द्विपद प्रमेय: Difference between revisions
No edit summary |
No edit summary |
||
| Line 99: | Line 99: | ||
== द्विपद गुणांक == | == द्विपद गुणांक == | ||
{{Main| | {{Main|द्विपद गुणांक}} | ||
द्विपद प्रसार में प्रकट होने वाले गुणांक द्विपद गुणांक कहलाते हैं। ये आमतौर पर लिखे जाते हैं <math>\tbinom{n}{k},</math> और उच्चारित{{mvar|n}} चुनें {{mvar|k}} | द्विपद प्रसार में प्रकट होने वाले गुणांक द्विपद गुणांक कहलाते हैं। ये आमतौर पर लिखे जाते हैं <math>\tbinom{n}{k},</math> और उच्चारित {{mvar|n}} चुनें {{mvar|k}} | ||
=== सूत्र === | === सूत्र === | ||
{{math|''x''<sup>''n''−''k''</sup>''y''<sup>''k''</sup>}} का गुणांक सूत्र द्वारा दिया गया है | |||
<math display="block">\binom{n}{k} = \frac{n!}{k! \; (n-k)!},</math> | <math display="block">\binom{n}{k} = \frac{n!}{k! \; (n-k)!},</math> | ||
जिसे फैक्टोरियल | जिसे फैक्टोरियल फलन {{math|''n''!}} के संदर्भ में परिभाषित किया गया है। समतुल्य रूप से यह सूत्र लिखा जा सकता है | ||
<math display="block">\binom{n}{k} = \frac{n (n-1) \cdots (n-k+1)}{k (k-1) \cdots 1} = \prod_{\ell=1}^k \frac{n-\ell+1}{\ell} = \prod_{\ell=0}^{k-1} \frac{n-\ell}{k - \ell}</math> | <math display="block">\binom{n}{k} = \frac{n (n-1) \cdots (n-k+1)}{k (k-1) \cdots 1} = \prod_{\ell=1}^k \frac{n-\ell+1}{\ell} = \prod_{\ell=0}^{k-1} \frac{n-\ell}{k - \ell}</math> | ||
भिन्न के अंश और हर दोनों में {{mvar|k}} गुणकों के साथ। हालांकि इस सूत्र में एक अंश शामिल है, द्विपद गुणांक <math>\tbinom{n}{k}</math> वास्तव में एक पूर्णांक है। | |||
=== मिश्रित व्याख्या === | === मिश्रित व्याख्या === | ||
द्विपद गुणांक <math> \tbinom nk </math> | द्विपद गुणांक <math> \tbinom nk </math> की व्याख्या {{mvar|n}}-तत्व सम्मुचय से {{mvar|k}} तत्वों को चुनने के तरीकों की संख्या के रूप में की जा सकती है। यह निम्नलिखित कारणों से द्विपदों से संबंधित है, यदि हम {{math|1=(''x'' + ''y'')<sup>''n''</sup>}} को गुणनफल के रूप में लिखते हैं। | ||
<math display="block">(x+y)(x+y)(x+y)\cdots(x+y),</math> | <math display="block">(x+y)(x+y)(x+y)\cdots(x+y),</math> | ||
फिर, वितरण नियम के अनुसार, | |||
फिर, वितरण नियम के अनुसार, गुणनफल के प्रत्येक द्विपद से {{mvar|x}} या {{mvar|y}} के प्रत्येक विकल्प के विस्तार में एक शब्द होगा। उदाहरण के लिए, प्रत्येक द्विपद से x को चुनने के संगत केवल एक पद {{math|''x''<sup>''n''</sup>}} होगा। हालांकि, {{math|''x''<sup>''n''−2</sup>''y''<sup>2</sup>}}, के रूप में {{mvar|y}}.योगदान करने के लिए बिल्कुल दो द्विपक्षीय चुनने के प्रत्येक तरीके के लिए एक हैं। इसलिए, समान पदों के संयोजन के बाद, का गुणांक {{math|''x''<sup>''n''−2</sup>''y''<sup>2</sup>}} {{mvar|n}}-तत्व सम्मुचय से बिल्कुल {{math|2}} तत्वों को चुनने के तरीकों की संख्या के बराबर होगा। | |||
== प्रमाण == | == प्रमाण == | ||
| Line 125: | Line 127: | ||
&= x^3 + 3x^2y + \underline{3xy^2} + y^3 | &= x^3 + 3x^2y + \underline{3xy^2} + y^3 | ||
\end{align}</math> | \end{align}</math> | ||
बराबरी <math>\tbinom{3}{2}=3</math> क्योंकि तीन | बराबरी <math>\tbinom{3}{2}=3</math> क्योंकि वहाँ तीन {{math|''x'',''y''}} लंबाई 3 के तार बिल्कुल दो वाईएस के साथ हैं, अर्थात्। | ||
<math display="block">xyy, \; yxy, \; yyx,</math> | <math display="block">xyy, \; yxy, \; yyx,</math> | ||
अर्थात्{{math|{{mset|1, 2, 3}}}},के तीन-तत्वों के 2-उपसमूहों के अनुरूप, | |||
<math display="block">\{2,3\},\;\{1,3\},\;\{1,2\}, </math> | <math display="block">\{2,3\},\;\{1,3\},\;\{1,2\}, </math> | ||
==== सामान्य | |||
जहां प्रत्येक उपसमुच्चय संबंधित स्ट्रिंग में {{mvar|y}} की स्थिति निर्दिष्ट करता है। | |||
* प्रतियों की संख्या {{math|1=''x''<sup>''n''−''k''</sup>''y''<sup>''k''</sup>}} विस्तार में | |||
* | ==== सामान्य स्थिति ==== | ||
* | {{math|1=(''x'' + ''y'')<sup>''n''</sup>}} का विस्तार करने पर {{math|1=''e''<sub>1</sub>''e''<sub>2</sub> ... ''e''<sub>''n''</sub>}} के रूप में {{math|2<sup>''n''</sup>}} उत्पादों का योग प्राप्त होता है, जहां प्रत्येक {{math|''e''<sub>''i''</sub>}}, {{mvar|''x''}} या{{mvar|y}} है पुनर्व्यवस्थित करने वाले कारकों से पता चलता है कि प्रत्येक उत्पाद {{math|0}} तथा {{mvar|n}} के बीच कुछ {{mvar|k}} के लिए {{math|''x''<sup>''n''−''k''</sup>''y''<sup>''k''</sup>}} के बराबर होते है। | ||
* <math>\tbinom{n}{k},</math> या तो परिभाषा के अनुसार, या यदि कोई परिभाषित कर रहा है तो एक संक्षिप्त संयोजी तर्क द्वारा <math>\tbinom{n}{k}</math> जैसा <math>\tfrac{n!}{k! (n-k)!}.</math> | * प्रतियों की संख्या {{math|1=''x''<sup>''n''−''k''</sup>''y''<sup>''k''</sup>}} के विस्तार में, | ||
यह द्विपद प्रमेय को सिद्ध करता है। | *बिल्कुल {{mvar|k}} स्थितियों में {{mvar|y}} वाले {{mvar|n}}-वर्ण {{math|''x'',''y''}} तार की संख्या में, | ||
* {{math|1={{mset|1, 2, ..., ''n''}}}} के {{mvar|k}}-तत्व सबसम्मुचय की संख्या है। | |||
* <math>\tbinom{n}{k},</math> या तो परिभाषा के अनुसार, या यदि कोई परिभाषित कर रहा है तो एक संक्षिप्त संयोजी तर्क द्वारा <math>\tbinom{n}{k}</math> जैसा <math>\tfrac{n!}{k! (n-k)!}.</math> यह द्विपद प्रमेय को सिद्ध करता है। | |||
=== आगमनात्मक प्रमाण === | === आगमनात्मक प्रमाण === | ||
गणितीय आगमन द्विपद प्रमेय का एक और प्रमाण देता है। | गणितीय आगमन द्विपद प्रमेय का एक और प्रमाण देता है। जब {{math|1=''n'' = 0}}, दोनों पक्ष बराबर {{math|1}}, जबसे {{math|1=''x''<sup>0</sup> = 1}} तथा <math>\tbinom{0}{0}=1.</math> अब मान लीजिए कि समानता दिए गए {{mvar|n}};के लिए है हम इसे साबित करेंगे {{math|1=''n'' + 1}}. के लिये {{math|1=''j'', ''k'' ≥ 0}}, होने देना {{math|1=[''f''(''x'', ''y'')]<sub>''j'',''k''</sub>}} के गुणांक को निरूपित करें {{math|1=''x''<sup>''j''</sup>''y''<sup>''k''</sup>}} बहुपद में {{math|1=''f''(''x'', ''y'')}}. आगमनात्मक परिकल्पना द्वारा, {{math|1=(''x'' + ''y'')<sup>''n''</sup>}} में बहुपद है {{mvar|x}} तथा {{mvar|y}} में एक बहुपद ऐसा है कि{{math|1=[(''x'' + ''y'')<sup>''n''</sup>]<sub>''j'',''k''</sub>}} है <math>\tbinom{n}{k}</math> यदि {{math|1=''j'' + ''k'' = ''n''}}, तथा {{mvar|0}} अन्यथा इकाई में, | ||
<math display="block"> (x+y)^{n+1} = x(x+y)^n + y(x+y)^n</math> | <math display="block"> (x+y)^{n+1} = x(x+y)^n + y(x+y)^n</math> | ||
दिखाता है {{math|1=(''x'' + ''y'')<sup>''n''+1</sup>}} | दिखाता है {{math|1=(''x'' + ''y'')<sup>''n''+1</sup>}} {{mvar|x}} तथा {{mvar|y}}, में भी एक बहुपद है, तथा | ||
<math display="block"> [(x+y)^{n+1}]_{j,k} = [(x+y)^n]_{j-1,k} + [(x+y)^n]_{j,k-1},</math> | <math display="block"> [(x+y)^{n+1}]_{j,k} = [(x+y)^n]_{j-1,k} + [(x+y)^n]_{j,k-1},</math> | ||
चूंकि अगर {{math|1=''j'' + ''k'' = ''n'' + 1}}, फिर {{math|1=(''j'' − 1) + ''k'' = ''n''}} तथा {{math|1=''j'' + (''k'' − 1) = ''n''}}. अब, दाएँ हाथ की ओर है | चूंकि अगर {{math|1=''j'' + ''k'' = ''n'' + 1}}, फिर {{math|1=(''j'' − 1) + ''k'' = ''n''}} तथा {{math|1=''j'' + (''k'' − 1) = ''n''}}. अब, दाएँ हाथ की ओर है | ||
<math display="block"> \binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k},</math> | <math display="block"> \binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k},</math> | ||
पास्कल की | पास्कल की इकाई में।<ref>[http://proofs.wiki/Binomial_theorem Binomial theorem] – inductive proofs {{webarchive |url=https://web.archive.org/web/20150224130932/http://proofs.wiki/Binomial_theorem |date=February 24, 2015 }}</ref> वहीं दूसरी ओर अगर {{math|1=''j'' + ''k'' ≠ ''n'' + 1}}, फिर {{math|1=(''j'' – 1) + ''k'' ≠ ''n''}} तथा {{math|1=''j'' + (''k'' – 1) ≠ ''n''}}, तो हम प्राप्त करते हैं {{math|1=0 + 0 = 0}}. इस प्रकार | ||
<math display="block">(x+y)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} x^{n+1-k} y^k,</math> | <math display="block">(x+y)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} x^{n+1-k} y^k,</math> | ||
जो आगमनात्मक परिकल्पना है {{math|1=''n'' + 1}} इसके लिए प्रतिस्थापित {{mvar|n}} और इस तरह आगमनात्मक | जो आगमनात्मक परिकल्पना है {{math|1=''n'' + 1}} इसके लिए प्रतिस्थापित {{mvar|n}} और इस तरह आगमनात्मक चरण को पूरा करता है। | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
=== न्यूटन का सामान्यीकृत द्विपद प्रमेय === | === न्यूटन का सामान्यीकृत द्विपद प्रमेय === | ||
{{Main| | {{Main|द्विपद श्रृंखला}} | ||
1665 के आसपास, आइजैक न्यूटन ने गैर-नकारात्मक पूर्णांकों के अलावा अन्य वास्तविक घातांकों की अनुमति देने के लिए द्विपद प्रमेय को सामान्यीकृत किया। | |||
1665 के आसपास, आइजैक न्यूटन ने गैर-नकारात्मक पूर्णांकों के अलावा अन्य वास्तविक घातांकों की अनुमति देने के लिए द्विपद प्रमेय को सामान्यीकृत किया। वही सामान्यीकरण सम्मिश्र संख्या के घातांकों पर भी लागू होता है। इस सामान्यीकरण में, परिमित योग को एक अनंत श्रृंखला से बदल दिया जाता है। ऐसा करने के लिए, किसी यादृच्छिक ऊपरी सूचकांक के साथ द्विपद गुणांकों को अर्थ देने की आवश्यकता होती है, जो भाज्य के साथ सामान्य सूत्र का उपयोग करके नहीं किया जा सकता है। हालाँकि, एक यादृच्छिक संख्या {{mvar|r}}, के लिए परिभाषित कर सकते हैं। | |||
<math display="block">{r \choose k}=\frac{r(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!},</math><!--This is not the same as \frac{r!}{k!(r−k)!}. Please do not change it.--> | <math display="block">{r \choose k}=\frac{r(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!},</math><!--This is not the same as \frac{r!}{k!(r−k)!}. Please do not change it.--> | ||
जहाँ पे <math>(\cdot)_k</math> पोचहैमर प्रतीक है, '''यहाँ एक गिरते फैक्टोरियल के लिए खड़ा है'''। यह सामान्य परिभाषाओं से सहमत है जब {{mvar|r}} एक गैर-ऋणात्मक पूर्णांक है। तो यदि {{mvar|x}} तथा {{mvar|y}} के साथ वास्तविक संख्याएँ {{math|{{abs|''x''}} > {{abs|''y''}}}} हैं<ref name=convergence group=Note>This is to guarantee convergence. Depending on {{mvar|r}}, the series may also converge sometimes when {{math|1={{abs|''x''}} = {{abs|''y''}}}}.</ref> तथा {{mvar|r}} कोई सम्मिश्र संख्या है, किसी के पास है, | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
(x+y)^r & =\sum_{k=0}^\infty {r \choose k} x^{r-k} y^k \\ | (x+y)^r & =\sum_{k=0}^\infty {r \choose k} x^{r-k} y^k \\ | ||
&= x^r + r x^{r-1} y + \frac{r(r-1)}{2!} x^{r-2} y^2 + \frac{r(r-1)(r-2)}{3!} x^{r-3} y^3 + \cdots. | &= x^r + r x^{r-1} y + \frac{r(r-1)}{2!} x^{r-2} y^2 + \frac{r(r-1)(r-2)}{3!} x^{r-3} y^3 + \cdots. | ||
\end{align}</math> | \end{align}</math> | ||
उदाहरण के लिए, {{math|1=''r'' = 1/2}} वर्गमूल के लिए निम्नलिखित श्रृंखला देता है | |||
<math display="block">\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 - \cdots</math> | कब {{mvar|r}} एक गैर-ऋणात्मक पूर्णांक, के लिए द्विपद गुणांक {{math|1=''k'' > ''r''}} शून्य हैं, इसलिए यह समीकरण सामान्य द्विपद प्रमेय तक कम हो जाता है, और अधिक से अधिक {{math|1=''r'' + 1}} शून्येतर पद होते हैं। {{mvar|r}}, के अन्य मूल्यों के लिए, श्रृंखला में आम तौर पर असीम रूप से कई गैर शून्य शब्द होते हैं। | ||
ले रहा {{math|1=''r'' = −1}}, सामान्यीकृत द्विपद श्रृंखला ज्यामितीय श्रृंखला | |||
<math display="block">(1+x)^{-1} = \frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \cdots</math> | उदाहरण के लिए, {{math|1=''r'' = 1/2}} वर्गमूल के लिए निम्नलिखित श्रृंखला देता है<math display="block">\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 - \cdots</math> | ||
ले रहा {{math|1=''r'' = −1}}, सामान्यीकृत द्विपद श्रृंखला ज्यामितीय श्रृंखला सूत्र देती है, जो {{math|{{abs|''x''}} < 1}}के लिए मान्य है<math display="block">(1+x)^{-1} = \frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \cdots</math> | |||
अधिक आम तौर पर, के साथ {{math|1=''s'' = −''r''}}: | अधिक आम तौर पर, के साथ {{math|1=''s'' = −''r''}}: | ||
<math display="block">\frac{1}{(1-x)^s} = \sum_{k=0}^\infty {s+k-1 \choose k} x^k.</math> | <math display="block">\frac{1}{(1-x)^s} = \sum_{k=0}^\infty {s+k-1 \choose k} x^k.</math> | ||
तो, उदाहरण के लिए, | तो, उदाहरण के लिए, जब {{math|1=''s'' = 1/2}}, | ||
<math display="block">\frac{1}{\sqrt{1+x}} = 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots</math> | <math display="block">\frac{1}{\sqrt{1+x}} = 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots</math> | ||
=== आगे सामान्यीकरण === | === आगे सामान्यीकरण === | ||
सामान्यीकृत द्विपद प्रमेय को उस मामले तक बढ़ाया जा सकता है जहां {{mvar|x}} तथा {{mvar|y}} जटिल संख्याएँ हैं। इस संस्करण के लिए, फिर से मान लेना चाहिए {{math|{{abs|''x''}} > {{abs|''y''}}}}<ref name=convergence group=Note />और की शक्तियों को परिभाषित करें {{math|1=''x'' + ''y''}} तथा {{mvar|x}} रेडियस की ओपन डिस्क पर परिभाषित एक होलोमॉर्फिक फंक्शन कॉम्प्लेक्स लॉगरिदम का उपयोग करना {{math|{{abs|''x''}}}} पर केंद्रित है {{mvar|x}}. सामान्यीकृत द्विपद प्रमेय तत्वों के लिए भी मान्य है {{mvar|x}} तथा {{mvar|y}} एक Banach बीजगणित के रूप में लंबे समय तक {{math|1=''xy'' = ''yx''}}, तथा {{mvar|x}} उलटा है, और {{math|{{norm|''y''/''x''}} < 1}}. | '''सामान्यीकृत द्विपद प्रमेय को उस मामले तक बढ़ाया जा सकता है जहां {{mvar|x}} तथा {{mvar|y}} जटिल संख्याएँ हैं। इस संस्करण के लिए, फिर से मान लेना चाहिए {{math|{{abs|''x''}} > {{abs|''y''}}}}<ref name="convergence" group="Note" />और की शक्तियों को परिभाषित करें {{math|1=''x'' + ''y''}} तथा {{mvar|x}} रेडियस की ओपन''' डिस्क पर परिभाषित एक होलोमॉर्फिक फंक्शन कॉम्प्लेक्स लॉगरिदम का उपयोग करना {{math|{{abs|''x''}}}} पर केंद्रित है {{mvar|x}}. सामान्यीकृत द्विपद प्रमेय तत्वों के लिए भी मान्य है {{mvar|x}} तथा {{mvar|y}} एक Banach बीजगणित के रूप में लंबे समय तक {{math|1=''xy'' = ''yx''}}, तथा {{mvar|x}} उलटा है, और {{math|{{norm|''y''/''x''}} < 1}}. | ||
द्विपद प्रमेय का एक संस्करण बहुपदों के निम्नलिखित पोचहैमर प्रतीक-जैसे परिवार के लिए मान्य है: किसी दिए गए वास्तविक स्थिरांक के लिए {{mvar|c}}, परिभाषित करना <math> x^{(0)} = 1 </math> तथा | द्विपद प्रमेय का एक संस्करण बहुपदों के निम्नलिखित पोचहैमर प्रतीक-जैसे परिवार के लिए मान्य है: किसी दिए गए वास्तविक स्थिरांक के लिए {{mvar|c}}, परिभाषित करना <math> x^{(0)} = 1 </math> तथा | ||
| Line 195: | Line 199: | ||
जहां गैर-नकारात्मक पूर्णांक सूचकांकों के सभी अनुक्रमों का योग लिया जाता है {{math|''k''<sub>1</sub>}} के माध्यम से {{math|''k''<sub>''m''</sub>}} ऐसा कि सभी का योग {{math|''k''<sub>''i''</sub>}} है{{mvar|n}}. (विस्तार में प्रत्येक पद के लिए, घातांकों को जोड़ना चाहिए{{mvar|n}}). गुणांक <math> \tbinom{n}{k_1,\cdots,k_m} </math> बहुपद गुणांक के रूप में जाना जाता है, और सूत्र द्वारा गणना की जा सकती है | जहां गैर-नकारात्मक पूर्णांक सूचकांकों के सभी अनुक्रमों का योग लिया जाता है {{math|''k''<sub>1</sub>}} के माध्यम से {{math|''k''<sub>''m''</sub>}} ऐसा कि सभी का योग {{math|''k''<sub>''i''</sub>}} है{{mvar|n}}. (विस्तार में प्रत्येक पद के लिए, घातांकों को जोड़ना चाहिए{{mvar|n}}). गुणांक <math> \tbinom{n}{k_1,\cdots,k_m} </math> बहुपद गुणांक के रूप में जाना जाता है, और सूत्र द्वारा गणना की जा सकती है | ||
<math display="block"> \binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! \cdot k_2! \cdots k_m!}.</math> | <math display="block"> \binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! \cdot k_2! \cdots k_m!}.</math> | ||
संयुक्त रूप से, बहुपद गुणांक <math>\tbinom{n}{k_1,\cdots,k_m}</math> एक | संयुक्त रूप से, बहुपद गुणांक <math>\tbinom{n}{k_1,\cdots,k_m}</math> एक सम्मुचय के विभाजन के विभिन्न तरीकों की संख्या की गणना करता है {{mvar|n}}-तत्व आकार के सबसम्मुचय को डिसजॉइंट सम्मुचय में सम्मुचय करता है {{math|1=''k''<sub>1</sub>, ..., ''k''<sub>''m''</sub>}}. | ||
=== {{anchor|multi-binomial}} बहु-द्विपद प्रमेय === | === {{anchor|multi-binomial}} बहु-द्विपद प्रमेय === | ||
| Line 208: | Line 212: | ||
सामान्य लीबनिज नियम देता है {{mvar|n}}द्विपद प्रमेय के समान रूप में दो कार्यों के उत्पाद का वें व्युत्पन्न:<ref>{{cite book |last=Olver |first=Peter J. |year=2000 |title=झूठ समूहों के विभेदक समीकरणों के अनुप्रयोग|publisher=Springer |pages=318–319 |isbn=9780387950006 |url=https://books.google.com/books?id=sI2bAxgLMXYC&pg=PA318 }}</ref> | सामान्य लीबनिज नियम देता है {{mvar|n}}द्विपद प्रमेय के समान रूप में दो कार्यों के उत्पाद का वें व्युत्पन्न:<ref>{{cite book |last=Olver |first=Peter J. |year=2000 |title=झूठ समूहों के विभेदक समीकरणों के अनुप्रयोग|publisher=Springer |pages=318–319 |isbn=9780387950006 |url=https://books.google.com/books?id=sI2bAxgLMXYC&pg=PA318 }}</ref> | ||
<math display="block">(fg)^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x).</math> | <math display="block">(fg)^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x).</math> | ||
यहाँ, सुपरस्क्रिप्ट {{math|(''n'')}} इंगित करता है {{mvar|n}}एक समारोह का व्युत्पन्न। अगर एक | यहाँ, सुपरस्क्रिप्ट {{math|(''n'')}} इंगित करता है {{mvar|n}}एक समारोह का व्युत्पन्न। अगर एक सम्मुचय {{math|1=''f''(''x'') = ''e''{{sup|''ax''}}}} तथा {{math|1=''g''(''x'') = ''e''{{sup|''bx''}}}}, और उसके बाद के सामान्य कारक को रद्द कर देता है {{math|''e''{{sup|(''a'' + ''b'')''x''}}}} परिणाम के दोनों पक्षों से, साधारण द्विपद प्रमेय पुनर्प्राप्त किया जाता है।<ref>{{cite book |last1=Spivey |first1=Michael Z. |title=द्विपद पहचान सिद्ध करने की कला|date=2019 |publisher=CRC Press |isbn=978-1351215800 |page=71}}</ref> | ||
Revision as of 02:01, 9 December 2022
प्रारंभिक बीजगणित में, द्विपद प्रमेय या द्विपद विस्तार एक द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद का विस्तार करना संभव है (x + y)n फॉर्म के योग में शर्तों को शामिल करने वाले axbyc है, जहां घातांक b तथा c के साथ गैर-ऋणात्मक पूर्णांक हैं b + c = n, और गुणांक a प्रत्येक पद का एक विशिष्ट सकारात्मक पूर्णांक है जो n और b पर निर्भर करता है। तथा उदाहरण के लिए, के लिए n = 4,
axbyc के पद में गुणांक a को द्विपद गुणांक या के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक n तथा b पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जा सकता है। ये नंबर साहचर्य में भी होते हैं, जहां उन तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए को अक्सर n और b के रूप में उच्चारित किया जाता है।
इतिहास
द्विपद प्रमेय के विशेष मामले कम से कम चौथी शताब्दी ईसा पूर्व से ज्ञात थे जब यूनानी गणितज्ञ यूक्लिड ने घातांक 2 के लिए द्विपद प्रमेय के विशेष मामले का उल्लेख किया था।.[1][2] इस बात के सबूत हैं कि घनफल के लिए द्विपद प्रमेय भारत में छठी शताब्दी ईस्वी तक जाना जाता था।[1][2]
बिना प्रतिस्थापन के n में k वस्तुओं के चयन तरीकों की संख्या को व्यक्त करने वाले संयोजी मात्राओं के रूप में द्विपद गुणांक, प्राचीन भारतीय गणितज्ञों के लिए रुचिकर थे। इस मिश्रित समस्या का सबसे पहला ज्ञात संदर्भ भारतीय गीतकार पिंगला द्वारा रचित चंदशास्त्र (सी. 200 ई.पू.) है, जिसमें इसके समाधान के लिए एक विधि सम्मिलित है।[3]: 230 10वीं शताब्दी ईस्वी के टिप्पणीकार हलायुध ने इस विधि की व्याख्या की है जिसे अब पास्कल के त्रिकोण के रूप में जाना जाता है।[3] छठी शताब्दी ईस्वी तक, भारतीय गणितज्ञ शायद यह जानते थे कि इसे भागफल के रूप में कैसे व्यक्त किया जाए ,[4] और इस नियम का स्पष्ट विवरण भास्कर द्वितीय द्वारा लिखित 12वीं शताब्दी के ग्रंथ लीलावती में पाया जा सकता है।[4]
हमारे ज्ञान के लिए द्विपद प्रमेय और द्विपद गुणांक की तालिका का पहला सूत्रीकरण, अल-काराजी के एक काम में पाया जा सकता है, जिसे अल-समावली ने अपने अल-बहिर में उद्धृत किया है।[5]Cite error: Closing </ref> missing for <ref> tag अल-काराजी ने द्विपद गुणांकों के त्रिकोणीय पैटर्न का वर्णन किया[6] और गणितीय प्रेरण के प्रारंभिक रूप का उपयोग करते हुए द्विपद प्रमेय और पास्कल त्रिकोण दोनों का गणितीय प्रमाण भी प्रदान किया।[6] फारसी कवि और गणितज्ञ उमर खय्याम शायद उच्च क्रम के सूत्र से परिचित थे, चूँकि, उनके कई गणितीय कार्य बर्बाद हो गए थे।[2] 13वीं शताब्दी के यांग हुई के गणितीय कार्यों में छोटी घात के द्विपद विस्तार ज्ञात थे[7] और चू शिह-चीह भी।[2] यांग हुई ने इस पद्धति का श्रेय जिया जियान के 11वीं शताब्दी के बहुत पहले के पाठ को दिया है, हालांकि अब वे लेख भी खो गए हैं।[3]: 142
1544 में, माइकल स्टिफ़ेल ने द्विपद गुणांक शब्द पेश किया और दिखाया कि उन्हें कैसे व्यक्त किया जाए के अनुसार पास्कल के त्रिकोण के माध्यम से।[8] ब्लेज़ पास्कल ने अपने ट्रैटे डू त्रिकोण अंकगणित में व्यापक रूप से नामांकित त्रिभुज का अध्ययन किया।[9] हालांकि, संख्याओं का पैटर्न पहले से ही देर से पुनर्जागरण के यूरोपीय गणितज्ञों के लिए जाना जाता था, जिसमें स्टिफ़ेल, निकोलो फोंटाना टारटाग्लिया और साइमन स्टीविन सम्मिलित थे।[8]
आइजैक न्यूटन को आम तौर पर सामान्यीकृत द्विपद प्रमेय का श्रेय दिया जाता है, जो किसी भी तर्कसंगत घातांक के लिए मान्य होता है।[8][10]
कथन
प्रमेय के अनुसार, x + y फॉर्म के योग में किसी भी गैर-ऋणात्मक पूर्णांक घात का विस्तार करना संभव है
द्विपद सूत्र का एक सरल संस्करण y के लिए 1 को प्रतिस्थापित करके प्राप्त किया जाता है, ताकि इसमें केवल एक चर सम्मिलित कर के, इसे सूत्र के रूप में सूत्र पढ़ा जा सके
उदाहरण
यहाँ द्विपद प्रमेय के पहले कुछ मामले हैं
- पदों में x के घातांक n, n − 1, ..., 2, 1, 0 हैं, अंतिम पद में अंतर्निहित रूप से x0 = 1,
- शब्दों में y के घातांक 0, 1, 2, ..., n − 1, n हैं, पहले पद में स्पष्ट रूप से y0 = 1) सम्मिलित है,
- गुणांक पास्कल के त्रिभुज की nवीं पंक्ति बनाते हैं
- समान पदों के संयोजन से पहले, विस्तार में 2n वाँ पद xiyj नहीं दिखाया गया
- समान पदों के संयोजन के बाद, n + 1 पद होते हैं, और उनके गुणांकों का योग 2n.होता है।
अंतिम दो बिंदुओं को दर्शाने वाला एक उदाहरण
साथ .
y के विशिष्ट धनात्मक मान के साथ एक सरल उदाहरण
ज्यामितीय व्याख्या
a तथा b के सकारात्मक मूल्यों के लिए द्विपद प्रमेय के साथ n = 2 ज्यामितीय रूप से स्पष्ट तथ्य यह है कि भुजा a + b वाले वर्ग को भुजा a वाले वर्ग, भुजा b,वाले वर्ग और भुजाओं a तथा b.वाले दो आयतों में काटा जा सकता है। n = 3 के साथ, प्रमेय कहता है कि भुजा a + b के घन को भुजा a के घन, भुजा b के घन, तीन a × a × b आयताकार बक्से, और तीन a × b × b आयताकार बक्से में काटा जा सकता है।
कलन में, यह चित्र अवकलज का ज्यामितीय प्रमाण भी देता है [12] अगर कोई सम्मुचय करता है तथा b को a में एक अतिसूक्ष्म परिवर्तन के रूप में व्याख्या करना, यह चित्र एक n-आयामी अतिविम के आयतन में अतिसूक्ष्म परिवर्तन को दर्शाता है, जहां रैखिक शब्द का गुणांक (में ) है n फेसेस का क्षेत्र, प्रत्येक का आयाम n − 1 है
एक अंतर भागफल और सीमा लेने के माध्यम से व्युत्पन्न की परिभाषा में इसे प्रतिस्थापित करने का अर्थ है कि उच्च क्रम की शर्तें, और उच्चतर, नगण्य हो जाते हैं, और सूत्र प्राप्त करते हैं के रूप में व्याख्या की है
किसी n-घन के आयतन में परिवर्तन की अतिसूक्ष्म दर, भुजा की लंबाई के रूप में भिन्न होती है, इसके (n − 1) विमीय फलकों के n का क्षेत्रफ है।
यदि कोई इस चित्र को एकीकृत करता है, जो कलन के मौलिक प्रमेय को लागू करने के अनुरूप है, तो उससे कैवलियरी का चतुर्भुज सूत्र, समाकलन प्राप्त होता है - विवरण के लिए कैवलियरी के चतुर्भुज सूत्र का प्रमाण देखें।[12]
द्विपद गुणांक
द्विपद प्रसार में प्रकट होने वाले गुणांक द्विपद गुणांक कहलाते हैं। ये आमतौर पर लिखे जाते हैं और उच्चारित n चुनें k
सूत्र
xn−kyk का गुणांक सूत्र द्वारा दिया गया है
मिश्रित व्याख्या
द्विपद गुणांक की व्याख्या n-तत्व सम्मुचय से k तत्वों को चुनने के तरीकों की संख्या के रूप में की जा सकती है। यह निम्नलिखित कारणों से द्विपदों से संबंधित है, यदि हम (x + y)n को गुणनफल के रूप में लिखते हैं।
फिर, वितरण नियम के अनुसार, गुणनफल के प्रत्येक द्विपद से x या y के प्रत्येक विकल्प के विस्तार में एक शब्द होगा। उदाहरण के लिए, प्रत्येक द्विपद से x को चुनने के संगत केवल एक पद xn होगा। हालांकि, xn−2y2, के रूप में y.योगदान करने के लिए बिल्कुल दो द्विपक्षीय चुनने के प्रत्येक तरीके के लिए एक हैं। इसलिए, समान पदों के संयोजन के बाद, का गुणांक xn−2y2 n-तत्व सम्मुचय से बिल्कुल 2 तत्वों को चुनने के तरीकों की संख्या के बराबर होगा।
प्रमाण
संयोजन प्रमाण
उदाहरण
का गुणांक xy2 में
जहां प्रत्येक उपसमुच्चय संबंधित स्ट्रिंग में y की स्थिति निर्दिष्ट करता है।
सामान्य स्थिति
(x + y)n का विस्तार करने पर e1e2 ... en के रूप में 2n उत्पादों का योग प्राप्त होता है, जहां प्रत्येक ei, x याy है पुनर्व्यवस्थित करने वाले कारकों से पता चलता है कि प्रत्येक उत्पाद 0 तथा n के बीच कुछ k के लिए xn−kyk के बराबर होते है।
- प्रतियों की संख्या xn−kyk के विस्तार में,
- बिल्कुल k स्थितियों में y वाले n-वर्ण x,y तार की संख्या में,
- {1, 2, ..., n} के k-तत्व सबसम्मुचय की संख्या है।
- या तो परिभाषा के अनुसार, या यदि कोई परिभाषित कर रहा है तो एक संक्षिप्त संयोजी तर्क द्वारा जैसा यह द्विपद प्रमेय को सिद्ध करता है।
आगमनात्मक प्रमाण
गणितीय आगमन द्विपद प्रमेय का एक और प्रमाण देता है। जब n = 0, दोनों पक्ष बराबर 1, जबसे x0 = 1 तथा अब मान लीजिए कि समानता दिए गए n;के लिए है हम इसे साबित करेंगे n + 1. के लिये j, k ≥ 0, होने देना [f(x, y)]j,k के गुणांक को निरूपित करें xjyk बहुपद में f(x, y). आगमनात्मक परिकल्पना द्वारा, (x + y)n में बहुपद है x तथा y में एक बहुपद ऐसा है कि[(x + y)n]j,k है यदि j + k = n, तथा 0 अन्यथा इकाई में,
सामान्यीकरण
न्यूटन का सामान्यीकृत द्विपद प्रमेय
1665 के आसपास, आइजैक न्यूटन ने गैर-नकारात्मक पूर्णांकों के अलावा अन्य वास्तविक घातांकों की अनुमति देने के लिए द्विपद प्रमेय को सामान्यीकृत किया। वही सामान्यीकरण सम्मिश्र संख्या के घातांकों पर भी लागू होता है। इस सामान्यीकरण में, परिमित योग को एक अनंत श्रृंखला से बदल दिया जाता है। ऐसा करने के लिए, किसी यादृच्छिक ऊपरी सूचकांक के साथ द्विपद गुणांकों को अर्थ देने की आवश्यकता होती है, जो भाज्य के साथ सामान्य सूत्र का उपयोग करके नहीं किया जा सकता है। हालाँकि, एक यादृच्छिक संख्या r, के लिए परिभाषित कर सकते हैं।
कब r एक गैर-ऋणात्मक पूर्णांक, के लिए द्विपद गुणांक k > r शून्य हैं, इसलिए यह समीकरण सामान्य द्विपद प्रमेय तक कम हो जाता है, और अधिक से अधिक r + 1 शून्येतर पद होते हैं। r, के अन्य मूल्यों के लिए, श्रृंखला में आम तौर पर असीम रूप से कई गैर शून्य शब्द होते हैं।
उदाहरण के लिए, r = 1/2 वर्गमूल के लिए निम्नलिखित श्रृंखला देता है
आगे सामान्यीकरण
सामान्यीकृत द्विपद प्रमेय को उस मामले तक बढ़ाया जा सकता है जहां x तथा y जटिल संख्याएँ हैं। इस संस्करण के लिए, फिर से मान लेना चाहिए |x| > |y|[Note 1]और की शक्तियों को परिभाषित करें x + y तथा x रेडियस की ओपन डिस्क पर परिभाषित एक होलोमॉर्फिक फंक्शन कॉम्प्लेक्स लॉगरिदम का उपयोग करना |x| पर केंद्रित है x. सामान्यीकृत द्विपद प्रमेय तत्वों के लिए भी मान्य है x तथा y एक Banach बीजगणित के रूप में लंबे समय तक xy = yx, तथा x उलटा है, और ||y/x|| < 1.
द्विपद प्रमेय का एक संस्करण बहुपदों के निम्नलिखित पोचहैमर प्रतीक-जैसे परिवार के लिए मान्य है: किसी दिए गए वास्तविक स्थिरांक के लिए c, परिभाषित करना तथा
अधिक सामान्यतः, एक अनुक्रम बहुपद को द्विपद प्रकार का कहा जाता है यदि
- सभी के लिए ,
- , तथा
- सभी के लिए , , तथा .
एक संचालिका बहुपदों के स्थान पर अनुक्रम का आधार संचालक कहा जाता है यदि तथा सभी के लिए . एक क्रम द्विपद है अगर और केवल अगर इसका आधार ऑपरेटर डेल्टा ऑपरेटर है।[15] लिख रहे हैं शिफ्ट के लिए ऑपरेटर, बहुपदों के उपरोक्त पोचममेर परिवारों के अनुरूप डेल्टा ऑपरेटर पिछड़े अंतर हैं के लिये , के लिए सामान्य व्युत्पन्न , और आगे का अंतर के लिये .
बहुपद प्रमेय
द्विपद प्रमेय को दो से अधिक शब्दों वाली राशियों की शक्तियों को शामिल करने के लिए सामान्यीकृत किया जा सकता है। सामान्य संस्करण है
बहु-द्विपद प्रमेय
अधिक आयामों में कार्य करते समय, द्विपद व्यंजकों के गुणनफलों से निपटना अक्सर उपयोगी होता है। द्विपद प्रमेय द्वारा यह बराबर है
जनरल लीबनिज नियम
सामान्य लीबनिज नियम देता है nद्विपद प्रमेय के समान रूप में दो कार्यों के उत्पाद का वें व्युत्पन्न:[16]
अनुप्रयोग
बहु-कोण पहचान
जटिल संख्याओं के लिए द्विपद प्रमेय को डी मोइवर के सूत्र के साथ जोड़ा जा सकता है ताकि त्रिकोणमितीय पहचानों की सूची#बहु-कोण सूत्र|ज्या और कोसाइन के लिए बहु-कोण सूत्र प्राप्त हो सकें। डी मोइवर के सूत्र के अनुसार,
=== ई === के लिए श्रृंखला
ई (गणितीय स्थिरांक) | संख्या eअक्सर सूत्र द्वारा परिभाषित किया जाता है
kk}}इस राशि का वाँ पद है
संभावना
द्विपद प्रमेय ऋणात्मक द्विपद बंटन के संभाव्यता द्रव्यमान फलन से निकटता से संबंधित है। स्वतंत्र बर्नौली परीक्षणों के एक (गणनीय) संग्रह की संभावना सफलता की संभावना के साथ सब नहीं हो रहा है
इस मात्रा के लिए एक ऊपरी सीमा है [18]
अमूर्त बीजगणित में
द्विपद प्रमेय आम तौर पर दो तत्वों के लिए अधिक मान्य है x तथा y एक रिंग_ (गणित), या यहां तक कि एक सेमिरिंग में, बशर्ते कि xy = yx. उदाहरण के लिए, यह दो के लिए है n × n मेट्रिसेस, बशर्ते कि वे मेट्रिसेस कम्यूट करें; यह एक मैट्रिक्स की कंप्यूटिंग शक्तियों में उपयोगी है।[19] द्विपद प्रमेय को बहुपद अनुक्रम कहकर कहा जा सकता है {1, x, x2, x3, ...} द्विपद प्रकार का है।
लोकप्रिय संस्कृति में
- कॉमिक ओपेरा द पाइरेट्स ऑफ पेन्जेंस में मेजर-जनरल के गाने में द्विपद प्रमेय का उल्लेख किया गया है।
- शर्लक होम्स द्वारा प्रोफेसर मोरियार्टी का वर्णन द्विपद प्रमेय पर एक ग्रंथ लिखे जाने के रूप में किया गया है।
- पुर्तगाली कवि फर्नांडो पेसोआ ने अल्वारो डी कैम्पोस के विषम नाम का उपयोग करते हुए लिखा है कि न्यूटन का द्विपद वीनस डी मिलो जितना ही सुंदर है। सच तो यह है कि कम ही लोग इसे नोटिस करते हैं।[20]
- 2014 की फिल्म द इमिटेशन गेम में, एलन ट्यूरिंग ने बैलेचले पार्क में कमांडर डेनिस्टन के साथ अपनी पहली मुलाकात के दौरान द्विपद प्रमेय पर आइजैक न्यूटन के काम का संदर्भ दिया।
यह भी देखें
- द्विपद सन्निकटन
- द्विपद वितरण
- द्विपद व्युत्क्रम प्रमेय
- स्टर्लिंग का अनुमान
- चर्म शोधन प्रमेय
टिप्पणियाँ
संदर्भ
- ↑ 1.0 1.1 Weisstein, Eric W. "द्विपद प्रमेय". Wolfram MathWorld.
- ↑ 2.0 2.1 2.2 2.3 Coolidge, J. L. (1949). "द्विपद प्रमेय की कहानी". The American Mathematical Monthly. 56 (3): 147–157. doi:10.2307/2305028. JSTOR 2305028.
- ↑ 3.0 3.1 3.2 Jean-Claude Martzloff; S.S. Wilson; J. Gernet; J. Dhombres (1987). चीनी गणित का इतिहास. Springer.
- ↑ 4.0 4.1 Biggs, N. L. (1979). "कॉम्बिनेटरिक्स की जड़ें". Historia Math. 6 (2): 109–136. doi:10.1016/0315-0860(79)90074-0.
- ↑ "द्विपद प्रमेय: मध्यकालीन इस्लामी गणित में एक व्यापक अवधारणा" (PDF). core.ac.uk. p. 401. Archived (PDF) from the original on 2022-10-09. Retrieved 2019-01-08.
- ↑ 6.0 6.1 O'Connor, John J.; Robertson, Edmund F., "Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji", MacTutor History of Mathematics archive, University of St Andrews
- ↑ Landau, James A. (1999-05-08). "हिस्टोरिया मैटमैटिका मेलिंग लिस्ट आर्काइव: पुन: [एचएम] पास्कल का त्रिभुज" (mailing list email). Archives of Historia Matematica. Retrieved 2007-04-13.
- ↑ 8.0 8.1 8.2 Kline, Morris (1972). गणितीय सोच का इतिहास. Oxford University Press. p. 273.
- ↑ Katz, Victor (2009). "14.3: Elementary Probability". गणित का इतिहास: एक परिचय. Addison-Wesley. p. 491. ISBN 978-0-321-38700-4.
- ↑ Bourbaki, N. (18 November 1998). गणित पेपरबैक के इतिहास के तत्व. J. Meldrum (Translator). ISBN 978-3-540-64767-6.
- ↑ भौतिकविदों के लिए गणितीय तरीके. 2013. p. 34. doi:10.1016/c2009-0-30629-7. ISBN 9780123846549.
- ↑ 12.0 12.1 Barth, Nils R. (2004). "एन-क्यूब की समरूपता द्वारा कैवलियरी के चतुर्भुज सूत्र की गणना". The American Mathematical Monthly. 111 (9): 811–813. doi:10.2307/4145193. ISSN 0002-9890. JSTOR 4145193.
- ↑ Binomial theorem – inductive proofs Archived February 24, 2015, at the Wayback Machine
- ↑ Sokolowsky, Dan; Rennie, Basil C. (February 1979). "समस्या 352". Crux Mathematicorum. 5 (2): 55–56.
- ↑ Aigner, Martin (1997) [Reprint of the 1979 Edition]. संयोजन सिद्धांत. Springer. p. 105. ISBN 3-540-61787-6.
- ↑ Olver, Peter J. (2000). झूठ समूहों के विभेदक समीकरणों के अनुप्रयोग. Springer. pp. 318–319. ISBN 9780387950006.
- ↑ Spivey, Michael Z. (2019). द्विपद पहचान सिद्ध करने की कला. CRC Press. p. 71. ISBN 978-1351215800.
- ↑ Cover, Thomas M.; Thomas, Joy A. (2001-01-01). आधार - सामग्री संकोचन (in English). John Wiley & Sons, Inc. p. 320. doi:10.1002/0471200611.ch5. ISBN 9780471200611.
- ↑ Artin, Algebra, 2nd edition, Pearson, 2018, equation (4.7.11).
- ↑ "पेसोआ पुरालेख: संपादित कार्य - न्यूटन का द्विपद वीनस डी मिलो जितना सुंदर है।". arquivopessoa.net.
अग्रिम पठन
- Bag, Amulya Kumar (1966). "Binomial theorem in ancient India". Indian J. History Sci. 1 (1): 68–74.
- Graham, Ronald; Knuth, Donald; Patashnik, Oren (1994). "(5) Binomial Coefficients". Concrete Mathematics (2nd ed.). Addison Wesley. pp. 153–256. ISBN 978-0-201-55802-9. OCLC 17649857.
इस पेज में लापता आंतरिक लिंक की सूची
बाहरी संबंध
- Solomentsev, E.D. (2001) [1994], "Newton binomial", Encyclopedia of Mathematics, EMS Press
- Binomial Theorem by Stephen Wolfram, and "Binomial Theorem (Step-by-Step)" by Bruce Colletti and Jeff Bryant, Wolfram Demonstrations Project, 2007.
- This article incorporates material from inductive proof of binomial theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.