This is a good article. Click here for more information.

विद्युत: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Physical phenomena associated with the presence and flow of electric charge}} {{Other uses}} {{redirect|Electric}} {{pp-semi|small=yes}} फ़ाइल:...")
 
No edit summary
Line 3: Line 3:
{{redirect|Electric}}
{{redirect|Electric}}
{{pp-semi|small=yes}}
{{pp-semi|small=yes}}
फ़ाइल: लंदन एमएमबी »1E6 Lightning.jpg|thumb|upright=1.2|alt=Lighting strikes on a city at nightऔर शहरी प्रकाश बिजली के सबसे नाटकीय प्रभावों में से कुछ हैं
[[File:London MMB »1E6 Lightning.jpg|thumb|upright=1.2|alt=रात में किसी शहर पर प्रकाश पड़ता है|[[बिजली]] और [[शहरी प्रकाश]] बिजली के सबसे नाटकीय प्रभावों में से कुछ हैं]]
{{Electromagnetism|cTopic=Electricity}}
{{Electromagnetism|cTopic=Electricity}}
बिजली भौतिकी की घटना का सेट है, जो कि विद्युत चार्ज की संपत्ति है, जिसमें बिजली के आवेश की संपत्ति है। बिजली चुंबकत्व से संबंधित है, दोनों इलेक्ट्रोमैग्नेटिज्म की घटना का हिस्सा हैं, जैसा कि मैक्सवेल के समीकरणों द्वारा वर्णित है। विभिन्न सामान्य घटनाएं बिजली से संबंधित हैं, जिनमें बिजली, स्थैतिक बिजली, इलेक्ट्रिक हीटिंग, इलेक्ट्रिक डिस्चार्ज और कई अन्य शामिल हैं।
बिजली भौतिकी की घटना का सेट है, जो कि विद्युत चार्ज की संपत्ति है, जिसमें बिजली के आवेश की संपत्ति है। बिजली चुंबकत्व से संबंधित है, दोनों इलेक्ट्रोमैग्नेटिज्म की घटना का हिस्सा हैं, जैसा कि मैक्सवेल के समीकरणों द्वारा वर्णित है। विभिन्न सामान्य घटनाएं बिजली से संबंधित हैं, जिनमें बिजली, स्थैतिक बिजली, इलेक्ट्रिक हीटिंग, इलेक्ट्रिक डिस्चार्ज और कई अन्य शामिल हैं।
Line 892: Line 892:
{{Footer energy}}
{{Footer energy}}
{{Authority control}}
{{Authority control}}
[[Category: बिजली | बिजली ]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Commons category link is the pagename]]
[[Category:Created with V14 On 07/09/2022]]
[[Category:Created with V14 On 07/09/2022]]
[[Category:Electric and magnetic fields in matter]]
[[Category:Energy navigational boxes| ]]
[[Category:Good articles]]
[[Category:Machine Translated Page]]
[[Category:Missing redirects]]
[[Category:Navigational boxes| ]]

Revision as of 12:28, 24 January 2023

Template:Pp-semi

रात में किसी शहर पर प्रकाश पड़ता है
बिजली और शहरी प्रकाश बिजली के सबसे नाटकीय प्रभावों में से कुछ हैं

बिजली भौतिकी की घटना का सेट है, जो कि विद्युत चार्ज की संपत्ति है, जिसमें बिजली के आवेश की संपत्ति है। बिजली चुंबकत्व से संबंधित है, दोनों इलेक्ट्रोमैग्नेटिज्म की घटना का हिस्सा हैं, जैसा कि मैक्सवेल के समीकरणों द्वारा वर्णित है। विभिन्न सामान्य घटनाएं बिजली से संबंधित हैं, जिनमें बिजली, स्थैतिक बिजली, इलेक्ट्रिक हीटिंग, इलेक्ट्रिक डिस्चार्ज और कई अन्य शामिल हैं।

एक इलेक्ट्रिक चार्ज की उपस्थिति, जो या तो सकारात्मक या नकारात्मक हो सकती है, एक विद्युत क्षेत्र का उत्पादन करती है। विद्युत आवेशों की आवाजाही एक विद्युत प्रवाह है और एक चुंबकीय क्षेत्र का उत्पादन करता है।

जब एक चार्ज को गैर-शून्य विद्युत क्षेत्र के साथ किसी स्थान पर रखा जाता है, तो एक बल उस पर कार्य करेगा। इस बल की भयावहता Coulomb के कानून द्वारा दी गई है। यदि चार्ज चलता है, तो विद्युत क्षेत्र इलेक्ट्रिक चार्ज पर काम (भौतिकी) कर रहा होगा। इस प्रकार हम अंतरिक्ष में एक निश्चित बिंदु पर विद्युत क्षमता की बात कर सकते हैं, जो किसी बाहरी एजेंट द्वारा किए गए कार्य के बराबर है, जो किसी भी त्वरण के बिना उस बिंदु पर मनमाने ढंग से चुने गए संदर्भ बिंदु से सकारात्मक चार्ज की एक इकाई को ले जाता है और आमतौर पर वोल्ट में मापा जाता है ।

बिजली कई आधुनिक प्रौद्योगिकियों के केंद्र में है, जिसका उपयोग किया जा रहा है:

  • इलेक्ट्रिक पावर जहां इलेक्ट्रिक करंट का उपयोग उपकरणों को सक्रिय करने के लिए किया जाता है;
  • इलेक्ट्रॉनिक्स जो विद्युत सर्किट से संबंधित है जिसमें निष्क्रियता (इंजीनियरिंग) शामिल है जैसे कि वैक्यूम ट्यूब, ट्रांजिस्टर, डायोड और एकीकृत सर्किट, और संबंधित निष्क्रिय इंटरकनेक्शन प्रौद्योगिकियों।

प्राचीनता के बाद से विद्युत घटनाओं का अध्ययन किया गया है, हालांकि सैद्धांतिक समझ में प्रगति सत्रहवीं और अठारहवीं शताब्दी तक धीमी रही। इलेक्ट्रोमैग्नेटिज़्म का सिद्धांत 19 वीं शताब्दी में विकसित किया गया था, और उस सदी के अंत तक विद्युत इंजीनियरिंग द्वारा औद्योगिक और आवासीय उपयोग के लिए बिजली रखी जा रही थी। इस समय विद्युत प्रौद्योगिकी में तेजी से विस्तार ने उद्योग और समाज को बदल दिया, जो दूसरी औद्योगिक क्रांति के लिए एक प्रेरक शक्ति बन गया। बिजली की असाधारण बहुमुखी प्रतिभा का मतलब है कि इसे लगभग असीम सेट अनुप्रयोगों में रखा जा सकता है जिसमें पावर (भौतिकी), एचवीएसी, इलेक्ट्रिक लाइट, दूरसंचार और गणना शामिल हैं। विद्युत शक्ति अब आधुनिक औद्योगिक समाज की रीढ़ है।[1]


इतिहास

A bust of a bearded man with dishevelled hair, बिजली में सबसे पहले ज्ञात शोधकर्ता

बिजली का कोई भी ज्ञान मौजूद होने से बहुत पहले, लोगों को इलेक्ट्रिक फिश से झटके के बारे में पता था।28 वीं शताब्दी ईसा पूर्व से डेटिंग वाले प्राचीन मिस्र के ग्रंथों ने इन मछलियों को नील नदी के गड़गड़ाहट के रूप में संदर्भित किया, और उन्हें अन्य सभी मछलियों के संरक्षक के रूप में वर्णित किया।इलेक्ट्रिक फिश को बाद में मध्ययुगीन इस्लामिक वर्ल्ड एंड इस्लामिक मेडिसिन में प्राचीन ग्रीक, रोमन साम्राज्य और विज्ञान द्वारा बाद में मिलेनिया की सूचना दी गई थी।[2] कई प्राचीन लेखकों, जैसे कि प्लिनी द एल्डर और स्क्रिबोनियस लार्गस, इलेक्ट्रिक कैटफ़िश और इलेक्ट्रिक किरणों द्वारा वितरित बिजली के झटके के सुन्न प्रभाव को देखते हैं, और जानते थे कि इस तरह के झटके वस्तुओं के संचालन के साथ यात्रा कर सकते हैं।[3] गाउट या सिरदर्द जैसी बीमारियों वाले मरीजों को इस उम्मीद में इलेक्ट्रिक फिश को छूने के लिए निर्देशित किया गया था कि शक्तिशाली झटका उन्हें ठीक कर सकता है।[4] भूमध्य सागर के चारों ओर प्राचीन संस्कृतियों को पता था कि कुछ वस्तुएं, जैसे कि एम्बर की छड़ें, पंख जैसी हल्की वस्तुओं को आकर्षित करने के लिए बिल्ली के फर के साथ रगड़ सकती हैं।मिलेटस के थेल्स ने 600 ईसा पूर्व के आसपास स्थैतिक बिजली पर अवलोकन की एक श्रृंखला बनाई, जिसमें से उनका मानना था कि घर्षण ने एम्बर चुंबकीय को मैग्नेटाइट जैसे खनिजों के विपरीत प्रस्तुत किया, जिसमें कोई रगड़ की आवश्यकता नहीं थी।[5][6][7][8] थेल्स यह मानने में गलत था कि आकर्षण एक चुंबकीय प्रभाव के कारण था, लेकिन बाद में विज्ञान चुंबकत्व और बिजली के बीच एक संबंध साबित होगा।एक विवादास्पद सिद्धांत के अनुसार, पार्थियों को बगदाद बैटरी की 1936 की खोज के आधार पर, इलेक्ट्रोप्लेटिंग का ज्ञान हो सकता है, जो एक गैल्वेनिक सेल जैसा दिखता है, हालांकि यह अनिश्चित है कि क्या कलाकृतियों ने प्रकृति में विद्युत था।[9]

A halfएक गंजे का चित्रण, तीन-टुकड़ा सूट में कुछ हद तक आदमी।18 वीं शताब्दी में बिजली पर व्यापक शोध किया गया, जैसा कि जोसेफ प्रीस्टले (1767) के इतिहास और बिजली की वर्तमान स्थिति द्वारा प्रलेखित किया गया था, जिसके साथ फ्रैंकलिन ने विस्तारित पत्राचार किया।

1600 तक सहस्राब्दी के लिए एक बौद्धिक जिज्ञासा से बिजली की तुलना में थोड़ा अधिक रहेगा, जब अंग्रेजी वैज्ञानिक विलियम गिल्बर्ट (खगोलविद) ने डी मैगेट को लिखा था, जिसमें उन्होंने बिजली और चुंबकत्व का सावधानीपूर्वक अध्ययन किया, जो कि रबिंग एम्बर द्वारा उत्पादित स्थैतिक बिजली से अलग था।।[5]उन्होंने रगड़ने के बाद छोटी वस्तुओं को आकर्षित करने की संपत्ति को संदर्भित करने के लिए नए लैटिन शब्द इलेक्ट्रिक (एम्बर या एम्बर की तरह, एम्बर के लिए, एलेक्ट्रॉन, एम्बर के लिए प्राचीन ग्रीक शब्द) को गढ़ा।[10] इस एसोसिएशन ने अंग्रेजी शब्द इलेक्ट्रिक एंड इलेक्ट्रिसिटी को जन्म दिया, जिसने 1646 के थॉमस ब्राउन के स्यूडोडोडॉक्सिया एपिडेमिका में प्रिंट में अपनी पहली उपस्थिति बनाई।[11] आगे का काम 17 वीं और 18 वीं शताब्दी की शुरुआत में ओटो वॉन गुइरिके, रॉबर्ट बॉयल, स्टीफन ग्रे (वैज्ञानिक) और सी। एफ। डू फे द्वारा आयोजित किया गया था।[12] बाद में 18 वीं शताब्दी में, बेंजामिन फ्रैंकलिन ने बिजली में व्यापक शोध किया, अपने काम को निधि देने के लिए अपनी संपत्ति बेच दी।जून 1752 में उन्हें एक धातु की चाबी को एक नम पतंग स्ट्रिंग के नीचे से जोड़ने के लिए प्रतिष्ठित किया गया है और पतंग को तूफान-धमकी वाले आकाश में उड़ा दिया गया है।[13] चाबी के एक उत्तराधिकार से उसके हाथ के पीछे की चाबी से कूदते हुए पता चला कि बिजली वास्तव में प्रकृति में विद्युत थी।[14] उन्होंने स्पष्ट रूप से विरोधाभासी व्यवहार भी समझाया[15] सकारात्मक और नकारात्मक दोनों शुल्कों से युक्त बिजली के संदर्भ में बड़ी मात्रा में विद्युत आवेशों को संग्रहीत करने के लिए एक उपकरण के रूप में लेडेन जार।[12]

Halfएक अंधेरे सूट की खोजों में एक आदमी की लम्बाई पोर्ट्रेट ऑयल पेंटिंग ने इलेक्ट्रिक मोटर प्रौद्योगिकी की नींव का गठन किया

1775 में, ह्यूग विलियमसन ने इलेक्ट्रिक ईल द्वारा दिए गए झटके पर रॉयल सोसाइटी को प्रयोगों की एक श्रृंखला की सूचना दी;[16] उसी वर्ष सर्जन और एनाटोमिस्ट जॉन हंटर (सर्जन) ने मछली के इलेक्ट्रिक ऑर्गन (फिश) की संरचना का वर्णन किया।[17][18] 1791 में, लुइगी गालवानी ने बायोइलेक्ट्रोमैग्नेटिक्स की अपनी खोज प्रकाशित की, यह दर्शाते हुए कि बिजली वह माध्यम था जिसके द्वारा न्यूरॉन्स मांसपेशियों को संकेत देते थे।[19][20][12]जस्ता और तांबे की वैकल्पिक परतों से बनी 1800 के एलेसेंड्रो वोल्टा की बैटरी, या वोल्टिक पाइल, ने वैज्ञानिकों को पहले उपयोग की जाने वाली इलेक्ट्रोस्टैटिक मशीनों की तुलना में विद्युत ऊर्जा का अधिक विश्वसनीय स्रोत प्रदान किया।[19][20]इलेक्ट्रोमैग्नेटिज़्म की मान्यता, विद्युत और चुंबकीय घटनाओं की एकता, हंस क्रिश्चियन orrsted और आंद्रे-मैरी अम्पेयर के कारण 1819-1820 में है।माइकल फैराडे ने 1821 में इलेक्ट्रिक मोटर का आविष्कार किया, और जॉर्ज ओम ने गणितीय रूप से 1827 में विद्युत सर्किट का विश्लेषण किया।[20]बिजली और चुंबकत्व (और प्रकाश) निश्चित रूप से जेम्स क्लर्क मैक्सवेल द्वारा जुड़े हुए थे, विशेष रूप से 1861 और 1862 में बल की भौतिक लाइनों पर।[21] जबकि 19 वीं शताब्दी की शुरुआत में विद्युत विज्ञान में तेजी से प्रगति देखी गई थी, 19 वीं शताब्दी के उत्तरार्ध में इलेक्ट्रिकल इंजीनियरिंग में सबसे बड़ी प्रगति दिखाई देगी।ऐसे लोगों के माध्यम से अलेक्जेंडर ग्राहम बेल, ओटो ब्लेथी, थॉमस एडिसन, गैलीलियो फेरारिस, ओलिवर हेविसाइड, ओनोस जेडलिक, विलियम थॉमसन, 1 बैरन केल्विन, चार्ल्स अल्गर्नन पार्सन्स, वर्नर वॉन सीमेंस, जोसेफ स्वान, रेगिनाल्ड फेस्डेन, निकोल्ड फेस्डेन, निकोल्ड फेस्डेन औरबिजली एक वैज्ञानिक जिज्ञासा से आधुनिक जीवन के लिए एक आवश्यक उपकरण में बदल गई।

1887 में, हेनरिक हर्ट्ज़[22]: 843–44 [23] पता चला कि पराबैंगनी प्रकाश के साथ प्रबुद्ध इलेक्ट्रोड इलेक्ट्रिक स्पार्क्स को अधिक आसानी से बनाते हैं।1905 में, अल्बर्ट आइंस्टीन ने एक पेपर प्रकाशित किया, जिसमें फोटोइलेक्ट्रिक प्रभाव से प्रायोगिक डेटा को समझाया गया था, क्योंकि प्रकाश ऊर्जा का परिणाम असतत मात्रा में पैकेट में किया जाता है, इलेक्ट्रॉनों को ऊर्जावान करता है।इस खोज के कारण क्वांटम क्रांति हुई।आइंस्टीन को 1921 में फोटोइलेक्ट्रिक प्रभाव के कानून की खोज के लिए भौतिकी में नोबेल पुरस्कार से सम्मानित किया गया था।[24] फोटोइलेक्ट्रिक प्रभाव को फोटोसेल में भी नियोजित किया जाता है जैसे कि सौर पैनलों में पाया जा सकता है और इसका उपयोग अक्सर बिजली को व्यावसायिक रूप से बनाने के लिए किया जाता है।

पहला ठोस-राज्य इलेक्ट्रॉनिक्स | सॉलिड-स्टेट डिवाइस कैट-व्हिस्कर डिटेक्टर था जिसका उपयोग पहली बार 1900 के दशक में रेडियो रिसीवर में किया गया था।संपर्क जंक्शन प्रभाव द्वारा रेडियो सिग्नल का पता लगाने के लिए एक ठोस क्रिस्टल (जैसे कि जर्मेनियम क्रिस्टल) के संपर्क में एक व्हिस्कर-जैसे तार को हल्के से रखा जाता है।[25] एक ठोस-राज्य घटक में, विद्युत प्रवाह ठोस तत्वों और यौगिकों तक सीमित है जो विशेष रूप से इसे स्विच करने और इसे बढ़ाने के लिए इंजीनियर हैं।वर्तमान प्रवाह को दो रूपों में समझा जा सकता है: नकारात्मक रूप से चार्ज किए गए इलेक्ट्रॉनों के रूप में, और सकारात्मक रूप से चार्ज किए गए इलेक्ट्रॉन की कमियों को इलेक्ट्रॉन होल कहा जाता है।इन शुल्कों और छेदों को क्वांटम भौतिकी के संदर्भ में समझा जाता है।निर्माण सामग्री सबसे अधिक बार एक क्रिस्टलीय अर्धचालक है।[26][27] सॉलिड-स्टेट इलेक्ट्रॉनिक्स ट्रांजिस्टर तकनीक के उद्भव के साथ अपने आप में आ गए।पहला वर्किंग ट्रांजिस्टर, एक जर्मेनियम-आधारित पॉइंट-कॉन्टैक्ट ट्रांजिस्टर, का आविष्कार जॉन बार्डीन और वाल्टर हाउसर ब्रेटेन ने बेल लैब्स में 1947 में किया था,[28] 1948 में द्विध्रुवी जंक्शन ट्रांजिस्टर द्वारा पीछा किया गया।[29] ये शुरुआती ट्रांजिस्टर अपेक्षाकृत भारी उपकरण थे जो एक द्रव्यमान-उत्पादन के आधार पर निर्माण करना मुश्किल था।[30]: 168  उनके बाद सिलिकॉन-आधारित MOSFET (मेटल-ऑक्साइड-सेमिकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर, या MOS ट्रांजिस्टर) द्वारा 1959 में बेल लैब्स में मोहम्मद एम। अटला और दाऊन काहंग द्वारा आविष्कार किया गया था।[31][32][33] यह पहला सही मायने में कॉम्पैक्ट ट्रांजिस्टर था जिसे उपयोग की एक विस्तृत श्रृंखला के लिए लघु और बड़े पैमाने पर उत्पादित किया जा सकता था,[30]: 165, 179  सिलिकॉन क्रांति के लिए अग्रणी।[34] सॉलिड-स्टेट डिवाइस 1960 के दशक से प्रचलित होने लगे, वैक्यूम ट्यूब से अर्धचालक डायोड, ट्रांजिस्टर, इंटीग्रेटेड सर्किट (आईसी) चिप्स, एमओएसएफईटी, और लाइट-एमिटिंग डायोड (एलईडी) तकनीक में संक्रमण के साथ।

सबसे आम इलेक्ट्रॉनिक उपकरण MOSFET है,[32][35] जो इतिहास में सबसे व्यापक रूप से निर्मित उपकरण बन गया है।[36] सामान्य ठोस-राज्य एमओएस उपकरणों में माइक्रोप्रोसेसर चिप्स शामिल हैं[37] और सेमीकंडक्टर मेमोरी।[38][39] एक विशेष प्रकार की सेमीकंडक्टर मेमोरी फ्लैश मेमोरी है, जिसका उपयोग यूएसबी फ्लैश ड्राइव और मोबाइल उपकरणों में किया जाता है, साथ ही सॉलिड-स्टेट ड्राइव (एसएसडी) तकनीक को मैकेनिकली रोटेटिंग मैग्नेटिक डिस्क हार्ड डिस्क ड्राइव (एचडीडी) तकनीक को बदलने के लिए भी किया जाता है।

अवधारणाएं

इलेक्ट्रिक चार्ज

A clear glass dome has an external electrode which connects through the glass to a pair of gold leaves।एक चार्ज रॉड बाहरी इलेक्ट्रोड को छूता है और पत्तियों को पीछे छोड़ देता है। एक सोने की पत्ती इलेक्ट्रोस्कोप पर चार्ज होता है।

चार्ज की उपस्थिति एक इलेक्ट्रोस्टैटिक बल को जन्म देती है: चार्ज एक दूसरे पर एक बल को बढ़ाते हैं, एक प्रभाव जो ज्ञात था, हालांकि इसे नहीं समझा जाता है, पुरातनता में।[22]: 457  एक स्ट्रिंग से निलंबित एक हल्के गेंद को एक कांच की छड़ के साथ छूकर चार्ज किया जा सकता है जो खुद को एक कपड़े से रगड़कर चार्ज किया गया है।यदि एक समान गेंद को एक ही ग्लास रॉड द्वारा चार्ज किया जाता है, तो यह पहले को पीछे हटाने के लिए पाया जाता है: चार्ज दो गेंदों को अलग करने के लिए कार्य करता है।दो गेंदें जो एक रगड़ एम्बर रॉड के साथ चार्ज की जाती हैं, एक दूसरे को भी पीछे छोड़ देती हैं।हालांकि, अगर एक गेंद को ग्लास रॉड द्वारा चार्ज किया जाता है, और दूसरा एक एम्बर रॉड द्वारा, दो गेंदों को एक दूसरे को आकर्षित करने के लिए पाया जाता है।इन घटनाओं की जांच अठारहवीं शताब्दी के उत्तरार्ध में चार्ल्स-ऑगस्टिन डी कूलम्ब द्वारा की गई थी, जिन्होंने उस चार्ज को दो विरोधी रूपों में प्रकट किया।इस खोज ने प्रसिद्ध स्वयंसिद्ध को जन्म दिया: जैसे-चार्ज ऑब्जेक्ट्स रिपेल और विपरीत-चार्ज किए गए ऑब्जेक्ट्स आकर्षित करते हैं।[22]

बल स्वयं चार्ज किए गए कणों पर कार्य करता है, इसलिए चार्ज में एक संचालन सतह पर समान रूप से संभव के रूप में खुद को फैलाने की प्रवृत्ति होती है।विद्युत चुम्बकीय बल की भयावहता, चाहे वह आकर्षक हो या प्रतिकारक, कूलम्ब के नियम द्वारा दिया जाता है, जो बल को आरोपों के उत्पाद से संबंधित करता है और उनके बीच की दूरी के लिए एक व्युत्क्रम-वर्ग संबंध है।[40][41]: 35  विद्युत चुम्बकीय बल बहुत मजबूत है, केवल मजबूत बातचीत के लिए ताकत में दूसरा,[42] लेकिन उस बल के विपरीत यह सभी दूरी पर संचालित होता है।[43] बहुत कमजोर गुरुत्वाकर्षण बल की तुलना में, दो इलेक्ट्रॉनों को अलग करने वाला विद्युत चुम्बकीय बल 10 है42 बार गुरुत्वाकर्षण आकर्षण उन्हें एक साथ खींचता है।[44] चार्ज कुछ प्रकार के उप -परमाणु कणों से उत्पन्न होता है, जिनमें से सबसे परिचित वाहक इलेक्ट्रॉन और प्रोटॉन हैं।इलेक्ट्रिक चार्ज इलेक्ट्रोमैग्नेटिक बल के साथ, प्रकृति के चार मूलभूत बलों में से एक है।प्रयोग ने चार्ज को एक संरक्षित मात्रा के रूप में दिखाया है, अर्थात्, विद्युत रूप से पृथक प्रणाली के भीतर शुद्ध चार्ज हमेशा उस प्रणाली के भीतर होने वाले किसी भी परिवर्तन की परवाह किए बिना स्थिर रहेगा।[45] सिस्टम के भीतर, चार्ज को निकायों के बीच, या तो सीधे संपर्क द्वारा, या एक कंडक्टिंग सामग्री, जैसे कि तार के साथ पारित करके स्थानांतरित किया जा सकता है।[41]: 2–5  अनौपचारिक शब्द स्थैतिक बिजली एक शरीर पर चार्ज की शुद्ध उपस्थिति (या 'असंतुलन') को संदर्भित करती है, आमतौर पर तब होती है जब असमान सामग्री को एक साथ रगड़ दिया जाता है, एक से दूसरे में चार्ज स्थानांतरित किया जाता है।

इलेक्ट्रॉनों और प्रोटॉन पर चार्ज हस्ताक्षर में विपरीत है, इसलिए आवेश की मात्रा को नकारात्मक या सकारात्मक होने के रूप में व्यक्त किया जा सकता है।कन्वेंशन द्वारा, इलेक्ट्रॉनों द्वारा किए गए आवेश को नकारात्मक माना जाता है, और प्रोटॉन पॉजिटिव द्वारा, एक रिवाज जो बेंजामिन फ्रैंकलिन के काम के साथ उत्पन्न हुआ था।[46] आवेश की मात्रा को आमतौर पर प्रतीक q दिया जाता है और coulombs में व्यक्त किया जाता है;[47] प्रत्येक इलेक्ट्रॉन लगभग .6022 × 10 का एक ही आवेश वहन करता है−19 & nbsp; coulomb।प्रोटॉन में एक चार्ज होता है जो समान और विपरीत होता है, और इस प्रकार +1.6022 × 10−19 & nbsp;कूलम्ब।चार्ज न केवल मामले से होता है, बल्कि एंटीमैटर द्वारा भी होता है, प्रत्येक एंटीपार्टिकल अपने संबंधित कण के बराबर और विपरीत आवेश को प्रभावित करता है।[48] चार्ज को कई साधनों द्वारा मापा जा सकता है, एक प्रारंभिक उपकरण जो सोने की पत्ती वाले इलेक्ट्रोस्कोप है, जो हालांकि अभी भी कक्षा प्रदर्शनों के लिए उपयोग में है, इलेक्ट्रॉनिक इलेक्ट्रोमीटर द्वारा सुपरसीड किया गया है।[41]: 2–5 


इलेक्ट्रिक करंट

इलेक्ट्रिक चार्ज के आंदोलन को एक विद्युत प्रवाह के रूप में जाना जाता है, जिसकी तीव्रता आमतौर पर एम्पीयर में मापी जाती है।वर्तमान में किसी भी चलती चार्ज कणों से मिलकर हो सकता है;आमतौर पर ये इलेक्ट्रॉन होते हैं, लेकिन गति में कोई भी चार्ज एक वर्तमान का गठन करता है।विद्युत प्रवाह कुछ चीजों, विद्युत कंडक्टरों के माध्यम से प्रवाहित हो सकता है, लेकिन एक विद्युत इन्सुलेटर के माध्यम से प्रवाह नहीं करेगा।[49] ऐतिहासिक सम्मेलन द्वारा, एक सकारात्मक धारा को प्रवाह की एक ही दिशा के रूप में परिभाषित किया जाता है, जैसा कि किसी भी सकारात्मक आवेश में होता है, या सर्किट के सबसे सकारात्मक भाग से सबसे नकारात्मक भाग तक प्रवाहित होता है।इस तरीके से परिभाषित वर्तमान को पारंपरिक करंट कहा जाता है।एक इलेक्ट्रिक सर्किट के चारों ओर नकारात्मक रूप से चार्ज किए गए इलेक्ट्रॉनों की गति, वर्तमान के सबसे परिचित रूपों में से एक, इस प्रकार इलेक्ट्रॉनों के विपरीत दिशा में सकारात्मक माना जाता है।[50] हालांकि, स्थितियों के आधार पर, एक विद्युत प्रवाह में या तो दिशा में चार्ज किए गए कणों का प्रवाह शामिल हो सकता है, या यहां तक कि एक बार में दोनों दिशाओं में भी।सकारात्मक-से-नकारात्मक सम्मेलन का उपयोग व्यापक रूप से इस स्थिति को सरल बनाने के लिए किया जाता है।

Two metal wires form an inverted V shape।एक अंधा उज्ज्वल नारंगी-सफेद इलेक्ट्रिक चाप उनके सुझावों के बीच बहता है।विद्युत प्रवाह का एक ऊर्जावान प्रदर्शन प्रदान करता है

जिस प्रक्रिया से विद्युत प्रवाह एक सामग्री से होकर गुजरता है, उसे विद्युत चालन कहा जाता है, और इसकी प्रकृति चार्ज किए गए कणों और उस सामग्री के साथ भिन्न होती है जिसके माध्यम से वे यात्रा कर रहे हैं।विद्युत धाराओं के उदाहरणों में धातु चालन शामिल है, जहां इलेक्ट्रॉन एक विद्युत कंडक्टर जैसे धातु, और इलेक्ट्रोलिसिस के माध्यम से प्रवाहित होते हैं, जहां आयन (चार्ज परमाणु) तरल पदार्थों के माध्यम से, या प्लाज्मा (भौतिकी) जैसे विद्युत स्पार्क्स के माध्यम से प्रवाहित होते हैं।जबकि कण स्वयं काफी धीरे -धीरे आगे बढ़ सकते हैं, कभी -कभी एक औसत बहाव वेग के साथ केवल एक मिलीमीटर प्रति सेकंड के अंश,[41]: 17  विद्युत क्षेत्र जो उन्हें चलाता है, वह स्वयं प्रकाश की गति के करीब फैलता है, जिससे विद्युत संकेतों को तारों के साथ तेजी से गुजरने में सक्षम बनाया जाता है।[51] वर्तमान कई अवलोकन योग्य प्रभावों का कारण बनता है, जो ऐतिहासिक रूप से इसकी उपस्थिति को पहचानने के साधन थे।उस पानी को एक वोल्टिक ढेर से करंट द्वारा विघटित किया जा सकता था, जिसे 1800 में विलियम निकोलसन (केमिस्ट) और एंथोनी कार्लिस्ले द्वारा खोजा गया था, जिसे अब इलेक्ट्रोलिसिस के रूप में जाना जाता है।उनके काम को 1833 में माइकल फैराडे द्वारा बहुत विस्तारित किया गया था। एक विद्युत प्रतिरोध के माध्यम से वर्तमान में स्थानीयकृत हीटिंग का कारण बनता है, एक प्रभाव जेम्स प्रेस्कॉट जूल ने 1840 में गणितीय रूप से अध्ययन किया।[41]: 23–24  करंट से संबंधित सबसे महत्वपूर्ण खोजों में से एक 1820 में हंस क्रिश्चियन inrsted द्वारा गलती से किया गया था, जब एक व्याख्यान तैयार करते समय, वह एक तार में एक चुंबकीय कम्पास की सुई को परेशान करने वाले तार में वर्तमान को देखा।[52] उन्होंने इलेक्ट्रोमैग्नेटिज्म की खोज की थी, जो बिजली और मैग्नेटिक्स के बीच एक मौलिक बातचीत थी।इलेक्ट्रिक आर्किंग द्वारा उत्पन्न विद्युत चुम्बकीय उत्सर्जन का स्तर विद्युत चुम्बकीय हस्तक्षेप का उत्पादन करने के लिए पर्याप्त है, जो आसन्न उपकरणों के कामकाज के लिए हानिकारक हो सकता है।[53] इंजीनियरिंग या घरेलू अनुप्रयोगों में, वर्तमान को अक्सर प्रत्यक्ष वर्तमान (डीसी) या वैकल्पिक वर्तमान (एसी) के रूप में वर्णित किया जाता है।ये शर्तें संदर्भित करती हैं कि वर्तमान समय में कैसे भिन्न होता है।डायरेक्ट करंट, जैसा कि बैटरी (बिजली) से उदाहरण द्वारा उत्पादित और अधिकांश इलेक्ट्रॉनिक्स उपकरणों द्वारा आवश्यक है, एक सर्किट के सकारात्मक भाग से नकारात्मक तक एक यूनिडायरेक्शनल प्रवाह है।[54]: 11  यदि, जैसा कि सबसे आम है, तो यह प्रवाह इलेक्ट्रॉनों द्वारा किया जाता है, वे विपरीत दिशा में यात्रा करेंगे।वैकल्पिक वर्तमान कोई भी वर्तमान है जो दिशा को बार -बार उलट देता है;लगभग हमेशा यह एक साइन लहर का रूप लेता है।[54]: 206–07  वर्तमान में वर्तमान में दालों को एक कंडक्टर के भीतर आगे और पीछे चार्ज के बिना समय के साथ किसी भी शुद्ध दूरी को आगे बढ़ाया जाता है।एक वैकल्पिक वर्तमान का समय-औसत मूल्य शून्य है, लेकिन यह पहली एक दिशा में ऊर्जा वितरित करता है, और फिर रिवर्स।वैकल्पिक वर्तमान विद्युत गुणों से प्रभावित होता है जो स्थिर राज्य प्रत्यक्ष वर्तमान के तहत नहीं देखे जाते हैं, जैसे कि इंडक्शन और कैपेसिटेंस।[54]: 223–25  ये गुण हालांकि महत्वपूर्ण हो सकते हैं जब सर्किटरी को क्षणिक प्रतिक्रिया के अधीन किया जाता है, जैसे कि जब पहली बार ऊर्जावान हो।

विद्युत क्षेत्र

इलेक्ट्रिक फील्ड (भौतिकी) की अवधारणा को माइकल फैराडे द्वारा पेश किया गया था।एक विद्युत क्षेत्र एक आवेशित निकाय द्वारा अंतरिक्ष में बनाया जाता है जो इसे घेरता है, और क्षेत्र के भीतर रखे गए किसी भी अन्य आरोपों पर एक बल का परिणाम होता है।विद्युत क्षेत्र दो आरोपों के बीच एक समान तरीके से कार्य करता है, जिस तरह से गुरुत्वाकर्षण क्षेत्र दो द्रव्यमानों के बीच कार्य करता है, और इसकी तरह, अनंत की ओर बढ़ता है और दूरी के साथ एक व्युत्क्रम वर्ग संबंध दिखाता है।[43]हालांकि, एक महत्वपूर्ण अंतर है।गुरुत्वाकर्षण हमेशा आकर्षण में काम करता है, दो द्रव्यमानों को एक साथ आकर्षित करता है, जबकि विद्युत क्षेत्र में या तो आकर्षण या प्रतिकर्षण हो सकता है।चूंकि बड़े निकाय जैसे ग्रह आमतौर पर कोई शुद्ध चार्ज नहीं करते हैं, इसलिए दूरी पर विद्युत क्षेत्र आमतौर पर शून्य होता है।इस प्रकार गुरुत्वाकर्षण बहुत कमजोर होने के बावजूद, ब्रह्मांड में दूरी पर प्रमुख बल है।[44]

एक विमान कंडक्टर के ऊपर एक सकारात्मक चार्ज से निकलने वाली फील्ड लाइनें

एक विद्युत क्षेत्र आम तौर पर अंतरिक्ष में बदलता रहता है,[55] और किसी भी एक बिंदु पर इसकी ताकत को बल (प्रति यूनिट चार्ज) के रूप में परिभाषित किया जाता है, जिसे उस बिंदु पर रखा जाने पर एक स्थिर, नगण्य आरोप द्वारा महसूस किया जाएगा।[22]: 469–70  वैचारिक चार्ज, जिसे 'टेस्ट चार्ज' कहा जाता है, अपने स्वयं के विद्युत क्षेत्र को मुख्य क्षेत्र को परेशान करने से रोकने के लिए गायब हो जाना चाहिए और चुंबकीय क्षेत्रों के प्रभाव को रोकने के लिए भी स्थिर होना चाहिए।जैसा कि विद्युत क्षेत्र को बल के संदर्भ में परिभाषित किया गया है, और बल एक यूक्लिडियन वेक्टर है, जिसमें परिमाण (गणित) और दिशा (ज्यामिति) दोनों होते हैं, इसलिए यह इस प्रकार है कि एक विद्युत क्षेत्र एक वेक्टर क्षेत्र है।[22]: 469–70  स्थिर आवेशों द्वारा बनाए गए विद्युत क्षेत्रों के अध्ययन को इलेक्ट्रोस्टैटिक्स कहा जाता है।फ़ील्ड को काल्पनिक लाइनों के एक सेट द्वारा कल्पना की जा सकती है, जिसकी दिशा किसी भी बिंदु पर होती है, वह फ़ील्ड के समान है।यह अवधारणा फैराडे द्वारा पेश की गई थी,[56] जिसका शब्द 'बल की रेखा' अभी भी कभी -कभी उपयोग देखता है।फील्ड लाइनें वे पथ हैं जो एक बिंदु सकारात्मक चार्ज बनाने की तलाश करेंगे क्योंकि इसे क्षेत्र के भीतर स्थानांतरित करने के लिए मजबूर किया गया था;वे हालांकि कोई भौतिक अस्तित्व के साथ एक काल्पनिक अवधारणा हैं, और क्षेत्र लाइनों के बीच सभी हस्तक्षेप करने वाले स्थान को अनुमति देता है।[56]स्थिर शुल्कों से निकलने वाली फील्ड लाइनों में कई प्रमुख गुण होते हैं: पहला, कि वे सकारात्मक आरोपों में उत्पन्न होते हैं और नकारात्मक चार्ज में समाप्त होते हैं;दूसरा, कि उन्हें समकोण पर किसी भी अच्छे कंडक्टर में प्रवेश करना चाहिए, और तीसरा, कि वे कभी भी पार नहीं कर सकते हैं और न ही खुद को बंद कर सकते हैं।[22]: 479  एक खोखला संचालन करने वाला शरीर अपनी बाहरी सतह पर अपने सभी चार्ज को वहन करता है।इसलिए क्षेत्र शरीर के अंदर सभी स्थानों पर 0 है।[41]: 88  यह फैराडे केज का ऑपरेटिंग प्रिंसिपल है, एक कंडक्टिंग मेटल शेल जो इसके इंटीरियर को बाहर के विद्युत प्रभावों से अलग करता है।

उच्च वोल्टेज के आइटम डिजाइन करते समय इलेक्ट्रोस्टैटिक्स के सिद्धांत महत्वपूर्ण हैं। उच्च-वोल्टेज उपकरण।विद्युत क्षेत्र की ताकत के लिए एक परिमित सीमा है जो किसी भी माध्यम से प्राप्त हो सकती है।इस बिंदु से परे, विद्युत ब्रेकडाउन होता है और एक इलेक्ट्रिक आर्क चार्ज किए गए भागों के बीच फ्लैशओवर का कारण बनता है।उदाहरण के लिए, हवा, विद्युत क्षेत्र की ताकत पर छोटे अंतरालों में चापती है जो 30 & nbsp से अधिक है; केवी प्रति सेंटीमीटर।बड़े अंतराल पर, इसकी टूटने की ताकत कमजोर है, शायद 1 & nbsp; केवी प्रति सेंटीमीटर।[57] इस की सबसे अधिक दिखाई देने वाली प्राकृतिक घटना बिजली की होती है, जब चार्ज हवा के बढ़ते स्तंभों द्वारा बादलों में अलग हो जाती है, और हवा में विद्युत क्षेत्र को अधिक से अधिक बढ़ा देती है, तो यह झेल सकता है।एक बड़े बिजली के बादल का वोल्टेज 100 & nbsp; mv के रूप में उच्च हो सकता है और 250 & nbsp; kWh के रूप में महान के रूप में ऊर्जा का निर्वहन किया जा सकता है। ref> Naidu, M.S.; Kamataru, V. (1982), High Voltage Engineering, Tata McGraw-Hill, pp. 201–02, ISBN 0-07-451786-4 </ref>

क्षेत्र की ताकत पास की वस्तुओं का संचालन करने से बहुत प्रभावित होती है, और यह विशेष रूप से तीव्र है जब इसे तेजी से नुकीले वस्तुओं के आसपास वक्र करने के लिए मजबूर किया जाता है।इस सिद्धांत का लाइटनिंग कंडक्टर में शोषण किया जाता है, जिसमें से तेज स्पाइक बिजली के स्ट्रोक को विकसित करने के लिए प्रोत्साहित करने के लिए कार्य करता है, बजाय इसके कि वह इमारत की रक्षा के लिए कार्य करता है REF नाम = nahin2002>Paul J. Nahin (9 October 2002). Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age. JHU Press. ISBN 978-0-8018-6909-9.</ref>: 155 


विद्युत क्षमता

Two AA batteries each have a plus sign marked at one end। एए बैटरी की एक जोड़ी।+& Nbsp; साइन बैटरी टर्मिनलों के बीच संभावित अंतर की ध्रुवीयता को इंगित करता है।

विद्युत क्षमता की अवधारणा को विद्युत क्षेत्र से निकटता से जोड़ा जाता है।एक विद्युत क्षेत्र के भीतर रखा गया एक छोटा चार्ज एक बल का अनुभव करता है, और बल के खिलाफ उस बिंदु पर उस चार्ज को लाया है, यांत्रिक कार्य की आवश्यकता होती है।किसी भी बिंदु पर विद्युत क्षमता को एक अनंत से उस बिंदु तक एक अनंत से एक इकाई परीक्षण चार्ज लाने के लिए आवश्यक ऊर्जा के रूप में परिभाषित किया जाता है।यह आमतौर पर वोल्ट में मापा जाता है, और एक वोल्ट वह क्षमता है जिसके लिए एक जूल को काम के लिए खर्च किया जाना चाहिए ताकि अनंत से एक कूलम्ब का आरोप लाया जा सके।[22]: 494–98  क्षमता की यह परिभाषा, जबकि औपचारिक, बहुत कम व्यावहारिक अनुप्रयोग है, और एक अधिक उपयोगी अवधारणा विद्युत संभावित अंतर है, और दो निर्दिष्ट बिंदुओं के बीच एक इकाई चार्ज को स्थानांतरित करने के लिए आवश्यक ऊर्जा है।एक विद्युत क्षेत्र में विशेष संपत्ति होती है कि यह रूढ़िवादी बल है, जिसका अर्थ है कि परीक्षण चार्ज द्वारा लिया गया मार्ग अप्रासंगिक है: दो निर्दिष्ट बिंदुओं के बीच सभी पथ एक ही ऊर्जा खर्च करते हैं, और इस प्रकार संभावित अंतर के लिए एक अद्वितीय मूल्य कहा जा सकता है।[22]: 494–98  वोल्ट को माप के लिए पसंद की इकाई के रूप में इतनी दृढ़ता से पहचाना जाता है और विद्युत संभावित अंतर का वर्णन है कि शब्द वोल्टेज अधिक रोजमर्रा के उपयोग को देखता है।

व्यावहारिक उद्देश्यों के लिए, एक सामान्य संदर्भ बिंदु को परिभाषित करना उपयोगी है, जिसमें क्षमता व्यक्त की जा सकती है और तुलना की जा सकती है।हालांकि यह अनंत पर हो सकता है, एक बहुत अधिक उपयोगी संदर्भ पृथ्वी ही है, जिसे हर जगह एक ही क्षमता पर माना जाता है।यह संदर्भ बिंदु स्वाभाविक रूप से नाम ग्राउंड (बिजली) या जमीन (बिजली) लेता है।पृथ्वी को सकारात्मक और नकारात्मक चार्ज की समान मात्रा का अनंत स्रोत माना जाता है, और इसलिए विद्युत रूप से अपरिवर्तित और अपरिवर्तनीय है।[58] विद्युत क्षमता एक स्केलर (भौतिकी) है, अर्थात, इसमें केवल परिमाण है और दिशा नहीं है।इसे ऊंचाई के अनुरूप देखा जा सकता है: जिस तरह एक जारी वस्तु एक गुरुत्वाकर्षण क्षेत्र के कारण होने वाली ऊंचाइयों में अंतर के माध्यम से गिर जाएगी, इसलिए एक चार्ज एक विद्युत क्षेत्र के कारण होने वाले वोल्टेज में 'गिर' होगा।[59] जैसा कि राहत मानचित्र समान ऊंचाई के समोच्च रेखाओं को दर्शाते हैं, समान क्षमता के बिंदुओं को चिह्नित करने वाली रेखाओं का एक सेट (जिसे इक्विपोटीशनल के रूप में जाना जाता है) को एक इलेक्ट्रोस्टिक रूप से चार्ज किए गए ऑब्जेक्ट के आसपास खींचा जा सकता है।सुसंगतता समकोण पर बल की सभी पंक्तियों को पार करती है।उन्हें एक विद्युत कंडक्टर की सतह के समानांतर भी झूठ बोलना चाहिए, अन्यथा यह एक बल का उत्पादन करेगा जो चार्ज वाहक को सतह की क्षमता में भी स्थानांतरित करेगा।

विद्युत क्षेत्र को औपचारिक रूप से प्रति यूनिट चार्ज के बल के रूप में परिभाषित किया गया था, लेकिन क्षमता की अवधारणा अधिक उपयोगी और समकक्ष परिभाषा के लिए अनुमति देती है: विद्युत क्षेत्र विद्युत क्षमता का स्थानीय ढाल है।आमतौर पर वोल्ट & nbsp; प्रति & nbsp; मीटर में व्यक्त किया जाता है, क्षेत्र की वेक्टर दिशा क्षमता की सबसे बड़ी ढलान की रेखा है, और जहां सुसज्जित एक साथ निकटतम है।[41]: 60 


इलेक्ट्रोमैग्नेट्स

A wire carries a current towards the reader।कंसेंट्रिक सर्कल तार के चारों ओर चुंबकीय क्षेत्र सर्कल एंटीक्लॉकवाइज का प्रतिनिधित्व करते हुए, जैसा कि पाठक द्वारा देखा गया है। एक वर्तमान के आसपास चुंबकीय क्षेत्र सर्कल

1821 में ørsted की खोज में कि एक विद्युत प्रवाह को ले जाने वाले तार के सभी किनारों के आसपास एक चुंबकीय क्षेत्र मौजूद था, ने संकेत दिया कि बिजली और चुंबकत्व के बीच एक सीधा संबंध था।इसके अलावा, बातचीत गुरुत्वाकर्षण और इलेक्ट्रोस्टैटिक बलों से अलग थी, प्रकृति के दो बलों को तब जाना जाता है।कम्पास सुई पर बल ने इसे वर्तमान-ले जाने वाले तार से या दूर नहीं किया, लेकिन इसके लिए समकोण पर काम किया।[52]Ørsted के शब्द यह थे कि बिजली संघर्ष एक घूमने वाले तरीके से कार्य करता है।बल भी वर्तमान की दिशा पर निर्भर करता था, यदि प्रवाह उलट हो गया था, तो बल ने भी किया।[60] Ørsted ने अपनी खोज को पूरी तरह से नहीं समझा, लेकिन उन्होंने देखा कि प्रभाव पारस्परिक था: एक वर्तमान एक चुंबक पर एक बल देता है, और एक चुंबकीय क्षेत्र एक वर्तमान पर एक बल देता है।घटना को आगे आंद्रे-मैरी अम्परे द्वारा जांच की गई थी। अम्पेरे, जिन्होंने पता लगाया कि दो समानांतर वर्तमान-ले जाने वाले तारों ने एक-दूसरे पर एक बल लगाया: एक ही दिशा में धाराओं का संचालन करने वाले दो तारों को एक-दूसरे के लिए आकर्षित किया जाता है, जबकि तारों को विपरीत दिशाओं में धाराएं होती हैं।अलग हैं।[61] इंटरैक्शन को चुंबकीय क्षेत्र द्वारा मध्यस्थता की जाती है, प्रत्येक वर्तमान का उत्पादन करता है और अंतर्राष्ट्रीय एम्पीयर#परिभाषा के लिए आधार बनाता है।[61]

A cut-एक छोटे इलेक्ट्रिक मोटर का आरेख। इलेक्ट्रिक मोटर इलेक्ट्रोमैग्नेटिज्म के एक महत्वपूर्ण प्रभाव का शोषण करता है: एक चुंबकीय क्षेत्र के माध्यम से एक वर्तमान क्षेत्र और वर्तमान दोनों के लिए समकोण पर एक बल का अनुभव करता है

चुंबकीय क्षेत्रों और धाराओं के बीच का यह संबंध बेहद महत्वपूर्ण है, इसके कारण 1821 में माइकल फैराडे के इलेक्ट्रिक मोटर के आविष्कार के लिए नेतृत्व किया गया। फैराडे के होमोपोलर मोटर में पारा (तत्व) के एक पूल में बैठे एक स्थायी चुंबक शामिल थे।चुंबक के ऊपर एक धुरी से निलंबित तार के माध्यम से एक करंट की अनुमति दी गई थी और पारा में डूबा हुआ था।चुंबक ने तार पर एक स्पर्शरेखा बल दिया, जिससे यह चुंबक के चारों ओर घेरे को तब तक सर्कल कर दिया जब तक कि करंट को बनाए रखा गया।[62]

1831 में फैराडे द्वारा प्रयोग से पता चला कि एक चुंबकीय क्षेत्र के लिए लंबवत चलने वाले तार ने इसके छोरों के बीच एक संभावित अंतर विकसित किया।इस प्रक्रिया के आगे के विश्लेषण, जिसे इलेक्ट्रोमैग्नेटिक इंडक्शन के रूप में जाना जाता है, ने उसे सिद्धांत को बताने में सक्षम बनाया, जिसे अब फैराडे के प्रेरण के नियम के रूप में जाना जाता है, कि एक बंद सर्किट में प्रेरित संभावित अंतर लूप के माध्यम से चुंबकीय प्रवाह के परिवर्तन की दर के लिए आनुपातिक है।इस खोज के शोषण ने उन्हें 1831 में पहले विद्युत जनरेटर का आविष्कार करने में सक्षम बनाया, जिसमें उन्होंने घूर्णन तांबे की डिस्क की यांत्रिक ऊर्जा को विद्युत ऊर्जा में बदल दिया।[62]फैराडे की डिस्क अक्षम थी और एक व्यावहारिक जनरेटर के रूप में कोई उपयोग नहीं था, लेकिन इसने चुंबकत्व का उपयोग करके विद्युत शक्ति उत्पन्न करने की संभावना दिखाई, एक संभावना जो उन लोगों द्वारा ली जाएगी जो उनके काम से पीछा करते थे।

इलेक्ट्रोकेमिस्ट्री

इटली के भौतिक विज्ञानी एलेसेंड्रो वोल्टा ने 19 वीं शताब्दी की शुरुआत में फ्रांस के फ्रांस के सम्राट नेपोलियन I को अपनी बैटरी (बिजली) दिखाते हुए।

बिजली का उत्पादन करने के लिए रासायनिक प्रतिक्रियाओं की क्षमता, और इसके विपरीत रासायनिक प्रतिक्रियाओं को चलाने के लिए बिजली की क्षमता का उपयोग की एक विस्तृत सरणी है।

इलेक्ट्रोकैमिस्ट्री हमेशा बिजली का एक महत्वपूर्ण हिस्सा रही है।वोल्टिक ढेर के प्रारंभिक आविष्कार से, इलेक्ट्रोकेमिकल कोशिकाएं कई अलग -अलग प्रकार की बैटरी, इलेक्ट्रोप्लेटिंग और इलेक्ट्रोलिसिस कोशिकाओं में विकसित हुई हैं।एल्यूमीनियम इस तरह से विशाल मात्रा में उत्पन्न होता है, और कई पोर्टेबल उपकरणों को पुनर्भृत कोशिकाओं का उपयोग करके विद्युत रूप से संचालित किया जाता है।

इलेक्ट्रिक सर्किट

एक बुनियादी विद्युत सर्किट।बाईं ओर वोल्टेज स्रोत V सर्किट के चारों ओर एक वर्तमान (बिजली) को चलाता है, प्रतिरोधक आर में विद्युत ऊर्जा प्रदान करता है। रोकनेवाला से, वर्तमान स्रोत पर लौटता है, सर्किट को पूरा करता है।

एक इलेक्ट्रिक सर्किट इलेक्ट्रिक घटकों का एक परस्पर संबंध है जैसे कि इलेक्ट्रिक चार्ज को एक बंद पथ (एक सर्किट) के साथ प्रवाह करने के लिए बनाया जाता है, आमतौर पर कुछ उपयोगी कार्य करने के लिए।

एक इलेक्ट्रिक सर्किट में घटक कई रूप ले सकते हैं, जिसमें प्रतिरोधों, कैपेसिटर, स्विच, ट्रांसफार्मर और इलेक्ट्रॉनिक्स जैसे तत्व शामिल हो सकते हैं।इलेक्ट्रॉनिक सर्किट में सक्रिय घटक होते हैं, आमतौर पर अर्धचालक होते हैं, और आमतौर पर गैर-रैखिक व्यवहार को प्रदर्शित करते हैं, जिसमें जटिल विश्लेषण की आवश्यकता होती है।सबसे सरल विद्युत घटक वे हैं जिन्हें निष्क्रियता (इंजीनियरिंग) और रैखिक कहा जाता है: जबकि वे अस्थायी रूप से ऊर्जा को स्टोर कर सकते हैं, उनमें इसका कोई स्रोत नहीं है, और उत्तेजनाओं के लिए रैखिक प्रतिक्रियाएं प्रदर्शित करते हैं।[63]: 15–16  रोकनेवाला शायद निष्क्रिय सर्किट तत्वों का सबसे सरल है: जैसा कि इसके नाम से पता चलता है, यह विद्युत प्रतिरोध के माध्यम से वर्तमान, गर्मी के रूप में इसकी ऊर्जा को भंग कर देता है।प्रतिरोध एक कंडक्टर के माध्यम से चार्ज की गति का एक परिणाम है: धातुओं में, उदाहरण के लिए, प्रतिरोध मुख्य रूप से इलेक्ट्रॉनों और आयनों के बीच टकराव के कारण होता है।ओम का नियम सर्किट सिद्धांत का एक बुनियादी कानून है, जिसमें कहा गया है कि एक प्रतिरोध से गुजरना वर्तमान में इसके संभावित अंतर के लिए सीधे आनुपातिक है।अधिकांश सामग्रियों का प्रतिरोध तापमान और धाराओं की एक सीमा पर अपेक्षाकृत स्थिर है;इन शर्तों के तहत सामग्री को 'ओमिक' के रूप में जाना जाता है।ओम, प्रतिरोध की इकाई, को जॉर्ज ओम के सम्मान में नामित किया गया था, और ग्रीक अक्षर ω द्वारा इसका प्रतीक है।1 & nbsp; ω वह प्रतिरोध है जो एक amp के वर्तमान के जवाब में एक वोल्ट के संभावित अंतर का उत्पादन करेगा।[63]: 30–35  संधारित्र लेडेन जार का एक विकास है और एक उपकरण है जो चार्ज को स्टोर कर सकता है, और इस तरह परिणामी क्षेत्र में विद्युत ऊर्जा को संग्रहीत कर सकता है।इसमें एक पतली इन्सुलेटर (बिजली) ढांकता हुआ परत द्वारा अलग किए गए दो संचालन प्लेटें होती हैं;व्यवहार में, पतली धातु के झगड़े को एक साथ कुंडलित किया जाता है, जिससे प्रति यूनिट मात्रा में सतह क्षेत्र बढ़ जाता है और इसलिए कैपेसिटेंस होता है।समाई की इकाई माइकल फैराडे के नाम पर नामित फैराद है, और प्रतीक एफ को दिया गया है: एक फैराड समाई है जो एक वोल्ट के संभावित अंतर को विकसित करता है जब यह एक कूलम्ब का आरोप संग्रहीत करता है।वोल्टेज की आपूर्ति से जुड़ा एक संधारित्र शुरू में एक वर्तमान का कारण बनता है क्योंकि यह चार्ज जमा करता है;यह वर्तमान समय में क्षय हो जाएगा क्योंकि संधारित्र भरता है, अंततः शून्य पर गिर जाता है।एक संधारित्र इसलिए एक स्थिर स्थिति की अनुमति नहीं देगा, बल्कि इसे ब्लॉक करता है।[63]: 216–20  प्रारंभ करनेवाला एक कंडक्टर है, आमतौर पर तार का एक कुंडल, जो इसके माध्यम से वर्तमान के जवाब में एक चुंबकीय क्षेत्र में ऊर्जा संग्रहीत करता है।जब वर्तमान बदलता है, तो चुंबकीय क्षेत्र भी करता है, विद्युत चुम्बकीय प्रेरण कंडक्टर के सिरों के बीच एक वोल्टेज को शामिल करता है।प्रेरित वोल्टेज वर्तमान के समय व्युत्पन्न के लिए आनुपातिक है।आनुपातिकता की निरंतरता को इंडक्शन कहा जाता है।इंडक्शन की इकाई हेनरी (यूनिट) है, जिसका नाम जोसेफ हेनरी के नाम पर है, जो फैराडे के समकालीन हैं।एक हेनरी एक इंडक्शन है जो एक वोल्ट के संभावित अंतर को प्रेरित करेगा यदि इसके माध्यम से करंट एक एम्पीयर प्रति सेकंड की दर से बदलता है।इंडक्टर का व्यवहार कुछ संधारित्र के लिए है, जो संधारित्र के लिए है: यह स्वतंत्र रूप से एक अपरिवर्तनीय वर्तमान की अनुमति देगा, लेकिन एक तेजी से बदलते एक का विरोध करता है।[63]: 226–29 


इलेक्ट्रिक पावर

इलेक्ट्रिक पावर वह दर है जिस पर इलेक्ट्रिक एनर्जी को इलेक्ट्रिक सर्किट द्वारा स्थानांतरित किया जाता है।पावर (भौतिकी) की एसआई इकाई वाट (यूनिट), प्रति सेकंड एक जूल है।

बिजली (भौतिकी) की तरह इलेक्ट्रिक पावर, काम करने की दर (विद्युत), वाट्स में मापा जाता है, और अक्षर पी द्वारा प्रतिनिधित्व किया जाता है। वाट्स शब्द का उपयोग बोलचाल में किया जाता है, जिसका अर्थ है वाट्स में विद्युत शक्ति का मतलब है।एक विद्युत प्रवाह द्वारा उत्पादित वाट्स में इलेक्ट्रिक पावर मैं q coulombs के एक चार्ज से युक्त होता है, जो हर टी सेकंड में एक विद्युत क्षमता (वोल्टेज) अंतर से गुजरता है

कहाँ पे

Q Coulombs में इलेक्ट्रिक चार्ज है
टी सेकंड में समय है
मैं एम्पीयर में विद्युत प्रवाह है
V वोल्ट में विद्युत क्षमता या वोल्टेज है

बिजली उत्पादन अक्सर यांत्रिक ऊर्जा को बिजली में परिवर्तित करने की प्रक्रिया द्वारा किया जाता है। स्टीम टर्बाइन या गैस टर्बाइन जैसे उपकरण यांत्रिक ऊर्जा के उत्पादन में शामिल होते हैं, जो बिजली का उत्पादन करने वाले विद्युत जनरेटर को पारित किया जाता है। बिजली के स्रोतों की एक विस्तृत विविधता से बिजली की बैटरी या अन्य साधनों जैसे रासायनिक स्रोतों द्वारा बिजली की आपूर्ति भी की जा सकती है। इलेक्ट्रिक पावर आमतौर पर इलेक्ट्रिक पावर उद्योग द्वारा व्यवसायों और घरों को आपूर्ति की जाती है। बिजली आमतौर पर किलोवाट घंटे (3.6 एमजे) द्वारा बेची जाती है, जो कि घंटों में समय पर चलने से गुणा किए गए किलोवाट में बिजली का उत्पाद है। इलेक्ट्रिक यूटिलिटीज बिजली के मीटर का उपयोग करके बिजली को मापती है, जो एक ग्राहक को दी जाने वाली विद्युत ऊर्जा का कुल चल रहा है। जीवाश्म ईंधन के विपरीत, बिजली ऊर्जा का एक कम एन्ट्रापी रूप है और उच्च दक्षता के साथ गति या ऊर्जा के कई अन्य रूपों में परिवर्तित किया जा सकता है।[64]


इलेक्ट्रॉनिक्स

सतह-माउंट प्रौद्योगिकी इलेक्ट्रॉनिक घटक

इलेक्ट्रॉनिक्स विद्युत सर्किट से संबंधित है जिसमें वैक्यूम ट्यूब, ट्रांजिस्टर, डायोड, ऑप्टोइलेक्ट्रॉनिक्स, सेंसर और एकीकृत सर्किट, और संबंधित निष्क्रिय इंटरकनेक्शन प्रौद्योगिकियों जैसे सक्रिय घटक शामिल हैं। सक्रिय घटकों का nonlinear व्यवहार और इलेक्ट्रॉन प्रवाह को नियंत्रित करने की उनकी क्षमता कमजोर संकेतों के प्रवर्धन को संभव बनाती है और इलेक्ट्रॉनिक्स का व्यापक रूप से सूचना प्रसंस्करण, दूरसंचार और सिग्नल प्रोसेसिंग में उपयोग किया जाता है। स्विच के रूप में कार्य करने के लिए इलेक्ट्रॉनिक उपकरणों की क्षमता डिजिटल सूचना प्रसंस्करण को संभव बनाती है। इंटरकनेक्शन टेक्नोलॉजीज जैसे सर्किट बोर्ड, इलेक्ट्रॉनिक्स पैकेजिंग तकनीक, और संचार बुनियादी ढांचे के अन्य विविध रूपों को पूरा सर्किट कार्यक्षमता और मिश्रित घटकों को एक नियमित कार्य प्रणाली में बदल देता है।

आज, अधिकांश इलेक्ट्रॉनिक डिवाइस इलेक्ट्रॉन नियंत्रण करने के लिए अर्धचालक घटकों का उपयोग करते हैं। अर्धचालक उपकरणों और संबंधित तकनीक के अध्ययन को ठोस राज्य भौतिकी की एक शाखा माना जाता है, जबकि व्यावहारिक समस्याओं को हल करने के लिए इलेक्ट्रॉनिक सर्किट का डिजाइन और निर्माण इलेक्ट्रॉनिक्स इंजीनियरिंग के तहत आता है।

विद्युत चुम्बकीय तरंग

फैराडे और अम्पेयर के काम से पता चला कि एक समय-भिन्न चुंबकीय क्षेत्र एक विद्युत क्षेत्र के स्रोत के रूप में काम करता है, और एक समय-अलग-अलग विद्युत क्षेत्र एक चुंबकीय क्षेत्र का एक स्रोत था।इस प्रकार, जब या तो फ़ील्ड समय में बदल रहा होता है, तो दूसरे का एक क्षेत्र आवश्यक रूप से प्रेरित होता है।[22]: 696–700  इस तरह की घटना में एक लहर के गुण होते हैं, और स्वाभाविक रूप से एक विद्युत चुम्बकीय तरंग के रूप में संदर्भित किया जाता है।1864 में जेम्स क्लर्क मैक्सवेल द्वारा इलेक्ट्रोमैग्नेटिक तरंगों का सैद्धांतिक रूप से विश्लेषण किया गया था। मैक्सवेल ने समीकरणों का एक सेट विकसित किया था जो विद्युत क्षेत्र, चुंबकीय क्षेत्र, इलेक्ट्रिक चार्ज और विद्युत प्रवाह के बीच अंतर्संबंध का स्पष्ट रूप से वर्णन कर सकता था।वह यह साबित कर सकता है कि इस तरह की लहर जरूरी प्रकाश की गति से यात्रा करेगी, और इस तरह प्रकाश स्वयं विद्युत चुम्बकीय विकिरण का एक रूप था।मैक्सवेल के कानून, जो प्रकाश, क्षेत्रों और चार्ज को एकजुट करते हैं, सैद्धांतिक भौतिकी के महान मील के पत्थर में से एक हैं।[22]: 696–700  इस प्रकार, कई शोधकर्ताओं के काम ने इलेक्ट्रॉनिक्स के उपयोग को रेडियो आवृत्ति दोलन धाराओं में संकेतों को परिवर्तित करने में सक्षम बनाया, और उपयुक्त रूप से आकार के कंडक्टर के माध्यम से, बिजली बहुत लंबी दूरी पर रेडियो तरंगों के माध्यम से इन संकेतों के संचरण और स्वागत की अनुमति देती है।

उत्पादन और उपयोग

पीढ़ी और ट्रांसमिशन

20 वीं सदी के शुरुआती अल्टरनेटर, बुडापेस्ट, हंगरी में बनाया गया, एक पनबिजली स्टेशन के पावर जनरेटिंग हॉल में (प्रोकोडिन-गोर्स्की द्वारा फोटोग्राफ, 1905-1915)।

6 वीं शताब्दी ईसा पूर्व में, मिलिटस के ग्रीक दार्शनिक थेल्स ने एम्बर रॉड्स के साथ प्रयोग किया और ये प्रयोग विद्युत ऊर्जा के उत्पादन में पहला अध्ययन था।जबकि यह विधि, जिसे अब ट्राइबोइलेक्ट्रिक प्रभाव के रूप में जाना जाता है, प्रकाश वस्तुओं को उठा सकता है और स्पार्क उत्पन्न कर सकता है, यह बेहद अक्षम है।[65] यह अठारहवीं शताब्दी में वोल्टिक ढेर के आविष्कार तक नहीं था कि बिजली का एक व्यवहार्य स्रोत उपलब्ध हो गया।वोल्टिक ढेर, और इसके आधुनिक वंशज, बैटरी (बिजली), ऊर्जा को रासायनिक रूप से संग्रहीत करते हैं और इसे विद्युत ऊर्जा के रूप में मांग पर उपलब्ध कराते हैं।[65]बैटरी एक बहुमुखी और बहुत सामान्य शक्ति स्रोत है जो आदर्श रूप से कई अनुप्रयोगों के लिए अनुकूल है, लेकिन इसकी ऊर्जा भंडारण परिमित है, और एक बार डिस्चार्ज होने के बाद इसे निपटाया या रिचार्ज किया जाना चाहिए।बड़ी विद्युत मांगों के लिए विद्युत ऊर्जा उत्पन्न की जानी चाहिए और प्रवाहकीय संचरण लाइनों पर लगातार प्रेषित की जानी चाहिए।

विद्युत शक्ति आमतौर पर जीवाश्म ईंधन दहन से उत्पादित भाप द्वारा संचालित इलेक्ट्रो-मैकेनिकल विद्युत जनरेटर द्वारा उत्पन्न होती है, या परमाणु प्रतिक्रियाओं से जारी गर्मी;या अन्य स्रोतों से जैसे कि हवा या बहते पानी से निकाले गए गतिज ऊर्जा।1884 में चार्ल्स अल्गर्नन पार्सन्स द्वारा आविष्कार किया गया आधुनिक स्टीम टरबाइन आज विभिन्न प्रकार के गर्मी स्रोतों का उपयोग करके दुनिया में लगभग 80 प्रतिशत विद्युत शक्ति उत्पन्न करता है।इस तरह के जनरेटर 1831 के फैराडे के होमोपोलर डिस्क जनरेटर के लिए कोई समानता नहीं रखते हैं, लेकिन वे अभी भी अपने विद्युत चुम्बकीय सिद्धांत पर भरोसा करते हैं कि एक बदलते चुंबकीय क्षेत्र को जोड़ने वाला एक कंडक्टर इसके छोरों में एक संभावित अंतर को प्रेरित करता है।[66] ट्रांसफार्मर के उन्नीसवीं शताब्दी के उत्तरार्ध में आविष्कार का मतलब था कि विद्युत शक्ति को उच्च वोल्टेज पर अधिक कुशलता से प्रेषित किया जा सकता है लेकिन कम वर्तमान।कुशल विद्युत संचरण का मतलब बदले में था कि बिजली केंद्रीकृत बिजली स्टेशनों पर उत्पन्न की जा सकती है, जहां यह पैमाने की अर्थव्यवस्थाओं से लाभान्वित हुआ, और फिर अपेक्षाकृत लंबी दूरी तक डिस्पैच किया जा सकता है जहां इसकी आवश्यकता थी।[67][68]

A wind farm of about a dozen threeव्हाइट विंड टर्बाइनों को ब्लैड किया।कई देशों में महत्व बढ़ रहा है

चूंकि विद्युत ऊर्जा आसानी से राष्ट्रीय स्तर पर मांगों को पूरा करने के लिए पर्याप्त मात्रा में संग्रहीत नहीं की जा सकती है, हर समय बिल्कुल उतना ही उत्पादन किया जाना चाहिए जितना आवश्यक है।[67]इसके लिए अपने विद्युत भार की सावधानीपूर्वक भविष्यवाणियां करने और अपने पावर स्टेशनों के साथ निरंतर समन्वय बनाए रखने के लिए विद्युत उपयोगिता की आवश्यकता होती है।अपरिहार्य गड़बड़ी और नुकसान के खिलाफ एक विद्युत ग्रिड को कुशन करने के लिए एक निश्चित मात्रा में पीढ़ी को ऑपरेटिंग रिजर्व में हमेशा ऑपरेटिंग रिजर्व में आयोजित किया जाना चाहिए।

एक राष्ट्र आधुनिकीकरण के रूप में बिजली की मांग बड़ी कठोरता के साथ बढ़ती है और इसकी अर्थव्यवस्था विकसित होती है।[69] संयुक्त राज्य अमेरिका ने बीसवीं शताब्दी के पहले तीन दशकों के प्रत्येक वर्ष के दौरान मांग में 12% की वृद्धि दिखाई,[70] विकास की दर जो अब भारत या चीन जैसी उभरती अर्थव्यवस्थाओं द्वारा अनुभव की जा रही है।[71][72] ऐतिहासिक रूप से, बिजली की मांग के लिए विकास दर ऊर्जा के अन्य रूपों के लिए आगे बढ़ गई है।[73]: 16  बिजली उत्पादन के साथ पर्यावरणीय चिंताओं ने नवीकरणीय ऊर्जा से पीढ़ी पर ध्यान केंद्रित किया है, विशेष रूप से पवन ऊर्जा और सौर ऊर्जा से।जबकि बहस से बिजली उत्पादन के विभिन्न साधनों के पर्यावरणीय प्रभाव को जारी रखने की उम्मीद की जा सकती है, इसका अंतिम रूप अपेक्षाकृत साफ है।[73]: 89 


अनुप्रयोग

गरमागरम प्रकाश बल्ब, बिजली का एक प्रारंभिक अनुप्रयोग, जूल हीटिंग द्वारा संचालित होता है: विद्युत प्रतिरोध उत्पन्न करने वाले गर्मी के माध्यम से वर्तमान (बिजली) का पारित होना

बिजली ऊर्जा को स्थानांतरित करने के लिए एक बहुत ही सुविधाजनक तरीका है, और इसे एक विशाल, और बढ़ते, उपयोग की संख्या के लिए अनुकूलित किया गया है।[74] 1870 के दशक में एक व्यावहारिक गरमागरम प्रकाश बल्ब के आविष्कार ने प्रकाश व्यवस्था को विद्युत शक्ति के पहले सार्वजनिक रूप से उपलब्ध अनुप्रयोगों में से एक बन गया।यद्यपि विद्युतीकरण अपने स्वयं के खतरों के साथ लाया, गैस प्रकाश की नग्न आग की लपटों की जगह घरों और कारखानों के भीतर आग के खतरों को बहुत कम कर दिया।[75] सार्वजनिक उपयोगिताओं को कई शहरों में स्थापित किया गया था, जो बिजली के प्रकाश के लिए बोझिल बाजार को लक्षित करते हैं।20 वीं शताब्दी के उत्तरार्ध में और आधुनिक समय में, विद्युत शक्ति क्षेत्र में डेरेग्यूलेशन की दिशा में प्रवृत्ति का प्रवाह शुरू हो गया है।[76] फिलामेंट लाइट बल्बों में नियोजित प्रतिरोधक जूल हीटिंग प्रभाव भी इलेक्ट्रिक हीटिंग में अधिक प्रत्यक्ष उपयोग देखता है।जबकि यह बहुमुखी और नियंत्रणीय है, इसे बेकार के रूप में देखा जा सकता है, क्योंकि अधिकांश विद्युत पीढ़ी ने पहले से ही एक पावर स्टेशन पर गर्मी के उत्पादन की आवश्यकता है।[77] डेनमार्क जैसे कई देशों ने नई इमारतों में प्रतिरोधक विद्युत ताप के उपयोग को प्रतिबंधित या प्रतिबंधित करने वाले कानून जारी किए हैं।[78] बिजली अभी भी हीटिंग और प्रशीतन के लिए एक अत्यधिक व्यावहारिक ऊर्जा स्रोत है,[79] एयर कंडीशनिंग/हीट पंप के साथ हीटिंग और कूलिंग के लिए बिजली की मांग के लिए एक बढ़ते क्षेत्र का प्रतिनिधित्व करते हैं, जिन प्रभावों के प्रभावों को बिजली की उपयोगिताओं को समायोजित करने के लिए तेजी से बाध्य किया जाता है।[80] बिजली का उपयोग दूरसंचार के भीतर किया जाता है, और वास्तव में इलेक्ट्रिकल टेलीग्राफ, 1837 में विलियम फोथेरगिल कुक और चार्ल्स व्हीटस्टोन द्वारा व्यावसायिक रूप से प्रदर्शित किया गया था, इसके शुरुआती अनुप्रयोगों में से एक था। 1860 के दशक में पहले पहले ट्रांसकॉन्टिनेंटल टेलीग्राफ, और फिर ट्रान्साटलांटिक टेलीग्राफ केबल, टेलीग्राफ सिस्टम के निर्माण के साथ, बिजली ने दुनिया भर में मिनटों में संचार को सक्षम किया था। ऑप्टिकल फाइबर और संचार उपग्रह ने संचार प्रणालियों के लिए बाजार का एक हिस्सा लिया है, लेकिन बिजली की प्रक्रिया का एक अनिवार्य हिस्सा बने रहने की उम्मीद की जा सकती है।

इलेक्ट्रोमैग्नेटिज्म के प्रभाव इलेक्ट्रिक मोटर में सबसे अधिक स्पष्ट रूप से नियोजित होते हैं, जो मकसद शक्ति का एक स्वच्छ और कुशल साधन प्रदान करता है। एक स्थिर मोटर जैसे कि एक चरखी आसानी से बिजली की आपूर्ति के साथ प्रदान की जाती है, लेकिन एक मोटर जो इसके आवेदन के साथ चलती है, जैसे कि एक इलेक्ट्रिक वाहन, या तो एक बैटरी जैसे बिजली स्रोत के साथ ले जाने के लिए बाध्य है, या वर्तमान से करंट इकट्ठा करने के लिए एक स्लाइडिंग संपर्क जैसे कि पेंटोग्राफ (रेल)। इलेक्ट्रिक रूप से संचालित वाहनों का उपयोग सार्वजनिक परिवहन में किया जाता है, जैसे कि इलेक्ट्रिक बसें और ट्रेनें,[81] और निजी स्वामित्व में बैटरी से चलने वाली इलेक्ट्रिक कारों की बढ़ती संख्या।

इलेक्ट्रॉनिक उपकरण ट्रांजिस्टर का उपयोग करते हैं, शायद बीसवीं शताब्दी के सबसे महत्वपूर्ण आविष्कारों में से एक,[82] और सभी आधुनिक सर्किटरी का एक मौलिक बिल्डिंग ब्लॉक।एक आधुनिक एकीकृत सर्किट में केवल कुछ सेंटीमीटर वर्ग के क्षेत्र में कई अरबों लघु ट्रांजिस्टर हो सकते हैं।[83]


बिजली और प्राकृतिक दुनिया

शारीरिक प्रभाव

एक मानव शरीर पर लागू एक वोल्टेज ऊतकों के माध्यम से एक विद्युत प्रवाह का कारण बनता है, और हालांकि संबंध गैर-रैखिक है, वोल्टेज जितना अधिक होता है, वर्तमान में अधिक होता है।[84] धारणा के लिए दहलीज आपूर्ति आवृत्ति के साथ और वर्तमान के मार्ग के साथ भिन्न होती है, लेकिन लगभग 0.1 & nbsp; ma से 1 & nbsp; mas-frequency बिजली के लिए ma, हालांकि एक microamp के रूप में कम के रूप में एक वर्तमान के तहत एक इलेक्ट्रोविब्रेशन प्रभाव के रूप में पता लगाया जा सकता है।कुछ शर्तें।[85] यदि वर्तमान पर्याप्त रूप से अधिक है, तो यह मांसपेशियों के संकुचन, हृदय के फाइब्रिलेशन और जलने का कारण होगा।[84]किसी भी दृश्यमान संकेत की कमी कि एक कंडक्टर विद्युतीकृत होता है, बिजली को एक विशेष खतरा बनाता है।एक बिजली के झटके के कारण होने वाला दर्द तीव्र हो सकता है, कई बार बिजली अग्रणी हो सकती है जिसे यातना की एक विधि के रूप में नियोजित किया जाता है।एक बिजली के झटके के कारण होने वाली मौत को बिजली के झटके के रूप में संदर्भित किया जाता है।इलेक्ट्रोक्यूशन अभी भी कुछ न्यायालयों में पूंजी की सजा का साधन है, हालांकि इसका उपयोग हाल के दिनों में दुर्लभ हो गया है।[86]


प्रकृति में विद्युत घटनाएं

इलेक्ट्रिक ईल, इलेक्ट्रोफोरस इलेक्ट्रिकस

बिजली एक मानव आविष्कार नहीं है, और प्रकृति में कई रूपों में देखा जा सकता है, एक प्रमुख अभिव्यक्ति जिसमें बिजली है।मैक्रोस्कोपिक स्तर पर परिचित कई इंटरैक्शन, जैसे कि स्पर्श, घर्षण या रासायनिक संबंध, परमाणु पैमाने पर विद्युत क्षेत्रों के बीच बातचीत के कारण होते हैं।पृथ्वी के चुंबकीय क्षेत्र को ग्रह के मूल में धाराओं के प्रसार के एक डायनमो सिद्धांत से उत्पन्न होने के लिए माना जाता है।[87] कुछ क्रिस्टल, जैसे कि क्वार्ट्ज, या यहां तक कि चीनी, बाहरी दबाव के अधीन होने पर उनके चेहरे पर एक संभावित अंतर उत्पन्न करते हैं।[88] इस घटना को पीजोइलेक्ट्रिकिटी के रूप में जाना जाता है, ग्रीक लैंग्वेज पीज़िन (νιέειν) से, जिसका अर्थ प्रेस करने के लिए है, और 1880 में पियरे क्यूरी और जैक्स क्यूरी द्वारा खोजा गया था।प्रभाव पारस्परिक है, और जब एक पीजोइलेक्ट्रिक सामग्री को एक विद्युत क्षेत्र के अधीन किया जाता है, तो भौतिक आयामों में एक छोटा सा परिवर्तन होता है।[88]

माइक्रोबियल जीवन में बायोइलेक्ट्रोजेनेसिस#बायोइलेक्ट्रोजेनेसिस।माइक्रोबियल ईंधन सेल इस सर्वव्यापी प्राकृतिक घटना की नकल करता है।

कुछ जीव, जैसे कि शार्क, विद्युत क्षेत्रों में परिवर्तन का पता लगाने और प्रतिक्रिया करने में सक्षम हैं, एक क्षमता जिसे इलेक्ट्रोरेसेप्शन के रूप में जाना जाता है,[89] जबकि अन्य, जिसे इलेक्ट्रोजेनिक कहा जाता है, एक शिकारी या रक्षात्मक हथियार के रूप में सेवा करने के लिए स्वयं वोल्टेज उत्पन्न करने में सक्षम हैं;ये विभिन्न आदेशों में इलेक्ट्रिक मछली हैं।[3]ऑर्डर जिमनोटिफ़ॉर्म्स, जिनमें से सबसे अच्छा ज्ञात उदाहरण इलेक्ट्रिक ईल है, इलेक्ट्रोसाइट्स नामक संशोधित मांसपेशी कोशिकाओं से उत्पन्न उच्च वोल्टेज के माध्यम से अपने शिकार का पता लगाता है या स्तब्ध है।[3][4]सभी जानवर वोल्टेज दालों के साथ अपने सेल झिल्ली के साथ जानकारी प्रसारित करते हैं, जिसे एक्शन पोटेंशियल कहा जाता है, जिसके कार्यों में न्यूरॉन्स और मांसपेशियों के बीच तंत्रिका तंत्र द्वारा संचार शामिल है।[90] एक बिजली का झटका इस प्रणाली को उत्तेजित करता है, और मांसपेशियों को अनुबंध करने का कारण बनता है।[91] कुछ पौधों में गतिविधियों के समन्वय के लिए एक्शन पोटेंशिअल भी जिम्मेदार हैं।[90]


सांस्कृतिक धारणा

1850 में, विलियम ग्लैडस्टोन ने वैज्ञानिक माइकल फैराडे से पूछा कि बिजली क्यों मूल्यवान थी।फैराडे ने जवाब दिया, "एक दिन सर, आप इस पर कर लगा सकते हैं।"[92] 19 वीं और 20 वीं शताब्दी की शुरुआत में, बिजली कई लोगों के रोजमर्रा के जीवन का हिस्सा नहीं थी, यहां तक कि औद्योगिक पश्चिमी दुनिया में भी।तदनुसार उस समय की लोकप्रिय संस्कृति ने इसे अक्सर एक रहस्यमय, अर्ध-जादुई बल के रूप में चित्रित किया, जो जीवित को मार सकता है, मृतकों को पुनर्जीवित कर सकता है या अन्यथा प्रकृति के नियमों को मोड़ सकता है।[93] यह रवैया लुइगी गालवानी के 1771 प्रयोगों के साथ शुरू हुआ, जिसमें मृत मेंढकों के पैरों को गैल्वेनिज्म के आवेदन पर चिकोटी दिखाया गया था।गालवानी के काम के तुरंत बाद चिकित्सा साहित्य में स्पष्ट रूप से मृत या डूबे हुए व्यक्तियों के पुनरोद्धार या पुनर्जीवन की सूचना दी गई थी।इन परिणामों को मैरी शेली को तब जाना जाता था जब उन्होंने फ्रेंकस्टीन (1819) को लिखा था, हालांकि वह राक्षस के पुनरोद्धार की विधि का नाम नहीं देती हैं।बिजली के साथ राक्षसों का पुनरोद्धार बाद में हॉरर फिल्मों में स्टॉक थीम बन गया।

जैसे -जैसे दूसरी औद्योगिक क्रांति के जीवन के रूप में बिजली के साथ सार्वजनिक परिचितता बढ़ती गई, इसके वॉल्डर्स को अधिक बार एक सकारात्मक प्रकाश में डाला गया,[94] ऐसे श्रमिकों के रूप में जो अपने दस्ताने के अंत में मौत की मौत करते हैं, क्योंकि वे रुडयार्ड किपलिंग के 1907 की कविता के मार्था के पोर्स में रहने वाले तारों को तैयार करते हैं।[94]हर तरह के विद्युत संचालित वाहनों में एडवेंचर स्टोरीज़ जैसे कि जूल्स वर्ने और द टॉम स्विफ्ट बुक्स जैसे साहसिक कहानियों में बड़े होते हैं।[94]बिजली के स्वामी, चाहे वह काल्पनिक हो या वास्तविक-जिसमें थॉमस एडिसन, चार्ल्स स्टीनमेट्ज़ या निकोला टेस्ला जैसे वैज्ञानिकों में शामिल हैं-को विज़ार्ड जैसी शक्तियों के रूप में लोकप्रिय रूप से कल्पना की गई थी।[94]

बिजली के साथ एक नवीनता होने के लिए और 20 वीं शताब्दी के बाद के आधे हिस्से में रोजमर्रा की जिंदगी की आवश्यकता बन जाती है, इसे लोकप्रिय संस्कृति द्वारा विशेष ध्यान देने की आवश्यकता होती है, जब यह बहना बंद हो जाता है,[94]एक ऐसी घटना जो आमतौर पर आपदा का संकेत देती है।[94]जो लोग इसे बहते रहते हैं, जैसे कि जिमी वेब के गीत विचिटा लाइनमैन (1968) के नामहीन नायक,[94]अभी भी अक्सर वीर, जादूगर जैसे आंकड़े के रूप में डाला जाता है।[94]


यह भी देखें

  • Ampère का सर्कुलेटेड कानून, एक विद्युत प्रवाह और उसके संबंधित चुंबकीय धाराओं की दिशा को जोड़ता है।
  • विद्युत संभावित ऊर्जा, आवेशों की एक प्रणाली की संभावित ऊर्जा
  • बिजली बाजार, विद्युत ऊर्जा की बिक्री
  • बिजली की व्युत्पत्ति, बिजली की उत्पत्ति और इसके वर्तमान अलग -अलग उपयोग
  • हाइड्रोलिक सादृश्य, पानी और विद्युत प्रवाह के प्रवाह के बीच एक सादृश्य

टिप्पणियाँ

  1. Jones, D.A. (1991), "Electrical engineering: the backbone of society", IEE Proceedings A - Science, Measurement and Technology, 138 (1): 1–10, doi:10.1049/ip-a-3.1991.0001
  2. Moller, Peter; Kramer, Bernd (December 1991), "Review: Electric Fish", BioScience, American Institute of Biological Sciences, 41 (11): 794–96 [794], doi:10.2307/1311732, JSTOR 1311732
  3. 3.0 3.1 3.2 Bullock, Theodore H. (2005), Electroreception, Springer, pp. 5–7, ISBN 0-387-23192-7
  4. 4.0 4.1 Morris, Simon C. (2003), Life's Solution: Inevitable Humans in a Lonely Universe, Cambridge University Press, pp. 182–85, ISBN 0-521-82704-3
  5. 5.0 5.1 Stewart, Joseph (2001), Intermediate Electromagnetic Theory, World Scientific, p. 50, ISBN 981-02-4471-1
  6. Simpson, Brian (2003), Electrical Stimulation and the Relief of Pain, Elsevier Health Sciences, pp. 6–7, ISBN 0-444-51258-6
  7. Diogenes Laertius. R.D. Hicks (ed.). "Lives of Eminent Philosophers, Book 1 Chapter 1 [24]". Perseus Digital Library. Tufts University. Archived from the original on 30 July 2022. Retrieved 5 February 2017. Aristotle and Hippias affirm that, arguing from the magnet and from amber, he attributed a soul or life even to inanimate objects.
  8. Aristotle. Daniel C. Stevenson (ed.). "De Animus (On the Soul) Book 1 Part 2 (B4 verso)". The Internet Classics Archive. Translated by J.A. Smith. Archived from the original on 26 February 2017. Retrieved 5 February 2017. Thales, too, to judge from what is recorded about him, seems to have held soul to be a motive force, since he said that the magnet has a soul in it because it moves the iron.
  9. Frood, Arran (27 February 2003), Riddle of 'Baghdad's batteries', BBC, archived from the original on 2017-09-03, retrieved 2008-02-16
  10. Baigrie, Brian (2007), Electricity and Magnetism: A Historical Perspective, Greenwood Press, pp. 7–8, ISBN 978-0-313-33358-3
  11. Chalmers, Gordon (1937), "The Lodestone and the Understanding of Matter in Seventeenth Century England", Philosophy of Science, 4 (1): 75–95, doi:10.1086/286445, S2CID 121067746
  12. 12.0 12.1 12.2 Guarnieri, M. (2014). "Electricity in the age of Enlightenment". IEEE Industrial Electronics Magazine. 8 (3): 60–63. doi:10.1109/MIE.2014.2335431. S2CID 34246664.
  13. Srodes, James (2002), Franklin: The Essential Founding Father, Regnery Publishing, pp. 92–94, ISBN 0-89526-163-4 It is uncertain if Franklin personally carried out this experiment, but it is popularly attributed to him.
  14. Uman, Martin (1987), All About Lightning (PDF), Dover Publications, ISBN 0-486-25237-X
  15. Riskin, Jessica (1998), Poor Richard's Leyden Jar: Electricity and economy in Franklinist France (PDF), p. 327, archived (PDF) from the original on 2014-05-12, retrieved 2014-05-11
  16. Williamson, Hugh (1775). "Experiments and observations on the Gymnotus electricus, or electric eel". Philosophical Transactions of the Royal Society (65): 94–101. Archived from the original on 2022-07-30. Retrieved 2022-07-16.
  17. Edwards, Paul J. (2021). "A Correction to the Record of Early Electrophysiology Research on the 250th Anniversary of a Historic Expedition to Île de Ré."
  18. Hunter, John (1775). "An account of the Gymnotus electricus". Philosophical Transactions of the Royal Society of London (65): 395–407.
  19. 19.0 19.1 Guarnieri, M. (2014). "The Big Jump from the Legs of a Frog". IEEE Industrial Electronics Magazine. 8 (4): 59–61, 69. doi:10.1109/MIE.2014.2361237. S2CID 39105914.
  20. 20.0 20.1 20.2 Kirby, Richard S. (1990), Engineering in History, Courier Dover Publications, pp. 331–33, ISBN 0-486-26412-2
  21. Berkson, William (1974) Fields of force: the development of a world view from Faraday to Einstein p.148. Routledge, 1974
  22. 22.0 22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 22.9 Sears, Francis; et al. (1982), University Physics, Sixth Edition, Addison Wesley, ISBN 0-201-07199-1
  23. Hertz, Heinrich (1887). "Ueber den Einfluss des ultravioletten Lichtes auf die electrische Entladung". Annalen der Physik. 267 (8): S. 983–1000. Bibcode:1887AnP...267..983H. doi:10.1002/andp.18872670827. Archived from the original on 2020-06-11. Retrieved 2019-08-25.
  24. "The Nobel Prize in Physics 1921". Nobel Foundation. Archived from the original on 2008-10-17. Retrieved 2013-03-16.
  25. "Solid state" Archived 2018-07-21 at the Wayback Machine, The Free Dictionary
  26. John Sydney Blakemore, Solid state physics, pp. 1–3, Cambridge University Press, 1985 ISBN 0-521-31391-0.
  27. Richard C. Jaeger, Travis N. Blalock, Microelectronic circuit design, pp. 46–47, McGraw-Hill Professional, 2003 ISBN 0-07-250503-6.
  28. "1947: Invention of the Point-Contact Transistor". Computer History Museum. Archived from the original on 30 September 2021. Retrieved 10 August 2019.
  29. "1948: Conception of the Junction Transistor". The Silicon Engine. Computer History Museum. Archived from the original on 30 July 2020. Retrieved 8 October 2019.
  30. 30.0 30.1 Moskowitz, Sanford L. (2016). Advanced Materials Innovation: Managing Global Technology in the 21st century. John Wiley & Sons. ISBN 9780470508923. Archived from the original on 2020-11-05. Retrieved 2019-10-26.
  31. "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum. Archived from the original on 2019-10-27. Retrieved 2019-10-26.
  32. 32.0 32.1 "Who Invented the Transistor?". Computer History Museum. 4 December 2013. Archived from the original on 13 December 2013. Retrieved 20 July 2019.
  33. "Triumph of the MOS Transistor". YouTube. Computer History Museum. 6 August 2010. Archived from the original on 2021-10-28. Retrieved 21 July 2019.
  34. Feldman, Leonard C. (2001). "Introduction". Fundamental Aspects of Silicon Oxidation. Springer Science & Business Media. pp. 1–11. ISBN 9783540416821. Archived from the original on 2019-12-25. Retrieved 2019-10-26.
  35. Golio, Mike; Golio, Janet (2018). RF and Microwave Passive and Active Technologies. CRC Press. pp. 18–2. ISBN 9781420006728. Archived from the original on 2020-11-04. Retrieved 2019-10-26.
  36. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. April 2, 2018. Archived from the original on 28 July 2019. Retrieved 28 July 2019.
  37. Shirriff, Ken (30 August 2016). "The Surprising Story of the First Microprocessors". IEEE Spectrum. Institute of Electrical and Electronics Engineers. 53 (9): 48–54. doi:10.1109/MSPEC.2016.7551353. S2CID 32003640. Archived from the original on 12 July 2021. Retrieved 13 October 2019.
  38. "The MOS Memory Market" (PDF). Integrated Circuit Engineering Corporation. Smithsonian Institution. 1997. Archived (PDF) from the original on 26 June 2011. Retrieved 16 October 2019.
  39. "MOS Memory Market Trends" (PDF). Integrated Circuit Engineering Corporation. Smithsonian Institution. 1998. Archived (PDF) from the original on 16 October 2019. Retrieved 16 October 2019.
  40. "The repulsive force between two small spheres charged with the same type of electricity is inversely proportional to the square of the distance between the centres of the two spheres." Charles-Augustin de Coulomb, Histoire de l'Academie Royal des Sciences, Paris 1785.
  41. 41.0 41.1 41.2 41.3 41.4 41.5 41.6 Duffin, W.J. (1980), Electricity and Magnetism, 3rd edition, McGraw-Hill, ISBN 0-07-084111-X
  42. National Research Council (1998), Physics Through the 1990s, National Academies Press, pp. 215–16, ISBN 0-309-03576-7
  43. 43.0 43.1 Umashankar, Korada (1989), Introduction to Engineering Electromagnetic Fields, World Scientific, pp. 77–79, ISBN 9971-5-0921-0
  44. 44.0 44.1 Hawking, Stephen (1988), A Brief History of Time, Bantam Press, p. 77, ISBN 0-553-17521-1
  45. Trefil, James (2003), The Nature of Science: An A–Z Guide to the Laws and Principles Governing Our Universe, Houghton Mifflin Books, p. 74, ISBN 0-618-31938-7
  46. Shectman, Jonathan (2003), Groundbreaking Scientific Experiments, Inventions, and Discoveries of the 18th Century, Greenwood Press, pp. 87–91, ISBN 0-313-32015-2
  47. Sewell, Tyson (1902), The Elements of Electrical Engineering, Lockwood, p. 18. The Q originally stood for 'quantity of electricity', the term 'electricity' now more commonly expressed as 'charge'.
  48. Close, Frank (2007), The New Cosmic Onion: Quarks and the Nature of the Universe, CRC Press, p. 51, ISBN 978-1-58488-798-0
  49. Shock and Awe: The Story of Electricity – Jim Al-Khalili BBC Horizon
  50. Ward, Robert (1960), Introduction to Electrical Engineering, Prentice-Hall, p. 18
  51. Solymar, L. (1984), Lectures on electromagnetic theory, Oxford University Press, p. 140, ISBN 0-19-856169-5
  52. 52.0 52.1 Berkson, William (1974), Fields of Force: The Development of a World View from Faraday to Einstein, Routledge, p. 370, ISBN 0-7100-7626-6 Accounts differ as to whether this was before, during, or after a lecture.
  53. "Lab Note #105 EMI Reduction – Unsuppressed vs. Suppressed". Arc Suppression Technologies. April 2011. Archived from the original on March 5, 2016. Retrieved March 7, 2012.
  54. 54.0 54.1 54.2 Bird, John (2007), Electrical and Electronic Principles and Technology, 3rd edition, Newnes, ISBN 9781417505432
  55. Almost all electric fields vary in space. An exception is the electric field surrounding a planar conductor of infinite extent, the field of which is uniform.
  56. 56.0 56.1 Morely & Hughes (1970), Principles of Electricity, Fifth edition, p. 73, ISBN 0-582-42629-4
  57. Naidu, M.S.; Kamataru, V. (1982), High Voltage Engineering, Tata McGraw-Hill, p. 2, ISBN 0-07-451786-4
  58. Serway, Raymond A. (2006), Serway's College Physics, Thomson Brooks, p. 500, ISBN 0-534-99724-4
  59. Saeli, Sue; MacIsaac, Dan (2007), "Using Gravitational Analogies To Introduce Elementary Electrical Field Theory Concepts", The Physics Teacher, 45 (2): 104, Bibcode:2007PhTea..45..104S, doi:10.1119/1.2432088, archived from the original on 2008-02-16, retrieved 2007-12-09
  60. Thompson, Silvanus P. (2004), Michael Faraday: His Life and Work, Elibron Classics, p. 79, ISBN 1-4212-7387-X
  61. 61.0 61.1 Morely & Hughes, Principles of Electricity, Fifth edition, pp. 92–93
  62. 62.0 62.1 Institution of Engineering and Technology, Michael Faraday: Biography, archived from the original on 2007-07-03, retrieved 2007-12-09
  63. 63.0 63.1 63.2 63.3 Alexander, Charles; Sadiku, Matthew (2006), Fundamentals of Electric Circuits (3, revised ed.), McGraw-Hill, ISBN 9780073301150
  64. Environmental Physics By Clare Smith 2001
  65. 65.0 65.1 Dell, Ronald; Rand, David (2001), "Understanding Batteries", NASA Sti/Recon Technical Report N, Royal Society of Chemistry, 86: 2–4, Bibcode:1985STIN...8619754M, ISBN 0-85404-605-4
  66. McLaren, Peter G. (1984), Elementary Electric Power and Machines, Ellis Horwood, pp. 182–83, ISBN 0-85312-269-5
  67. 67.0 67.1 Patterson, Walter C. (1999), Transforming Electricity: The Coming Generation of Change, Earthscan, pp. 44–48, ISBN 1-85383-341-X
  68. Edison Electric Institute, History of the Electric Power Industry, archived from the original on November 13, 2007, retrieved 2007-12-08
  69. Bryce, Robert (2020). A Question of Power: Electricity and the Wealth of Nations. PublicAffairs. p. 352. ISBN 978-1610397490. Archived from the original on 2021-11-07. Retrieved 2021-11-07.
  70. Edison Electric Institute, History of the U.S. Electric Power Industry, 1882–1991, archived from the original on 2010-12-06, retrieved 2007-12-08
  71. Carbon Sequestration Leadership Forum, An Energy Summary of India, archived from the original on 2007-12-05, retrieved 2007-12-08
  72. IndexMundi, China Electricity – consumption, archived from the original on 2019-06-17, retrieved 2007-12-08
  73. 73.0 73.1 National Research Council (1986), Electricity in Economic Growth, National Academies Press, ISBN 0-309-03677-1
  74. Wald, Matthew (21 March 1990), "Growing Use of Electricity Raises Questions on Supply", New York Times, archived from the original on 2008-01-08, retrieved 2007-12-09
  75. d'Alroy Jones, Peter, The Consumer Society: A History of American Capitalism, Penguin Books, p. 211
  76. "The Bumpy Road to Energy Deregulation". EnPowered. 2016-03-28. Archived from the original on 2017-04-07. Retrieved 2017-05-29.
  77. ReVelle, Charles and Penelope (1992), The Global Environment: Securing a Sustainable Future, Jones & Bartlett, p. 298, ISBN 0-86720-321-8
  78. Danish Ministry of Environment and Energy, "F.2 The Heat Supply Act", Denmark's Second National Communication on Climate Change, archived from the original on January 8, 2008, retrieved 2007-12-09
  79. Brown, Charles E. (2002), Power resources, Springer, ISBN 3-540-42634-5
  80. Hojjati, B.; Battles, S., The Growth in Electricity Demand in U.S. Households, 1981–2001: Implications for Carbon Emissions (PDF), archived from the original (PDF) on 2008-02-16, retrieved 2007-12-09
  81. "Public Transportation", Alternative Energy News, 2010-03-10, archived from the original on 2010-12-04, retrieved 2010-12-02
  82. Herrick, Dennis F. (2003), Media Management in the Age of Giants: Business Dynamics of Journalism, Blackwell Publishing, ISBN 0-8138-1699-8
  83. Das, Saswato R. (2007-12-15), "The tiny, mighty transistor", Los Angeles Times, archived from the original on 2008-10-11, retrieved 2008-01-12
  84. 84.0 84.1 Tleis, Nasser (2008), Power System Modelling and Fault Analysis, Elsevier, pp. 552–54, ISBN 978-0-7506-8074-5
  85. Grimnes, Sverre (2000), Bioimpedance and Bioelectricity Basic, Academic Press, pp. 301–09, ISBN 0-12-303260-1
  86. Lipschultz, J.H.; Hilt, M.L.J.H. (2002), Crime and Local Television News, Lawrence Erlbaum Associates, p. 95, ISBN 0-8058-3620-9
  87. Encrenaz, Thérèse (2004), The Solar System, Springer, p. 217, ISBN 3-540-00241-3
  88. 88.0 88.1 Lima-de-Faria, José; Buerger, Martin J. (1990), "Historical Atlas of Crystallography", Zeitschrift für Kristallographie, Springer, 209 (12): 67, Bibcode:1994ZK....209.1008P, doi:10.1524/zkri.1994.209.12.1008a, ISBN 0-7923-0649-X
  89. Ivancevic, Vladimir & Tijana (2005), Natural Biodynamics, World Scientific, p. 602, ISBN 981-256-534-5
  90. 90.0 90.1 Kandel, E.; Schwartz, J.; Jessell, T. (2000), Principles of Neural Science, McGraw-Hill Professional, pp. 27–28, ISBN 0-8385-7701-6
  91. Davidovits, Paul (2007), Physics in Biology and Medicine, Academic Press, pp. 204–05, ISBN 978-0-12-369411-9
  92. Jackson, Mark (4 November 2013), Theoretical physics – like sex, but with no need to experiment, The Conversation, archived from the original on 4 April 2014, retrieved 26 March 2014
  93. Van Riper, A. Bowdoin (2002), Science in popular culture: a reference guide, Westport: Greenwood Press, p. 69, ISBN 0-313-31822-0
  94. 94.0 94.1 94.2 94.3 94.4 94.5 94.6 94.7 Van Riper, op.cit., p. 71.


संदर्भ


इस पृष्ठ में गुम आंतरिक लिंक की सूची

बाहरी संबंध

श्रेणी: पदार्थ में विद्युत और चुंबकीय क्षेत्र