इलेक्ट्रॉन होल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 30: Line 30:
* [[फैलाव संबंध]] यह निर्धारित करता है कि इलेक्ट्रॉन बलों पर कैसे प्रतिक्रिया करते हैं (प्रभावी द्रव्यमान की अवधारणा के माध्यम से)।<ref name=Kittel />
* [[फैलाव संबंध]] यह निर्धारित करता है कि इलेक्ट्रॉन बलों पर कैसे प्रतिक्रिया करते हैं (प्रभावी द्रव्यमान की अवधारणा के माध्यम से)।<ref name=Kittel />


फैलाव संबंध बैंड में तरंग वेक्टर (के-वेक्टर) और ऊर्जा के बीच का संबंध है, जो  इलेक्ट्रॉनिक बैंड संरचना का अंश है। क्वांटम यांत्रिकी में, इलेक्ट्रॉन तरंगें हैं, और ऊर्जा तरंग आवृत्ति है।स्थानीयकृत इलेक्ट्रॉन [[तरंग पैकेट]] है, और इलेक्ट्रॉन की गति [[समूह वेग]] के लिए सूत्र के माध्यम से  दी जाती है। विद्युत क्षेत्र इलेक्ट्रॉन को धीरे -धीरे तरंगपैकेट में सभी तरंगवेक्टर को स्थानांतरित करके प्रभावित करता है, और इलेक्ट्रॉन तब तेज हो जाता है जब इसका तरंग समूह वेग बदल जाता है। इसलिए, फिर से, जिस तरह से एक इलेक्ट्रॉन बलों के लिए प्रतिक्रिया करता है वह पूरी तरह से इसके फैलाव संबंध से निर्धारित होता है। अंतरिक्ष में तैरने वाले एक इलेक्ट्रॉन में फैलाव संबंध e = ℏ है 2 </d> k2 /(2m), जहां m (वास्तविक[[इलेक्ट्रॉन रेस्ट मास]] द्रव्यमान है और ℏ प्लांक स्थिर है। एक अर्धचालक के चालन बैंड के नीचे के पास, फैलाव संबंध इसके बजाय ई = ℏ है2 </d> k2 </dis>/(2m*) (एम* प्रभावी द्रव्यमान (ठोस-अवस्था  भौतिकी) है, अतः एक चालन-बैंड इलेक्ट्रॉन बलों को प्रतिक्रिया देता है जैसे कि यह द्रव्यमान एम था*।
फैलाव संबंध बैंड में तरंग वेक्टर (के-वेक्टर) और ऊर्जा के बीच का संबंध है, जो  इलेक्ट्रॉनिक बैंड संरचना का अंश है। क्वांटम यांत्रिकी में, इलेक्ट्रॉन तरंगें हैं, और ऊर्जा तरंग आवृत्ति है।स्थानीयकृत इलेक्ट्रॉन [[तरंग पैकेट]] है, और इलेक्ट्रॉन की गति [[समूह वेग]] के लिए सूत्र के माध्यम से  दी जाती है। विद्युत क्षेत्र इलेक्ट्रॉन को धीरे -धीरे तरंगपैकेट में सभी तरंगवेक्टर को स्थानांतरित करके प्रभावित करता है, और इलेक्ट्रॉन तब तेज हो जाता है जब इसका तरंग समूह वेग बदल जाता है। इसलिए, फिर से, जिस तरह से एक इलेक्ट्रॉन बलों के लिए प्रतिक्रिया करता है वह पूरी तरह से इसके फैलाव संबंध से निर्धारित होता है। अंतरिक्ष में तैरने वाले एक इलेक्ट्रॉन में फैलाव संबंध e = ℏ है 2 </d> k2 /(2m), जहां m (वास्तविक[[इलेक्ट्रॉन रेस्ट मास]] द्रव्यमान है और ℏ प्लांक स्थिर है। एक अर्धचालक के चालन बैंड के नीचे के पास, फैलाव संबंध इसके स्थान पर  ई = ℏ है2 </d> k2 </dis>/(2m*) (एम* प्रभावी द्रव्यमान (ठोस-अवस्था  भौतिकी) है, अतः एक चालन-बैंड इलेक्ट्रॉन बलों को प्रतिक्रिया देता है जैसे कि यह द्रव्यमान एम था*।


* वैलेंस बैंड के शीर्ष के पास इलेक्ट्रॉन ऐसे व्यवहार करते हैं जैसे कि उनके पास नकारात्मक द्रव्यमान है।<ref name=Kittel />
* वैलेंस बैंड के शीर्ष के पास इलेक्ट्रॉन ऐसे व्यवहार करते हैं जैसे कि उनके पास नकारात्मक द्रव्यमान है।<ref name=Kittel />
Line 52: Line 52:
=== अर्धचालक प्रौद्योगिकी में भूमिका ===
=== अर्धचालक प्रौद्योगिकी में भूमिका ===


कुछ अर्धचालक, जैसे कि सिलिकॉन में, छेद का प्रभावी द्रव्यमान एक दिशा ([[एनिसोट्रॉपिक]]) पर निर्भर होता  है, यद्यपि सभी दिशाओं में औसतन एक मूल्य का उपयोग कुछ मैक्रोस्कोपिक गणना के लिए किया जा सकता है।
कुछ अर्धचालक, जैसे कि सिलिकॉन में, छेद का प्रभावी द्रव्यमान दिशा ([[एनिसोट्रॉपिक]]) पर निर्भर होता  है, यद्यपि सभी दिशाओं में औसतन मूल्य का उपयोग कुछ मैक्रोस्कोपिक गणना के लिए किया जा सकता है।


अधिकांश अर्धचालकों में, छेद का प्रभावी द्रव्यमान इलेक्ट्रॉन की अनुरूप  में बहुत बड़ा होता है। यह विद्युत क्षेत्र के प्रभाव के अनुसार छेद के लिए कम [[इलेक्ट्रॉन गतिशीलता]] का परिणाम है और इससे उस अर्धचालक से बने इलेक्ट्रॉनिक उपकरण की गति धीमी हो सकती है। यह इलेक्ट्रॉनों को प्राथमिक आवेश वाहक के रूप में अपनाने का एक प्रमुख कारण है, जब भी संभव हो, सेमीकंडक्टर उपकरणों में छेद के अतिरिक्त । यही कारण है कि एनएमओएस लॉजिक पीएमओएस लॉजिक से अधिक तेज है।[[OLED|ओएलईडी]]  स्क्रीन को असंतुलन को कम करने के लिए संशोधित किया गया है, जिसके परिणामस्वरूप अतिरिक्त परतों को जोड़कर और/या एक प्लास्टिक की परत पर इलेक्ट्रॉन घनत्व में कमी आई है जिससे इलेक्ट्रॉनों और छेदों को उत्सर्जन क्षेत्र के भीतर ठीक से संतुलित किया जा सके।
अधिकांश अर्धचालकों में, छेद का प्रभावी द्रव्यमान इलेक्ट्रॉन की अनुरूप  में बहुत अधिक होता है। इसके परिणामस्वरूप विद्युत क्षेत्र के प्रभाव में छिद्रों के लिए कम [[इलेक्ट्रॉन गतिशीलता]] होती है और यह उस अर्धचालक से बने इलेक्ट्रॉनिक उपकरण की गति को धीमा कर सकता है। छेद के स्थान पर सेमीकंडक्टर उपकरणों में जब भी संभव हो, प्राथमिक चार्ज वाहक के रूप में इलेक्ट्रॉनों को अपनाने का यह एक प्रमुख कारण है। यही कारण है कि एन-टाइप मेटल-ऑक्साइड-सेमीकंडक्टर लॉजिक, पी-चैनल मेटल-ऑक्साइड सेमीकंडक्टर लॉजिक से तेज है। [[OLED|ओएलईडी]]  स्क्रीन को असंतुलन को कम करने के लिए संशोधित किया गया है जिसके परिणामस्वरूप प्लास्टिक परत पर अतिरिक्त परतें और/या इलेक्ट्रॉन घनत्व कम करके गैर-विकिरण पुनर्संयोजन होता है इसलिये उत्सर्जन क्षेत्र के भीतर इलेक्ट्रॉनों और छिद्रों को सटीक रूप से संतुलित किया जा सके। यद्यपि, कई अर्धचालक उपकरणों में, इलेक्ट्रॉनों और छेद दोनों एक आवश्यक भूमिका निभाते हैं। उदाहरणों में p-n डायोड, [[द्विध्रुवी जंक्शन ट्रांजिस्टर]] और [[सीएमओएस तर्क]] सम्मलित  हैं।
यद्यपि, कई अर्धचालक उपकरणों में, इलेक्ट्रॉनों और छेद दोनों एक आवश्यक भूमिका निभाते हैं। उदाहरणों में पी -एन डायोड, [[द्विध्रुवी जंक्शन ट्रांजिस्टर]] और [[सीएमओएस तर्क]] सम्मलित  हैं।


== क्वांटम रसायन विज्ञान में छेद ==
== क्वांटम रसायन विज्ञान में छेद ==
इलेक्ट्रॉन छेद शब्द के लिए एक वैकल्पिक अर्थ का उपयोग कम्प्यूटेशनल रसायन विज्ञान में किया जाता है। युग्मित क्लस्टर विधियों में, एक अणु की जमीन (या सबसे कम ऊर्जा) अवस्था को "निर्वात अवस्था" के रूप में व्याख्यायित किया जाता है - वैचारिक रूप से इस अवस्था  में, कोई इलेक्ट्रॉन नहीं हैं। इस योजना में, एक सामान्य रूप से भरे अवस्था  से एक इलेक्ट्रॉन की अनुपस्थिति को "छिद्र" कहा जाता है और इसे एक कण के रूप में माना जाता है, और सामान्य रूप से खाली अवस्था में एक इलेक्ट्रॉन की उपस्थिति को एकमात्र  एक "इलेक्ट्रॉन" कहा जाता है। यह शब्दावली ठोस-अवस्था  भौतिकी में उपयोग की जाने वाली शब्दावली अधिकतर समान है।
कम्प्यूटेशनल रसायन शास्त्र में इलेक्ट्रॉन छेद शब्द के लिए वैकल्पिक अर्थ का उपयोग किया जाता है। युग्मित क्लस्टर विधियों में, अणु की जमीन (या सबसे कम ऊर्जा) अवस्था को "निर्वात अवस्था" के रूप में व्याख्यायित किया जाता है - वैचारिक रूप से इस अवस्था  में, कोई इलेक्ट्रॉन नहीं हैं। इस योजना में, सामान्य रूप से भरे अवस्था  से इलेक्ट्रॉन की अनुपस्थिति को "छिद्र" कहा जाता है और इसे कण के रूप में माना जाता है, और सामान्य रूप से खाली अवस्था में इलेक्ट्रॉन की उपस्थिति को एकमात्र  "इलेक्ट्रॉन" कहा जाता है। यह शब्दावली ठोस-अवस्था  भौतिकी में उपयोग की जाने वाली शब्दावली अधिकतर समान है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 13:44, 6 February 2023

जब इलेक्ट्रॉन एक हीलियम परमाणु को छोड़ता है, तो वह उसके स्थान पर एक इलेक्ट्रॉन छिद्र छोड़ता है। इससे हीलियम परमाणु सकारात्मक रूप से आवेश हो जाता है।

भौतिकी, रसायन विज्ञान, और इलेक्ट्रॉनिक यन्त्रशास्त्र में, इलेक्ट्रॉन छेद (अधिकांशतः बस छेद कहा जाता है) क्वासिपार्टिकल होता है जो एक ऐसी स्थिति में एक इलेक्ट्रॉन की कमी है जहां एक परमाणु या क्रिस्टल संरचना में सम्मलित हो सकता है।चूंकि एक सामान्य परमाणु या क्रिस्टल जाली में इलेक्ट्रॉनों का ऋणात्मक आवेश परमाणु नाभिक के सकारात्मक आवेश के माध्यम से संतुलित होता है, इसलिए इलेक्ट्रॉन की अनुपस्थिति छेद के स्थान पर एक शुद्ध सकारात्मक आवेश छोड़ देती है।

धातु[1] या सेमीकंडक्टर क्रिस्टल जाली में छेद इलेक्ट्रॉनों के रूप में जाली के माध्यम से आगे बढ़ सकते है, और बिजली का आवेश के समान कार्य कर सकता है और सकारात्मक रूप से आवेश किए गए कणों के समान कार्य कर सकते हैं। वे अर्धचालक उपकरणों जैसे ट्रांजिस्टर, डायोड और एकीकृत सर्किट जैसे अर्धचालक उपकरणों के संचालन में महत्वपूर्ण भूमिका निभाते हैं। यदि कोई इलेक्ट्रॉन उच्च अवस्था में उत्साहित होता है, तो वह अपनी प्राचीन स्थिति में छेद छोड़ देता है। इस अर्थ का उपयोग ऑगर इलेक्ट्रॉन स्पेक्ट्रोस्कोपी (और अन्य एक्स-रे तकनीकों) में कम्प्यूटेशनल रसायन विज्ञान में किया जाता है, और क्रिस्टल (धातु, अर्धचालक) में कम इलेक्ट्रॉन-इलेक्ट्रॉन बिखरने-दर को समझाने के लिए किया जाता है। यद्यपि वे प्राथमिक कणों की तरह कार्य करते हैं, छेद वास्तव में प्राथमिक कण नहीं हैं, किन्तु क्वासिपार्टिकल्स हैं; वे पॉज़िट्रॉन से अलग हैं, जो इलेक्ट्रॉन का एंटीपार्टिकल है। ठोस एकमात्र तीन प्रकार के कण भौतिकी से बने होते हैं: इलेक्ट्रॉन, प्रोटॉन और न्यूट्रॉन, एक क्वासिपार्टिकल इनमें से कोई भी नहीं है।(डिराक समुद्र भी देखें।)

क्रिस्टल लैटिस, इलेक्ट्रॉनिक बैंड संरचना की गणना इलेक्ट्रॉनों के लिए प्रभावी द्रव्यमान (ठोस-अवस्था भौतिकी) की ओर ले जाती है जो सामान्यतः एक बैंड के शीर्ष पर नकारात्मक होती है। नकारात्मक द्रव्यमान एक अनपेक्षित अवधारणा है,[2] और इन स्थितियों में, एक सकारात्मक द्रव्यमान के साथ एक सकारात्मक चार्ज पर विचार करके एक अधिक परिचित चित्र पाया जाता है।

भौतिक विज्ञान की ठोस अवस्था

ठोस-अवस्था भौतिकी में, इलेक्ट्रॉन छेद (सामान्यतः एकमात्र छेद के रूप में संदर्भित किया जाता है) पूर्ण संयोजी बंध से इलेक्ट्रॉन की अनुपस्थिति है। छेद अनिवार्य रूप से एक क्रिस्टल जाली के अधिकतर पूर्ण वैलेंस बैंड के भीतर इलेक्ट्रॉनों के वार्तालाप की अवधारणा करने का एक विधि है, जो अपने इलेक्ट्रॉनों का एक छोटा सा अंश विलुप्त है कुछ मायनों में, अर्धचालक क्रिस्टल संरचना के भीतर छेद का परिमाण पानी की पूरी बोतल में बुलबुले के समकक्ष है।[3]


सरलीकृत सादृश्य: एक सभागार में खाली सीट

बच्चों की पहेली जो परमाणु जाली में छिद्रों की गतिशीलता को दर्शाती है। टाइलें इलेक्ट्रॉनों के अनुरूप हैं, चूँकि लापता टाइल (निचला दाएं कोने) छेद के अनुरूप है। जिस तरह लापता टाइल की स्थिति को टाइलों को स्थानांतरित करके अलग -अलग स्थानों पर ले जाया जा सकता है, उसी तरह क्रिस्टल जाली में छेद आसपास के इलेक्ट्रॉनों की गति से जाली में विभिन्न पदों पर जा सकता है।

वैलेंस बैंड में छेद चालन को निम्नलिखित सादृश्य के माध्यम से समझाया जा सकता है:

एक सभागार में बैठे लोगों की एक पंक्ति की कल्पना करें, जहां कोई अतिरिक्त कुर्सियां नहीं हैं। पंक्ति के बीच में कोई व्यक्ति छोड़ना चाहता है, इसलिए वह सीट के पीछे की ओर दूसरी पंक्ति में कूदता है, और बाहर चला जाता है। खाली पंक्ति चालन बैंड के अनुरूप है, और बाहर जाने वाला व्यक्ति एक चालन इलेक्ट्रॉन के अनुरूप है।

अब कल्पना कीजिए कि कोई और साथ आता है और बैठना चाहता है। खाली पंक्ति में एक खराब दृश्य है;इसलिए वह वहां नहीं बैठना चाहता। इसके अतिरिक्त, भीड़ भरी पंक्ति में एक व्यक्ति खाली सीट में चला जाता है जिसे पहले व्यक्ति पीछे छोड़ दिया जाता है। खाली सीट किनारे के करीब एक स्थान और बैठने के लिए प्रतीक्षा कर रही व्यक्ति को ले जाती है।अगला व्यक्ति अनुसरण करता है, और अगला, इत्यादि। कोई कह सकता है कि खाली सीट पंक्ति के किनारे की ओर बढ़ती है। एक बार जब खाली सीट किनारे तक पहुंच जाती है, तो नया व्यक्ति बैठ सकता है।

इस प्रक्रिया में पंक्ति में हर कोई साथ चला गया है। यदि उन लोगों को नकारात्मक रूप से आवेश किया गया (जैसे इलेक्ट्रॉनों), तो यह आंदोलन विद्युत प्रतिरोधकता और चालकता का गठन करेगा। यदि सीटों को स्वयं सकारात्मक रूप से आवेश किया गया था, तो एकमात्र खाली सीट सकारात्मक होगी।यह एक बहुत ही सरल मॉडल है कि छेद चालन कैसे कार्य करता है।

कई अलग -अलग इलेक्ट्रॉनों के आंदोलन के रूप में वैलेंस बैंड में एक खाली अवस्था के आंदोलन का विश्लेषण करने के अतिरिक्त, एक छेद नामक एक एकल समतुल्य काल्पनिक कण माना जाता है। एक लागू विद्युत क्षेत्र में, इलेक्ट्रॉन एक दिशा में चलते हैं, दूसरे में चलते छेद के अनुरूप। यदि एक छेद खुद को एक तटस्थ परमाणु के साथ जोड़ता है, तो वह परमाणु एक इलेक्ट्रॉन खो देता है और सकारात्मक हो जाता है। इसलिए, छेद को +ई के सकारात्मक बिजली क्षेत्र के लिए लिया जाता है, ठीक से इलेक्ट्रॉन आवेश के विपरीत।

वास्तव में, क्वांटम यांत्रिकी के अनिश्चितता सिद्धांत के कारण, बलोच के प्रमेय के साथ संयुक्त, छेद पिछले उदाहरण में वर्णित के रूप में एक एकल स्थिति के लिए स्थानीय नहीं है। किन्तु , सकारात्मक आवेश जो छेद का प्रतिनिधित्व करता है, क्रिस्टल जाली में एक क्षेत्र को फैलाता है, जो कई सैकड़ों क्रिस्टल संरचना को कवर करता है।यह यह बताने में असमर्थ है कि कौन सा टूटा हुआ बंधन लापता इलेक्ट्रॉन से मेल खाता है। चालन बैंड इलेक्ट्रॉनों को समान रूप से डेलोकलाइज्ड किया जाता है।

विस्तृत चित्र: छेद नकारात्मक-द्रव्यमान इलेक्ट्रॉन की अनुपस्थिति है

अर्धचालक इलेक्ट्रॉनिक बैंड संरचना (दाएं) में प्रत्येक बैंड का फैलाव संबंध सम्मलित है, यानी इलेक्ट्रॉन E की ऊर्जा इलेक्ट्रॉन के तरंग वेक्टर के एक समारोह के रूप में है। अभरण बैंड अर्धचालक का चालन बैंड है;यह सकारात्मक प्रभावी द्रव्यमान (ठोस-अवस्था भौतिकी) का संकेत देता है। भरा बैंड अर्धचालक का वैलेंस बैंड है;यह नकारात्मक प्रभावी द्रव्यमान का संकेत देते हुए नीचे की ओर घटता है।

उपरोक्त सादृश्य अधिक सरल है, और यह नहीं समझा सकता है कि हॉल प्रभाव और थर्मोइलेक्ट्रिक प्रभाव सीबेक प्रभाव में इलेक्ट्रॉनों के विपरीत प्रभाव क्यों बनाते हैं।एक अधिक त्रुटिहीन और विस्तृत स्पष्टीकरण इस प्रकार है।[4]

  • फैलाव संबंध यह निर्धारित करता है कि इलेक्ट्रॉन बलों पर कैसे प्रतिक्रिया करते हैं (प्रभावी द्रव्यमान की अवधारणा के माध्यम से)।[4]

फैलाव संबंध बैंड में तरंग वेक्टर (के-वेक्टर) और ऊर्जा के बीच का संबंध है, जो इलेक्ट्रॉनिक बैंड संरचना का अंश है। क्वांटम यांत्रिकी में, इलेक्ट्रॉन तरंगें हैं, और ऊर्जा तरंग आवृत्ति है।स्थानीयकृत इलेक्ट्रॉन तरंग पैकेट है, और इलेक्ट्रॉन की गति समूह वेग के लिए सूत्र के माध्यम से दी जाती है। विद्युत क्षेत्र इलेक्ट्रॉन को धीरे -धीरे तरंगपैकेट में सभी तरंगवेक्टर को स्थानांतरित करके प्रभावित करता है, और इलेक्ट्रॉन तब तेज हो जाता है जब इसका तरंग समूह वेग बदल जाता है। इसलिए, फिर से, जिस तरह से एक इलेक्ट्रॉन बलों के लिए प्रतिक्रिया करता है वह पूरी तरह से इसके फैलाव संबंध से निर्धारित होता है। अंतरिक्ष में तैरने वाले एक इलेक्ट्रॉन में फैलाव संबंध e = ℏ है 2 </d> k2 /(2m), जहां m (वास्तविकइलेक्ट्रॉन रेस्ट मास द्रव्यमान है और ℏ प्लांक स्थिर है। एक अर्धचालक के चालन बैंड के नीचे के पास, फैलाव संबंध इसके स्थान पर ई = ℏ है2 </d> k2 </dis>/(2m*) (एम* प्रभावी द्रव्यमान (ठोस-अवस्था भौतिकी) है, अतः एक चालन-बैंड इलेक्ट्रॉन बलों को प्रतिक्रिया देता है जैसे कि यह द्रव्यमान एम था*।

  • वैलेंस बैंड के शीर्ष के पास इलेक्ट्रॉन ऐसे व्यवहार करते हैं जैसे कि उनके पास नकारात्मक द्रव्यमान है।[4]

वैलेंस बैंड के शीर्ष के पास फैलाव संबंध ई = ℏ है2 </d> k2 </dis>/(2m*) नकारात्मक प्रभावी द्रव्यमान के साथ। इसलिए वैलेंस बैंड के शीर्ष के पास इलेक्ट्रॉनों का व्यवहार ऐसा है जैसे वे नकारात्मक द्रव्यमान करते हैं। जब एक बल इलेक्ट्रॉनों को दाईं ओर खींचता है, तो ये इलेक्ट्रॉन वास्तव में बाएं चलते हैं। यह पूरी तरह से वैलेंस बैंड के आकार के कारण है और इस बात से असंबंधित है कि क्या बैंड भरा हुआ है या खाली है।यदि आप किसी तरह वैलेंस बैंड को खाली कर सकते हैं और बस वैलेंस बैंड अधिकतम (एक अस्थिर स्थिति) के पास एक इलेक्ट्रॉन डाल सकते हैं, तो यह इलेक्ट्रॉन बलों के उत्तर में गलत तरीके से आगे बढ़ेगा।

  • अधिकतर पूर्ण बैंड के कुल करंट की गणना के लिए शॉर्टकट के रूप में सकारात्मक रूप से आवेश किए गए छेद।[4]

पूरी तरह से पूर्ण बैंड में हमेशा शून्य करंट होता है। इस तथ्य के बारे में सोचने का विधि यह है कि बैंड के शीर्ष के पास इलेक्ट्रॉन अवस्था में नकारात्मक प्रभावी द्रव्यमान होता है, और बैंड के निचले हिस्से के पास सकारात्मक प्रभावी द्रव्यमान होता है, इसलिए शुद्ध गति सम्पूर्ण रूप में शून्य है। यदि अन्यथा-अधिकतर-पूर्ण वैलेंस बैंड में इलेक्ट्रॉन के बिना एक अवस्था है, तो हम कहते हैं कि यह अवस्था छेद के माध्यम से कब्जा कर लिया गया है।पूरे वैलेंस बैंड में प्रत्येक इलेक्ट्रॉन के कारण करंट की गणना के लिए एक गणितीय शॉर्टकट है: शून्य करंट (कुल यदि बैंड पूर्ण थे) के साथ प्रारंभ करें, और इलेक्ट्रॉनों के कारण करंट को घटाएं जो प्रत्येक छेद अवस्था में होगा यदि यह छेद नहीं था। चूंकि गति में एक नकारात्मक आवेश के कारण होने वाले करंट को घटाना एक ही पथ पर एक सकारात्मक आवेश के कारण होने वाले करंट को जोड़ने के समान है, गणितीय शॉर्टकट यह दिखावा करना है कि प्रत्येक छेद अवस्था सकारात्मक आवेश ले रहा है, चूँकि प्रत्येक दूसरे इलेक्ट्रॉन की अनदेखी करते हुएवैलेंस बैंड में अवस्था ।

  • वैलेंस बैंड के शीर्ष के पास छेद वैलेंस बैंड के शीर्ष के पास एक इलेक्ट्रॉन के समान ही चलता है '[4](जो समान बल का अनुभव करने वाले चालन-बैंड इलेक्ट्रॉनों की अनुरूप में विपरीत दिशा में है।)

यह तथ्य उपरोक्त चर्चा और परिभाषा से अनुसरण करता है।यह एक उदाहरण है जहां उपरोक्त सभागार सादृश्य भ्रामक है। जब कोई व्यक्ति पूर्ण सभागार में छोड़ दिया जाता है, तो एक खाली सीट दाएं चलती है। किन्तु इस खंड में हम कल्पना कर रहे हैं कि इलेक्ट्रॉन के-स्पेस के माध्यम से चलते हैं, वास्तविक स्थान नहीं, और बल का प्रभाव एक ही समय में एक ही दिशा में के-स्पेस के माध्यम से सभी इलेक्ट्रॉनों को स्थानांतरित करना है। इस संदर्भ में, एक उत्तम सादृश्य एक नदी में एक बुलबुला पानी के नीचे है: बुलबुला पानी के समान दिशा में चलता है, न कि विपरीत।

चूंकि बल = द्रव्यमान × त्वरण, वैलेंस बैंड के शीर्ष के पास एक नकारात्मक-प्रभावी-द्रव्यमान इलेक्ट्रॉन विपरीत दिशा में चालन बैंड के नीचे सकारात्मक-प्रभावी-द्रव्यमान इलेक्ट्रॉन के रूप में, किसी दिए गए विद्युत या चुंबकीय के उत्तर में ताकत। इसलिए, एक छेद इस तरह भी चलता है।

  • निष्कर्ष: छेद एक सकारात्मक-चार्ज, सकारात्मक-द्रव्यमान क्वासिपार्टिकल है।

ऊपर से, छेद (1) सकारात्मक आवेश वहन करता है, और (2) विद्युत और चुंबकीय क्षेत्रों के लिए प्रतिक्रिया करता है जैसे कि इसमें सकारात्मक आवेश और सकारात्मक द्रव्यमान था।(उत्तरार्द्ध इसलिए है क्योंकि सकारात्मक आवेश और सकारात्मक द्रव्यमान वाला एक कण नकारात्मक आवेश और नकारात्मक द्रव्यमान के साथ एक कण के रूप में विद्युत और चुंबकीय क्षेत्रों का उत्तर देता है।) यह बताता है कि सभी स्थितियों में छेद को सामान्य सकारात्मक रूप से आवेश किए गए चतुर्थक के रूप में क्यों इलाज किया जा सकता है।

अर्धचालक प्रौद्योगिकी में भूमिका

कुछ अर्धचालक, जैसे कि सिलिकॉन में, छेद का प्रभावी द्रव्यमान दिशा (एनिसोट्रॉपिक) पर निर्भर होता है, यद्यपि सभी दिशाओं में औसतन मूल्य का उपयोग कुछ मैक्रोस्कोपिक गणना के लिए किया जा सकता है।

अधिकांश अर्धचालकों में, छेद का प्रभावी द्रव्यमान इलेक्ट्रॉन की अनुरूप में बहुत अधिक होता है। इसके परिणामस्वरूप विद्युत क्षेत्र के प्रभाव में छिद्रों के लिए कम इलेक्ट्रॉन गतिशीलता होती है और यह उस अर्धचालक से बने इलेक्ट्रॉनिक उपकरण की गति को धीमा कर सकता है। छेद के स्थान पर सेमीकंडक्टर उपकरणों में जब भी संभव हो, प्राथमिक चार्ज वाहक के रूप में इलेक्ट्रॉनों को अपनाने का यह एक प्रमुख कारण है। यही कारण है कि एन-टाइप मेटल-ऑक्साइड-सेमीकंडक्टर लॉजिक, पी-चैनल मेटल-ऑक्साइड सेमीकंडक्टर लॉजिक से तेज है। ओएलईडी स्क्रीन को असंतुलन को कम करने के लिए संशोधित किया गया है जिसके परिणामस्वरूप प्लास्टिक परत पर अतिरिक्त परतें और/या इलेक्ट्रॉन घनत्व कम करके गैर-विकिरण पुनर्संयोजन होता है इसलिये उत्सर्जन क्षेत्र के भीतर इलेक्ट्रॉनों और छिद्रों को सटीक रूप से संतुलित किया जा सके। यद्यपि, कई अर्धचालक उपकरणों में, इलेक्ट्रॉनों और छेद दोनों एक आवश्यक भूमिका निभाते हैं। उदाहरणों में p-n डायोड, द्विध्रुवी जंक्शन ट्रांजिस्टर और सीएमओएस तर्क सम्मलित हैं।

क्वांटम रसायन विज्ञान में छेद

कम्प्यूटेशनल रसायन शास्त्र में इलेक्ट्रॉन छेद शब्द के लिए वैकल्पिक अर्थ का उपयोग किया जाता है। युग्मित क्लस्टर विधियों में, अणु की जमीन (या सबसे कम ऊर्जा) अवस्था को "निर्वात अवस्था" के रूप में व्याख्यायित किया जाता है - वैचारिक रूप से इस अवस्था में, कोई इलेक्ट्रॉन नहीं हैं। इस योजना में, सामान्य रूप से भरे अवस्था से इलेक्ट्रॉन की अनुपस्थिति को "छिद्र" कहा जाता है और इसे कण के रूप में माना जाता है, और सामान्य रूप से खाली अवस्था में इलेक्ट्रॉन की उपस्थिति को एकमात्र "इलेक्ट्रॉन" कहा जाता है। यह शब्दावली ठोस-अवस्था भौतिकी में उपयोग की जाने वाली शब्दावली अधिकतर समान है।

यह भी देखें

  • ऊर्जा अंतराल
  • वाहक पीढ़ी और पुनर्संयोजन
  • प्रभावी द्रव्यमान (ठोस-अवस्था भौतिकी)
  • विद्युत प्रतिरोधकता और चालकता
  • होल औपचारिकता

संदर्भ

  1. Ashcroft and Mermin (1976). Solid State Physics (1st ed.). Holt, Rinehart, and Winston. pp. 299–302. ISBN 978-0030839931.
  2. For these negative mass electrons, momentum is opposite to velocity, so forces acting on these electrons cause their velocity to change in the 'wrong' direction. As these electrons gain energy (moving towards the top of the band), they slow down.
  3. Weller, Paul F. (1967). "An analogy for elementary band theory concepts in solids". J. Chem. Educ. 44 (7): 391. Bibcode:1967JChEd..44..391W. doi:10.1021/ed044p391.
  4. 4.0 4.1 4.2 4.3 4.4 Kittel, Introduction to Solid State Physics, 8th edition, pp. 194–196.