प्रत्येक मोनोमियल की डिग्री, जो मोनोमियल में प्रत्येक चर के घातांक का योग है, सेट में विभाजित ब्लॉकों की संख्या के बराबर है। अर्थात j<sub>1</sub> + j<sub>2</sub> + ... = k। इस प्रकार, एक पूर्ण बेल बहुपद B<sub>n</sub> दिया जाने पर, हम डिग्री k वाले उन सभी एकपदों को एकत्रित करके आंशिक बेल बहुपद B<sub>n,k</sub> को अलग कर सकते हैं।


अंत में, यदि हम ब्लॉक के आकार की उपेक्षा करते हैं और सभी x<sub>''i''</sub> = x, तो आंशिक बेल बहुपद बी के गुणांकों का योग<sub>''n'',''k''</sub> n तत्वों वाले एक सेट को k ब्लॉकों में विभाजित करने के तरीकों की कुल संख्या देगा, जो [[दूसरी तरह की स्टर्लिंग संख्या|दूसरी प्रकार की स्टर्लिंग संख्या]]ओं के समान है। साथ ही, पूर्ण बेल बहुपद बी के सभी गुणांकों का योग<sub>n</sub>हमें n तत्वों के साथ एक सेट को गैर-अतिव्यापी उपसमुच्चय में विभाजित करने के तरीकों की कुल संख्या देगा, जो बेल संख्या के समान है।
अंत में, यदि हम ब्लॉक के आकार की उपेक्षा करते हैं और सभी x<sub>''i''</sub> = x डालते हैं, तो आंशिक बेल बहुपद B<sub>''n'',''k''</sub> के गुणांकों का योग n तत्वों वाले एक सेट को k ब्लॉकों में विभाजित करने के विधियों की कुल संख्या देगा, जो [[दूसरी तरह की स्टर्लिंग संख्या|दूसरी प्रकार की स्टर्लिंग संख्या]]ओं के समान है। साथ ही, पूर्ण बेल बहुपद B<sub>n</sub> के सभी गुणांकों का योग हमें n तत्वों के साथ एक सेट को गैर-अतिव्यापी उपसमुच्चय में विभाजित करने के विधियों की कुल संख्या देगा, जो बेल संख्या के समान है।


सामान्य तौर पर, यदि पूर्णांक n एक पूर्णांक विभाजन है जिसमें एक योग है जिसमें 1 j दिखाई देता है<sub>1</sub> बार, 2 प्रकट होता है जे<sub>2</sub> बार, और इसी प्रकार, फिर आकार n के एक सेट के विभाजन की संख्या जो पूर्णांक n के उस विभाजन के लिए ढह जाती है जब सेट के सदस्य अप्रभेद्य हो जाते हैं, बहुपद में संबंधित गुणांक होता है।
सामान्य तौर पर, यदि पूर्णांक n एक पूर्णांक विभाजन है जिसमें एक योग है जिसमें 1 j<sub>1</sub> बार प्रकट होता है, 2 j<sub>2</sub> बार प्रकट होता है, और इसी प्रकार, फिर आकार n के एक सेट के विभाजन की संख्या जो पूर्णांक n के उस विभाजन के लिए ढह जाती है जब सेट के सदस्य अप्रभेद्य हो जाते हैं, बहुपद में संबंधित गुणांक होता है।


=== उदाहरण ===
=== उदाहरण ===
Line 155: Line 155:
=== स्टर्लिंग नंबर और बेल नंबर ===
=== स्टर्लिंग नंबर और बेल नंबर ===


बेल बहुपद बी का मान<sub>''n'',''k''</sub>(एक्स<sub>1</sub>,एक्स<sub>2</sub>,...) [[कारख़ाने का]] के अनुक्रम पर पहली प्रकार की एक अहस्ताक्षरित स्टर्लिंग संख्या के बराबर होती है:
बेल बहुपद B का मान<sub>''n'',''k''</sub>(x<sub>1</sub>,x<sub>2</sub>,...) [[कारख़ाने का]] के अनुक्रम पर पहली प्रकार की एक अहस्ताक्षरित स्टर्लिंग संख्या के बराबर होती है:
:<math>B_{n,k}(0!,1!,\dots,(n-k)!)=c(n,k)=|s(n,k)| = \left[{n\atop k}\right].</math>
:<math>B_{n,k}(0!,1!,\dots,(n-k)!)=c(n,k)=|s(n,k)| = \left[{n\atop k}\right].</math>
इन मानों का योग फैक्टोरियल के अनुक्रम पर पूर्ण बेल बहुपद का मान देता है:
इन मानों का योग फैक्टोरियल के अनुक्रम पर पूर्ण बेल बहुपद का मान देता है:
:<math>B_n(0!,1!,\dots,(n-1)!)=\sum_{k=1}^n B_{n,k}(0!,1!,\dots,(n-k)!) = \sum_{k=1}^n \left[{n\atop k}\right] = n!.</math>
:<math>B_n(0!,1!,\dots,(n-1)!)=\sum_{k=1}^n B_{n,k}(0!,1!,\dots,(n-k)!) = \sum_{k=1}^n \left[{n\atop k}\right] = n!.</math>
बेल बहुपद बी का मान<sub>''n'',''k''</sub>(एक्स<sub>1</sub>,एक्स<sub>2</sub>,...) एक के अनुक्रम पर [[दूसरी तरह की स्टर्लिंग संख्या|दूसरी प्रकार की स्टर्लिंग संख्या]] के बराबर होती है:
बेल बहुपद B का मान<sub>''n'',''k''</sub>(x<sub>1</sub>,x<sub>2</sub>,...) एक के अनुक्रम पर [[दूसरी तरह की स्टर्लिंग संख्या|दूसरी प्रकार की स्टर्लिंग संख्या]] के बराबर होती है:
:<math>B_{n,k}(1,1,\dots,1)=S(n,k)=\left\{{n\atop k}\right\}.</math>
:<math>B_{n,k}(1,1,\dots,1)=S(n,k)=\left\{{n\atop k}\right\}.</math>
इन मानों का योग एक के अनुक्रम पर पूर्ण बेल बहुपद का मान देता है:
इन मानों का योग एक के अनुक्रम पर पूर्ण बेल बहुपद का मान देता है:
Line 183: Line 183:
=== कनवल्शन आइडेंटिटी ===
=== कनवल्शन आइडेंटिटी ===


अनुक्रमों के लिए एक्स<sub>''n''</sub>, और<sub>''n''</sub>, n = 1, 2, ..., [[कनवल्शन]] को परिभाषित करें:
अनुक्रमों के लिए x<sub>''n''</sub>, और<sub>''n''</sub>, n = 1, 2, ..., [[कनवल्शन]] को परिभाषित करें:


:<math>(x \mathbin{\diamondsuit} y)_n = \sum_{j=1}^{n-1} {n \choose j} x_j y_{n-j}.</math>
:<math>(x \mathbin{\diamondsuit} y)_n = \sum_{j=1}^{n-1} {n \choose j} x_j y_{n-j}.</math>
Line 284: Line 284:


:<math>I(\lambda) = \int_a^b e^{-\lambda f(x)} g(x) \, \mathrm{d}x, </math>
:<math>I(\lambda) = \int_a^b e^{-\lambda f(x)} g(x) \, \mathrm{d}x, </math>
जहां (ए, बी) एक वास्तविक (परिमित या अनंत) अंतराल है, λ एक बड़ा सकारात्मक पैरामीटर है और कार्य एफ और जी निरंतर हैं। मान लीजिए f का [a,b] में एक न्यूनतम है जो x = a पर होता है। मान लें कि x → a के रूप में<sup>+</sup>,
जहां (ए, B) एक वास्तविक (परिमित या अनंत) अंतराल है, λ एक बड़ा सकारात्मक पैरामीटर है और कार्य एफ और जी निरंतर हैं। मान लीजिए f का [a,b] में एक न्यूनतम है जो x = a पर होता है। मान लें कि x → a के रूप में<sup>+</sup>,


:<math> f(x) \sim f(a) + \sum_{k=0}^\infty a_k (x-a)^{k+\alpha}, </math>
:<math> f(x) \sim f(a) + \sum_{k=0}^\infty a_k (x-a)^{k+\alpha}, </math>
Line 291: Line 291:


:<math> I(\lambda) \sim e^{-\lambda f(a)} \sum_{n=0}^\infty \Gamma \Big(\frac{n+\beta}{\alpha} \Big) \frac{c_n}{\lambda^{(n+\beta)/\alpha}} \qquad \text{as} \quad \lambda \rightarrow \infty, </math>
:<math> I(\lambda) \sim e^{-\lambda f(a)} \sum_{n=0}^\infty \Gamma \Big(\frac{n+\beta}{\alpha} \Big) \frac{c_n}{\lambda^{(n+\beta)/\alpha}} \qquad \text{as} \quad \lambda \rightarrow \infty, </math>
जहां गुणांक सी<sub>n</sub>a के रूप में अभिव्यक्त होते हैं<sub>n</sub>और बी<sub>n</sub>आंशिक साधारण बेल बहुपदों का उपयोग करते हुए, जैसा कि कैंपबेल-फ्रोमन-वॉल्स-वोज्डाइलो सूत्र द्वारा दिया गया है:
जहां गुणांक सी<sub>n</sub>a के रूप में अभिव्यक्त होते हैं<sub>n</sub>और B<sub>n</sub>आंशिक साधारण बेल बहुपदों का उपयोग करते हुए, जैसा कि कैंपबेल-फ्रोमन-वॉल्स-वोज्डाइलो सूत्र द्वारा दिया गया है:


:<math> c_n = \frac{1}{\alpha a_0^{(n+\beta)/\alpha}} \sum_{k=0}^n b_{n-k} \sum_{j=0}^k \binom{-\frac{n+\beta}{\alpha}}{j} \frac{1}{a_0^j} \hat{B}_{k,j}(a_1,a_2,\ldots,a_{k-j+1}). </math>
:<math> c_n = \frac{1}{\alpha a_0^{(n+\beta)/\alpha}} \sum_{k=0}^n b_{n-k} \sum_{j=0}^k \binom{-\frac{n+\beta}{\alpha}}{j} \frac{1}{a_0^j} \hat{B}_{k,j}(a_1,a_2,\ldots,a_{k-j+1}). </math>
Line 336: Line 336:


:<math>\operatorname{He}_n(x) = B_n(x,-1,0,\ldots,0),</math>
:<math>\operatorname{He}_n(x) = B_n(x,-1,0,\ldots,0),</math>
जहां एक्स<sub>''i''</sub> = 0 सबके लिए i > 2; इस प्रकार हर्मिट बहुपदों के गुणांकों की एक संयुक्त व्याख्या की अनुमति देता है। इसे हर्मिट बहुपदों के जनक फलन की तुलना करके देखा जा सकता है
जहां x<sub>''i''</sub> = 0 सबके लिए i > 2; इस प्रकार हर्मिट बहुपदों के गुणांकों की एक संयुक्त व्याख्या की अनुमति देता है। इसे हर्मिट बहुपदों के जनक फलन की तुलना करके देखा जा सकता है


:<math>\exp \left(xt-\frac{t^2}{2} \right) = \sum_{n=0}^\infty \operatorname{He}_n(x) \frac {t^n}{n!}</math>
:<math>\exp \left(xt-\frac{t^2}{2} \right) = \sum_{n=0}^\infty \operatorname{He}_n(x) \frac {t^n}{n!}</math>

Revision as of 13:13, 16 February 2023

साहचर्य गणित में, एरिक टेम्पल बेल के सम्मान में नामित बेल बहुपद का उपयोग सेट विभाजन के अध्ययन में किया जाता है। वे स्टर्लिंग नंबर और बेल नंबर से संबंधित हैं। वे कई अनुप्रयोगों में भी होते हैं, जैसे कि फा डि ब्रूनो के सूत्र में।

परिभाषाएँ

घातीय बेल बहुपद

आंशिक या अपूर्ण घातीय बेल बहुपद बहुपदों की एक त्रिकोणीय सरणी द्वारा दिए गए हैं

जहां गैर-ऋणात्मक पूर्णांकों के सभी अनुक्रम j1, j2, j3, ..., jnk+1 पर योग लिया जाता है, जैसे कि ये दो शर्तें पूरी होती हैं:

 :

योग

nवां पूर्ण चरघातांकी बेल बहुपद कहलाता है।

साधारण बेल बहुपद

इसी प्रकार, आंशिक साधारण बेल बहुपद द्वारा परिभाषित किया गया है

जहां योग गैर-ऋणात्मक पूर्णांकों के सभी अनुक्रम j1, j2, j3, ..., jnk+1 पर चलता है जैसे कि

साधारण बेल बहुपदों को घातीय बेल बहुपदों के रूप में व्यक्त किया जा सकता है:

सामान्य तौर पर, बेल बहुपद घातीय बेल बहुपद को संदर्भित करता है, जब तक कि अन्यथा स्पष्ट रूप से न कहा गया हो।

संयुक्त अर्थ

घातीय बेल बहुपद एक सेट को विभाजित करने के विधियों से संबंधित जानकारी को कूटबद्ध करता है। उदाहरण के लिए, यदि हम एक सेट {A, B, C} पर विचार करते हैं, तो इसे दो गैर-खाली, गैर-अतिव्यापी उपसमुच्चय में विभाजित किया जा सकता है, जिसे 3 अलग-अलग विधियों से भागों या ब्लॉकों के रूप में भी जाना जाता है:

{{A}, {B, C}}
{{B}, {A, C}}
{{C}, {B, A}}

इस प्रकार, हम इन विभाजनों के बारे में जानकारी को एन्कोड कर सकते हैं

यहाँ, B3,2 की सदस्यताएँ हमें बताता है कि हम 3 तत्वों के साथ सेट के विभाजन को 2 ब्लॉकों में विभाजित करने पर विचार कर रहे हैं। प्रत्येक xi की सबस्क्रिप्ट किसी दिए गए विभाजन में i तत्वों (या आकार i के ब्लॉक) के साथ ब्लॉक की उपस्थिति को दर्शता है। तो यहाँ, x2 दो तत्वों के साथ एक ब्लॉक की उपस्थिति को दर्शता करता है। इसी प्रकार, x1 एकल तत्व वाले ब्लॉक की उपस्थिति को दर्शता है। x का प्रतिपादकij दर्शता है कि एकल विभाजन में आकार i के ऐसे j ब्लॉक हैं। यहाँ, चूँकि दोनों x1 और x2 प्रतिपादक 1 है, यह दर्शता करता है कि दिए गए विभाजन में केवल एक ऐसा ब्लॉक है। एकपद का गुणांक दर्शता करता है कि ऐसे कितने विभाजन हैं। हमारे स्थितियों के लिए, 3 तत्वों के साथ 2 ब्लॉकों में एक सेट के 3 विभाजन हैं, जहां प्रत्येक विभाजन में तत्वों को 1 और 2 के आकार के दो ब्लॉकों में विभाजित किया गया है।

चूँकि किसी भी समुच्चय को एक ही ब्लॉक में केवल एक तरीके से विभाजित किया जा सकता है, उपरोक्त व्याख्या का अर्थ होगा कि Bn,1 = xn. इसी प्रकार, चूंकि केवल एक ही विधि है कि n तत्वों वाले एक सेट को n सिंगलटन में विभाजित किया जाए, Bn,n = x1n.

अधिक जटिल उदाहरण के रूप में, विचार करें

यह हमें बताता है कि यदि 6 तत्वों के एक सेट को 2 ब्लॉकों में विभाजित किया जाता है, तो हमारे पास आकार 1 और 5 के ब्लॉक के साथ 6 विभाजन, आकार 4 और 2 के ब्लॉक वाले 15 विभाजन और 3 आकार के 2 ब्लॉक वाले 10 विभाजन हो सकते हैं।

एकपदी में सबस्क्रिप्ट का योग तत्वों की कुल संख्या के बराबर है। इस प्रकार, आंशिक बेल बहुपद में दिखाई देने वाले मोनोमियल्स की संख्या उन विधियों की संख्या के बराबर होती है, जिन्हें पूर्णांक n को k धनात्मक पूर्णांकों के योग के रूप में व्यक्त किया जा सकता है। यह n के k भागों में पूर्णांक विभाजन के समान है। उदाहरण के लिए, उपरोक्त उदाहरणों में, पूर्णांक 3 को केवल 2+1 के रूप में दो भागों में विभाजित किया जा सकता है। इस प्रकार, B3,2 में केवल एक एकपदी है. चूंकि, पूर्णांक 6 को 5+1, 4+2 और 3+3 के रूप में दो भागों में विभाजित किया जा सकता है। इस प्रकार, B6,2 में तीन एकपदी हैं. वास्तव में, एक मोनोमियल में वेरिएबल्स के सबस्क्रिप्ट वही होते हैं जो पूर्णांक विभाजन द्वारा दिए गए होते हैं, जो विभिन्न ब्लॉकों के आकार को दर्शाते हैं। एक पूर्ण बेल बहुपद Bn में दिखाई देने वाले एकपदों की कुल संख्या इस प्रकार n के पूर्णांक विभाजनों की कुल संख्या के बराबर है।

साथ ही प्रत्येक मोनोमियल की डिग्री, जो मोनोमियल में प्रत्येक चर के घातांक का योग है, सेट में विभाजित ब्लॉकों की संख्या के बराबर है। अर्थात j1 + j2 + ... = k। इस प्रकार, एक पूर्ण बेल बहुपद Bn दिया जाने पर, हम डिग्री k वाले उन सभी एकपदों को एकत्रित करके आंशिक बेल बहुपद Bn,k को अलग कर सकते हैं।

अंत में, यदि हम ब्लॉक के आकार की उपेक्षा करते हैं और सभी xi = x डालते हैं, तो आंशिक बेल बहुपद Bn,k के गुणांकों का योग n तत्वों वाले एक सेट को k ब्लॉकों में विभाजित करने के विधियों की कुल संख्या देगा, जो दूसरी प्रकार की स्टर्लिंग संख्याओं के समान है। साथ ही, पूर्ण बेल बहुपद Bn के सभी गुणांकों का योग हमें n तत्वों के साथ एक सेट को गैर-अतिव्यापी उपसमुच्चय में विभाजित करने के विधियों की कुल संख्या देगा, जो बेल संख्या के समान है।

सामान्य तौर पर, यदि पूर्णांक n एक पूर्णांक विभाजन है जिसमें एक योग है जिसमें 1 j1 बार प्रकट होता है, 2 j2 बार प्रकट होता है, और इसी प्रकार, फिर आकार n के एक सेट के विभाजन की संख्या जो पूर्णांक n के उस विभाजन के लिए ढह जाती है जब सेट के सदस्य अप्रभेद्य हो जाते हैं, बहुपद में संबंधित गुणांक होता है।

उदाहरण

उदाहरण के लिए, हमारे पास है

क्योंकि 6 तत्वों के सेट को 2 ब्लॉक के रूप में विभाजित करने के तरीके हैं

6 के सेट को 5 + 1 के रूप में विभाजित करने के 6 तरीके,
6 के सेट को 4 + 2 के रूप में विभाजित करने के 15 तरीके, और
6 के सेट को 3 + 3 के रूप में विभाजित करने के 10 तरीके।

इसी प्रकार,

क्योंकि 6 तत्वों के सेट को 3 ब्लॉक के रूप में विभाजित करने के तरीके हैं

6 के सेट को 4+1+1 के रूप में विभाजित करने के 15 तरीके,
60 6 के सेट को 3+2+1 के रूप में विभाजित करने के तरीके, और
6 के सेट को 2+2+2 के रूप में विभाजित करने के 15 तरीके।

गुण

जनरेटिंग फंक्शन

घातीय आंशिक बेल बहुपदों को इसके जनरेटिंग फ़ंक्शन के दोहरे श्रृंखला विस्तार द्वारा परिभाषित किया जा सकता है:

दूसरे शब्दों में, k-th शक्ति के श्रृंखला विस्तार द्वारा समान मात्रा में क्या है:

पूर्ण घातीय बेल बहुपद द्वारा परिभाषित किया गया है , या दूसरे शब्दों में:

इस प्रकार, n-वाँ पूर्ण बेल बहुपद दिया जाता है

इसी प्रकार, साधारण आंशिक बेल बहुपद को जनरेटिंग फ़ंक्शन द्वारा परिभाषित किया जा सकता है

या, समतुल्य, k-वें शक्ति के श्रृंखला विस्तार द्वारा:

यह भी देखें जनरेटिंग फंक्शन ट्रांसफॉर्मेशन#पॉवर ऑफ़ ओजीएफ एंड कंपोज़िशन विथ फंक्शन्स फॉर बेल पॉलीनॉमियल जनरेटिंग फंक्शन एक्सपेंशन ऑफ़ कंपोज़िशन ऑफ़ सीक्वेंस उत्पन्न करने वाले कार्य एंड एक्सपोनेंटिएशन, लॉगरिथम्स, एंड [[घातांक प्रकार्य]] ऑफ़ ए सीक्वेंस जनरेटिंग फंक्शन। इनमें से प्रत्येक सूत्र को कॉमेट के संबंधित अनुभागों में उद्धृत किया गया है।[1]


पुनरावृत्ति संबंध

पूर्ण बेल बहुपद को पुनरावृत्ति संबंध के रूप में परिभाषित किया जा सकता है

प्रारंभिक मूल्य के साथ .

आंशिक बेल बहुपदों की भी पुनरावृत्ति संबंध द्वारा दक्षतापूर्वक गणना की जा सकती है:

कहाँ

पूर्ण बेल बहुपद निम्नलिखित पुनरावृत्ति अंतर सूत्र को भी संतुष्ट करते हैं:[2]


संजात

संपूर्ण बेल बहुपदों के आंशिक अवकलज निम्न द्वारा दिए गए हैं[3]

इसी प्रकार, आंशिक बेल बहुपदों के आंशिक डेरिवेटिव द्वारा दिए गए हैं

यदि बेल बहुपदों के तर्क एक आयामी कार्य हैं, तो श्रृंखला नियम का उपयोग प्राप्त करने के लिए किया जा सकता है


निर्धारक रूप

पूर्ण बेल बहुपद निर्धारकों के रूप में व्यक्त किया जा सकता है:

और


स्टर्लिंग नंबर और बेल नंबर

बेल बहुपद B का मानn,k(x1,x2,...) कारख़ाने का के अनुक्रम पर पहली प्रकार की एक अहस्ताक्षरित स्टर्लिंग संख्या के बराबर होती है:

इन मानों का योग फैक्टोरियल के अनुक्रम पर पूर्ण बेल बहुपद का मान देता है:

बेल बहुपद B का मानn,k(x1,x2,...) एक के अनुक्रम पर दूसरी प्रकार की स्टर्लिंग संख्या के बराबर होती है:

इन मानों का योग एक के अनुक्रम पर पूर्ण बेल बहुपद का मान देता है:

जो nth बेल नंबर है।

व्युत्क्रम संबंध

यदि हम परिभाषित करते हैं

तो हमारे पास उलटा संबंध है


टचर्ड बहुपद

बहुपद स्पर्श x होने वाले सभी तर्कों पर पूर्ण बेल बहुपद के मान के रूप में व्यक्त किया जा सकता है:


कनवल्शन आइडेंटिटी

अनुक्रमों के लिए xn, औरn, n = 1, 2, ..., कनवल्शन को परिभाषित करें:

योग की सीमाएं 1 और n − 1 हैं, न कि 0 और n ।

होने देना अनुक्रम का nवाँ पद हो

तब[4]

उदाहरण के लिए, आइए गणना करें . अपने पास

और इस प्रकार,


अन्य पहचान

  • जो ये रही संख्या देता है।
  • जो इम्पोटेंस # इम्पोटेंट फंक्शन देता है।
  • और .
  • संपूर्ण बेल बहुपद द्विपद प्रकार के संबंध को संतुष्ट करते हैं:
यह कारक की चूक को ठीक करता है कॉमटेट की किताब में।[5]
  • कब ,
  • आंशिक बेल बहुपद के विशेष स्थितियों: