एरिक्सन चक्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[Image:Ericsson engine4.PNG|thumb|एक एरिक्सन इंजन का प्रतिपादन। एक ठंडा गैसीय काम करने वाला द्रव, जैसे वायुमंडलीय हवा (नीले रंग में दिखाया गया), शीर्ष-दाईं ओर एक नॉन-रिटर्न वाल्व के माध्यम से सिलेंडर में प्रवेश करता है। पिस्टन ऊपर की ओर बढ़ने पर हवा को पिस्टन (काला) द्वारा संकुचित किया जाता है। संपीड़ित हवा वायवीय टैंक (बाईं ओर) में जमा होती है। एक दो-तरफा वाल्व (ग्रे) दबाव वाली हवा को पुन: उत्पन्न करने वाले के माध्यम से पारित करने की अनुमति देने के लिए नीचे की ओर जाता है जहां इसे पहले से गरम किया जाता है। हवा तब पिस्टन के नीचे की जगह में प्रवेश करती है, जो बाहरी रूप से गर्म विस्तार-कक्ष है। हवा फैलती है और पिस्टन पर काम करती है क्योंकि यह ऊपर की ओर बढ़ती है। विस्तार स्ट्रोक के बाद, दो तरफा वाल्व ऊपर की ओर बढ़ता है, इस प्रकार टैंक बंद हो जाता है और निकास बंदरगाह खुल जाता है। जैसे ही पिस्टन एग्जॉस्ट स्ट्रोक में नीचे की ओर जाता है, गर्म हवा को पुनर्योजी के माध्यम से पीछे धकेल दिया जाता है, जो एग्जॉस्ट पोर्ट (बाएं) को ठंडी हवा के रूप में बाहर निकालने से पहले अधिकांश ताप को पुनः प्राप्त कर लेता है।]]एरिक्सन चक्र का नाम आविष्कारक [[ जॉन एरिक्सन |जॉन एरिक्सन]] के नाम पर रखा गया है जिन्होंने विभिन्न [[ थर्मोडायनामिक चक्र |ऊष्मागतिकी]] चक्रों के आधार पर कई अद्वितीय ताप इंजनों की बनावट और निर्माण किया। उन्हें दो अद्वितीय ताप इंजन चक्रों का आविष्कार करने और इन चक्रों के आधार पर व्यावहारिक इंजन विकसित करने का श्रेय दिया जाता है। उनका पहला  चक्र अब [[ बंद ब्रेटन चक्र ]] के रूप में जाना जाता है, जबकि उनका दूसरा चक्र वह है जिसे अब एरिक्सन चक्र कहा जाता है। एरिक्सन उन कुछ लोगों में से एक है जिन्होंने ओपन-साइकिल इंजन का निर्माण किया,<ref name="haeericsson1852">{{cite web|url=http://hotairengines.org/open-cycle-engine/ericsson-1851|title=Ericsson's open-cycle engine of 1852|work=hotairengines.org}}</ref> लेकिन उन्होंने बंद-साइकिल वाले भी बनाए।<ref name="haeericsson1833">{{cite web|url=http://hotairengines.org/closed-cycle-engine/ericsson-1833|title=Ericsson's closed-cycle engine of 1833|work=hotairengines.org}}</ref>
[[Image:Ericsson engine4.PNG|thumb|एक एरिक्सन इंजन का प्रतिपादन। एक ठंडा गैसीय काम करने वाला द्रव, जैसे वायुमंडलीय हवा (नीले रंग में दिखाया गया है), शीर्ष-दाईं ओर एक नॉन-रिटर्न वाल्व के माध्यम से सिलेंडर में प्रवेश करता है। पिस्टन के ऊपर की ओर बढ़ने पर हवा को पिस्टन (काला) द्वारा संपीडित किया जाता है। संपीड़ित हवा वायवीय टैंक (बाईं ओर) में जमा होती है। एक दो-तरफा वाल्व (ग्रे) दबाव वाली हवा को पुन: उत्पन्न करने वाले के माध्यम से पारित करने की अनुमति देने के लिए नीचे की ओर जाता है जहां इसे पहले से गरम किया जाता है। हवा तब पिस्टन के नीचे की जगह में प्रवेश करती है, जो बाहरी रूप से गर्म विस्तार-कक्ष है। हवा फैलती है और पिस्टन पर काम करती है क्योंकि यह ऊपर की ओर बढ़ती है। विस्तार स्ट्रोक के बाद, दो तरफा वाल्व ऊपर की ओर बढ़ता है, इस प्रकार टैंक बंद हो जाता है और निकास बंदरगाह खुल जाता है। जैसे ही पिस्टन एग्जॉस्ट स्ट्रोक में नीचे की ओर जाता है, गर्म हवा को पुनर्योजी के माध्यम से पीछे धकेल दिया जाता है, जो एग्जॉस्ट पोर्ट (बाएं) को ठंडी हवा के रूप में बाहर निकालने से पहले अधिकांश ताप को पुनः प्राप्त कर लेता है।]]एरिक्सन चक्र का नाम आविष्कारक [[ जॉन एरिक्सन |जॉन एरिक्सन]] के नाम पर रखा गया है जिन्होंने विभिन्न [[ थर्मोडायनामिक चक्र |ऊष्मागतिकी]] चक्रों के आधार पर कई अद्वितीय ताप इंजनों की बनावट और निर्माण किया। उन्हें दो अद्वितीय ताप इंजन चक्रों का आविष्कार करने और इन चक्रों के आधार पर व्यावहारिक इंजन विकसित करने का श्रेय दिया जाता है। उनका पहला  चक्र अब [[ बंद ब्रेटन चक्र ]] के रूप में जाना जाता है, जबकि उनका दूसरा चक्र वह है जिसे अब एरिक्सन चक्र कहा जाता है। एरिक्सन उन कुछ लोगों में से एक है जिन्होंने ओपन-साइकिल इंजन का निर्माण किया,<ref name="haeericsson1852">{{cite web|url=http://hotairengines.org/open-cycle-engine/ericsson-1851|title=Ericsson's open-cycle engine of 1852|work=hotairengines.org}}</ref> लेकिन उन्होंने बंद-साइकिल वाले इंजन भी बनाए।<ref name="haeericsson1833">{{cite web|url=http://hotairengines.org/closed-cycle-engine/ericsson-1833|title=Ericsson's closed-cycle engine of 1833|work=hotairengines.org}}</ref>




Line 13: Line 13:
आदर्श ओटो और डीजल चक्र पूरी तरह से प्रतिवर्ती नहीं हैं क्योंकि वे अपरिवर्तनीय समआयतनी ताप-जोड़ और समआयतनी ताप-अस्वीकृति प्रक्रियाओं के दौरान एक सीमित तापमान अंतर के माध्यम से ऊष्मा अंतरण को शामिल करते हैं। पूर्वोक्त अपरिवर्तनीयता तापमान की समान सीमा के भीतर चलने वाले कार्नाट इंजन की तुलना में इन चक्रों की तापीय दक्षता को कम करती है। एरिक्सन चक्र एक अन्य चक्र है जिसमें समदाबक ताप-जोड़ और ताप-अस्वीकृति प्रक्रियाएं शामिल हैं। एरिक्सन चक्र कार्नोट चक्र का एक परिवर्तित संस्करण है जिसमें कार्नोट चक्र में चित्रित दो आइसेंट्रोपिक प्रक्रियाओं को दो निरंतर-दबाव पुनर्जनन प्रक्रियाओं द्वारा प्रतिस्थापित किया जाता है।
आदर्श ओटो और डीजल चक्र पूरी तरह से प्रतिवर्ती नहीं हैं क्योंकि वे अपरिवर्तनीय समआयतनी ताप-जोड़ और समआयतनी ताप-अस्वीकृति प्रक्रियाओं के दौरान एक सीमित तापमान अंतर के माध्यम से ऊष्मा अंतरण को शामिल करते हैं। पूर्वोक्त अपरिवर्तनीयता तापमान की समान सीमा के भीतर चलने वाले कार्नाट इंजन की तुलना में इन चक्रों की तापीय दक्षता को कम करती है। एरिक्सन चक्र एक अन्य चक्र है जिसमें समदाबक ताप-जोड़ और ताप-अस्वीकृति प्रक्रियाएं शामिल हैं। एरिक्सन चक्र कार्नोट चक्र का एक परिवर्तित संस्करण है जिसमें कार्नोट चक्र में चित्रित दो आइसेंट्रोपिक प्रक्रियाओं को दो निरंतर-दबाव पुनर्जनन प्रक्रियाओं द्वारा प्रतिस्थापित किया जाता है।


एरिक्सन चक्र की तुलना अक्सर स्टर्लिंग चक्रों से की जाती है, क्योंकि इन संबंधित चक्रों के आधार पर इंजन डिजाइन पुनर्जनित्रों के साथ [[ बाहरी दहन इंजन |बाहरी दहन इंजन]] दोनों हैं। एरिक्सन शायद तथाकथित "डबल-एक्टिंग" प्रकार के स्टर्लिंग इंजन के समान है, जिसमें विस्थापक पिस्टन भी पावर पिस्टन के रूप में कार्य करता है। सैद्धांतिक रूप से, इन दोनों चक्रों में तथाकथित आदर्श दक्षता है, जो ऊष्मप्रवैगिकी के दूसरे नियम द्वारा अनुमत उच्चतम है। सबसे प्रसिद्ध आदर्श चक्र [[ कार्नाट चक्र |कार्नाट चक्र]] है, हालांकि एक उपयोगी कार्नाट इंजन का आविष्कार नहीं हुआ है। एरिक्सन और स्टर्लिंग चक्रों दोनों के लिए समान सीमाओं में काम करने वाली सैद्धांतिक क्षमताएँ समान सीमाओं के लिए कार्नाट दक्षता के बराबर हैं।
एरिक्सन चक्र की तुलना अक्सर स्टर्लिंग चक्र से की जाती है, क्योंकि इन संबंधित चक्रों के आधार पर इंजन डिजाइन पुनर्जनित्रों के साथ बाहरी दहन इंजन दोनों हैं। एरिक्सन शायद तथाकथित "डबल-एक्टिंग" प्रकार के स्टर्लिंग इंजन के समान है, जिसमें विस्थापक पिस्टन भी पावर पिस्टन के रूप में कार्य करता है। सैद्धांतिक रूप से, इन दोनों चक्रों में तथाकथित आदर्श दक्षता है, जो ऊष्मप्रवैगिकी के दूसरे नियम द्वारा अनुमत उच्चतम है। सबसे प्रसिद्ध आदर्श चक्र [[ कार्नाट चक्र |कार्नाट चक्र]] है, हालांकि एक उपयोगी कार्नाट इंजन का आविष्कार नहीं हुआ है। एरिक्सन और स्टर्लिंग चक्रों दोनों के लिए समान सीमाओं में काम करने वाली सैद्धांतिक क्षमताएँ समान सीमाओं के लिए कार्नाट दक्षता के बराबर हैं।


=== ब्रेटन चक्र से तुलना ===
=== ब्रेटन चक्र से तुलना ===
एरिक्सन द्वारा विकसित पहले चक्र को अब [[ ब्रेटन चक्र ]] कहा जाता है, जिसे आमतौर पर [[ गैस टरबाइन इंजन ]]ों पर लागू किया जाता है।
एरिक्सन द्वारा विकसित पहले चक्र को अब [[ ब्रेटन चक्र ]] कहा जाता है, जिसे आमतौर पर [[ गैस टरबाइन इंजन | गैस टरबाइन इंजनों]] पर लागू किया जाता है।


दूसरा एरिक्सन चक्र वह चक्र है जिसे आमतौर पर केवल एरिक्सन चक्र कहा जाता है। (दूसरा) एरिक्सन चक्र एक आदर्श गैस-टरबाइन ब्रेटन चक्र की सीमा भी है, जो मल्टीस्टेज इंटरकूल्ड [[ गैस संपीड़न ]] के साथ काम करता है, और रीताप और रीजनरेशन के साथ मल्टीस्टेज विस्तार करता है। ब्रेटन चक्र की तुलना में जो एडियाबेटिक संपीड़न और विस्तार का उपयोग करता है, दूसरा एरिक्सन चक्र समतापी संपीड़न और विस्तार का उपयोग करता है, इस प्रकार प्रति स्ट्रोक अधिक शुद्ध कार्य का उत्पादन करता है। साथ ही एरिक्सन चक्र में पुनर्जनन का उपयोग आवश्यक ताप इनपुट को कम करके दक्षता बढ़ाता है। ऊष्मप्रवैगिकी चक्रों की आगे की तुलना के लिए, ऊष्मा इंजन देखें।
दूसरा एरिक्सन चक्र वह चक्र है जिसे आमतौर पर केवल एरिक्सन चक्र कहा जाता है। (दूसरा) एरिक्सन चक्र एक आदर्श गैस-टरबाइन ब्रेटन चक्र की सीमा भी है, जो बहुचरणी मध्यशीतक[[ गैस संपीड़न ]] के साथ काम करता है, और रीहीट (फिर से गरम करना) और रीजेनरेशन (पुनर्जनन) के साथ बहुचरणी विस्तार करता है। ब्रेटन चक्र की तुलना में जो स्थिरोष्म संपीड़न और विस्तार का उपयोग करता है, दूसरा एरिक्सन चक्र समतापी संपीड़न और विस्तार का उपयोग करता है, इस प्रकार प्रति स्ट्रोक अधिक शुद्ध कार्य का उत्पादन करता है। साथ ही एरिक्सन चक्र में पुनर्जनन का उपयोग आवश्यक ताप इनपुट को कम करके दक्षता बढ़ाता है। ऊष्मप्रवैगिकी चक्रों की आगे की तुलना के लिए, ऊष्मा इंजन देखें।


{| class="wikitable"
{| class="wikitable"
Line 39: Line 39:
[[File:Ericsson Caloric engine.jpg|thumb|एरिक्सन कैलोरी इंजन]]
[[File:Ericsson Caloric engine.jpg|thumb|एरिक्सन कैलोरी इंजन]]


[[File:Ericsson Caloric Engine.JPG|thumb|एरिक्सन कैलोरी इंजन]]एरिक्सन इंजन एरिक्सन चक्र पर आधारित है, और इसे बाहरी दहन इंजन के रूप में जाना जाता है, क्योंकि यह बाहरी रूप से गर्म होता है। दक्षता में सुधार करने के लिए, इंजन में संपीड़क और विस्तारक के बीच [[ पुनर्योजी हीट एक्सचेंजर |पुनर्योजी ताप एक्सचेंजर]] या [[ ऋण संग्राहक |ऋण संग्राहक]] होता है। इंजन को खुला या बंद चक्र द्वारा चलाया जा सकता है। पिस्टन के विपरीत पक्षों पर संपीड़न के साथ-साथ विस्तार होता है।
[[File:Ericsson Caloric Engine.JPG|thumb|एरिक्सन कैलोरी इंजन]]एरिक्सन इंजन एरिक्सन चक्र पर आधारित है, और इसे "बाहरी दहन इंजन" के रूप में जाना जाता है, क्योंकि यह बाहरी रूप से गर्म होता है। दक्षता में सुधार करने के लिए, इंजन में संपीड़क और विस्तारक के बीच [[ पुनर्योजी हीट एक्सचेंजर |पुनर्योजी (रीजनरेटर)]] या [[ ऋण संग्राहक |पुनर्जीवित (रिक्यूपरेटर)]] होता है। इंजन को खुले या बंद चक्र द्वारा चलाया जा सकता है। पिस्टन के विपरीत पक्षों पर संपीड़न के साथ-साथ विस्तार होता है।


== रिजेनरेटर (पुनर्योजी) ==
== रिजेनरेटर (पुनर्योजी) ==
एरिक्सन ने मिश्रित-प्रवाह काउंटर-करंट ताप एक्सचेंजर के अपने स्वतंत्र आविष्कार के लिए पुनर्योजी शब्द गढ़ा। हालांकि, रेव [[ रॉबर्ट स्टर्लिंग ]] ने एरिक्सन से पहले उसी उपकरण का आविष्कार किया था, इसलिए आविष्कार का श्रेय स्टर्लिंग को दिया जाता है। स्टर्लिंग ने इसे एक अर्थशास्त्री या अर्थशास्त्री कहा, क्योंकि इसने विभिन्न प्रकार की ताप प्रक्रियाओं की ईंधन अर्थव्यवस्था में वृद्धि की। आविष्कार उपयोगी पाया गया, कई अन्य उपकरणों और प्रणालियों में, जहां यह अधिक व्यापक रूप से उपयोग किया जाने लगा, क्योंकि अन्य प्रकार के इंजन स्टर्लिंग इंजन के पक्ष में हो गए। पुनर्जनित्र शब्द अब स्टर्लिंग इंजन में घटक को दिया जाने वाला नाम है।
एरिक्सन ने मिश्रित-प्रवाह प्रतिधारा ताप विनिमयक के अपने स्वतंत्र आविष्कार के लिए पुनर्योजी शब्द गढ़ा। हालांकि, रेव. [[ रॉबर्ट स्टर्लिंग ]]ने एरिक्सन से पहले उसी उपकरण का आविष्कार किया था, इसलिए आविष्कार का श्रेय स्टर्लिंग को दिया जाता है। स्टर्लिंग ने इसे एक "अर्थशास्त्री" कहा, क्योंकि इसने विभिन्न प्रकार की ताप प्रक्रियाओं की ईंधन अर्थव्यवस्था में वृद्धि की। आविष्कार उपयोगी पाया गया, कई अन्य उपकरणों और प्रणालियों में, जहां यह अधिक व्यापक रूप से उपयोग किया जाने लगा, क्योंकि अन्य प्रकार के इंजन स्टर्लिंग इंजन के पक्ष में हो गए। पुनर्जनित्र शब्द अब स्टर्लिंग इंजन में घटक को दिया जाने वाला नाम है।


शब्द "पुनर्जीवित" एक अलग-प्रवाह, प्रति-वर्तमान ताप विनिमायक को संदर्भित करता है। जैसे कि यह पर्याप्त रूप से भ्रमित नहीं कर रहे थे, एक मिश्रित-प्रवाह पुनर्जननकर्ता को कभी-कभी एक अर्ध-पृथक-प्रवाह पुनरावर्तक के रूप में उपयोग किया जाता है। यह गतिमान [[ वाल्व | वाल्वों]] उपयोग के माध्यम से किया जा सकता है, या स्थिर बाफलों के साथ एक घूर्णन पुनर्जनन द्वारा, या अन्य गतिमान भागों के उपयोग द्वारा किया जा सकता है। जब ताप निकास गैसों से पुनर्प्राप्त की जाती है और दहन हवा को पहले से गरम करने के लिए उपयोग की जाती है, तो आम तौर पर रिक्यूपरेटर शब्द का उपयोग किया जाता है, क्योंकि दो प्रवाह अलग-अलग होते हैं।
शब्द "पुनर्जीवित" एक अलग-प्रवाह, प्रतिधारा ताप विनिमायक को संदर्भित करता है। जैसे कि यह पर्याप्त रूप से भ्रमित नहीं कर रहे थे, एक मिश्रित-प्रवाह पुनर्जननकर्ता को कभी-कभी एक अर्ध-पृथक-प्रवाह पुनरावर्तक के रूप में उपयोग किया जाता है। यह गतिमान [[ वाल्व |वाल्वों]] के  उपयोग के माध्यम से किया जा सकता है, या स्थिर बाधकों के साथ एक घूर्णन पुनर्जनन द्वारा, या अन्य गतिमान भागों के उपयोग द्वारा किया जा सकता है। जब ताप निकास गैसों से पुनर्प्राप्त की जाती है और दहन हवा को पहले से गरम करने के लिए उपयोग की जाती है, तो आम तौर पर पुनर्जीवित शब्द का उपयोग किया जाता है, क्योंकि दो प्रवाह अलग-अलग होते हैं।


== इतिहास ==
== इतिहास ==
Line 63: Line 63:
== आज की क्षमता ==
== आज की क्षमता ==


एरिक्सन चक्र (और समान ब्रेटन चक्र) को आज, गैस (और [[ उत्पादक गैस |उत्पादक गैस]] ) इंजनों और सौर सांद्रकों की निकास 66 से बिजली निकालने के लिए नए सिरे से दिलचस्पी मिलती है<ref>{{cite web|url=http://www.assystem.com/en/markets/projects-detail/36/indeho.html |title=Projects - detail |publisher=Assystem |date=2015-11-18 |access-date=2015-12-15 |url-status=dead |archive-url=https://web.archive.org/web/20151222112555/http://www.assystem.com/en/markets/projects-detail/36/indeho.html |archive-date=2015-12-22 }}</ref>। व्यापक रूप से ज्ञात स्टर्लिंग इंजन पर एरिक्सन चक्र का एक महत्वपूर्ण लाभ अक्सर पहचाना नहीं जाता है: ताप एक्सचेंजर (ताप विनिमयक) की मात्रा दक्षता पर प्रतिकूल प्रभाव नहीं डालती है।
एरिक्सन चक्र (और समान ब्रेटन चक्र) को आज, गैस (और [[ उत्पादक गैस |उत्पादक गैस]] ) इंजनों और सौर सांद्रकों की निकास गर्मी से बिजली निकालने के लिए आज नए सिरे से दिलचस्पी मिलती है<ref>{{cite web|url=http://www.assystem.com/en/markets/projects-detail/36/indeho.html |title=Projects - detail |publisher=Assystem |date=2015-11-18 |access-date=2015-12-15 |url-status=dead |archive-url=https://web.archive.org/web/20151222112555/http://www.assystem.com/en/markets/projects-detail/36/indeho.html |archive-date=2015-12-22 }}</ref>। व्यापक रूप से ज्ञात स्टर्लिंग इंजन पर एरिक्सन चक्र का एक महत्वपूर्ण लाभ अक्सर पहचाना नहीं जाता है: ताप एक्सचेंजर (ताप विनिमयक) की मात्रा दक्षता पर प्रतिकूल प्रभाव नहीं डालती है।


(...)स्टर्लिंग पर महत्वपूर्ण लाभ होने के बावजूद। उनमें से, यह ध्यान देने योग्य है कि एरिक्सन इंजन ताप एक्सचेंजर्स डेड वॉल्यूम नहीं हैं, जबकि स्टर्लिंग इंजन ताप एक्सचेंजर्स डिज़ाइनर को यथासंभव बड़े ताप ट्रांसफर क्षेत्रों के बीच एक कठिन समझौते का सामना करना पड़ता है, लेकिन यथासंभव छोटे ताप एक्सचेंजर वॉल्यूम के रूप में।<ref>{{cite conference |url=http://www.icrepq.com/icrepq%2713/594-fula.pdf |title=In-Cylinder Heat Transfer in an Ericsson Engine Prototype |vauthors = Fula A, Stouffs P, Sierra F|date=22 March 2013 |location=Bilbao Spain |conference= International Conference on Renewable Energies and Power Quality (ICREPQ’13)}}</ref>
(...)स्टर्लिंग पर महत्वपूर्ण लाभ होने के बावजूद। उनमें से, यह ध्यान देने योग्य है कि एरिक्सन इंजन ताप विनिमयक डेड वॉल्यूम नहीं हैं, जबकि स्टर्लिंग इंजन ताप विनिमयक रूपकार को यथासंभव बड़े उष्मा का आदान प्रदान करने वाला क्षेत्रों के बीच एक कठिन समझौते का सामना करना पड़ता है, लेकिन यथासंभव छोटे उष्मा का आदान प्रदान करने वाला संस्करणों के रूप में।<ref>{{cite conference |url=http://www.icrepq.com/icrepq%2713/594-fula.pdf |title=In-Cylinder Heat Transfer in an Ericsson Engine Prototype |vauthors = Fula A, Stouffs P, Sierra F|date=22 March 2013 |location=Bilbao Spain |conference= International Conference on Renewable Energies and Power Quality (ICREPQ’13)}}</ref>


इस लाभ की तुलना में मध्यम और बड़े इंजनों के लिए वाल्व की लागत कम हो सकती है। टर्बोसंपीड़कप्लस टर्बाइन कार्यान्वयन मेगा वाट रेंज, N x100 kWe पावर के लिए पॉजिटिव डिसप्लेसमेंट संपीड़कप्लस टर्बाइन और 100 kW से कम पॉज़िटिव डिसप्लेसमेंट (विस्थापन) कंप्रेसर(संपीड़क) + विस्तारक के लिए अनुकूल लगते हैं। उच्च तापमान जलदाब तरल पदार्थ के साथ, संपीड़कऔर विस्तारक दोनों तरल-रिंग पंप हो सकते हैं, यहां तक ​​कि 400 डिग्री सेल्सियस तक, सर्वोत्तम दक्षता के लिए घूर्णन आवरण के साथ।
इस लाभ की तुलना में मध्यम और बड़े इंजनों के लिए वाल्व की लागत कम हो सकती है। टर्बोकंप्रेसर और टर्बाइन कार्यान्वयन मेगा वाट रेंज में अनुकूल प्रतीत होते हैं, सकारात्मक विस्थापन संपीड़क और टर्बाइन N x100 किलोवाट पावर के लिए और सकारात्मक विस्थापन संपीड़क और विस्तारक 100 किलोवाट से कम के लिए अनुकूल लगते हैं। उच्च तापमान जलदाब तरल पदार्थ के साथ, संपीड़क और विस्तारक दोनों तरल-रिंग पंप हो सकते हैं, यहां तक ​​कि 400 डिग्री सेल्सियस तक, सर्वोत्तम दक्षता के लिए घूर्णन आवरण के साथ।


==संदर्भ==
==संदर्भ==

Revision as of 21:51, 28 January 2023

File:Ericsson engine4.PNG
एक एरिक्सन इंजन का प्रतिपादन। एक ठंडा गैसीय काम करने वाला द्रव, जैसे वायुमंडलीय हवा (नीले रंग में दिखाया गया है), शीर्ष-दाईं ओर एक नॉन-रिटर्न वाल्व के माध्यम से सिलेंडर में प्रवेश करता है। पिस्टन के ऊपर की ओर बढ़ने पर हवा को पिस्टन (काला) द्वारा संपीडित किया जाता है। संपीड़ित हवा वायवीय टैंक (बाईं ओर) में जमा होती है। एक दो-तरफा वाल्व (ग्रे) दबाव वाली हवा को पुन: उत्पन्न करने वाले के माध्यम से पारित करने की अनुमति देने के लिए नीचे की ओर जाता है जहां इसे पहले से गरम किया जाता है। हवा तब पिस्टन के नीचे की जगह में प्रवेश करती है, जो बाहरी रूप से गर्म विस्तार-कक्ष है। हवा फैलती है और पिस्टन पर काम करती है क्योंकि यह ऊपर की ओर बढ़ती है। विस्तार स्ट्रोक के बाद, दो तरफा वाल्व ऊपर की ओर बढ़ता है, इस प्रकार टैंक बंद हो जाता है और निकास बंदरगाह खुल जाता है। जैसे ही पिस्टन एग्जॉस्ट स्ट्रोक में नीचे की ओर जाता है, गर्म हवा को पुनर्योजी के माध्यम से पीछे धकेल दिया जाता है, जो एग्जॉस्ट पोर्ट (बाएं) को ठंडी हवा के रूप में बाहर निकालने से पहले अधिकांश ताप को पुनः प्राप्त कर लेता है।

एरिक्सन चक्र का नाम आविष्कारक जॉन एरिक्सन के नाम पर रखा गया है जिन्होंने विभिन्न ऊष्मागतिकी चक्रों के आधार पर कई अद्वितीय ताप इंजनों की बनावट और निर्माण किया। उन्हें दो अद्वितीय ताप इंजन चक्रों का आविष्कार करने और इन चक्रों के आधार पर व्यावहारिक इंजन विकसित करने का श्रेय दिया जाता है। उनका पहला चक्र अब बंद ब्रेटन चक्र के रूप में जाना जाता है, जबकि उनका दूसरा चक्र वह है जिसे अब एरिक्सन चक्र कहा जाता है। एरिक्सन उन कुछ लोगों में से एक है जिन्होंने ओपन-साइकिल इंजन का निर्माण किया,[1] लेकिन उन्होंने बंद-साइकिल वाले इंजन भी बनाए।[2]


आदर्श एरिक्सन चक्र

File:Ericsson-Prozess Diagramme.png
आदर्श एरिक्सन चक्र

आदर्श एरिक्सन चक्र के चार चरणों के बीच होने वाली चार प्रक्रियाओं की सूची निम्नलिखित है:

  • प्रक्रिया 1 -> 2: समतापी संपीड़न प्रक्रिया। संपीड़न स्थान को मध्यशीतक माना जाता है, इसलिए गैस समतापी संपीड़न से गुजरती है। संपीड़ित हवा निरंतर दबाव में भंडारण टैंक में बहती है। आदर्श चक्र में, टैंक की दीवारों के पार कोई ताप हस्तांतरण नहीं होता है।
  • प्रक्रिया 2 -> 3: समदाब रेखीय ऊष्मा योग प्रक्रिया। टैंक से, संपीड़ित हवा पुनर्योजी के माध्यम से बहती है और गर्म पावर-सिलेंडर के रास्ते पर एक उच्च स्थिर-दबाव पर ताप उठाती है।
  • प्रक्रिया 3 -> 4: समतापीय विस्तार प्रक्रिया। पावर-सिलेंडर विस्तार-स्थान बाहरी रूप से गर्म होता है, और गैस समतापी विस्तार से गुजरती है।
  • प्रक्रिया 4 -> 1: समदाब ताप हटाने की प्रक्रिया। हवा को निकास के रूप में छोड़ने से पहले, इसे पुनर्योजी के माध्यम से वापस गुजारा जाता है, इस प्रकार गैस को कम स्थिर दबाव पर ठंडा किया जाता है, और अगले चक्र के लिए पुनर्योजी को गर्म किया जाता है।

कार्नाट, डीजल, ओटो और स्टर्लिंग चक्रों के साथ तुलना

आदर्श ओटो और डीजल चक्र पूरी तरह से प्रतिवर्ती नहीं हैं क्योंकि वे अपरिवर्तनीय समआयतनी ताप-जोड़ और समआयतनी ताप-अस्वीकृति प्रक्रियाओं के दौरान एक सीमित तापमान अंतर के माध्यम से ऊष्मा अंतरण को शामिल करते हैं। पूर्वोक्त अपरिवर्तनीयता तापमान की समान सीमा के भीतर चलने वाले कार्नाट इंजन की तुलना में इन चक्रों की तापीय दक्षता को कम करती है। एरिक्सन चक्र एक अन्य चक्र है जिसमें समदाबक ताप-जोड़ और ताप-अस्वीकृति प्रक्रियाएं शामिल हैं। एरिक्सन चक्र कार्नोट चक्र का एक परिवर्तित संस्करण है जिसमें कार्नोट चक्र में चित्रित दो आइसेंट्रोपिक प्रक्रियाओं को दो निरंतर-दबाव पुनर्जनन प्रक्रियाओं द्वारा प्रतिस्थापित किया जाता है।

एरिक्सन चक्र की तुलना अक्सर स्टर्लिंग चक्र से की जाती है, क्योंकि इन संबंधित चक्रों के आधार पर इंजन डिजाइन पुनर्जनित्रों के साथ बाहरी दहन इंजन दोनों हैं। एरिक्सन शायद तथाकथित "डबल-एक्टिंग" प्रकार के स्टर्लिंग इंजन के समान है, जिसमें विस्थापक पिस्टन भी पावर पिस्टन के रूप में कार्य करता है। सैद्धांतिक रूप से, इन दोनों चक्रों में तथाकथित आदर्श दक्षता है, जो ऊष्मप्रवैगिकी के दूसरे नियम द्वारा अनुमत उच्चतम है। सबसे प्रसिद्ध आदर्श चक्र कार्नाट चक्र है, हालांकि एक उपयोगी कार्नाट इंजन का आविष्कार नहीं हुआ है। एरिक्सन और स्टर्लिंग चक्रों दोनों के लिए समान सीमाओं में काम करने वाली सैद्धांतिक क्षमताएँ समान सीमाओं के लिए कार्नाट दक्षता के बराबर हैं।

ब्रेटन चक्र से तुलना

एरिक्सन द्वारा विकसित पहले चक्र को अब ब्रेटन चक्र कहा जाता है, जिसे आमतौर पर गैस टरबाइन इंजनों पर लागू किया जाता है।

दूसरा एरिक्सन चक्र वह चक्र है जिसे आमतौर पर केवल एरिक्सन चक्र कहा जाता है। (दूसरा) एरिक्सन चक्र एक आदर्श गैस-टरबाइन ब्रेटन चक्र की सीमा भी है, जो बहुचरणी मध्यशीतकगैस संपीड़न के साथ काम करता है, और रीहीट (फिर से गरम करना) और रीजेनरेशन (पुनर्जनन) के साथ बहुचरणी विस्तार करता है। ब्रेटन चक्र की तुलना में जो स्थिरोष्म संपीड़न और विस्तार का उपयोग करता है, दूसरा एरिक्सन चक्र समतापी संपीड़न और विस्तार का उपयोग करता है, इस प्रकार प्रति स्ट्रोक अधिक शुद्ध कार्य का उत्पादन करता है। साथ ही एरिक्सन चक्र में पुनर्जनन का उपयोग आवश्यक ताप इनपुट को कम करके दक्षता बढ़ाता है। ऊष्मप्रवैगिकी चक्रों की आगे की तुलना के लिए, ऊष्मा इंजन देखें।

चक्र/प्रक्रिया दबाव ताप वृद्धि विस्तार ताप अस्वीकृति
एरिक्सन (प्रथम, 1833) स्थिरोष्म समदाब स्थिरोष्म समदाब
एरिक्सन (दूसरा, 1853) समतापी समदाब समतापी समदाब
ब्रेटन (टरबाइन) स्थिरोष्म समदाब स्थिरोष्म समदाब


एरिक्सन इंजन

File:Ericsson Caloric engine.jpg
एरिक्सन कैलोरी इंजन
File:Ericsson Caloric Engine.JPG
एरिक्सन कैलोरी इंजन

एरिक्सन इंजन एरिक्सन चक्र पर आधारित है, और इसे "बाहरी दहन इंजन" के रूप में जाना जाता है, क्योंकि यह बाहरी रूप से गर्म होता है। दक्षता में सुधार करने के लिए, इंजन में संपीड़क और विस्तारक के बीच पुनर्योजी (रीजनरेटर) या पुनर्जीवित (रिक्यूपरेटर) होता है। इंजन को खुले या बंद चक्र द्वारा चलाया जा सकता है। पिस्टन के विपरीत पक्षों पर संपीड़न के साथ-साथ विस्तार होता है।

रिजेनरेटर (पुनर्योजी)

एरिक्सन ने मिश्रित-प्रवाह प्रतिधारा ताप विनिमयक के अपने स्वतंत्र आविष्कार के लिए पुनर्योजी शब्द गढ़ा। हालांकि, रेव. रॉबर्ट स्टर्लिंग ने एरिक्सन से पहले उसी उपकरण का आविष्कार किया था, इसलिए आविष्कार का श्रेय स्टर्लिंग को दिया जाता है। स्टर्लिंग ने इसे एक "अर्थशास्त्री" कहा, क्योंकि इसने विभिन्न प्रकार की ताप प्रक्रियाओं की ईंधन अर्थव्यवस्था में वृद्धि की। आविष्कार उपयोगी पाया गया, कई अन्य उपकरणों और प्रणालियों में, जहां यह अधिक व्यापक रूप से उपयोग किया जाने लगा, क्योंकि अन्य प्रकार के इंजन स्टर्लिंग इंजन के पक्ष में हो गए। पुनर्जनित्र शब्द अब स्टर्लिंग इंजन में घटक को दिया जाने वाला नाम है।

शब्द "पुनर्जीवित" एक अलग-प्रवाह, प्रतिधारा ताप विनिमायक को संदर्भित करता है। जैसे कि यह पर्याप्त रूप से भ्रमित नहीं कर रहे थे, एक मिश्रित-प्रवाह पुनर्जननकर्ता को कभी-कभी एक अर्ध-पृथक-प्रवाह पुनरावर्तक के रूप में उपयोग किया जाता है। यह गतिमान वाल्वों के उपयोग के माध्यम से किया जा सकता है, या स्थिर बाधकों के साथ एक घूर्णन पुनर्जनन द्वारा, या अन्य गतिमान भागों के उपयोग द्वारा किया जा सकता है। जब ताप निकास गैसों से पुनर्प्राप्त की जाती है और दहन हवा को पहले से गरम करने के लिए उपयोग की जाती है, तो आम तौर पर पुनर्जीवित शब्द का उपयोग किया जाता है, क्योंकि दो प्रवाह अलग-अलग होते हैं।

इतिहास

1791 में, एरिक्सन से पहले, जॉन बार्बर (इंजीनियर) ने इसी तरह के इंजन का प्रस्ताव रखा था। बार्बर इंजन में एक धौंकनी संपीड़कऔर एक टरबाइन विस्तारक का इस्तेमाल किया गया था, लेकिन इसमें पुनर्योजी/पुनर्जीवित करने वाले की कमी थी। काम करने वाले बार्बर इंजन का कोई रिकॉर्ड नहीं है। एरिक्सन ने 1833 (संख्या 6409/ 1833 ब्रिटिश) में ब्रेटन चक्र के बाहरी संस्करण का उपयोग करके अपने पहले इंजन का आविष्कार किया और पेटेंट( एकस्वित) कराया। यह जेम्स प्रेस्कॉट जौल से 18 साल पहले और जॉर्ज ब्रेटन से 43 साल पहले था। ब्रेटन इंजन सभी पिस्टन इंजन थे और अधिकांश भाग के लिए, अन-रिक्यूपरेटेड एरिक्सन इंजन के आंतरिक दहन संस्करण थे। ब्रेटन चक्र को अब गैस टरबाइन चक्र के रूप में जाना जाता है, जो टरबाइन संपीड़कऔर विस्तारक के उपयोग में मूल ब्रेटन चक्र से भिन्न होता है।गैस टर्बाइन चक्र का उपयोग सभी आधुनिक गैस टर्बाइन और टर्बोजेट इंजनों के लिए किया जाता है, हालांकि दक्षता में सुधार के लिए साधारण चक्र टर्बाइनों को अक्सर पुन: उपयोग किया जाता है और ये पुन: स्वस्थित टर्बाइन एरिक्सन के काम से अधिक मिलते-जुलते हैं।

एरिक्सन ने अंततः पारंपरिक बंद स्टर्लिंग चक्र के पक्ष में खुले चक्र को छोड़ दिया।

एरिक्सन के इंजन को बंद-चक्र मोड में संचालित करने के लिए आसानी से संशोधित किया जा सकता है, मूल निकास और सेवन के बीच एक दूसरे, कम दबाव वाले, ठंडे कंटेनर का उपयोग करके। बंद चक्र में, निचला दबाव परिवेश के दबाव से काफी ऊपर हो सकता है, और He या H2 कार्यशील गैस का उपयोग किया जा सकता है। वर्क-पिस्टन के ऊपर और नीचे की गति के बीच उच्च दबाव अंतर के कारण, विशिष्ट आउटपुट वाल्व रहित स्टर्लिंग इंजन से अधिक हो सकता है। अतिरिक्त लागत वाल्व है। एरिक्सन का इंजन यांत्रिक हानियों को भी कम करता है: संपीड़न के लिए आवश्यक शक्ति क्रैंक-बेयरिंग घर्षण हानियों से नहीं गुजरती है, बल्कि सीधे विस्तार बल से लागू होती है। पिस्टन-प्रकार एरिक्सन इंजन संभावित रूप से अब तक निर्मित उच्चतम दक्षता वाली ऊष्मा इंजन व्यवस्था हो सकती है। बेशक, यह अभी तक व्यावहारिक अनुप्रयोगों में सिद्ध नहीं हुआ है।[citation needed]

एरिक्सन ने भाप, स्टर्लिंग, ब्रेटन, बाहरी रूप से गर्म डीजल वायु द्रव चक्र सहित विभिन्न चक्रों पर चलने वाले इंजनों की एक बहुत बड़ी संख्या का डिजाइन और निर्माण किया। उन्होंने कोयले और सौर ताप सहित विभिन्न प्रकार के ईंधनों पर अपने इंजन चलाए।

1842-43 में निर्मित यू.एस.एस प्रिंसटन (1843) में जहाज प्रणोदन के लिए स्क्रू प्रोपेलर के शुरुआती उपयोग के लिए भी एरिक्सन जिम्मेदार था।

कैलोरी जहाज एरिक्सन

1851 में एरिक्सन-चक्र इंजन (दो में से दूसरे की चर्चा यहां की गई है) का उपयोग 2,000 टन के जहाज, कैलोरी शिप एरिक्सन को बिजली देने के लिए किया गया था [3] और 73 घंटों तक बिना किसी रुकावट के चला।[4] संयोजन इंजन ने लगभग 300 अश्वशक्ति (220 किलो वाट) का उत्पादन किया। इसमें चार दोहरे-पिस्टन इंजनों का संयोजन था; 14 फीट (4.3 मीटर) व्यास का बड़ा विस्तार पिस्टन / सिलेंडर, शायद अब तक का सबसे बड़ा पिस्टन था। अफवाह यह है कि उन पिस्टन के ऊपर टेबल रखे गए थे (जाहिर तौर पर ठंडे संपीड़न कक्ष में, गर्म शक्ति कक्ष नहीं) और रात का खाना परोसा और खाया गया, जबकि इंजन पूरी शक्ति से चल रहा था।[citation needed] प्रति मिनट 6.5 घूर्णन पर दबाव 8 पी.एस.आई. (55 के.पीए.) तक सीमित था। आधिकारिक रिपोर्ट के अनुसार इसने प्रति 24 घंटे में केवल 4200 किलोग्राम कोयले की खपत की (मूल लक्ष्य 8000 किलोग्राम था, जो अभी भी समकालीन भाप इंजनों से बेहतर है)। एक समुद्री परीक्षण ने साबित कर दिया कि भले ही इंजन अच्छी तरह से चल रहा था, तब भी जहाज कमजोर था। परीक्षण के कुछ समय बाद, एरिक्सन डूब गया। जब इसे खड़ा किया गया, तो एरिक्सन-साइकिल इंजन को हटा दिया गया और भाप इंजन ने इसकी जगह ले ली। नवंबर 1892 में बार्कले साउंड , ब्रिटिश कोलंबिया, कनाडा के प्रवेश द्वार पर फंसे होने पर जहाज बर्बाद हो गया था।[5]


आज की क्षमता

एरिक्सन चक्र (और समान ब्रेटन चक्र) को आज, गैस (और उत्पादक गैस ) इंजनों और सौर सांद्रकों की निकास गर्मी से बिजली निकालने के लिए आज नए सिरे से दिलचस्पी मिलती है[6]। व्यापक रूप से ज्ञात स्टर्लिंग इंजन पर एरिक्सन चक्र का एक महत्वपूर्ण लाभ अक्सर पहचाना नहीं जाता है: ताप एक्सचेंजर (ताप विनिमयक) की मात्रा दक्षता पर प्रतिकूल प्रभाव नहीं डालती है।

(...)स्टर्लिंग पर महत्वपूर्ण लाभ होने के बावजूद। उनमें से, यह ध्यान देने योग्य है कि एरिक्सन इंजन ताप विनिमयक डेड वॉल्यूम नहीं हैं, जबकि स्टर्लिंग इंजन ताप विनिमयक रूपकार को यथासंभव बड़े उष्मा का आदान प्रदान करने वाला क्षेत्रों के बीच एक कठिन समझौते का सामना करना पड़ता है, लेकिन यथासंभव छोटे उष्मा का आदान प्रदान करने वाला संस्करणों के रूप में।[7]

इस लाभ की तुलना में मध्यम और बड़े इंजनों के लिए वाल्व की लागत कम हो सकती है। टर्बोकंप्रेसर और टर्बाइन कार्यान्वयन मेगा वाट रेंज में अनुकूल प्रतीत होते हैं, सकारात्मक विस्थापन संपीड़क और टर्बाइन N x100 किलोवाट पावर के लिए और सकारात्मक विस्थापन संपीड़क और विस्तारक 100 किलोवाट से कम के लिए अनुकूल लगते हैं। उच्च तापमान जलदाब तरल पदार्थ के साथ, संपीड़क और विस्तारक दोनों तरल-रिंग पंप हो सकते हैं, यहां तक ​​कि 400 डिग्री सेल्सियस तक, सर्वोत्तम दक्षता के लिए घूर्णन आवरण के साथ।

संदर्भ

  1. "Ericsson's open-cycle engine of 1852". hotairengines.org.
  2. "Ericsson's closed-cycle engine of 1833". hotairengines.org.
  3. "Ericsson's Caloric Ship". hotairengines.org.
  4. "Ericsson Caloric Engine". Genuineideas.com. Retrieved 2015-12-15.
  5. "Graveyard of the Pacific - the Shipwrecks of Vancouver Island". www.pacificshipwrecks.ca. Archived from the original on 10 July 2004. Retrieved 13 January 2022.
  6. "Projects - detail". Assystem. 2015-11-18. Archived from the original on 2015-12-22. Retrieved 2015-12-15.
  7. Fula A, Stouffs P, Sierra F (22 March 2013). In-Cylinder Heat Transfer in an Ericsson Engine Prototype (PDF). International Conference on Renewable Energies and Power Quality (ICREPQ’13). Bilbao Spain.


बाहरी कड़ियाँ