अतान2 (atan2): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{lowercase title}}
{{lowercase title}}
[[File:Atan2definition.svg|thumb|{{math|अटन2(''y'', ''x'')}} किरण के बीच बिंदु {{math|(''x'', ''y'')}} और धनात्मक x-अक्ष पर कोण {{mvar|θ}} [[किरण (ज्यामिति)]] देता है, जो {{open-closed|−''π'', ''π''}} तक सीमित है .]]
[[File:Atan2definition.svg|thumb|{{math|अटन2(''y'', ''x'')}} किरण के बीच बिंदु {{math|(''x'', ''y'')}} और धनात्मक x-अक्ष पर कोण {{mvar|θ}} [[किरण (ज्यामिति)]] देता है, जो {{open-closed|−''π'', ''π''}} तक सीमित है .]]
[[File:Arctangent2.svg|thumb|<math>\operatorname{atan2}(y, x)</math> का <math>y / x</math> ग्राफ  ]][[कम्प्यूटिंग]] और गणित में, फलन (गणित)  '''atan2''' 2-तर्क चाप [[स्पर्शरेखा]] है। परिभाषा के अनुसार, <math>\theta = \operatorname{atan2}(y, x)</math> [[कोण माप]] है (रेडियन में, <math>-\pi < \theta \leq \pi</math>) धनात्मक <math>x</math>-अक्ष और किरण के बीच मूल से बिंदु तक <math>(x,\,y)</math> कार्तीय तल में। समान रूप से, <math>\operatorname{atan2}(y, x)</math> [[जटिल संख्या]] <math>x + iy.</math>का [[तर्क (जटिल विश्लेषण)]] (जिसे चरण या कोण भी कहा जाता है) है  
[[File:Arctangent2.svg|thumb|<math>\operatorname{atan2}(y, x)</math> का <math>y / x</math> ग्राफ  ]][[कम्प्यूटिंग]] और [[गणित]] में, [[फलन का डोमेन|फलन]] (गणित)  '''atan2''' 2-तर्क चाप [[स्पर्शरेखा]] है। परिभाषा के अनुसार, <math>\theta = \operatorname{atan2}(y, x)</math> [[कोण माप]] है (रेडियन में, <math>-\pi < \theta \leq \pi</math>) धनात्मक <math>x</math>-अक्ष और किरण के बीच मूल से बिंदु तक <math>(x,\,y)</math> कार्तीय तल में। समान रूप से, <math>\operatorname{atan2}(y, x)</math> [[जटिल संख्या]] <math>x + iy.</math>का [[तर्क (जटिल विश्लेषण)]] (जिसे चरण या कोण भी कहा जाता है) है  


<math>\operatorname{atan2}</math> h> फलन पहली बार 1961 में प्रोग्रामिंग भाषा [[फोरट्रान]] में दिखाई दिया। मूल रूप से इसका उद्देश्य कोण के लिए एक सही और स्पष्ट मान लौटाना था {{mvar|θ}} कार्तीय निर्देशांक से परिवर्तित करने में {{math|(''x'', ''y'')}} ध्रुवीय निर्देशांक के लिए {{math|(''r'', ''θ'')}}. यदि <math>\theta = \operatorname{atan2}(y, x)</math> तथा <math display=inline>r = \sqrt{x^2 + y^2}</math>, फिर <math>x = r \cos \theta</math> तथा <math>y = r \sin \theta.</math>
<math>\operatorname{atan2}</math> h> फलन पहली बार 1961 में प्रोग्रामिंग भाषा [[फोरट्रान]] में दिखाई दिया। मूल रूप से इसका उद्देश्य कोण के लिए एक सही और स्पष्ट मान लौटाना था {{mvar|θ}} कार्तीय निर्देशांक से परिवर्तित करने में {{math|(''x'', ''y'')}} ध्रुवीय निर्देशांक के लिए {{math|(''r'', ''θ'')}}. यदि <math>\theta = \operatorname{atan2}(y, x)</math> तथा <math display="inline">r = \sqrt{x^2 + y^2}</math>, फिर <math>x = r \cos \theta</math> तथा <math>y = r \sin \theta.</math>
यदि {{math|''x'' > 0}}, वांछित कोण माप है <math display=inline>\theta = \operatorname{atan2}(y,x) = \arctan\left( y / x \right).</math> चूँकि, जब {{math|''x'' < 0}}, कोना <math>\arctan(y / x)</math> [[एंटीपोडल बिंदु]] वांछित कोण है, और ±{{pi}} (एक आधा [[मोड़ (कोण)]]) बिंदु को सही [[चतुर्भुज (विमान ज्यामिति)|चतुर्भुज]] में रखने के लिए जोड़ा जाना चाहिए।<ref>http://scipp.ucsc.edu/~haber/ph116A/arg_11.pdf {{Bare URL PDF|date=March 2022}}</ref> <math>\operatorname{atan2}</math> का फलन का उपयोग इस सुधार को दूर करता है, कोड और गणितीय सूत्रों को सरल करता है।
 
यदि {{math|''x'' > 0}}, वांछित कोण माप है <math display="inline">\theta = \operatorname{atan2}(y,x) = \arctan\left( y / x \right).</math> चूँकि, जब {{math|''x'' < 0}}, कोना <math>\arctan(y / x)</math> [[एंटीपोडल बिंदु]] वांछित कोण है, और ±{{pi}} (एक आधा [[मोड़ (कोण)]]) बिंदु को सही [[चतुर्भुज (विमान ज्यामिति)|चतुर्भुज]] में रखने के लिए जोड़ा जाना चाहिए।<ref>http://scipp.ucsc.edu/~haber/ph116A/arg_11.pdf {{Bare URL PDF|date=March 2022}}</ref> <math>\operatorname{atan2}</math> का फलन का उपयोग इस सुधार को दूर करता है, कोड और गणितीय सूत्रों को सरल करता है।


== प्रेरणा ==
== प्रेरणा ==
[[File:Atan2 argument sign graph.svg|thumb|−{{pi}} से +{{pi}} तक y/x के संबंधित संकेतों के साथ स्पर्शरेखा फ़ंक्शन का ग्राफ़। हरा तीर atan2(-1, -1) और atan2(1, 1) के परिणामों की ओर संकेत करता है। ]]सामान्य एकल-तर्क चाप स्पर्शरेखा फलन अंतराल में केवल कोण माप देता है <math>{\left[-\tfrac12\pi, +\tfrac12\pi\right]},</math> और इसके बीच के कोण को खोजने के लिए इसका आह्वान करते समय {{mvar|x}}-अक्ष और कार्टेशियन समन्वय प्रणाली तल में एक मनमाना वेक्टर, बाएं आधे-तल (एक बिंदु) में एक दिशा को संकेत करने का कोई आसान उपाय नहीं है <math>(x,\,y)</math> साथ <math>x < 0</math>). एंटीपोडल बिंदु कोण उपायों में समान स्पर्शरेखा होती है क्योंकि <math>y/x = (-y) / (-x),</math> तो स्पर्शरेखा <math>y/x</math> एक कोण को विशिष्ट रूप से निर्दिष्ट करने के लिए अपने आप में पर्याप्त नहीं है।
[[File:Atan2 argument sign graph.svg|thumb|−{{pi}} से +{{pi}} तक y/x के संबंधित संकेतों के साथ स्पर्शरेखा फ़ंक्शन का ग्राफ़। हरा तीर atan2(-1, -1) और atan2(1, 1) के परिणामों की ओर संकेत करता है। ]]सामान्य एकल-तर्क चाप स्पर्शरेखा फलन अंतराल में केवल कोण माप देता है <math>{\left[-\tfrac12\pi, +\tfrac12\pi\right]},</math> और इसके बीच के कोण को खोजने के लिए इसका आह्वान करते समय {{mvar|x}}-अक्ष और कार्टेशियन समन्वय प्रणाली तल में एक मनमाना वेक्टर, बाएं आधे-तल (एक बिंदु) में एक दिशा को संकेत करने का कोई आसान उपाय नहीं है <math>(x,\,y)</math> साथ <math>x < 0</math>). एंटीपोडल बिंदु कोण उपायों में समान स्पर्शरेखा होती है क्योंकि <math>y/x = (-y) / (-x),</math> तो स्पर्शरेखा <math>y/x</math> एक कोण को विशिष्ट रूप से निर्दिष्ट करने के लिए अपने आप में पर्याप्त नहीं है।


दिए गए बिंदु या सदिश एक बिंदु <math>(x, y),</math> गणितीय सूत्र या कंप्यूटर कोड को कई स्तिथियों को संभालना चाहिए; कम से कम एक <math>x</math> के धनात्मक मानों के लिए और एक <math>x,</math> के ऋणात्मक मानों के लिए, और कभी-कभी अतिरिक्त स्थितियाँ जब <math>y</math>  ऋणात्मक हो या एक निर्देशांक शून्य हो। वैज्ञानिक कंप्यूटिंग में कोण के उपायों को खोजना और कार्टेशियन को [[ध्रुवीय समन्वय प्रणाली]] में परिवर्तित करना सरल है, और यह कोड बेमानी और त्रुटि-प्रवण है।     
दिए गए बिंदु या सदिश एक बिंदु <math>(x, y),</math> गणितीय सूत्र या कंप्यूटर कोड को कई स्तिथियों को संभालना चाहिए; कम से कम एक <math>x</math> के धनात्मक मानों के लिए और एक <math>x,</math> के ऋणात्मक मानों के लिए, और कभी-कभी अतिरिक्त स्थितियाँ जब <math>y</math>  ऋणात्मक हो या एक निर्देशांक शून्य हो। वैज्ञानिक कंप्यूटिंग में कोण के उपायों को ढूंढना और कार्टेशियन को [[ध्रुवीय समन्वय प्रणाली]] में परिवर्तित करना सरल है, और यह कोड बेमानी और त्रुटि-प्रवण है।     


इसका समाधान करने के लिए, कंप्यूटर [[प्रोग्रामिंग भाषा|प्रोग्रामिंग भाषाओं]] ने कम से कम 1960 के फोरट्रान I  V भाषा के रूप में {{math|atan2}} फलन की शुरुआत की।<ref>{{Cite book
इसका समाधान करने के लिए, कंप्यूटर [[प्रोग्रामिंग भाषा|प्रोग्रामिंग भाषाओं]] ने कम से कम 1960 के फोरट्रान I  V भाषा के रूप में {{math|atan2}} फलन की शुरुआत की।<ref>{{Cite book
Line 18: Line 19:
  | title = फोरट्रान चतुर्थ प्राइमर के लिए| publisher = Addison-Wesley
  | title = फोरट्रान चतुर्थ प्राइमर के लिए| publisher = Addison-Wesley
  | quote = कुछ प्रोसेसर ATAN2 नामक लाइब्रेरी फ़ंक्शन भी प्रदान करते हैं, जो दो तर्कों (विपरीत और आसन्न) का एक फ़ंक्शन है।| pages = 42
  | quote = कुछ प्रोसेसर ATAN2 नामक लाइब्रेरी फ़ंक्शन भी प्रदान करते हैं, जो दो तर्कों (विपरीत और आसन्न) का एक फ़ंक्शन है।| pages = 42
}}</ref> मात्रा {{math|atan2(''y'',''x'')}} {{mvar|x}}-अक्ष और मूल से एक किरण के बीच कार्तीय तल में कहीं भी एक बिंदु {{math|(''x'', ''y'')}} के बीच का कोण माप है।  {{mvar|x}} तथा {{mvar|y}}  के चिह्नों का उपयोग परिणाम के चतुर्थांश को निर्धारित करने के लिए किया जाता है और बहुमान फलन {{math|Arctan(''y''/''x'')}} की सही शाखा का चयन किया जाता है। {{math|atan2}} फलन [[यूक्लिडियन वेक्टर]] से जुड़े कई अनुप्रयोगों में उपयोगी है जैसे कि एक बिंदु से दूसरे बिंदु पर दिशा खोजना या [[रोटेशन मैट्रिक्स]] को [[यूलर कोण|यूलर कोणों]] में परिवर्तित करना। वह {{math|atan2}} फलन अब कई अन्य प्रोग्रामिंग भाषाओं में सम्मलित है, और सामान्यतः पूरे विज्ञान और इंजीनियरिंग में गणितीय सूत्रों में भी पाया जाता है।
}}</ref> मात्रा {{math|atan2(''y'',''x'')}} {{mvar|x}}-अक्ष और मूल से एक किरण के बीच कार्तीय तल में कहीं भी एक बिंदु {{math|(''x'', ''y'')}} के बीच का कोण माप है।  {{mvar|x}} तथा {{mvar|y}}  के चिह्नों का उपयोग परिणाम के चतुर्थांश को निर्धारित करने के लिए किया जाता है और बहुमान फलन {{math|Arctan(''y''/''x'')}} की सही शाखा का चयन किया जाता है। {{math|atan2}} फलन [[यूक्लिडियन वेक्टर]] से जुड़े कई अनुप्रयोगों में उपयोगी है जैसे कि एक बिंदु से दूसरे बिंदु पर दिशा ढूंढना या [[रोटेशन मैट्रिक्स]] को [[यूलर कोण|यूलर कोणों]] में परिवर्तित करना। वह {{math|atan2}} फलन अब कई अन्य प्रोग्रामिंग भाषाओं में सम्मलित है, और सामान्यतः पूरे विज्ञान और इंजीनियरिंग में गणितीय सूत्रों में भी पाया जाता है।


=== तर्क क्रम ===
=== तर्क क्रम ===
Line 155: Line 156:
* <math>\mathrm{atan2}(-x, -y)</math>. (दक्षिण-क्लॉकवाइज कन्वेंशन)
* <math>\mathrm{atan2}(-x, -y)</math>. (दक्षिण-क्लॉकवाइज कन्वेंशन)


एक उदाहरण के रूप में, चलो <math>x_{0}=\frac{\sqrt{3}}{2}</math> तथा <math>y_{0}=\frac{1}{2}</math>, तो पूर्व-वामावर्त स्वरूप <math>\mathrm{atan2}(y_{0}, x_{0})\cdot\frac{180}{\pi}=30^{\circ}</math> देता है , उत्तर-दक्षिणावर्त <math>\mathrm{atan2}(x_{0}, y_{0})\cdot\frac{180}{\pi}=60^{\circ}</math> प्रारूप देता है , और दक्षिण-दक्षिणावर्त <math>\mathrm{atan2}(-x_{0}, -y_{0})\cdot\frac{180}{\pi}=-120^{\circ}</math>प्रारूप देता है .
उदाहरण के रूप में, चलो <math>x_{0}=\frac{\sqrt{3}}{2}</math> तथा <math>y_{0}=\frac{1}{2}</math>, तो पूर्व-वामावर्त स्वरूप <math>\mathrm{atan2}(y_{0}, x_{0})\cdot\frac{180}{\pi}=30^{\circ}</math> देता है , उत्तर-दक्षिणावर्त <math>\mathrm{atan2}(x_{0}, y_{0})\cdot\frac{180}{\pi}=60^{\circ}</math> प्रारूप देता है , और दक्षिण-दक्षिणावर्त <math>\mathrm{atan2}(-x_{0}, -y_{0})\cdot\frac{180}{\pi}=-120^{\circ}</math>प्रारूप देता है .


प्रकट कर सकते हैं , x- और/या y-तर्कों के चिह्न को बदलने और उनकी स्थितियों की आदान-प्रदान करने से के 8 संभावित रूपांतर  पैदा हो सकते हैं  <math>\mathrm{atan2}</math> कार्य करते हैं और वे, दिलचस्प रूप से, कोण की 8 संभावित परिभाषाओं के अनुरूप हैं, अर्थात्, दक्षिणावर्त या वामावर्त 4 मुख्य दिशाओं, उत्तर, पूर्व, दक्षिण और पश्चिम में से प्रत्येक से शुरू होते हैं।
प्रकट कर सकते हैं , x- और/या y-तर्कों के चिह्न को बदलने और उनकी स्थितियों की आदान-प्रदान करने से के 8 संभावित रूपांतर  पैदा हो सकते हैं  <math>\mathrm{atan2}</math> कार्य करते हैं और वे, दिलचस्प रूप से, कोण की 8 संभावित परिभाषाओं के अनुरूप हैं, अर्थात्, दक्षिणावर्त या वामावर्त 4 मुख्य दिशाओं, उत्तर, पूर्व, दक्षिण और पश्चिम में से प्रत्येक से शुरू होते हैं।
Line 161: Line 162:
== सरल कंप्यूटर भाषाओं में फलन की प्रति ==
== सरल कंप्यूटर भाषाओं में फलन की प्रति ==
फलन की प्राप्ति एक कंप्यूटर भाषा से दूसरे में भिन्न होती है:
फलन की प्राप्ति एक कंप्यूटर भाषा से दूसरे में भिन्न होती है:
* माइक्रोसॉफ्ट एक्सेल में,<ref>{{cite web|url=http://msdn2.microsoft.com/en-us/library/bb238940.aspx|title=माइक्रोसॉफ्ट एक्सेल Atan2 विधि|publisher=Microsoft}}</ref> OpenOffice.org Calc, [[LibreOffice Calc|लिब्रे ऑफिस कॉल्स]] ,<ref>{{cite web|url=https://help.libreoffice.org/Calc/Mathematical_Functions#ATAN2|title=लिब्रे ऑफिस कैल्क ATAN2|publisher=Libreoffice.org}}</ref> [[गूगल दस्तावेज़]],<ref>{{Cite web|url=https://support.google.com/docs/topic/1361471 |title=कार्य और सूत्र – दस्तावेज़ संपादक सहायता|website=support.google.com}}</ref> [[नंबर (स्प्रेडशीट)]],<ref>{{cite web|url=https://www.apple.com/mac/numbers/compatibility/functions.html#trigonometric |title=संख्याओं के त्रिकोणमितीय कार्यों की सूची|publisher=Apple }}</ref> और SQL:2008|ANSI SQL:2008 मानक,<ref>{{cite web|url=http://www.info.teradata.com/HTMLPubs/DB_TTU_15_00/index.html#page/SQL_Reference/B035_1145_015K/Arithmetic.062.225.html#ww15697556 |title=एएनएसआई एसक्यूएल: 2008 मानक|publisher=Teradata |url-status=dead |archive-url=https://web.archive.org/web/20150820094929/http://www.info.teradata.com/HTMLPubs/DB_TTU_15_00/index.html |archive-date=2015-08-20 }}</ref> 2-तर्क स्पर्शरेखा फलन के मानक अनुक्रम में दो तर्क हैं <math>(\operatorname{Re}, \operatorname{Im})</math> (उपर्युक्त चर्चा में प्रयुक्त सम्मेलन के सापेक्ष उलटा)।
* माइक्रोसॉफ्ट एक्सेल में,<ref>{{cite web|url=http://msdn2.microsoft.com/en-us/library/bb238940.aspx|title=माइक्रोसॉफ्ट एक्सेल Atan2 विधि|publisher=Microsoft}}</ref> OpenOffice.org कैल्क, [[LibreOffice Calc|लिब्रे ऑफिस कॉल्स]] ,<ref>{{cite web|url=https://help.libreoffice.org/Calc/Mathematical_Functions#ATAN2|title=लिब्रे ऑफिस कैल्क ATAN2|publisher=Libreoffice.org}}</ref> [[गूगल दस्तावेज़]],<ref>{{Cite web|url=https://support.google.com/docs/topic/1361471 |title=कार्य और सूत्र – दस्तावेज़ संपादक सहायता|website=support.google.com}}</ref> [[नंबर (स्प्रेडशीट)]],<ref>{{cite web|url=https://www.apple.com/mac/numbers/compatibility/functions.html#trigonometric |title=संख्याओं के त्रिकोणमितीय कार्यों की सूची|publisher=Apple }}</ref> और SQL:2008|ANSI SQL:2008 मानक,<ref>{{cite web|url=http://www.info.teradata.com/HTMLPubs/DB_TTU_15_00/index.html#page/SQL_Reference/B035_1145_015K/Arithmetic.062.225.html#ww15697556 |title=एएनएसआई एसक्यूएल: 2008 मानक|publisher=Teradata |url-status=dead |archive-url=https://web.archive.org/web/20150820094929/http://www.info.teradata.com/HTMLPubs/DB_TTU_15_00/index.html |archive-date=2015-08-20 }}</ref> 2-तर्क स्पर्शरेखा फलन के मानक अनुक्रम में दो तर्क हैं <math>(\operatorname{Re}, \operatorname{Im})</math> (उपर्युक्त चर्चा में प्रयुक्त सम्मेलन के सापेक्ष उलटा)।
* गणित में, रूप <code>ArcTan[''x'',&hairsp;''y'']</code> उपयोग किया जाता है जहां एक पैरामीटर प्रपत्र सामान्य चापस्पर्शज्या की आपूर्ति करता है। गणित वर्गीकृत करता है <code>ArcTan[0,&hairsp;0]</code> एक अनिश्चित अभिव्यक्ति के रूप में।
* गणित में, रूप <code>ArcTan[''x'',&hairsp;''y'']</code> उपयोग किया जाता है जहां एक पैरामीटर प्रपत्र सामान्य चापस्पर्शज्या की आपूर्ति करता है। गणित वर्गीकृत करता है <code>ArcTan[0,&hairsp;0]</code> एक अनिश्चित अभिव्यक्ति के रूप में।
* अधिकांश टीआई रेखांकन गणक यंत्र ([[TI-85]] और [[TI-86]] को छोड़कर) पर, समतुल्य फलन को R►Pθ कहा जाता है और इसमें तर्क होते हैं <math>(\operatorname{Re}, \operatorname{Im})</math>.
* अधिकांश टीआई रेखांकन गणक यंत्र ([[TI-85]] और [[TI-86]] को छोड़कर) पर, समतुल्य फलन को R►Pθ कहा जाता है और इसमें तर्क होते हैं <math>(\operatorname{Re}, \operatorname{Im})</math>.
Line 195: Line 196:
* [http://www.picbasic.co.uk/forum/showthread.php?p=70269#post70269 PicBasic Pro solution] atan2 for a PIC18F
* [http://www.picbasic.co.uk/forum/showthread.php?p=70269#post70269 PicBasic Pro solution] atan2 for a PIC18F


;Other implementations/code for atan2
;atan2 के लिए अन्य कार्यान्वयन/कोड
* {{cite web  
* {{cite web  
|title=Bearing Between Two Points  
|title=Bearing Between Two Points  
Line 223: Line 224:
== टिप्पणियाँ ==
== टिप्पणियाँ ==
<references group="note" />
<references group="note" />
{{Trigonometric and hyperbolic functions}}
[[Category: प्रतिलोम त्रिकोणमितीय फलन


[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 29/11/2022]]
[[Category:Created On 29/11/2022]]

Revision as of 14:43, 31 December 2022

अटन2(y, x) किरण के बीच बिंदु (x, y) और धनात्मक x-अक्ष पर कोण θ किरण (ज्यामिति) देता है, जो (−π, π] तक सीमित है .
File:Arctangent2.svg
का ग्राफ

कम्प्यूटिंग और गणित में, फलन (गणित) atan2 2-तर्क चाप स्पर्शरेखा है। परिभाषा के अनुसार, कोण माप है (रेडियन में, ) धनात्मक -अक्ष और किरण के बीच मूल से बिंदु तक कार्तीय तल में। समान रूप से, जटिल संख्या का तर्क (जटिल विश्लेषण) (जिसे चरण या कोण भी कहा जाता है) है

h> फलन पहली बार 1961 में प्रोग्रामिंग भाषा फोरट्रान में दिखाई दिया। मूल रूप से इसका उद्देश्य कोण के लिए एक सही और स्पष्ट मान लौटाना था θ कार्तीय निर्देशांक से परिवर्तित करने में (x, y) ध्रुवीय निर्देशांक के लिए (r, θ). यदि तथा , फिर तथा

यदि x > 0, वांछित कोण माप है चूँकि, जब x < 0, कोना एंटीपोडल बिंदु वांछित कोण है, और ±π (एक आधा मोड़ (कोण)) बिंदु को सही चतुर्भुज में रखने के लिए जोड़ा जाना चाहिए।[1] का फलन का उपयोग इस सुधार को दूर करता है, कोड और गणितीय सूत्रों को सरल करता है।

प्रेरणा

Error creating thumbnail:
π से +π तक y/x के संबंधित संकेतों के साथ स्पर्शरेखा फ़ंक्शन का ग्राफ़। हरा तीर atan2(-1, -1) और atan2(1, 1) के परिणामों की ओर संकेत करता है।

सामान्य एकल-तर्क चाप स्पर्शरेखा फलन अंतराल में केवल कोण माप देता है और इसके बीच के कोण को खोजने के लिए इसका आह्वान करते समय x-अक्ष और कार्टेशियन समन्वय प्रणाली तल में एक मनमाना वेक्टर, बाएं आधे-तल (एक बिंदु) में एक दिशा को संकेत करने का कोई आसान उपाय नहीं है साथ ). एंटीपोडल बिंदु कोण उपायों में समान स्पर्शरेखा होती है क्योंकि तो स्पर्शरेखा एक कोण को विशिष्ट रूप से निर्दिष्ट करने के लिए अपने आप में पर्याप्त नहीं है।

दिए गए बिंदु या सदिश एक बिंदु गणितीय सूत्र या कंप्यूटर कोड को कई स्तिथियों को संभालना चाहिए; कम से कम एक के धनात्मक मानों के लिए और एक के ऋणात्मक मानों के लिए, और कभी-कभी अतिरिक्त स्थितियाँ जब ऋणात्मक हो या एक निर्देशांक शून्य हो। वैज्ञानिक कंप्यूटिंग में कोण के उपायों को ढूंढना और कार्टेशियन को ध्रुवीय समन्वय प्रणाली में परिवर्तित करना सरल है, और यह कोड बेमानी और त्रुटि-प्रवण है।

इसका समाधान करने के लिए, कंप्यूटर प्रोग्रामिंग भाषाओं ने कम से कम 1960 के फोरट्रान I V भाषा के रूप में atan2 फलन की शुरुआत की।[2] मात्रा atan2(y,x) x-अक्ष और मूल से एक किरण के बीच कार्तीय तल में कहीं भी एक बिंदु (x, y) के बीच का कोण माप है। x तथा y के चिह्नों का उपयोग परिणाम के चतुर्थांश को निर्धारित करने के लिए किया जाता है और बहुमान फलन Arctan(y/x) की सही शाखा का चयन किया जाता है। atan2 फलन यूक्लिडियन वेक्टर से जुड़े कई अनुप्रयोगों में उपयोगी है जैसे कि एक बिंदु से दूसरे बिंदु पर दिशा ढूंढना या रोटेशन मैट्रिक्स को यूलर कोणों में परिवर्तित करना। वह atan2 फलन अब कई अन्य प्रोग्रामिंग भाषाओं में सम्मलित है, और सामान्यतः पूरे विज्ञान और इंजीनियरिंग में गणितीय सूत्रों में भी पाया जाता है।

तर्क क्रम

1961 में, फोरट्रान ने तर्क क्रम के साथ atan2 फलन दर्शाया जिससे एक सम्मिश्र संख्या का तर्क (चरण कोण) यह लिखे अंश के बाएँ से दाएँ क्रम का अनुसरण करता है ताकि के सकारात्मक मूल्यों के लिए यह जटिल संख्याओं के पारंपरिक घटक क्रम के विपरीत है, या निर्देशांक के रूप में अनुभाग परिभाषा और संगणना देखें।

कुछ अन्य प्रोग्रामिंग भाषा(देखें सामान्य कंप्यूटर भाषाओं में फलन के प्रति) ने इसके अतिरिक्त विपरीत क्रम चुना। उदाहरण के लिए माइक्रोसॉफ्ट एक्सेल उपयोग करता है और गणितज्ञ उपयोग करता है यदि एक तर्क के साथ बुलाया जाता है तो एक-तर्क स्पर्शरेखा के लिए डिफ़ॉल्ट।

परिभाषा और गणना

कार्यक्रम atan2 जटिल संख्या x + iy पर लागू तर्क फलन के मुख्य मान की गणना करता है। अर्थात्, atan2(y, x) = Pr arg(x + iy) = Arg(x + iy) कोण में कोई फर्क किए बिना तर्क को (मूल के चारों ओर एक पूर्ण मोड़ के अनुरूप) के मनमाने ढंग से बदला जा सकता है, लेकिन atan2 को विशिष्ट रूप से परिभाषित करने के लिए π < atan2(y, x) ≤ π

मानक के संदर्भ में arctan कार्य, जिसकी सीमा (−π/2, π/2] है , इसे इस प्रकार परिभाषित करने के लिए निम्नानुसार व्यक्त किया जा सकता है जिसमें सेमी-अनंत लाइन x<0 y=0 के अतिरिक्त कोई असततता नहीं है:

चार अतिव्यापी आधे तलों के साथ एक कॉम्पैक्ट एक्सप्रेशन है

आइवरसन ब्रैकेट नोटेशन और भी अधिक कॉम्पैक्ट अभिव्यक्ति की अनुमति देता है:[note 1]

स्पष्ट सशर्त के बिना सूत्र (कंप्यूटर भाषा ):
स्पर्शरेखा अर्ध-कोण सूत्र से प्राप्त निम्न अभिव्यक्ति का उपयोग atan2 परिभाषित करने के लिए भी किया जा सकता है :
उपरोक्त परिभाषा की तुलना में यह अभिव्यक्ति प्रतीकात्मक उपयोग के लिए अधिक उपयुक्त हो सकती है। चूँकि यह सामान्य तैरनेवाला स्थल कम्प्यूटेशनल उपयोग के लिए अनुपयुक्त है, क्योंकि राउंडिंग त्रुटियों के प्रभाव के रूप में क्षेत्र के निकट विस्तार करें x < 0, y = 0 (इससे y का शून्य से विभाजन भी हो सकता है)।

अंतिम सूत्र का एक प्रकार जो इन बढ़ी हुई गोलाई त्रुटियों से बचा जाता है:

File:The principal value of the argument (-atan2- in some circles).svg
तर्क के प्रमुख मूल्य की व्युत्पत्ति इस आंकड़े को संदर्भित करती है

टिप्पणियाँ:

  • यह सीमा में परिणाम पैदा करता है (−π, π].[note 2]
  • जैसा ऊपर बताया गया है, तर्क का मुख्य मूल्य atan2(y, x) त्रिकोणमिति द्वारा arcton(y/x) से संबंधित हो सकता है। व्युत्पत्ति इस प्रकार है:
    यदि (x, y) = (r cos θ, r sin θ), तो tan(θ/2) = y / (r + x). यह इस प्रकार है कि
    ध्यान दें कि x2 + y2 + x ≠ 0 संबंधित डोमेन में।

व्युत्पन्न

समारोह के रूप में atan2 दो चरों का एक फलन है, इसके दो आंशिक अवकलज हैं। उन बिंदुओं पर जहां ये डेरिवेटिव सम्मलित हैं, atan2 स्थिरांक को छोड़कर, के बराबर है arctan(y/x). इसलिए के लिए x > 0 या y ≠ 0,

अत: atan2 की प्रवणता किसके द्वारा दी जाती है

अनौपचारिक रूप से फलन का प्रतिनिधित्व करना atan2 कोण फलन के रूप में θ(x, y) = atan2(y, x) (जो केवल स्थिरांक तक परिभाषित है) कुल अंतर के लिए निम्न सूत्र देता है:

जबकि फलन atan2 नकारात्मक के साथ असंतत है x-अक्ष, इस तथ्य को दर्शाता है कि कोण को लगातार परिभाषित नहीं किया जा सकता है, इस व्युत्पन्न को मूल को छोड़कर लगातार परिभाषित किया जाता है, इस तथ्य को दर्शाता है कि मूल को छोड़कर हर जगह अनंत (और वास्तव में स्थानीय) परिवर्तन को परिभाषित किया जा सकता है। पथ के साथ इस व्युत्पन्न को एकीकृत करने से पथ पर कोण में कुल परिवर्तन होता है, और एक बंद लूप पर एकीकृत करने से घुमावदार संख्या मिलती है।

अंतर ज्यामिति की भाषा में, यह व्युत्पन्न एक-रूप है, और यह बंद अंतर रूप है (इसका व्युत्पन्न शून्य है) लेकिन सटीक अंतर रूप नहीं है (यह 0-रूप का व्युत्पन्न नहीं है, अर्थात, एक कार्य), और वास्तव में यह पंक्चर किए गए तल का पहला डॉ कहलमज गर्भाशय उत्पन्न करता है। यह इस प्रकार के एक रूप का सबसे बुनियादी उदाहरण है, और यह अंतर ज्यामिति में मौलिक है।

आंशिक डेरिवेटिव atan2 त्रिकोणमितीय फलन सम्मलित नहीं हैं, जो इसे कई अनुप्रयोगों (जैसे एम्बेडेड प्रणाली) में विशेष रूप से उपयोगी बनाता है जहां त्रिकोणमितीय फलन का मूल्यांकन करना महंगा हो सकता है।

चित्रण

atan2 चयनित किरणों के लिए

यह आंकड़ा इकाई घेरा पर लेबल किए गए उत्पत्ति से चयनित किरणों के साथ atan2 के मान दिखाता है। रेडियन में मान वृत्त के अंदर दिखाए जाते हैं। आरेख मानक गणितीय सम्मेलन का उपयोग करता है जो कोणों को शून्य से दाईं ओर किरण के साथ दक्षिणावर्त बढ़ाता है। ध्यान दें कि तर्कों atan2(y, x) का क्रम उल्टा है; फलन (x, y) बिंदु के अनुरूप कोण की गणना करता है .

व्युत्क्रम त्रिकोणमितीय कार्यों और atan2 कार्यों की तुलना

यह आंकड़ा के साथ-साथ के मान दिखाता है दोनों कार्य क्रमशः तथा के साथ विषम और आवधिक हैं, और इस प्रकार के वास्तविक मूल्यों के किसी भी क्षेत्र में आसानी से पूरक हो सकते हैं। और की शाखाओं में कटौती साफ देखी जा सकती है [3]

नीचे दिए गए दो आंकड़े क्रमशः atan2(y, x) और arctan(y/x) तल के एक क्षेत्र के ऊपर। ध्यान दें कि atan2(y, x) के लिए, मूल बिंदु से निकलने वाले X/Y-तल में किरणों का मान स्थिर होता है, लेकिन arctan(y/x) X/Y-तल मूल बिंदु से गुजरने वाली X/Y-तल में रेखाओं का मान स्थिर रहता है।x > 0 के लिए, दो आरेख समान मान देते हैं।

Atan2 diagram.svg File:Atan diagram.svg


कोण योग और अंतर पहचान

का योग निम्नलिखित पहचान के अनुसार एक ही ऑपरेशन में संक्षिप्त किया जा सकता है

.. उपलब्ध कराया .

प्रमाण में दो स्थितियों पर विचार करना सम्मलित है, एक जहां या और एक तथा .

हम केवल उस स्थिति पर विचार करते हैं जहां या . शुरू करने के लिए, हम निम्नलिखित अवलोकन करते हैं:

  1. उसे उपलब्ध कराया या .
  2. , कहाँ पे तर्क है (जटिल विश्लेषण)#गणना।
  3. जब भी , यूलर के सूत्र का परिणाम है।
  4. .

देखने के लिए (4), हमारे पास तर्क (जटिल विश्लेषण) पहचान है कहाँ पे , इसलिये . इसके अतिरिक्त, चूंकि किसी भी सकारात्मक वास्तविक मूल्य के लिए , तो यदि हम करते हैं तथा तो हमारे पास हैं .

इन अवलोकनों से निम्नलिखित समानताएं हैं:

परिणाम: यदि तथा 2-आयामी वैक्टर हैं, उन वैक्टरों के बीच कोण की सहायता से गणना करने के लिए अभ्यास में अंतर सूत्र का प्रायः उपयोग किया जाता है , क्योंकि परिणामी संगणना सीमा में सौम्य व्यवहार करती है और इस प्रकार कई व्यावहारिक स्थितियों में रेंज चेक के बिना इसका उपयोग किया जा सकता है।

== पूर्व-वामावर्त, उत्तर-दक्षिणावर्त और दक्षिण-घड़ी की दिशा में, आदि। h> फलन मूल रूप से शुद्ध गणित में सम्मेलन के लिए डिज़ाइन किया गया था जिसे पूर्व-वामावर्त कहा जा सकता है। व्यावहारिक अनुप्रयोगों में, चूँकि , उत्तर-दक्षिणावर्त और दक्षिण-दक्षिणावर्त सम्मेलन प्रायः आदर्श होते हैं। वायुमंडलीय विज्ञान में, उदाहरण के लिए, हवा की दिशा का उपयोग करके गणना की जा सकती है इसके तर्कों के रूप में पवन सदिश के पूर्व- और उत्तर-घटकों के साथ कार्य करना;[4] सौर दिगंश कोण की गणना सौर वेक्टर के पूर्व और उत्तर-घटकों के तर्कों के समान ही की जा सकती है। हवा की दिशा सामान्य रूप से उत्तर-दक्षिणावर्त अर्थ में परिभाषित की जाती है, और सौर दिगंश कोण व्यापक रूप से उत्तर-दक्षिणावर्त और दक्षिण-घड़ी की दिशा दोनों का उपयोग करता है।[5] इन विभिन्न परिपाटियों को पदों की आदान-प्रदान करके और x- y-तर्कों के संकेतों को निम्नानुसार बदलकर महसूस किया जा सकता है:

  • (पूर्व-वामावर्त कन्वेंशन)
  • (उत्तर-क्लॉकवाइज कन्वेंशन)
  • . (दक्षिण-क्लॉकवाइज कन्वेंशन)

उदाहरण के रूप में, चलो तथा , तो पूर्व-वामावर्त स्वरूप देता है , उत्तर-दक्षिणावर्त प्रारूप देता है , और दक्षिण-दक्षिणावर्त प्रारूप देता है .

प्रकट कर सकते हैं , x- और/या y-तर्कों के चिह्न को बदलने और उनकी स्थितियों की आदान-प्रदान करने से के 8 संभावित रूपांतर पैदा हो सकते हैं कार्य करते हैं और वे, दिलचस्प रूप से, कोण की 8 संभावित परिभाषाओं के अनुरूप हैं, अर्थात्, दक्षिणावर्त या वामावर्त 4 मुख्य दिशाओं, उत्तर, पूर्व, दक्षिण और पश्चिम में से प्रत्येक से शुरू होते हैं।

सरल कंप्यूटर भाषाओं में फलन की प्रति

फलन की प्राप्ति एक कंप्यूटर भाषा से दूसरे में भिन्न होती है:

  • माइक्रोसॉफ्ट एक्सेल में,[6] OpenOffice.org कैल्क, लिब्रे ऑफिस कॉल्स ,[7] गूगल दस्तावेज़,[8] नंबर (स्प्रेडशीट),[9] और SQL:2008|ANSI SQL:2008 मानक,[10] 2-तर्क स्पर्शरेखा फलन के मानक अनुक्रम में दो तर्क हैं (उपर्युक्त चर्चा में प्रयुक्त सम्मेलन के सापेक्ष उलटा)।
  • गणित में, रूप ArcTan[x, y] उपयोग किया जाता है जहां एक पैरामीटर प्रपत्र सामान्य चापस्पर्शज्या की आपूर्ति करता है। गणित वर्गीकृत करता है ArcTan[0, 0] एक अनिश्चित अभिव्यक्ति के रूप में।
  • अधिकांश टीआई रेखांकन गणक यंत्र (TI-85 और TI-86 को छोड़कर) पर, समतुल्य फलन को R►Pθ कहा जाता है और इसमें तर्क होते हैं .
  • टीआई-85 पर arg फलन कहा जाता है angle(x,y) और यद्यपि ऐसा लगता है कि यह दो तर्क लेता है, वास्तव में इसमें केवल एक जटिल तर्क है जिसे संख्याओं की एक जोड़ी द्वारा दर्शाया गया है: x + iy = (x, y). h> सम्मेलन द्वारा प्रयोग किया जाता है:
  • सी फलन atan2, और अधिकांश अन्य कंप्यूटर कार्यान्वयन, कार्तीय को ध्रुवीय निर्देशांक में बदलने के प्रयास को कम करने के लिए डिज़ाइन किए गए हैं और इसलिए हमेशा परिभाषित करते हैं atan2(0, 0). बिना हस्ताक्षरित शून्य के कार्यान्वयन पर, या सकारात्मक शून्य तर्क दिए जाने पर, इसे सामान्य रूप से 0 के रूप में परिभाषित किया जाता है। यह हमेशा सीमा में एक मान लौटाएगा [−π, π] त्रुटि उठाने या NaN (संख्या नहीं) वापस करने के बजाय।
  • सामान्य लिस्प में, जहाँ वैकल्पिक तर्क सम्मलित होते हैं, atan फलन किसी को वैकल्पिक रूप से x निर्देशांक की आपूर्ति करने की अनुमति देता है: (atan y x).[11]
  • जूलिया (प्रोग्रामिंग भाषा) में, स्थिति सामान्य लिस्प के समान है: के अतिरिक्त atan2, भाषा के लिए एक-पैरामीटर और दो-पैरामीटर रूप है atan.[12] चूंकि, संकलन समय पर आक्रामक अनुकूलन की अनुमति देने के लिए इसकी दो से अधिक विधियां हैं (अनुभाग देखें कि आप मैटलैब/पायथन/आर/... कोड को जूलिया में संकलित क्यों नहीं करते? [13]).
  • हस्ताक्षर ज़ीरो, अनंतता, या संख्या नहीं (उदाहरण के लिए, IEEE फ़्लोटिंग पॉइंट) को लागू करने वाली प्रणालियों के लिए, उचित एक्सटेंशन को लागू करना सरल है जो सम्मलित करने के लिए उत्पादित मूल्यों की सीमा को बढ़ा सकता है -π और -0 कब y = -0। ये भी NaN लौटा सकते हैं या NaN तर्क दिए जाने पर अपवाद बढ़ा सकते हैं।
  • इंटेल आर्किटेक्चर कोडांतरक कोड में, atan2 के रूप में जाना जाता है FPATAN (फ्लोटिंग-पॉइंट आंशिक आर्कटेंजेंट) निर्देश।[14] यह अनन्तताओं से निपट सकता है और परिणाम बंद अंतराल में होते हैं [−π, π], उदा. atan2(∞, x) = +π/2 परिमित x के लिए। विशेषतया, FPATAN परिभाषित किया गया है जब दोनों तर्क शून्य हैं:
    atan2(+0, +0) = +0;
    atan2(+0, −0) = +π;
    atan2(−0, +0) = −0;
    atan2(−0, −0) = −π.
यह परिभाषा हस्ताक्षरित शून्य की अवधारणा से संबंधित है।
  • स्रोत कोड के अतिरिक्त गणितीय लेखन में, जैसे किताबों और लेखों में, अंकन आर्कटन[15] और तन-1[16] उपयोग किया गया है; ये व्युत्क्रम त्रिकोणमितीय फलन  नोटेशन arctan और tan का संस्करण हैं-1. यह प्रयोग जटिल तर्क अंकन के अनुरूप है, जैसे कि Atan(y, x) = Arg(x + iy).
  • हेवलेट पैकर्ड गणक यंत्रपर, निर्देशांक को एक जटिल संख्या के रूप में मानें और फिर लें ARG. या << C->R ARG >> 'ATAN2' STO.
  • वैज्ञानिक गणक यंत्र पर फलन की गणना प्रायःदिए गए कोण के रूप में की जा सकती है (x, y) आयताकार निर्देशांक से ध्रुवीय निर्देशांक में परिवर्तित हो जाता है।
  • सांकेतिक गणित का समर्थन करने वाली प्रणालियाँ सामान्य रूप से के लिए एक अपरिभाषित मान लौटाती हैं atan2(0, 0) या अन्यथा संकेत दें कि असामान्य स्थिति उत्पन्न हो गई है।
  • शुद्ध काम से उपलब्ध मुफ्त गणित पुस्तकालय एफडीएलआईबीएम (स्वतंत्र रूप से वितरण योग्य एलआईबीएम) में स्रोत कोड है जो दिखाता है कि यह कैसे लागू होता है atan2 विभिन्न आईईईई असाधारण मूल्यों को संभालने सहित।
  • एक हार्डवेयर गुणक फलन के बिना प्रणाली के लिए atan2 कॉरडिक पद्धति द्वारा संख्यात्मक रूप से विश्वसनीय उपायों से लागू किया जा सकता है। इस प्रकार के कार्यान्वयन atan(y) शायद गणना करना चुनेंगे atan2(y, 1).

यह भी देखें

संदर्भ

  1. http://scipp.ucsc.edu/~haber/ph116A/arg_11.pdf[bare URL PDF]
  2. Organick, Elliott I. (1966). फोरट्रान चतुर्थ प्राइमर के लिए. Addison-Wesley. p. 42. कुछ प्रोसेसर ATAN2 नामक लाइब्रेरी फ़ंक्शन भी प्रदान करते हैं, जो दो तर्कों (विपरीत और आसन्न) का एक फ़ंक्शन है।
  3. "वुल्फ जंग: मंडल, जटिल गतिशीलता के लिए सॉफ्टवेयर". www.mndynamics.com. Retrieved 20 April 2018.
  4. Wind Direction Quick Reference, NCAR UCAR Earth Observing Laboratory. https://www.eol.ucar.edu/content/wind-direction-quick-reference
  5. Zhang, Taiping; Stackhouse, Paul W.; MacPherson, Bradley; Mikovitz, J. Colleen (2021). "एक सौर दिगंश सूत्र जो गणितीय कठोरता से समझौता किए बिना परिस्थितिजन्य उपचार को अनावश्यक बनाता है: गणितीय सेटअप, सबसोलर बिंदु और atan2 फ़ंक्शन के आधार पर एक सूत्र का अनुप्रयोग और विस्तार". Renewable Energy. 172: 1333–1340. doi:10.1016/j.renene.2021.03.047. S2CID 233631040.
  6. "माइक्रोसॉफ्ट एक्सेल Atan2 विधि". Microsoft.
  7. "लिब्रे ऑफिस कैल्क ATAN2". Libreoffice.org.
  8. "कार्य और सूत्र – दस्तावेज़ संपादक सहायता". support.google.com.
  9. "संख्याओं के त्रिकोणमितीय कार्यों की सूची". Apple.
  10. "एएनएसआई एसक्यूएल: 2008 मानक". Teradata. Archived from the original on 2015-08-20.
  11. "CLHS: फंक्शन ASIN, ACOS, ATAN". LispWorks.
  12. "गणित · जूलिया भाषा". docs.julialang.org.
  13. "अक्सर पूछे जाने वाले प्रश्न · जूलिया भाषा". docs.julialang.org.
  14. IA-32 Intel Architecture Software Developer’s Manual. Volume 2A: Instruction Set Reference, A-M, 2004.
  15. Burger, Wilhelm; Burge, Mark J. (7 July 2010). डिजिटल इमेज प्रोसेसिंग के सिद्धांत: मौलिक तकनीकें. Springer Science & Business Media. ISBN 978-1-84800-191-6. Retrieved 20 April 2018 – via Google Books.
  16. Glisson, Tildon H. (18 February 2011). सर्किट विश्लेषण और डिजाइन का परिचय. Springer Science & Business Media. ISBN 9789048194438. Retrieved 20 April 2018 – via Google Books.


बाहरी संबंध

atan2 के लिए अन्य कार्यान्वयन/कोड


टिप्पणियाँ

  1. Assuming the definitions and for any
  2. One can apply the periodicity of the result to map to another desired range, e.g. mapping to [0, 2π) by adding to the negative results.