ब्रांचिंग प्रक्रिया: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{For|प्रतिनिधित्व सिद्धांत में प्रक्रिया के लिए, प्रतिबंधित प्रतिनिधित्व | चिरसम्मत ब्रांचिंग नियम देखें।}}
{{For|प्रतिनिधित्व सिद्धांत में प्रक्रिया के लिए, प्रतिबंधित प्रतिनिधित्व | चिरसम्मत ब्रांचिंग नियम देखें।}}


प्रायिकता सिद्धांत में, ब्रांचिंग प्रक्रिया, गणितीय वस्तु का प्रकार है जिसे स्टोकैस्टिक प्रक्रिया के रूप में जाना जाता है, जिसमें [[यादृच्छिक चर]] के संग्रह होते हैं। स्टोकैस्टिक प्रक्रिया के यादृच्छिक चर प्राकृतिक संख्याओं द्वारा अनुक्रमित होते हैं। ब्रांचिंग प्रक्रियाओं का मूल उद्देश्य जनसंख्या के गणितीय मॉडल के रूप में काम करना था जिसमें पीढ़ी में प्रत्येक व्यक्ति <math>n</math> पीढ़ी में व्यक्तियों की कुछ यादृच्छिक संख्या उत्पन्न करता है '''<math>n+1</math>''', के अनुसार सबसे सरल मामला, निश्चित संभाव्यता वितरण के लिए जो एक व्यक्ति से दूसरे व्यक्ति में भिन्न नहीं होता है।<ref>{{Cite book | last1 = Athreya | first1 = K. B. | chapter = Branching Process | doi = 10.1002/9780470057339.vab032 | title = पर्यावरणमिति का विश्वकोश| year = 2006 | isbn = 978-0471899976 }}</ref> ब्रांचिंग प्रक्रियाओं का उपयोग प्रजनन मॉडल के लिए किया जाता है, उदाहरण के लिए, व्यक्ति बैक्टीरिया के अनुरूप हो सकते हैं, जिनमें से प्रत्येक एकल समय इकाई में कुछ संभावना के साथ 0,1 या 2 संतान उत्पन्न करता है। ब्रांचिंग प्रक्रियाओं का उपयोग समान गतिशीलता के साथ अन्य प्रणालियों को मॉडल करने के लिए भी किया जा सकता है, उदाहरण के लिए, [[वंशावली]] में [[उपनाम|उपनामों]] का प्रसार या परमाणु रिएक्टर में न्यूट्रॉन का प्रसार।
प्रायिकता सिद्धांत में, ब्रांचिंग प्रक्रिया, गणितीय वस्तु का प्रकार है जिसे स्टोकैस्टिक प्रक्रिया के रूप में जाना जाता है, जिसमें [[यादृच्छिक चर]] के संग्रह होते हैं। स्टोकैस्टिक प्रक्रिया के यादृच्छिक चर प्राकृतिक संख्याओं द्वारा अनुक्रमित होते हैं। ब्रांचिंग प्रक्रियाओं का मूल उद्देश्य जनसंख्या के गणितीय मॉडल के रूप में काम करना हैं जिसमें पीढ़ी में प्रत्येक व्यक्ति <math>n</math> पीढ़ी में व्यक्तियों की कुछ यादृच्छिक संख्या उत्पन्न करता है '''<math>n+1</math>''', के अनुसार सबसे सरल मामला, निश्चित संभाव्यता वितरण के लिए जो एक व्यक्ति से दूसरे व्यक्ति में भिन्न नहीं होता है।<ref>{{Cite book | last1 = Athreya | first1 = K. B. | chapter = Branching Process | doi = 10.1002/9780470057339.vab032 | title = पर्यावरणमिति का विश्वकोश| year = 2006 | isbn = 978-0471899976 }}</ref> ब्रांचिंग प्रक्रियाओं का उपयोग प्रजनन मॉडल के लिए किया जाता है, उदाहरण के लिए, व्यक्ति बैक्टीरिया के अनुरूप हो सकते हैं, जिनमें से प्रत्येक एकल समय इकाई में कुछ संभावना के साथ 0,1 या 2 संतान उत्पन्न करता है। ब्रांचिंग प्रक्रियाओं का उपयोग समान गतिशीलता के साथ अन्य प्रणालियों को मॉडल करने के लिए भी किया जा सकता है, उदाहरण के लिए, [[वंशावली]] में [[उपनाम|उपनामों]] का प्रसार या परमाणु रिएक्टर में न्यूट्रॉन का प्रसार।


ब्रांचिंग प्रक्रियाओं के सिद्धांत में मुख्य प्रश्न अंतिम विलुप्ति की संभावना है, जहां कुछ सीमित पीढ़ियों के बाद कोई व्यक्ति मौजूद नहीं है। वाल्ड के समीकरण का उपयोग करते हुए, यह दिखाया जा सकता है कि पीढ़ी शून्य में व्यक्ति के साथ शुरू, पीढ़ी '''n''' के [[अपेक्षित मूल्य|अनुमानित आकार]] '''''μn''' जहां '''μ''' प्रत्येक व्यक्ति के बच्चों की अनुमानित संख्या है। यदि '''μ < 1''', तो व्यक्तियों की अपेक्षित संख्या तेज़ी से शून्य हो जाती है, जिसका तात्पर्य मार्कोव की असमानता द्वारा संभावना 1 के साथ अंतिम विलुप्त होने से है। वैकल्पिक रूप से, यदि '''μ> 1''', तो अंतिम विलुप्त होने की संभावना 1 से कम है (लेकिन जरूरी नहीं कि शून्य हो; प्रक्रिया पर विचार करें जहां प्रत्येक व्यक्ति के 0 या 100 बच्चे समान संभावना के साथ हों। उस मामले में, '''μ = 50''', लेकिन अंतिम विलुप्ति की संभावना 0.5 से अधिक है, क्योंकि यह संभावना है कि पहले व्यक्ति के 0 बच्चे हैं )। यदि '''μ = 1''', तो अन्तिम विलोपन [[संभाव्यता 1 के साथ]] होता है जब तक कि प्रत्येक व्यक्ति के पास हमेशा एक ही बच्चा न हो।''
ब्रांचिंग प्रक्रियाओं के सिद्धांत में मुख्य प्रश्न अंतिम विलुप्ति की संभावना है, जहां कुछ सीमित पीढ़ियों के बाद कोई व्यक्ति मौजूद नहीं है। वाल्ड के समीकरण का उपयोग करते हुए, यह दिखाया जा सकता है कि पीढ़ी शून्य में व्यक्ति के साथ प्रारम्भ, पीढ़ी '''n''' के [[अपेक्षित मूल्य|अनुमानित आकार]] '''''μn''' जहां '''μ''' प्रत्येक व्यक्ति के बच्चों की अनुमानित संख्या है। यदि '''μ < 1''', तो व्यक्तियों की अपेक्षित संख्या तेज़ी से शून्य हो जाती है, जिसका तात्पर्य मार्कोव की असमानता द्वारा संभावना 1 के साथ अंतिम विलुप्त होने से है। वैकल्पिक रूप से, यदि '''μ> 1''', तो अंतिम विलुप्त होने की संभावना 1 से कम है (लेकिन जरूरी नहीं कि शून्य हो; प्रक्रिया पर विचार करें जहां प्रत्येक व्यक्ति के 0 या 100 बच्चे समान संभावना के साथ हों। उस मामले में, '''μ = 50''', लेकिन अंतिम विलुप्ति की संभावना 0.5 से अधिक है, क्योंकि यह संभावना है कि पहले व्यक्ति के 0 बच्चे हैं )। यदि '''μ = 1''', तो अन्तिम विलोपन [[संभाव्यता 1 के साथ]] होता है जब तक कि प्रत्येक व्यक्ति के पास हमेशा एक ही बच्चा न हो।''


[[सैद्धांतिक पारिस्थितिकी]] में, ब्रांचिंग प्रक्रिया के पैरामीटर μ को मूल प्रजनन दर कहा जाता है।
[[सैद्धांतिक पारिस्थितिकी]] में, ब्रांचिंग प्रक्रिया के पैरामीटर μ को मूल प्रजनन दर कहा जाता है।
Line 9: Line 9:
== गणितीय सूत्रीकरण ==
== गणितीय सूत्रीकरण ==


ब्रांचिंग प्रक्रिया का सबसे आम सूत्रीकरण गैल्टन-वाटसन प्रक्रिया है। Zn अवधि n में स्थिति को निरूपित करें (अक्सर पीढ़ी n के आकार के रूप में व्याख्या की जाती है), और X<sub>''n,i''</sub> को यादृच्छिक चर होने दें, जो अवधि n में सदस्य i के प्रत्यक्ष उत्तराधिकारियों की संख्या को दर्शाता है, जहाँ X<sub>''n,i''</sub> सभी n ∈{ 0, 1, 2, ...} और i ∈ {1, ..., Z पर [[स्वतंत्र और समान रूप से वितरित यादृच्छिक चर]] हैं। इसलिये पुनरावृत्ति समीकरण है
ब्रांचिंग प्रक्रिया का सबसे आम सूत्रीकरण गैल्टन-वाटसन प्रक्रिया है। ''Z<sub>n</sub>'' अवधि n में स्थिति को निरूपित करें (अक्सर पीढ़ी n के आकार के रूप में व्याख्या की जाती है), और X<sub>''n,i''</sub> को यादृच्छिक चर होने दें, जो अवधि n में सदस्य i के प्रत्यक्ष उत्तराधिकारियों की संख्या को दर्शाता है, जहाँ X<sub>''n,i''</sub> सभी ''n'' ∈{ 0, 1, 2, ...} और ''i'' ∈ {1, ..., ''Z<sub>n</sub>''} पर [[स्वतंत्र और समान रूप से वितरित यादृच्छिक चर]] हैं। इसलिये पुनरावृत्ति समीकरण है


:<math>Z_{n+1} = \sum_{i=1}^{Z_n} X_{n,i}</math>
:<math>Z_{n+1} = \sum_{i=1}^{Z_n} X_{n,i}</math>
Line 17: Line 17:


:<math>S_{i+1} = S_i+X_{i+1}-1 = \sum_{j=1}^{i+1} X_j-i</math>
:<math>S_{i+1} = S_i+X_{i+1}-1 = \sum_{j=1}^{i+1} X_j-i</math>
S0 = 1 के साथ। इस फॉर्मूलेशन के लिए कुछ अंतर्ज्ञान प्राप्त करने के लिए, वाक की कल्पना करें जहां लक्ष्य हर नोड पर जाना है, लेकिन हर बार पहले से देखे गए नोड का दौरा किया जाता है, अतिरिक्त नोड्स का पता चलता है जिसे भी जाना चाहिए। बता दें कि Si अवधि i में प्रकट लेकिन अविभाजित नोड्स की संख्या का प्रतिनिधित्व करता है, और Xi नए नोड्स की संख्या का प्रतिनिधित्व करता है जो नोड i का दौरा करने पर प्रकट होते हैं। फिर प्रत्येक अवधि में, प्रकट किए गए लेकिन बिना देखे गए नोड्स की संख्या पिछली अवधि में ऐसे नोड्स की संख्या के बराबर होती है, साथ ही नए नोड्स जो नोड पर जाने पर प्रकट होते हैं, उस नोड को घटाते हैं जिसे देखा गया है। सभी प्रकट नोड्स का दौरा करने के बाद प्रक्रिया समाप्त हो जाती है।
''S''<sub>0</sub> = 1 के साथ। इस फॉर्मूलेशन के लिए कुछ अंतर्ज्ञान प्राप्त करने के लिए, वाक की कल्पना करें जहां लक्ष्य हर नोड पर जाना है, लेकिन हर बार पहले से देखे गए नोड का दौरा किया जाता है, अतिरिक्त नोड्स का पता चलता है जिसे भी जाना चाहिए। बता दें कि ''S<sub>i</sub>'' अवधि ''i'' में प्रकट लेकिन अविभाजित नोड्स की संख्या का प्रतिनिधित्व करता है, और ''X<sub>i</sub>'' नए नोड्स की संख्या का प्रतिनिधित्व करता है जो नोड ''i'' का दौरा करने पर प्रकट होते हैं। फिर प्रत्येक अवधि में, प्रकट किए गए लेकिन बिना देखे गए नोड्स की संख्या पिछली अवधि में ऐसे नोड्स की संख्या के बराबर होती है, साथ ही नए नोड्स जो नोड पर जाने पर प्रकट होते हैं, उस नोड को घटाते हैं जिसे देखा गया है। सभी प्रकट नोड्स का दौरा करने के बाद प्रक्रिया समाप्त हो जाती है।


=== निरंतर- समय ब्रांचिंग प्रक्रियाएं ===
=== निरंतर- समय ब्रांचिंग प्रक्रियाएं ===
Line 28: Line 28:
किसी भी नॉनट्रियल मामलों के लिए (त्रिवियल मामलों में वे होते हैं जिनमें जनसंख्या के प्रत्येक सदस्य के लिए कोई संतान न होने की संभावना शून्य होती है - ऐसे मामलों में अंतिम विलुप्त होने की संभावना 0 होती है), अंतिम विलुप्त होने की संभावना एक के बराबर होती है यदि μ ≤ 1 और सिर्फ़ एक से कम अगर μ> 1।
किसी भी नॉनट्रियल मामलों के लिए (त्रिवियल मामलों में वे होते हैं जिनमें जनसंख्या के प्रत्येक सदस्य के लिए कोई संतान न होने की संभावना शून्य होती है - ऐसे मामलों में अंतिम विलुप्त होने की संभावना 0 होती है), अंतिम विलुप्त होने की संभावना एक के बराबर होती है यदि μ ≤ 1 और सिर्फ़ एक से कम अगर μ> 1।


इस प्रक्रिया का विश्लेषण संभाव्यता सृजन कार्य की विधि का उपयोग करके किया जा सकता है। मान लीजिए p0, p1, p2, ... प्रत्येक पीढ़ी में प्रत्येक व्यक्ति द्वारा 0, 1, 2, ... वंश के उत्पादन की प्रायिकता हो सकती है। बता दें कि ''m''<sup>th</sup> पीढ़ी द्वारा विलुप्त होने की संभावना dm है। स्पष्ट रूप से, d0 = 0. चूंकि  ''m''<sup>th</sup> पीढ़ी द्वारा 0 की ओर ले जाने वाले सभी रास्तों की संभावनाओं को जोड़ा जाना चाहिए, विलुप्त होने की संभावना पीढ़ियों में कम नहीं होती है। वह है,
इस प्रक्रिया का विश्लेषण संभाव्यता सृजन कार्य की विधि का उपयोग करके किया जा सकता है। मान लीजिए ''p''<sub>0</sub>, ''p''<sub>1</sub>, ''p''<sub>2</sub>, ... प्रत्येक पीढ़ी में प्रत्येक व्यक्ति द्वारा 0, 1, 2, ... वंश के उत्पादन की प्रायिकता हो सकती है। बता दें कि ''m''<sup>th</sup> पीढ़ी द्वारा विलुप्त होने की संभावना ''d<sub>m</sub>'' है। स्पष्ट रूप से, ''d''<sub>0</sub> = 0. चूंकि  ''m''<sup>th</sup> पीढ़ी द्वारा 0 की ओर ले जाने वाले सभी रास्तों की संभावनाओं को जोड़ा जाना चाहिए, विलुप्त होने की संभावना पीढ़ियों में कम नहीं होती है। वह है,


:<math>0=d_0 \leq d_1\leq d_2 \leq \cdots \leq 1.</math>
:<math>0=d_0 \leq d_1\leq d_2 \leq \cdots \leq 1.</math>
इसलिए, dm सीमा d में अभिसरण करता है, और d अंतिम विलुप्त होने की संभावना है। यदि पहली पीढ़ी में j वंश हैं, तो ''m''<sup>th</sup> पीढ़ी तक मरने के लिए, इन पंक्तियों में से प्रत्येक को m − 1 पीढ़ी में समाप्त होना चाहिए। चूँकि वे स्वतंत्र रूप से आगे बढ़ते हैं, प्रायिकता (dm−1) j है। इस प्रकार,
इसलिए, ''d<sub>m</sub>'' सीमा d में अभिसरण करता है, और d अंतिम विलुप्त होने की संभावना है। यदि पहली पीढ़ी में j वंश हैं, तो ''m''<sup>th</sup> पीढ़ी तक मरने के लिए, इन पंक्तियों में से प्रत्येक को ''m'' − 1 पीढ़ी में समाप्त होना चाहिए। चूँकि वे स्वतंत्र रूप से आगे बढ़ते हैं, प्रायिकता (''d<sub>m</sub>''<sub>−1</sub>) <sup>''j''</sup> है। इस प्रकार,


:<math>d_m=p_0+p_1d_{m-1}+p_2(d_{m-1})^2+p_3(d_{m-1})^3+\cdots. \, </math>
:<math>d_m=p_0+p_1d_{m-1}+p_2(d_{m-1})^2+p_3(d_{m-1})^3+\cdots. \, </math>
समीकरण का दाहिना भाग प्रायिकता उत्पन्न करने वाला फलन है। मान लीजिए h(z) p के लिए सामान्य जनक फलन है<sub>''i''</sub>:
समीकरण का दाहिना भाग प्रायिकता उत्पन्न करने वाला फलन है। मान लीजिए ''h''(''z'') ''p<sub>i</sub>'' के लिए सामान्य जनक फलन है<sub>''i''</sub>:


:<math>h(z)=p_0+p_1z+p_2z^2+\cdots. \, </math>
:<math>h(z)=p_0+p_1z+p_2z^2+\cdots. \, </math>
Line 40: Line 40:


:<math>d_m=h(d_{m-1}). \, </math>
:<math>d_m=h(d_{m-1}). \, </math>
चूंकि d<sub>''m''</sub> → d, d को हल करके पाया जा सकता है
चूंकि ''d<sub>m</sub>'' ''d'', ''d'' को हल करके पाया जा सकता है


:<math>d=h(d). \, </math>
:<math>d=h(d). \, </math>
यह z ≥ 0 के लिए y = z और y = h(z) के प्रतिच्छेदन बिंदुओं को खोजने के बराबर भी है। y = z एक सीधी रेखा है। y = h(z) वर्धमान है (क्योंकि <math>h'(z) = p_1 + 2 p_2 z + 3 p_3 z^2 + \cdots \geq 0</math>) और उत्तल (के बाद से <math>h''(z) = 2 p_2 + 6 p_3 z + 12 p_4 z^2 + \cdots \geq 0</math>) फ़ंक्शन। अधिकांश दो प्रतिच्छेदन बिंदु हैं। चूँकि (1,1) हमेशा दो कार्यों के लिए एक प्रतिच्छेदन बिंदु होता है, वहाँ केवल तीन मामले मौजूद होते हैं:[[File:Hgraph.png|thumb|y = h(z) की तीन स्थितियाँ y = z के साथ प्रतिच्छेद करती हैं।]]केस 1 का z <1 पर एक और प्रतिच्छेदन बिंदु है (ग्राफ़ में लाल वक्र देखें)।
यह ''z'' ≥ 0 के लिए ''y'' = ''z'' और ''y'' = ''h''(''z'') के प्रतिच्छेदन बिंदुओं को खोजने के बराबर भी है। y = z एक सीधी रेखा है। ''y'' = ''h''(''z'') वर्धमान है (क्योंकि <math>h'(z) = p_1 + 2 p_2 z + 3 p_3 z^2 + \cdots \geq 0</math>) और उत्तल (के बाद से <math>h''(z) = 2 p_2 + 6 p_3 z + 12 p_4 z^2 + \cdots \geq 0</math>) फ़ंक्शन। अधिकांश दो प्रतिच्छेदन बिंदु हैं। चूँकि (1,1) हमेशा दो कार्यों के लिए एक प्रतिच्छेदन बिंदु होता है, वहाँ केवल तीन मामले मौजूद होते हैं:[[File:Hgraph.png|thumb|''y'' = ''h''(''z'') की तीन स्थितियाँ ''y'' = ''z'' के साथ प्रतिच्छेद करती हैं।]]केस 1 का ''z'' < 1 पर एक और प्रतिच्छेदन बिंदु है (ग्राफ़ में लाल वक्र देखें)।


स्थिति 2 में z = 1 पर केवल एक प्रतिच्छेद बिंदु है। (ग्राफ में हरा वक्र देखें)
स्थिति 2 में ''z'' = 1 पर केवल एक प्रतिच्छेद बिंदु है। (ग्राफ में हरा वक्र देखें)


स्थिति 3 का एक अन्य प्रतिच्छेद बिंदु z > 1 पर है। (ग्राफ़ में काला वक्र देखें)
स्थिति 3 का एक अन्य प्रतिच्छेद बिंदु ''z'' > 1 पर है। (ग्राफ़ में काला वक्र देखें)


मामले 1 में, अंतिम विलुप्त होने की संभावना सिर्फ़ एक से कम है। मामले 2 और 3 के लिए, अंतिम विलुप्त होने की संभावना एक के बराबर होती है।
मामले 1 में, अंतिम विलुप्त होने की संभावना सिर्फ़ एक से कम है। मामले 2 और 3 के लिए, अंतिम विलुप्त होने की संभावना एक के बराबर होती है।


यह देखते हुए कि h'(1) = p1 + 2p2 + 3p3 + ... = μ वास्तव में संतानों की अपेक्षित संख्या है जो माता-पिता उत्पन्न कर सकते हैं, यह निष्कर्ष निकाला जा सकता है कि ब्रांचिंग प्रक्रिया के लिए जनरेटिंग फ़ंक्शन h(z) के लिए किसी दिए गए माता-पिता की संतानों की संख्या, यदि एकल माता-पिता द्वारा उत्पादित संतानों की औसत संख्या एक से कम या उसके बराबर है, तो अंतिम विलुप्त होने की संभावना है। यदि एकल माता-पिता द्वारा उत्पादित संतानों की औसत संख्या एक से अधिक है, तो अंतिम विलुप्त होने की संभावना एक से कम है।
यह देखते हुए कि ''h′''(1) = ''p''<sub>1</sub> + 2''p''<sub>2</sub> + 3''p''<sub>3</sub> + ... = ''μ'' वास्तव में संतानों की अपेक्षित संख्या है जो माता-पिता उत्पन्न कर सकते हैं, यह निष्कर्ष निकाला जा सकता है कि ब्रांचिंग प्रक्रिया के लिए जनरेटिंग फ़ंक्शन ''h''(''z'') के लिए किसी दिए गए माता-पिता की संतानों की संख्या, यदि एकल माता-पिता द्वारा उत्पादित संतानों की औसत संख्या एक से कम या उसके बराबर है, तो अंतिम विलुप्त होने की संभावना है। यदि एकल माता-पिता द्वारा उत्पादित संतानों की औसत संख्या एक से अधिक है, तो अंतिम विलुप्त होने की संभावना एक से कम है।


== आकार पर निर्भर ब्रांचिंग प्रक्रियाएँ ==
== आकार पर निर्भर ब्रांचिंग प्रक्रियाएँ ==
ग्रिमेट द्वारा आयु-निर्भर ब्रांचिंग प्रक्रियाओं के अधिक सामान्य मॉडल के बारे में चर्चा के साथ,<ref>G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 2nd ed., Clarendon Press, Oxford, 1992.</ref> जिसमें व्यक्ति एक से अधिक पीढ़ी के लिए रहते हैं, कृष्णा अथरेया उप-महत्वपूर्ण, स्थिर और सुपर-क्रिटिकल ब्रांचिंग उपायों के रूप में आकार-निर्भर ब्रांचिंग की प्रक्रियाओं के तीन वर्गों की पहचान करता है। अथरेया के लिए, यदि उप-महत्वपूर्ण और अति-महत्वपूर्ण अस्थिर शाखाओं से बचा जाना है, तो नियंत्रित करने के लिए केंद्रीय पैरामीटर महत्वपूर्ण हैं।<ref>Krishna Athreya and Peter Jagers. ''Branching Processes''. Springer. 1973.</ref> आकार पर निर्भर ब्रांचिंग प्रक्रियाओं की चर्चा संसाधन-निर्भर ब्रांचिंग प्रक्रिया के विषय के तहत भी की जाती है<ref>[[F. Thomas Bruss]] and M. Duerinckx (2015) "Resource dependent branching processes and the envelope of societies", Annals of Applied Probability. 25: 324–372.</ref>
ग्रिमेट द्वारा आयु-निर्भर ब्रांचिंग प्रक्रियाओं के अधिक सामान्य मॉडल के बारे में चर्चा के साथ,<ref>G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 2nd ed., Clarendon Press, Oxford, 1992.</ref> जिसमें व्यक्ति एक से अधिक पीढ़ी के लिए रहते हैं, कृष्णा अथरेया उप-महत्वपूर्ण, स्थिर और सुपर-क्रिटिकल ब्रांचिंग उपायों के रूप में आकार-निर्भर ब्रांचिंग की प्रक्रियाओं के तीन वर्गों की पहचान करता है। अथरेया के लिए, यदि उप-महत्वपूर्ण और अति-महत्वपूर्ण अस्थिर शाखाओं से बचा जाना है, तो नियंत्रित करने के लिए केंद्रीय पैरामीटर महत्वपूर्ण हैं।<ref>Krishna Athreya and Peter Jagers. ''Branching Processes''. Springer. 1973.</ref> आकार पर निर्भर ब्रांचिंग प्रक्रियाओं की चर्चा संसाधन-निर्भर ब्रांचिंग प्रक्रिया के विषय के तहत भी की जाती है<ref>[[F. Thomas Bruss]] and M. Duerinckx (2015) "Resource dependent branching processes and the envelope of societies", Annals of Applied Probability. 25: 324–372.</ref>


== विलुप्त होने की समस्या का उदाहरण ==
== विलुप्त होने की समस्या का उदाहरण ==
Line 61: Line 60:


:<math>d_m=p_0+p_1d_{m-1}+p_2(d_{m-1})^2. \, </math>
:<math>d_m=p_0+p_1d_{m-1}+p_2(d_{m-1})^2. \, </math>
d0 = 0 के साथ, अंतिम विलुप्त होने की संभावना के लिए, हमें d खोजने की आवश्यकता है जो d = p0 + p1d + p2d2 का समाधान करता है।
''d''<sub>0</sub> = 0 के साथ, अंतिम विलुप्त होने की संभावना के लिए, हमें d खोजने की आवश्यकता है जो ''d'' = ''p''<sub>0</sub> + ''p''<sub>1</sub>d + ''p''<sub>2</sub>''d''<sup>2</sup> का समाधान करता है।


उदाहरण के तौर पर उत्पादित संततियों की संख्या के लिए प्रायिकता p0 = 0.1, p1 = 0.6 और p2 = 0.3, पहली 20 पीढ़ियों के लिए विलुप्त होने की संभावना इस प्रकार है:
उदाहरण के तौर पर उत्पादित संततियों की संख्या के लिए प्रायिकता ''p''<sub>0</sub> = 0.1, ''p''<sub>1</sub> = 0.6 और ''p''<sub>2</sub> = 0.3, पहली 20 पीढ़ियों के लिए विलुप्त होने की संभावना इस प्रकार है:


{|class=wikitable
{|class=wikitable
Line 88: Line 87:
| 10 || 0.3109 || || 20 || 0.331
| 10 || 0.3109 || || 20 || 0.331
|}
|}
इस उदाहरण में, हम बीजगणितीय रूप से उस = 1/3 को हल कर सकते हैं, और यह वह मान है जिस पर विलुप्त होने की संभावना बढ़ती पीढ़ियों के साथ अभिसरित होती है।
इस उदाहरण में, हम बीजगणितीय रूप से उस ''d'' = 1/3 को हल कर सकते हैं, और यह वह मान है जिस पर विलुप्त होने की संभावना बढ़ती पीढ़ियों के साथ अभिसरित होती है।


== सिम्युलेटेड ब्रांचिंग प्रक्रिया ==
== सिम्युलेटेड ब्रांचिंग प्रक्रिया ==
Line 96: Line 95:
मल्टीटाइप ब्रांचिंग प्रक्रियाओं में, व्यक्ति समान नहीं होते हैं, लेकिन उन्हें n प्रकार में वर्गीकृत किया जा सकता है। प्रत्येक समय चरण के बाद, टाइप i का व्यक्ति विभिन्न प्रकार के व्यक्तियों का उत्पादन करेगा, और  <math>\mathbf{X}_i</math>, रैंडम वेक्टर जो विभिन्न प्रकार के बच्चों की संख्या का प्रतिनिधित्व करता है,  <math>\mathbb{N}^n</math> पर एक प्रायिकता वितरण करता है।
मल्टीटाइप ब्रांचिंग प्रक्रियाओं में, व्यक्ति समान नहीं होते हैं, लेकिन उन्हें n प्रकार में वर्गीकृत किया जा सकता है। प्रत्येक समय चरण के बाद, टाइप i का व्यक्ति विभिन्न प्रकार के व्यक्तियों का उत्पादन करेगा, और  <math>\mathbf{X}_i</math>, रैंडम वेक्टर जो विभिन्न प्रकार के बच्चों की संख्या का प्रतिनिधित्व करता है,  <math>\mathbb{N}^n</math> पर एक प्रायिकता वितरण करता है।


उदाहरण के लिए, कैंसर स्टेम सेल (CSCs) और गैर-स्टेम कैंसर कोशिकाओं (NSCCs) की जनसंख्या पर विचार करें। प्रत्येक समय अंतराल के बाद, प्रत्येक CSC के पास दो CSCs (सममित विभाजन) उत्पन्न करने की प्रायिकता  <math>p_1</math> होती है,  <math>p_2</math> CSCs और NSCCs (असममित विभाजन) उत्पन्न करने की प्रायिकता  <math>p_3</math> CSCs प्रायिकता का उत्पादन करने के लिए <math>1-p_1-p_2-p_3</math> कुछ भी उत्पन्न करने के लिए (मृत्यु); प्रत्येक NSCCs की प्रायिकता है <math>p_4</math> दो NSCCs (सममित विभाजन) उत्पन्न करने के लिए, प्रायिकता <math>p_5</math> NSCCs (ठहराव) और संभाव्यता उत्पन्न करने के लिए <math>1-p_4-p_5</math> कुछ भी उत्पन्न नहीं करना (मृत्यु)।<ref>{{cite journal |last1=Chen |first1=Xiufang |last2=Wang |first2=Yue |last3=Feng |first3=Tianquan |last4=Yi |first4=Ming |last5=Zhang |first5=Xingan |last6=Zhou |first6=Da |s2cid=15335040 |title=प्रतिवर्ती फेनोटाइपिक प्लास्टिसिटी के कैंसर की गतिशीलता को चिह्नित करने में ओवरशूट और फेनोटाइपिक संतुलन|journal=Journal of Theoretical Biology |date=2016 |volume=390 |pages=40–49 |doi=10.1016/j.jtbi.2015.11.008 |pmid=26626088 |arxiv=1503.04558 |url=https://www.sciencedirect.com/science/article/abs/pii/S0022519315005512}}</ref>
उदाहरण के लिए, कैंसर स्टेम सेल (CSCs) और गैर-स्टेम कैंसर कोशिकाओं (NSCCs) की जनसंख्या पर विचार करें। प्रत्येक समय अंतराल के बाद, प्रत्येक CSC के पास दो CSCs (सममित विभाजन) उत्पन्न करने की प्रायिकता  <math>p_1</math> होती है,  <math>p_2</math> CSCs और NSCCs (असममित विभाजन) उत्पन्न करने की प्रायिकता  <math>p_3</math> CSCs प्रायिकता का उत्पादन करने के लिए <math>1-p_1-p_2-p_3</math> कुछ भी उत्पन्न करने के लिए (मृत्यु); प्रत्येक NSCCs की प्रायिकता है <math>p_4</math> दो NSCCs (सममित विभाजन) उत्पन्न करने के लिए, प्रायिकता <math>p_5</math> NSCCs (ठहराव) और संभाव्यता उत्पन्न करने के लिए <math>1-p_4-p_5</math> कुछ भी उत्पन्न नहीं करनाl<ref>{{cite journal |last1=Chen |first1=Xiufang |last2=Wang |first2=Yue |last3=Feng |first3=Tianquan |last4=Yi |first4=Ming |last5=Zhang |first5=Xingan |last6=Zhou |first6=Da |s2cid=15335040 |title=प्रतिवर्ती फेनोटाइपिक प्लास्टिसिटी के कैंसर की गतिशीलता को चिह्नित करने में ओवरशूट और फेनोटाइपिक संतुलन|journal=Journal of Theoretical Biology |date=2016 |volume=390 |pages=40–49 |doi=10.1016/j.jtbi.2015.11.008 |pmid=26626088 |arxiv=1503.04558 |url=https://www.sciencedirect.com/science/article/abs/pii/S0022519315005512}}</ref>
 


=== मल्टीटाइप ब्रांचिंग प्रक्रियाओं के लिए बड़ी संख्या का कानून ===
=== मल्टीटाइप ब्रांचिंग प्रक्रियाओं के लिए बड़ी संख्या का कानून ===
Line 105: Line 103:


अथरेया और नेय द्वारा <ref>{{cite book |last1=Athreya |first1=Krishna B. |last2=Ney |first2=Peter E. |title=ब्रांचिंग प्रक्रियाएं|date=1972 |publisher=Springer-Verlag |location=Berlin |isbn=978-3-642-65371-1 |pages=199–206}}</ref> मोनोग्राफ शर्तों के एक सामान्य सेट को सारांशित करता है जिसके तहत बड़ी संख्या का यह कानून मान्य है। बाद में विभिन्न स्थितियों को छोड़कर कुछ सुधार हुए हैं।<ref>{{cite journal |last1=Janson |first1=Svante |title=मल्टीटाइप ब्रांचिंग प्रक्रियाओं और सामान्यीकृत पोल्या कलशों के लिए कार्यात्मक सीमा प्रमेय|journal=Stochastic Processes and Their Applications |date=2003 |volume=110 |issue=2 |pages=177–245 |doi=10.1016/j.spa.2003.12.002}}</ref><ref>{{cite journal |last1=Jiang |first1=Da-Quan |last2=Wang |first2=Yue |last3=Zhou |first3=Da |title=बहु-फेनोटाइप सेल जनसंख्या गतिकी में संभाव्य अभिसरण के रूप में फेनोटाइपिक संतुलन|journal=PLOS ONE |date=2017 |volume=12 |issue=2 |pages=e0170916 |doi=10.1371/journal.pone.0170916 |pmid=28182672 |pmc=5300154 |bibcode=2017PLoSO..1270916J |doi-access=free }}</ref>
अथरेया और नेय द्वारा <ref>{{cite book |last1=Athreya |first1=Krishna B. |last2=Ney |first2=Peter E. |title=ब्रांचिंग प्रक्रियाएं|date=1972 |publisher=Springer-Verlag |location=Berlin |isbn=978-3-642-65371-1 |pages=199–206}}</ref> मोनोग्राफ शर्तों के एक सामान्य सेट को सारांशित करता है जिसके तहत बड़ी संख्या का यह कानून मान्य है। बाद में विभिन्न स्थितियों को छोड़कर कुछ सुधार हुए हैं।<ref>{{cite journal |last1=Janson |first1=Svante |title=मल्टीटाइप ब्रांचिंग प्रक्रियाओं और सामान्यीकृत पोल्या कलशों के लिए कार्यात्मक सीमा प्रमेय|journal=Stochastic Processes and Their Applications |date=2003 |volume=110 |issue=2 |pages=177–245 |doi=10.1016/j.spa.2003.12.002}}</ref><ref>{{cite journal |last1=Jiang |first1=Da-Quan |last2=Wang |first2=Yue |last3=Zhou |first3=Da |title=बहु-फेनोटाइप सेल जनसंख्या गतिकी में संभाव्य अभिसरण के रूप में फेनोटाइपिक संतुलन|journal=PLOS ONE |date=2017 |volume=12 |issue=2 |pages=e0170916 |doi=10.1371/journal.pone.0170916 |pmid=28182672 |pmc=5300154 |bibcode=2017PLoSO..1270916J |doi-access=free }}</ref>


== अन्य ब्रांचिंग प्रक्रियाएं ==
== अन्य ब्रांचिंग प्रक्रियाएं ==
Line 111: Line 108:
उदाहरण के लिए, यादृच्छिक वातावरण में कई अन्य ब्रांचिंग प्रक्रियाएं हैं, जिसमें प्रजनन कानून को प्रत्येक पीढ़ी, या ब्रांचिंग प्रक्रियाओं में यादृच्छिक रूप से चुना जाता है, जहां जनसंख्या के विकास को बाहरी प्रभावों या परस्पर अंतःक्रियात्मक द्वारा नियंत्रित किया जाता है। ब्रांचिंग प्रक्रियाएं, जहां कणों को काम करना होता है (पर्यावरण में संसाधनों का योगदान) ताकि पुनरुत्पादन में सक्षम हो सकें, और संसाधनों के वितरण को नियंत्रित करने वाली बदलती समाज संरचना में रह सकें, तथाकथित संसाधन-निर्भर ब्रांचिंग प्रक्रियाएँ हैं।
उदाहरण के लिए, यादृच्छिक वातावरण में कई अन्य ब्रांचिंग प्रक्रियाएं हैं, जिसमें प्रजनन कानून को प्रत्येक पीढ़ी, या ब्रांचिंग प्रक्रियाओं में यादृच्छिक रूप से चुना जाता है, जहां जनसंख्या के विकास को बाहरी प्रभावों या परस्पर अंतःक्रियात्मक द्वारा नियंत्रित किया जाता है। ब्रांचिंग प्रक्रियाएं, जहां कणों को काम करना होता है (पर्यावरण में संसाधनों का योगदान) ताकि पुनरुत्पादन में सक्षम हो सकें, और संसाधनों के वितरण को नियंत्रित करने वाली बदलती समाज संरचना में रह सकें, तथाकथित संसाधन-निर्भर ब्रांचिंग प्रक्रियाएँ हैं।


[[सुपरप्रोसेस]] प्राप्त करने के लिए निकट-महत्वपूर्ण ब्रांचिंग प्रक्रियाओं की स्केलिंग सीमा का उपयोग किया जा सकता है।
[[सुपरप्रोसेस]] प्राप्त करने के लिए निकट-महत्वपूर्ण ब्रांचिंग प्रक्रियाओं की स्केलिंग सीमा का उपयोग किया जा सकता है।  


== यह भी देखें ==
== यह भी देखें ==
Line 124: Line 121:




==संदर्भ==
{{Reflist}}
* C. M. Grinstead and J. L. Snell, [http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html Introduction to Probability] {{Webarchive|url=https://web.archive.org/web/20110727200156/http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html |date=2011-07-27 }}, 2nd ed. Section 10.3 discusses branching processes in detail together with the application of generating functions to study them.
* G. R. Grimmett and D. R. Stirzaker, ''Probability and Random Processes'', 2nd ed., Clarendon Press, Oxford, 1992.  Section 5.4 discusses the model of branching processes described above.  Section 5.5 discusses a more general model of branching processes known as '''age-dependent branching processes''', in which individuals live for more than one generation.
{{Stochastic processes}}
{{DEFAULTSORT:Branching Process}}


[[Category:Articles with hatnote templates targeting a nonexistent page|Branching Process]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Branching Process]]
[[Category:CS1 English-language sources (en)]]
[[Category:Collapse templates|Branching Process]]
[[Category:Collapse templates|Branching Process]]
[[Category:Created On 26/12/2022|Branching Process]]
[[Category:Created On 26/12/2022|Branching Process]]
Line 135: Line 154:
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates generating microformats|Branching Process]]
[[Category:Templates generating microformats|Branching Process]]
 
[[Category:Templates that are not mobile friendly|Branching Process]]
==संदर्भ==
[[Category:Templates using TemplateData|Branching Process]]
 
[[Category:Webarchive template wayback links|Branching Process]]
{{Reflist}}
[[Category:Wikipedia metatemplates|Branching Process]]
* C. M. Grinstead and J. L. Snell, [http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html Introduction to Probability] {{Webarchive|url=https://web.archive.org/web/20110727200156/http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html |date=2011-07-27 }}, 2nd ed. Section 10.3 discusses branching processes in detail together with the application of generating functions to study them.
* G. R. Grimmett and D. R. Stirzaker, ''Probability and Random Processes'', 2nd ed., Clarendon Press, Oxford, 1992.  Section 5.4 discusses the model of branching processes described above.  Section 5.5 discusses a more general model of branching processes known as '''age-dependent branching processes''', in which individuals live for more than one generation.
 
{{Stochastic processes}}
 
{{DEFAULTSORT:Branching Process}}[[श्रेणी: मार्कोव प्रक्रियाएं]]
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 26/12/2022]]

Latest revision as of 10:15, 14 January 2023

प्रायिकता सिद्धांत में, ब्रांचिंग प्रक्रिया, गणितीय वस्तु का प्रकार है जिसे स्टोकैस्टिक प्रक्रिया के रूप में जाना जाता है, जिसमें यादृच्छिक चर के संग्रह होते हैं। स्टोकैस्टिक प्रक्रिया के यादृच्छिक चर प्राकृतिक संख्याओं द्वारा अनुक्रमित होते हैं। ब्रांचिंग प्रक्रियाओं का मूल उद्देश्य जनसंख्या के गणितीय मॉडल के रूप में काम करना हैं जिसमें पीढ़ी में प्रत्येक व्यक्ति पीढ़ी में व्यक्तियों की कुछ यादृच्छिक संख्या उत्पन्न करता है , के अनुसार सबसे सरल मामला, निश्चित संभाव्यता वितरण के लिए जो एक व्यक्ति से दूसरे व्यक्ति में भिन्न नहीं होता है।[1] ब्रांचिंग प्रक्रियाओं का उपयोग प्रजनन मॉडल के लिए किया जाता है, उदाहरण के लिए, व्यक्ति बैक्टीरिया के अनुरूप हो सकते हैं, जिनमें से प्रत्येक एकल समय इकाई में कुछ संभावना के साथ 0,1 या 2 संतान उत्पन्न करता है। ब्रांचिंग प्रक्रियाओं का उपयोग समान गतिशीलता के साथ अन्य प्रणालियों को मॉडल करने के लिए भी किया जा सकता है, उदाहरण के लिए, वंशावली में उपनामों का प्रसार या परमाणु रिएक्टर में न्यूट्रॉन का प्रसार।

ब्रांचिंग प्रक्रियाओं के सिद्धांत में मुख्य प्रश्न अंतिम विलुप्ति की संभावना है, जहां कुछ सीमित पीढ़ियों के बाद कोई व्यक्ति मौजूद नहीं है। वाल्ड के समीकरण का उपयोग करते हुए, यह दिखाया जा सकता है कि पीढ़ी शून्य में व्यक्ति के साथ प्रारम्भ, पीढ़ी n के अनुमानित आकार μn जहां μ प्रत्येक व्यक्ति के बच्चों की अनुमानित संख्या है। यदि μ < 1, तो व्यक्तियों की अपेक्षित संख्या तेज़ी से शून्य हो जाती है, जिसका तात्पर्य मार्कोव की असमानता द्वारा संभावना 1 के साथ अंतिम विलुप्त होने से है। वैकल्पिक रूप से, यदि μ> 1, तो अंतिम विलुप्त होने की संभावना 1 से कम है (लेकिन जरूरी नहीं कि शून्य हो; प्रक्रिया पर विचार करें जहां प्रत्येक व्यक्ति के 0 या 100 बच्चे समान संभावना के साथ हों। उस मामले में, μ = 50, लेकिन अंतिम विलुप्ति की संभावना 0.5 से अधिक है, क्योंकि यह संभावना है कि पहले व्यक्ति के 0 बच्चे हैं )। यदि μ = 1, तो अन्तिम विलोपन संभाव्यता 1 के साथ होता है जब तक कि प्रत्येक व्यक्ति के पास हमेशा एक ही बच्चा न हो।

सैद्धांतिक पारिस्थितिकी में, ब्रांचिंग प्रक्रिया के पैरामीटर μ को मूल प्रजनन दर कहा जाता है।

गणितीय सूत्रीकरण

ब्रांचिंग प्रक्रिया का सबसे आम सूत्रीकरण गैल्टन-वाटसन प्रक्रिया है। Zn अवधि n में स्थिति को निरूपित करें (अक्सर पीढ़ी n के आकार के रूप में व्याख्या की जाती है), और Xn,i को यादृच्छिक चर होने दें, जो अवधि n में सदस्य i के प्रत्यक्ष उत्तराधिकारियों की संख्या को दर्शाता है, जहाँ Xn,i सभी n ∈{ 0, 1, 2, ...} और i ∈ {1, ..., Zn} पर स्वतंत्र और समान रूप से वितरित यादृच्छिक चर हैं। इसलिये पुनरावृत्ति समीकरण है

Z0 = 1 के साथ।

वैकल्पिक रूप से, ब्रांचिंग प्रक्रिया को रैंडम वॉक के रूप में तैयार किया जा सकता है। मान लीजिए Si अवधि i में स्थिति को निरूपित करता है, और मान लीजिए कि Xi ऐसा यादृच्छिक चर है जो सभी i पर iid से अधिक हो। फिर पुनरावृत्ति समीकरण है

S0 = 1 के साथ। इस फॉर्मूलेशन के लिए कुछ अंतर्ज्ञान प्राप्त करने के लिए, वाक की कल्पना करें जहां लक्ष्य हर नोड पर जाना है, लेकिन हर बार पहले से देखे गए नोड का दौरा किया जाता है, अतिरिक्त नोड्स का पता चलता है जिसे भी जाना चाहिए। बता दें कि Si अवधि i में प्रकट लेकिन अविभाजित नोड्स की संख्या का प्रतिनिधित्व करता है, और Xi नए नोड्स की संख्या का प्रतिनिधित्व करता है जो नोड i का दौरा करने पर प्रकट होते हैं। फिर प्रत्येक अवधि में, प्रकट किए गए लेकिन बिना देखे गए नोड्स की संख्या पिछली अवधि में ऐसे नोड्स की संख्या के बराबर होती है, साथ ही नए नोड्स जो नोड पर जाने पर प्रकट होते हैं, उस नोड को घटाते हैं जिसे देखा गया है। सभी प्रकट नोड्स का दौरा करने के बाद प्रक्रिया समाप्त हो जाती है।

निरंतर- समय ब्रांचिंग प्रक्रियाएं

असततत-समय ब्रांचिंग प्रक्रियाओं के लिए, सभी व्यक्तियों के लिए ब्रांचिंग समय 1 होना तय है। निरंतर समय ब्रांचिंग प्रक्रियाओं के लिए, प्रत्येक व्यक्ति यादृच्छिक समय (जो निरंतर यादृच्छिक चर है) के लिए काम करता है, और फिर दिए गए वितरण के अनुसार विभाजित करता है। विभिन्न व्यक्तियों और बच्चों के लिए प्रतीक्षा समय स्वतंत्र है। सामान्य रूप से, प्रतीक्षा समय सभी व्यक्तियों के लिए पैरामीटरर λ के साथ घातीय चर है, ताकि प्रक्रिया मार्कोवियन हो।

गैल्टन वाटसन प्रक्रिया के लिए विलुप्त होने की समस्या

अंतिम विलुप्त होने की संभावना किसके द्वारा दी गई है

किसी भी नॉनट्रियल मामलों के लिए (त्रिवियल मामलों में वे होते हैं जिनमें जनसंख्या के प्रत्येक सदस्य के लिए कोई संतान न होने की संभावना शून्य होती है - ऐसे मामलों में अंतिम विलुप्त होने की संभावना 0 होती है), अंतिम विलुप्त होने की संभावना एक के बराबर होती है यदि μ ≤ 1 और सिर्फ़ एक से कम अगर μ> 1।

इस प्रक्रिया का विश्लेषण संभाव्यता सृजन कार्य की विधि का उपयोग करके किया जा सकता है। मान लीजिए p0, p1, p2, ... प्रत्येक पीढ़ी में प्रत्येक व्यक्ति द्वारा 0, 1, 2, ... वंश के उत्पादन की प्रायिकता हो सकती है। बता दें कि mth पीढ़ी द्वारा विलुप्त होने की संभावना dm है। स्पष्ट रूप से, d0 = 0. चूंकि mth पीढ़ी द्वारा 0 की ओर ले जाने वाले सभी रास्तों की संभावनाओं को जोड़ा जाना चाहिए, विलुप्त होने की संभावना पीढ़ियों में कम नहीं होती है। वह है,

इसलिए, dm सीमा d में अभिसरण करता है, और d अंतिम विलुप्त होने की संभावना है। यदि पहली पीढ़ी में j वंश हैं, तो mth पीढ़ी तक मरने के लिए, इन पंक्तियों में से प्रत्येक को m − 1 पीढ़ी में समाप्त होना चाहिए। चूँकि वे स्वतंत्र रूप से आगे बढ़ते हैं, प्रायिकता (dm−1) j है। इस प्रकार,

समीकरण का दाहिना भाग प्रायिकता उत्पन्न करने वाला फलन है। मान लीजिए h(z) pi के लिए सामान्य जनक फलन हैi:

जनरेटिंग फ़ंक्शन का उपयोग करके, पिछला समीकरण बन जाता है

चूंकि dmd, d को हल करके पाया जा सकता है

यह z ≥ 0 के लिए y = z और y = h(z) के प्रतिच्छेदन बिंदुओं को खोजने के बराबर भी है। y = z एक सीधी रेखा है। y = h(z) वर्धमान है (क्योंकि ) और उत्तल (के बाद से ) फ़ंक्शन। अधिकांश दो प्रतिच्छेदन बिंदु हैं। चूँकि (1,1) हमेशा दो कार्यों के लिए एक प्रतिच्छेदन बिंदु होता है, वहाँ केवल तीन मामले मौजूद होते हैं:

y = h(z) की तीन स्थितियाँ y = z के साथ प्रतिच्छेद करती हैं।

केस 1 का z < 1 पर एक और प्रतिच्छेदन बिंदु है (ग्राफ़ में लाल वक्र देखें)।

स्थिति 2 में z = 1 पर केवल एक प्रतिच्छेद बिंदु है। (ग्राफ में हरा वक्र देखें)

स्थिति 3 का एक अन्य प्रतिच्छेद बिंदु z > 1 पर है। (ग्राफ़ में काला वक्र देखें)

मामले 1 में, अंतिम विलुप्त होने की संभावना सिर्फ़ एक से कम है। मामले 2 और 3 के लिए, अंतिम विलुप्त होने की संभावना एक के बराबर होती है।

यह देखते हुए कि h′(1) = p1 + 2p2 + 3p3 + ... = μ वास्तव में संतानों की अपेक्षित संख्या है जो माता-पिता उत्पन्न कर सकते हैं, यह निष्कर्ष निकाला जा सकता है कि ब्रांचिंग प्रक्रिया के लिए जनरेटिंग फ़ंक्शन h(z) के लिए किसी दिए गए माता-पिता की संतानों की संख्या, यदि एकल माता-पिता द्वारा उत्पादित संतानों की औसत संख्या एक से कम या उसके बराबर है, तो अंतिम विलुप्त होने की संभावना है। यदि एकल माता-पिता द्वारा उत्पादित संतानों की औसत संख्या एक से अधिक है, तो अंतिम विलुप्त होने की संभावना एक से कम है।

आकार पर निर्भर ब्रांचिंग प्रक्रियाएँ

ग्रिमेट द्वारा आयु-निर्भर ब्रांचिंग प्रक्रियाओं के अधिक सामान्य मॉडल के बारे में चर्चा के साथ,[2] जिसमें व्यक्ति एक से अधिक पीढ़ी के लिए रहते हैं, कृष्णा अथरेया उप-महत्वपूर्ण, स्थिर और सुपर-क्रिटिकल ब्रांचिंग उपायों के रूप में आकार-निर्भर ब्रांचिंग की प्रक्रियाओं के तीन वर्गों की पहचान करता है। अथरेया के लिए, यदि उप-महत्वपूर्ण और अति-महत्वपूर्ण अस्थिर शाखाओं से बचा जाना है, तो नियंत्रित करने के लिए केंद्रीय पैरामीटर महत्वपूर्ण हैं।[3] आकार पर निर्भर ब्रांचिंग प्रक्रियाओं की चर्चा संसाधन-निर्भर ब्रांचिंग प्रक्रिया के विषय के तहत भी की जाती है[4]

विलुप्त होने की समस्या का उदाहरण

विचार करें कि माता-पिता अधिकतम दो संतान पैदा कर सकते हैं। प्रत्येक पीढ़ी में विलुप्त होने की संभावना है:

d0 = 0 के साथ, अंतिम विलुप्त होने की संभावना के लिए, हमें d खोजने की आवश्यकता है जो d = p0 + p1d + p2d2 का समाधान करता है।

उदाहरण के तौर पर उत्पादित संततियों की संख्या के लिए प्रायिकता p0 = 0.1, p1 = 0.6 और p2 = 0.3, पहली 20 पीढ़ियों के लिए विलुप्त होने की संभावना इस प्रकार है:

जनरेशन # (1-10) विलुप्ति संभावना जनरेशन # (11–20) विलुप्ति संभावना
1 0.1 11 0.3156
2 0.163 12 0.3192
3 0.2058 13 0.3221
4 0.2362 14 0.3244
5 0.2584 15 0.3262
6 0.2751 16 0.3276
7 0.2878 17 0.3288
8 0.2975 18 0.3297
9 0.3051 19 0.3304
10 0.3109 20 0.331

इस उदाहरण में, हम बीजगणितीय रूप से उस d = 1/3 को हल कर सकते हैं, और यह वह मान है जिस पर विलुप्त होने की संभावना बढ़ती पीढ़ियों के साथ अभिसरित होती है।

सिम्युलेटेड ब्रांचिंग प्रक्रिया

समस्याओं की श्रृंखला के लिए ब्रांचिंग प्रक्रियाओं का अनुकरण किया जा सकता है। सिम्युलेटेड ब्रांचिंग प्रक्रिया का विशिष्ट उपयोग विकासवादी जीव विज्ञान के क्षेत्र में है।[5][6] उदाहरण के लिए, फाइलोजेनेटिक पेड़ों को कई मॉडलों के तहत सिम्युलेटेड किया जा सकता है,[7] अनुमान विधियों को विकसित और मान्य करने में मदद करने के साथ-साथ परिकल्पना परीक्षण का समर्थन करना।

मल्टी टाइप ब्रांचिंग प्रोसेस

मल्टीटाइप ब्रांचिंग प्रक्रियाओं में, व्यक्ति समान नहीं होते हैं, लेकिन उन्हें n प्रकार में वर्गीकृत किया जा सकता है। प्रत्येक समय चरण के बाद, टाइप i का व्यक्ति विभिन्न प्रकार के व्यक्तियों का उत्पादन करेगा, और , रैंडम वेक्टर जो विभिन्न प्रकार के बच्चों की संख्या का प्रतिनिधित्व करता है, पर एक प्रायिकता वितरण करता है।

उदाहरण के लिए, कैंसर स्टेम सेल (CSCs) और गैर-स्टेम कैंसर कोशिकाओं (NSCCs) की जनसंख्या पर विचार करें। प्रत्येक समय अंतराल के बाद, प्रत्येक CSC के पास दो CSCs (सममित विभाजन) उत्पन्न करने की प्रायिकता होती है, CSCs और NSCCs (असममित विभाजन) उत्पन्न करने की प्रायिकता CSCs प्रायिकता का उत्पादन करने के लिए कुछ भी उत्पन्न करने के लिए (मृत्यु); प्रत्येक NSCCs की प्रायिकता है दो NSCCs (सममित विभाजन) उत्पन्न करने के लिए, प्रायिकता NSCCs (ठहराव) और संभाव्यता उत्पन्न करने के लिए कुछ भी उत्पन्न नहीं करनाl[8]

मल्टीटाइप ब्रांचिंग प्रक्रियाओं के लिए बड़ी संख्या का कानून

विभिन्न प्रकार की आबादी तेजी से बढ़ने वाली मल्टीटाइप ब्रांचिंग प्रक्रियाओं के लिए, विभिन्न प्रकार के अनुपात लगभग निश्चित रूप से कुछ मामूली परिस्थितियों में निरंतर वेक्टर के लिए अभिसरित होते हैं। यह मल्टीटाइप ब्रांचिंग के लिए बड़ी संख्या का मजबूत कानून है।

निरंतर मामलों के लिए, जनसंख्या की अपेक्षा के अनुपात ODE प्रणाली को संतुष्ट करते हैं, जिसमें अद्वितीय निश्चित बिंदु है। यह नियत बिंदु केवल वह सदिश है जिस पर अनुपात बड़ी संख्या के नियम में अभिसरित होते हैं।

अथरेया और नेय द्वारा [9] मोनोग्राफ शर्तों के एक सामान्य सेट को सारांशित करता है जिसके तहत बड़ी संख्या का यह कानून मान्य है। बाद में विभिन्न स्थितियों को छोड़कर कुछ सुधार हुए हैं।[10][11]

अन्य ब्रांचिंग प्रक्रियाएं

उदाहरण के लिए, यादृच्छिक वातावरण में कई अन्य ब्रांचिंग प्रक्रियाएं हैं, जिसमें प्रजनन कानून को प्रत्येक पीढ़ी, या ब्रांचिंग प्रक्रियाओं में यादृच्छिक रूप से चुना जाता है, जहां जनसंख्या के विकास को बाहरी प्रभावों या परस्पर अंतःक्रियात्मक द्वारा नियंत्रित किया जाता है। ब्रांचिंग प्रक्रियाएं, जहां कणों को काम करना होता है (पर्यावरण में संसाधनों का योगदान) ताकि पुनरुत्पादन में सक्षम हो सकें, और संसाधनों के वितरण को नियंत्रित करने वाली बदलती समाज संरचना में रह सकें, तथाकथित संसाधन-निर्भर ब्रांचिंग प्रक्रियाएँ हैं।

सुपरप्रोसेस प्राप्त करने के लिए निकट-महत्वपूर्ण ब्रांचिंग प्रक्रियाओं की स्केलिंग सीमा का उपयोग किया जा सकता है।

यह भी देखें








संदर्भ

  1. Athreya, K. B. (2006). "Branching Process". पर्यावरणमिति का विश्वकोश. doi:10.1002/9780470057339.vab032. ISBN 978-0471899976.
  2. G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 2nd ed., Clarendon Press, Oxford, 1992.
  3. Krishna Athreya and Peter Jagers. Branching Processes. Springer. 1973.
  4. F. Thomas Bruss and M. Duerinckx (2015) "Resource dependent branching processes and the envelope of societies", Annals of Applied Probability. 25: 324–372.
  5. Hagen, O.; Hartmann, K.; Steel, M.; Stadler, T. (2015-05-01). "आयु-निर्भर जाति उद्भवन अनुभवजन्य जातिवृत्तों के आकार की व्याख्या कर सकता है". Systematic Biology (in English). 64 (3): 432–440. doi:10.1093/sysbio/syv001. ISSN 1063-5157. PMC 4395845. PMID 25575504.
  6. Hagen, Oskar; Andermann, Tobias; Quental, Tiago B.; Antonelli, Alexandre; Silvestro, Daniele (May 2018). "आयु-निर्भर विलुप्त होने का आकलन: जीवाश्म और फाइलोजेनी से विपरीत साक्ष्य". Systematic Biology. 67 (3): 458–474. doi:10.1093/sysbio/syx082. PMC 5920349. PMID 29069434.
  7. Hagen, Oskar; Stadler, Tanja (2018). "ट्रीसिमजीएम: सामान्य बेलमैन-हैरिस मॉडल के तहत वंशावली-विशिष्ट वृक्षों का अनुकरण, आर में जाति-विशेष के वंश-विशिष्ट बदलाव और विलुप्त होने के साथ". Methods in Ecology and Evolution (in English). 9 (3): 754–760. doi:10.1111/2041-210X.12917. ISSN 2041-210X. PMC 5993341. PMID 29938014.
  8. Chen, Xiufang; Wang, Yue; Feng, Tianquan; Yi, Ming; Zhang, Xingan; Zhou, Da (2016). "प्रतिवर्ती फेनोटाइपिक प्लास्टिसिटी के कैंसर की गतिशीलता को चिह्नित करने में ओवरशूट और फेनोटाइपिक संतुलन". Journal of Theoretical Biology. 390: 40–49. arXiv:1503.04558. doi:10.1016/j.jtbi.2015.11.008. PMID 26626088. S2CID 15335040.
  9. Athreya, Krishna B.; Ney, Peter E. (1972). ब्रांचिंग प्रक्रियाएं. Berlin: Springer-Verlag. pp. 199–206. ISBN 978-3-642-65371-1.
  10. Janson, Svante (2003). "मल्टीटाइप ब्रांचिंग प्रक्रियाओं और सामान्यीकृत पोल्या कलशों के लिए कार्यात्मक सीमा प्रमेय". Stochastic Processes and Their Applications. 110 (2): 177–245. doi:10.1016/j.spa.2003.12.002.
  11. Jiang, Da-Quan; Wang, Yue; Zhou, Da (2017). "बहु-फेनोटाइप सेल जनसंख्या गतिकी में संभाव्य अभिसरण के रूप में फेनोटाइपिक संतुलन". PLOS ONE. 12 (2): e0170916. Bibcode:2017PLoSO..1270916J. doi:10.1371/journal.pone.0170916. PMC 5300154. PMID 28182672.
  • C. M. Grinstead and J. L. Snell, Introduction to Probability Archived 2011-07-27 at the Wayback Machine, 2nd ed. Section 10.3 discusses branching processes in detail together with the application of generating functions to study them.
  • G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 2nd ed., Clarendon Press, Oxford, 1992. Section 5.4 discusses the model of branching processes described above. Section 5.5 discusses a more general model of branching processes known as age-dependent branching processes, in which individuals live for more than one generation.