टौटोक्रोन वक्र: Difference between revisions
No edit summary Tag: Manual revert |
|||
| (22 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
{{short description|Concept in geometry}} | {{short description|Concept in geometry}} | ||
[[File:Tautochrone curve.gif|300px|right|thumb|चार गेंदें अलग-अलग स्थिति से एक चक्रज वक्र नीचे स्लाइड करती हैं, लेकिन वे एक ही समय में तल पर पहुंचती हैं। नीला तीर वक्र के साथ बिंदुओं के त्वरण को दर्शाता है। शीर्ष पर समय-स्थिति आरेख है।]] | [[File:Tautochrone curve.gif|300px|right|thumb|चार गेंदें अलग-अलग स्थिति से एक चक्रज वक्र नीचे स्लाइड करती हैं, लेकिन वे एक ही समय में तल पर पहुंचती हैं। नीला तीर वक्र के साथ बिंदुओं के त्वरण को दर्शाता है। शीर्ष पर समय-स्थिति आरेख है।]] | ||
[[File:Objects representing tautochrone curve 03.gif|thumb|300px|टाटोक्रोन वक्र का प्रतिनिधित्व करने वाली वस्तुएँ]]आइसोक्रोन कर्व (यूनानी उपसर्ग से टॉटो- जिसका अर्थ है समान या आइसो- बराबर, और क्रोनो टाइम) वह कर्व है जिसके लिए किसी वस्तु द्वारा एकसमान गुरुत्व में घर्षण के बिना उसके निम्नतम बिंदु तक फिसलने में लगने वाला समय उसके शुरुआती बिंदु से स्वतंत्र होता है। वक्र एक [[चक्रज]] है, और [[गुरुत्वाकर्षण]] के समय त्वरण पर त्रिज्या के [[वर्गमूल]] (वृत्त जो चक्रवात उत्पन्न करता है) के वर्गमूल के बराबर होता है। टॉटोक्रोन वक्र [[ब्राचिस्टोक्रोन वक्र]] से संबंधित है, जो एक चक्रज भी है। | [[File:Objects representing tautochrone curve 03.gif|thumb|300px|टाटोक्रोन वक्र का प्रतिनिधित्व करने वाली वस्तुएँ]]एक '''टॉटोक्रोन या आइसोक्रोन''' '''कर्व''' (यूनानी उपसर्ग से '''टॉटो'''- जिसका अर्थ है समान या '''आइसो'''- बराबर, और क्रोनो टाइम है ) वह कर्व है जिसके लिए किसी वस्तु द्वारा एकसमान गुरुत्व में घर्षण के बिना उसके निम्नतम बिंदु तक फिसलने में लगने वाला समय उसके शुरुआती बिंदु से स्वतंत्र होता है। वक्र एक [[चक्रज]] है, और [[गुरुत्वाकर्षण]] के समय त्वरण पर त्रिज्या के [[वर्गमूल]] (वृत्त जो चक्रवात उत्पन्न करता है) के वर्गमूल के बराबर होता है। टॉटोक्रोन वक्र [[ब्राचिस्टोक्रोन वक्र]] से संबंधित है, जो एक चक्रज भी है। | ||
== टॉटोक्रोन समस्या == | == टॉटोक्रोन समस्या == | ||
[[File:Huygens - Horologium oscillatorium, sive De motu pendulorum ad horologia aptato demonstrationes geometricae, 1673 - 869780.jpeg|thumb|upright|[[क्रिस्टियान ह्यूजेंस]], ऑसिलेटिंग क्लॉक, 1673]] | [[File:Huygens - Horologium oscillatorium, sive De motu pendulorum ad horologia aptato demonstrationes geometricae, 1673 - 869780.jpeg|thumb|upright|[[क्रिस्टियान ह्यूजेंस]], ऑसिलेटिंग क्लॉक, 1673]] | ||
{{Quote box|width=30%| | {{Quote box|width=30%| | ||
quote= | quote=पेक्वॉड के बाएं हाथ के ट्राय-पॉट में था, साबुन के पत्थर के साथ मेरे चारों ओर चक्कर लगाते हुए, मैं पहली बार परोक्ष रूप से इस उल्लेखनीय तथ्य से प्रभावित हुआ था, कि ज्यामिति में चक्रज के साथ-साथ चलने वाले सभी पिंड, उदाहरण के लिए मेरा साबुन का पत्थर, से नीचे उतरेंगे किसी भी बिंदु पर ठीक उसी समय में। | ||
|source=''[[ | |source=''[[मोबी डिक]]'' [[हरमन मेलविल]] द्वारा, 1851}} | ||
टौटोक्रोन समस्या, इस वक्र की पहचान करने का प्रयास, 1659 में क्रिस्टियान ह्यूजेंस द्वारा हल किया गया था। उन्होंने मूल रूप से 1673 में प्रकाशित अपने होरोलोजियम ऑस्किलेटोरियम में ज्यामितीय रूप से साबित किया था कि वक्र एक चक्रवात है। | टौटोक्रोन समस्या, इस वक्र की पहचान करने का प्रयास, 1659 में '''क्रिस्टियान ह्यूजेंस''' द्वारा हल किया गया था। उन्होंने मूल रूप से 1673 में प्रकाशित अपने '''होरोलोजियम ऑस्किलेटोरियम''' में ज्यामितीय रूप से साबित किया था कि वक्र एक चक्रवात है। | ||
{{Blockquote| | {{Blockquote|एक चक्रज पर जिसकी धुरी लंबवत पर खड़ी होती है और जिसका शीर्ष तल पर स्थित होता है, अवतरण के समय, जिसमें शरीर चक्रवात पर किसी भी बिंदु से प्रस्थान करने के बाद शीर्ष पर सबसे निचले बिंदु पर पहुंचता है, प्रत्येक के बराबर होता है अन्य ...<ref>{{उद्धरण पुस्तक |अंतिम=ब्लैकवेल |प्रथम=रिचर्ड जे. =0-8138-0933-9 |at= भाग II, प्रस्ताव XXV, पृष्ठ 69}}</ref>}} | ||
चक्रज त्रिज्या <math>r</math> के एक वृत्त पर | चक्रज त्रिज्या <math>r</math> के एक वृत्त पर बिंदु द्वारा दिया जाता है, जो एक वक्र का पता लगाता है, क्योंकि वृत्त x अक्ष के साथ घूमता है, जैसे: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
x &= r(\theta - \sin \theta) \\ | x &= r(\theta - \sin \theta) \\ | ||
y &= r(1 - \cos \theta), | y &= r(1 - \cos \theta), | ||
\end{align}</math> | \end{align}</math> | ||
ह्यूजेंस ने यह भी साबित किया कि अवतरण का समय उस समय के बराबर होता है जब एक पिंड ऊर्ध्वाधर रूप से गिरने में उतना ही समय लेता है जितना कि वृत्त के व्यास के रूप में एक चक्र उत्पन्न करता है, जिसे <math>\pi / 2</math> | ह्यूजेंस ने यह भी साबित किया कि अवतरण का समय उस समय के बराबर होता है, जब एक पिंड ऊर्ध्वाधर रूप से गिरने में उतना ही समय लेता है जितना कि वृत्त के व्यास के रूप में एक चक्र उत्पन्न करता है, जिसे <math>\pi / 2</math> से गुणा किया जाता है। आधुनिक शब्दों में, इसका अर्थ है, कि अवतरण का समय <math display="inline">\pi \sqrt{r/g}</math>, है, जहाँ <math>r</math> वृत्त की त्रिज्या है, जो चक्रवात उत्पन्न करता है, और <math>g</math> [[पृथ्वी का गुरुत्वाकर्षण]] है, या अधिक सटीक रूप से, पृथ्वी का गुरुत्वाकर्षण त्वरण है। | ||
[[File:Isochronous cycloidal pendula.gif|thumb|विभिन्न आयामों के साथ पांच आइसोक्रोनस साइक्लोइडल पेंडुलम]]बाद में इस समाधान का उपयोग ब्राचिस्टोक्रोन वक्र की समस्या को हल करने के लिए किया गया था। जोहान बर्नौली ने एक पेपर (एक्टा एरुडिटोरियम, 1697) में समस्या का समाधान किया। | [[File:Isochronous cycloidal pendula.gif|thumb|विभिन्न आयामों के साथ पांच आइसोक्रोनस साइक्लोइडल पेंडुलम]]बाद में इस समाधान का उपयोग '''ब्राचिस्टोक्रोन वक्र''' की समस्या को हल करने के लिए किया गया था। '''जोहान बर्नौली''' ने एक पेपर (एक्टा एरुडिटोरियम, 1697) में समस्या का समाधान किया। | ||
[[File:CyloidPendulum.png|right|thumb|एक [[साइक्लोइडल पेंडुलम]] का योजनाबद्ध]]टौटोक्रोन समस्या | [[File:CyloidPendulum.png|right|thumb|एक [[साइक्लोइडल पेंडुलम]] का योजनाबद्ध]]टौटोक्रोन समस्या ह्यूजेंस द्वारा अधिक बारीकी से अध्ययन किया गया था जब यह महसूस किया गया था कि एक पेंडुलम, जो एक गोलाकार पथ का अनुसरण करता है, आइसोक्रोनस नहीं था और इस प्रकार उसकी पेंडुलम घड़ी अलग-अलग समय बताएगी, जो इस बात पर निर्भर करता है कि पेंडुलम कितनी दूर तक घूमता है। सही रास्ते का निर्धारण करने के बाद, क्रिस्टियान ह्यूजेन्स ने पेंडुलम घड़ियों को बनाने का प्रयास किया जो बॉब को निलंबित करने के लिए एक स्ट्रिंग का इस्तेमाल करते थे और स्ट्रिंग के शीर्ष के निकट गोलों को कसने के लिए टॉटोक्रोन वक्र के मार्ग को बदलते थे। ये प्रयास कई कारणों से अनुपयोगी साबित हुए। सबसे पहले, स्ट्रिंग का झुकाव घर्षण का कारण बनता है, दूसरा, समय की त्रुटियों के बहुत अधिक महत्वपूर्ण स्रोत थे जो किसी भी सैद्धांतिक सुधार को अभिभूत कर देते थे जो कि टौटोक्रोन वक्र पर यात्रा करने में मदद करता है। अंत में, एक पेंडुलम की "परिपत्र त्रुटि" कम हो जाती है, क्योंकि झूले की लंबाई कम हो जाती है, इसलिए घड़ी की अशुद्धि के इस स्रोत को बहुत कम कर सकता है। | ||
बाद में, गणितज्ञ जोसेफ लुइस लाग्रेंज और लियोनहार्ड यूलर ने समस्या का एक विश्लेषणात्मक समाधान प्रदान किया। | बाद में, गणितज्ञ '''जोसेफ लुइस लाग्रेंज''' और '''लियोनहार्ड यूलर''' ने समस्या का एक विश्लेषणात्मक समाधान प्रदान किया। | ||
== लग्रांजी समाधान == | == लग्रांजी समाधान == | ||
यदि कण की स्थिति को सबसे कम बिंदु से | यदि कण की स्थिति को सबसे कम बिंदु से आर्क की लंबाई s(t) द्वारा पैरामीट्रिज किया जाता है, तो गतिज ऊर्जा <math>\dot{s}^2.</math> स्थितिज ऊर्जा ऊँचाई {{math|''y''(''s'')}}.के समानुपाती होती है। वक्र एक समकालिक रेखा हो जाती है, यदि लैग्रेंजियन एक सरल आवर्त दोलक है तो : वक्र की ऊंचाई चाप की लंबाई के वर्ग के समानुपाती होनी चाहिए। | ||
{{block indent|1=<math> y(s) = s^2, </math>}} | {{block indent|1=<math> y(s) = s^2, </math>}} | ||
| Line 36: | Line 36: | ||
dy^2 &= 4s^2 \,ds^2 = 4y \left(dx^2 + dy^2\right), | dy^2 &= 4s^2 \,ds^2 = 4y \left(dx^2 + dy^2\right), | ||
\end{align}</math>}} | \end{align}</math>}} | ||
जो s को हटा देता है और dx और dy के लिए अवकल समीकरण छोड़ देता है। समाधान खोजने के लिए, x को y के संदर्भ में एकीकृत करें: | जो s को हटा देता है और dx और dy के लिए अवकल समीकरण को छोड़ देता है। समाधान खोजने के लिए, x को y के संदर्भ में एकीकृत करें: | ||
{{block indent|1=<math>\begin{align} | {{block indent|1=<math>\begin{align} | ||
\frac{dx}{dy} &= \frac{\sqrt{1-4y}}{2\sqrt{y}}, \\ | \frac{dx}{dy} &= \frac{\sqrt{1-4y}}{2\sqrt{y}}, \\ | ||
x &= \int \sqrt{1-4u^2} \, | x &= \int \sqrt{1-4u^2} \, du, | ||
\end{ | \end{align}</math><nowiki>}}</nowiki>}} | ||
जहां पे <math>u = \sqrt{y}</math>. यह अभिन्न एक वृत्त के नीचे का क्षेत्र है, जिसे स्वाभाविक रूप से एक त्रिभुज और एक वृत्ताकार पच्चर में काटा जा सकता है: | जहां पे <math>u = \sqrt{y}</math>. यह अभिन्न एक वृत्त के नीचे का क्षेत्र है, जिसे स्वाभाविक रूप से एक त्रिभुज और एक वृत्ताकार पच्चर में काटा जा सकता है: | ||
| Line 49: | Line 49: | ||
y &= u^2. | y &= u^2. | ||
\end{align}</math>}} | \end{align}</math>}} | ||
यह देखने के लिए कि यह एक अजीब पैरामीट्रिज्ड साइक्लोइड है, कोण <math>\theta = \arcsin 2u</math> परिभाषित करके पारलौकिक और बीजगणितीय भागों को अलग करने के लिए | यह देखने के लिए कि यह एक अजीब पैरामीट्रिज्ड साइक्लोइड है, जो कोण <math>\theta = \arcsin 2u</math> को परिभाषित करके पारलौकिक और बीजगणितीय भागों को अलग करने के लिए परिवर्तनशील होता है | ||
{{block indent|1=<math>\begin{align} | {{block indent|1=<math>\begin{align} | ||
| Line 58: | Line 58: | ||
== आभासी गुरुत्व समाधान == | == आभासी गुरुत्व समाधान == | ||
टौटोक्रोन समस्या का सबसे सरल समाधान एक झुकाव के कोण और झुकाव पर एक कण द्वारा | टौटोक्रोन समस्या का सबसे सरल समाधान है जो एक झुकाव के कोण और झुकाव पर एक कण द्वारा किए गए गुरुत्वाकर्षण के बीच सीधा संबंध करना है। 90° ऊर्ध्वाधर झुकाव पर एक कण पूर्ण गुरुत्वीय त्वरण <math>g</math>, से गुजरता है जबकि क्षैतिज तल पर एक कण शून्य गुरुत्वाकर्षण त्वरण से गुजरता है। मध्यवर्ती कोणों पर, कण द्वारा "वर्चुअल ग्रेविटी" के कारण त्वरण <math>g\sin\theta</math> है. ध्यान दें कि <math>\theta</math> को वक्र और क्षैतिज की स्पर्शरेखा के बीच मापा जाता है, इस प्रकार, <math>\theta</math> भिन्न होता है <math>-\pi/2</math> प्रति <math>\pi/2</math>. क्षैतिज के ऊपर के कोणों को धनात्मक कोणों के रूप में माना जाता है। | ||
टॉटोक्रोन वक्र के साथ मापे गए द्रव्यमान की स्थिति, <math>s(t)</math>, निम्नलिखित अंतर समीकरण | टॉटोक्रोन वक्र के साथ मापे गए द्रव्यमान की स्थिति, <math>s(t)</math>, निम्नलिखित अंतर समीकरण द्वारा करना चाहिए: | ||
{{block indent|1=<math>\frac{d^2s}{{dt}^2} = - \omega^2s</math>}} | {{block indent|1=<math>\frac{d^2s}{{dt}^2} = - \omega^2s</math>}} | ||
| Line 68: | Line 68: | ||
{{block indent|1=<math>s(t) = s_0 \cos \omega t </math>}} | {{block indent|1=<math>s(t) = s_0 \cos \omega t </math>}} | ||
यह आसानी से सत्यापित किया जा सकता है कि यह समाधान अंतर समीकरण को हल करता है कि एक कण <math>s=0</math> <math>\pi/2\omega</math> पर पहुंचेगा, किसी भी शुरुआती स्थिति से <math>s_0</math>तक. समस्या अब एक वक्र बनाने की है जो द्रव्यमान को उपरोक्त गति का पालन करने का कारण बनेगी। न्यूटन के दूसरे नियम से पता चलता है कि गुरुत्वाकर्षण बल और द्रव्यमान के त्वरण से संबंधित हैं: | |||
{{block indent|1=<math> | {{block indent|1=<math> | ||
| Line 77: | Line 77: | ||
</math>}} | </math>}} | ||
दूरी का स्पष्ट रूप, <math>s</math>,कष्टप्रद से भरा है, लेकिन हम अधिक प्रबंधनीय रूप प्राप्त करने के लिए अंतर कर सकते हैं: | |||
{{block indent|1=<math>\begin{align} | {{block indent|1=<math>\begin{align} | ||
| Line 84: | Line 84: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
यह समीकरण वक्र के कोण में परिवर्तन को वक्र के साथ दूरी में परिवर्तन से संबंधित करता है।अब हम कोण <math>\theta</math> को अंतर लंबाई dx, dyऔर ds से संबंधित करने के लिए त्रिकोणमिति का उपयोग करते हैं: | |||
{{block indent|1=<math> | {{block indent|1=<math> | ||
| Line 93: | Line 93: | ||
</math>}} | </math>}} | ||
उपरोक्त समीकरण में ds को dx से बदलने पर हम x के लिए <math>\theta</math> : | |||
{{block indent|1=<math> | {{block indent|1=<math> | ||
| Line 105: | Line 105: | ||
</math>}} | </math>}} | ||
इसी तरह, हम ds को dy के संदर्भ में भी व्यक्त कर सकते हैं और y के लिए <math>\theta</math> के संदर्भ में हल कर सकते हैं: | |||
{{block indent|1=<math> | {{block indent|1=<math> | ||
| Line 117: | Line 117: | ||
</math>}} | </math>}} | ||
<math>\phi = 2\theta</math> and <math display="inline">r = \frac{g}{4\omega^2}\,</math>को प्रतिस्थापित करना, हम देखते हैं कि x और y के लिए ये पैरामीट्रिक समीकरण त्रिज्या r एक वृत्त पर एक बिंदु के हैं, जो वृत्त केंद्र के साथ एक क्षैतिज रेखा (एक चक्रवात) <math>(C_x + r\phi, C_y)</math> के साथ घूम रहा है। | |||
{{block indent|1=<math> | {{block indent|1=<math> | ||
| Line 126: | Line 126: | ||
</math>}} | </math>}} | ||
ध्यान दें कि <math>\phi</math> रेंज <math>-\pi \le \phi \le \pi</math> से है। <math>C_x = 0</math> and <math>C_y = r</math> ताकि वक्र पर सबसे निचला बिंदु मूल बिंदु के साथ मेल खाता हो। इसलिए: | |||
{{block indent|1=<math> | {{block indent|1=<math> | ||
| Line 135: | Line 135: | ||
</math>}} | </math>}} | ||
<math>\omega</math> को हल करना और उसे याद रखना <math>T = \frac{\pi}{2\omega}</math> अन्वय के लिए आवश्यक समय है, एक पूरे चक्र का एक चौथाई होने के कारण, हम अन्वय समय को त्रिज्या r के संदर्भ में पाते हैं: | |||
{{block indent|1=<math> | {{block indent|1=<math> | ||
| Line 146: | Line 146: | ||
(प्रोक्टर पर आधारित, पीपी. 135–139) | (प्रोक्टर पर आधारित, पीपी. 135–139) | ||
== | == हाबिल का हल == | ||
नील्स हेनरिक एबेल ने टौटोक्रोन समस्या (एबेल की यांत्रिक समस्या) के एक सामान्यीकृत संस्करण पर हमला किया, अर्थात्, एक फ़ंक्शन <math>T(y)</math> दिया गया है जो दी गई शुरुआती ऊंचाई के लिए वंश के कुल समय को निर्दिष्ट करता है। , इस परिणाम को प्राप्त करने वाले वक्र का समीकरण ज्ञात कीजिए। टौटोक्रोन समस्या हाबिल की यांत्रिक समस्या का एक विशेष मामला है जब <math>T(y)</math> एक स्थिरांक है। | |||
एबेल का समाधान ऊर्जा के संरक्षण के सिद्धांत से शुरू होता है - चूंकि कण घर्षण रहित है, और इस प्रकार [[गर्मी]] के लिए कोई ऊर्जा नहीं खोता है, किसी भी बिंदु पर इसकी [[गतिज ऊर्जा]] इसके शुरुआती बिंदु से [[गुरुत्वाकर्षण ऊर्जा]] के अंतर के बराबर होती है। गतिज ऊर्जा है <math display="inline">\frac{1}{2} mv^2</math>, और चूंकि कण एक वक्र के साथ चलने के लिए विवश है, इसका वेग सरल है <math>{d\ell}/{dt}</math>, कहाँ पे <math>\ell</math> वक्र के साथ मापी गई दूरी है। इसी तरह, प्रारंभिक ऊंचाई से गिरने में प्राप्त गुरुत्वाकर्षण संभावित ऊर्जा <math>y_0</math> ऊंचाई तक <math>y</math> है <math>mg(y_0 - y)</math>, इस प्रकार: | एबेल का समाधान ऊर्जा के संरक्षण के सिद्धांत से शुरू होता है - चूंकि कण घर्षण रहित है, और इस प्रकार [[गर्मी]] के लिए कोई ऊर्जा नहीं खोता है, किसी भी बिंदु पर इसकी [[गतिज ऊर्जा]] इसके शुरुआती बिंदु से [[गुरुत्वाकर्षण ऊर्जा]] के अंतर के बराबर होती है। गतिज ऊर्जा है <math display="inline">\frac{1}{2} mv^2</math>, और चूंकि कण एक वक्र के साथ चलने के लिए विवश है, इसका वेग सरल है <math>{d\ell}/{dt}</math>, कहाँ पे <math>\ell</math> वक्र के साथ मापी गई दूरी है। इसी तरह, प्रारंभिक ऊंचाई से गिरने में प्राप्त गुरुत्वाकर्षण संभावित ऊर्जा <math>y_0</math> ऊंचाई तक <math>y</math> है <math>mg(y_0 - y)</math>, इस प्रकार: | ||
| Line 157: | Line 157: | ||
dt & = \pm \frac{d\ell}{\sqrt{2g(y_0-y)}} \\ | dt & = \pm \frac{d\ell}{\sqrt{2g(y_0-y)}} \\ | ||
dt & = - \frac{1}{\sqrt{2g(y_0-y)}} \frac{d\ell}{dy} \,dy | dt & = - \frac{1}{\sqrt{2g(y_0-y)}} \frac{d\ell}{dy} \,dy | ||
\ | \end{align} | ||
</ | </math>}} | ||
पिछले समीकरण में, हमने ऊंचाई के एक समारोह के रूप में वक्र के साथ शेष दूरी | पिछले समीकरण में, हमने ऊंचाई के एक समारोह के रूप में वक्र के साथ शेष दूरी ''(l(y'') के फलन के रूप में लिखने का अनुमान लगाया है, यह माना कि शेष दूरी को इस प्रकार घटाना चाहिए समय बढ़ता है (इस प्रकार ऋण चिह्न), और प्रपत्र में [[श्रृंखला नियम]] <math display="inline">d\ell = \frac{d\ell}{dy} dy</math> का उपयोग किया. | ||
अब हम से एकीकृत करते हैं <math>y = y_0</math> प्रति <math>y = 0</math> कण के गिरने के लिए आवश्यक कुल समय प्राप्त करने के लिए: | अब हम से एकीकृत करते हैं <math>y = y_0</math> प्रति <math>y = 0</math> कण के गिरने के लिए आवश्यक कुल समय प्राप्त करने के लिए: | ||
{{block indent|1=<math> | {{block indent|1=<math> | ||
T(y_0) = \int_{y=y_0}^{y=0} \, dt = \frac{1}{\sqrt{2g}} \int_0^{y_0} \frac{1}{\sqrt{y_0-y}} \frac{d\ell}{dy} \, | T(y_0) = \int_{y=y_0}^{y=0} \, dt = \frac{1}{\sqrt{2g}} \int_0^{y_0} \frac{1}{\sqrt{y_0-y}} \frac{d\ell}{dy} \, dy | ||
</ | </math>}} | ||
इसे एबेल का अभिन्न समीकरण कहा जाता है और हमें किसी कण | इसे एबेल का अभिन्न समीकरण कहा जाता है और हमें किसी कण में दिए गए वक्र के साथ गिरने के लिए समय की गणना करने की अनुमति देता है (जिसके लिए <math>{d\ell}/{dy}</math> गणना करना आसान होगा)। लेकिन हाबिल की यांत्रिक समस्या के लिए बातचीत की आवश्यकता है <math>T(y_0)\,</math>, हम <math>f(y) = {d\ell}/{dy}</math> खोजना चाहते हैं, जिससे वक्र के लिए एक समीकरण सीधे तरीके से अनुसरण करेगा। आगे बढ़ने के लिए, हम ध्यान देते हैं कि दाईं ओर का समाकल <math>{d\ell}/{dy}</math> साथ <math>{1}/{\sqrt{y}}</math> का [[घुमाव]] है और इस प्रकार परिवर्ती y के संबंध में दोनों पक्षों के लाप्लास रूपांतरण को लेंते है : | ||
{{block indent|1=<math> | {{block indent|1=<math> | ||
\mathcal{L}[T(y_0)] = \frac{1}{\sqrt{2g}} \mathcal{L} \ | \mathcal{L}[T(y_0)] = \frac{1}{\sqrt{2g}} \mathcal{L} \left [ \frac{1}{\sqrt{y}} \right ]F(s) | ||
</ | </math>}} | ||
जहा <math>F(s) = \mathcal{L} {\left[ {d\ell}/{dy} \right ]}</math>. चूँकि <math display="inline">\mathcal{L} {\left[ {1}/{\sqrt{y}} \right]} = \sqrt{{\pi}/{s}}</math>, अब हमारे पास <math>{d\ell}/{dy}</math> लाप्लास रूपांतरण के लिए एक व्यंजक है, <math>T(y_0)</math> लाप्लास के परिवर्तन के संदर्भ में: | |||
{{block indent|1=<math> | {{block indent|1=<math> | ||
\mathcal{L}\left [ \frac{d\ell}{dy} \right ] = \sqrt{\frac{2g}{\pi}} s^{\frac{1}{2}} \mathcal{L}[T(y_0)] | \mathcal{L}\left [ \frac{d\ell}{dy} \right ] = \sqrt{\frac{2g}{\pi}} s^{\frac{1}{2}} \mathcal{L}[T(y_0)] | ||
</ | </math>}} | ||
यह वह सीमा है जहाँ तक हम निर्दिष्ट किए बिना जा सकते हैं <math>T(y_0)</math>. एक बार <math>T(y_0)</math> ज्ञात है, हम इसके लाप्लास परिवर्तन की गणना कर सकते हैं, के लाप्लास परिवर्तन की गणना कर सकते हैं <math>{d\ell}/{dy}</math> और उसके बाद खोजने के लिए उलटा परिवर्तन (या करने का प्रयास करें) लें <math>{d\ell}/{dy}</math>. | यह वह सीमा है जहाँ तक हम निर्दिष्ट किए बिना जा सकते हैं <math>T(y_0)</math>. एक बार <math>T(y_0)</math> ज्ञात है, हम इसके लाप्लास परिवर्तन की गणना कर सकते हैं, के लाप्लास परिवर्तन की गणना कर सकते हैं <math>{d\ell}/{dy}</math> और उसके बाद खोजने के लिए उलटा परिवर्तन (या करने का प्रयास करें) लें <math>{d\ell}/{dy}</math>. | ||
टौटोक्रोन समस्या के लिए, <math>T(y_0) = T_0\,</math> स्थिर है। चूँकि 1 का लाप्लास रूपांतरण | टौटोक्रोन समस्या के लिए, <math>T(y_0) = T_0\,</math> स्थिर है। चूँकि 1 का लाप्लास रूपांतरण <math>{1}/{s}</math> है, अर्थात, <math display="inline">\mathcal{L}[T(y_0)] = {T_0}/{s}</math> है, <math display="inline">f(y) = {d\ell}/{dy}</math> हमें इससे आकृति फलन मिलता है | ||
{{block indent|1=<math> | {{block indent|1=<math> | ||
| Line 189: | Line 189: | ||
& = \sqrt{\frac{2g}{\pi}} s^{\frac{1}{2}} \mathcal{L}[T_0] \\ | & = \sqrt{\frac{2g}{\pi}} s^{\frac{1}{2}} \mathcal{L}[T_0] \\ | ||
& = \sqrt{\frac{2g}{\pi}} T_0 s^{-\frac{1}{2}} | & = \sqrt{\frac{2g}{\pi}} T_0 s^{-\frac{1}{2}} | ||
\ | \end{align} | ||
</ | </math>}} | ||
ऊपर लाप्लास परिवर्तन का फिर से उपयोग करते हुए, हम परिवर्तन को उल्टा करते हैं और निष्कर्ष निकालते हैं: | ऊपर लाप्लास परिवर्तन का फिर से उपयोग करते हुए, हम परिवर्तन को उल्टा करते हैं और निष्कर्ष निकालते हैं: | ||
| Line 196: | Line 196: | ||
{{block indent|1=<math>\frac{d\ell}{dy} = T_0 \frac{\sqrt{2g}}{\pi}\frac{1}{\sqrt{y}}</math>}} | {{block indent|1=<math>\frac{d\ell}{dy} = T_0 \frac{\sqrt{2g}}{\pi}\frac{1}{\sqrt{y}}</math>}} | ||
यह दिखाया जा सकता है कि चक्रज इस समीकरण का पालन करता है। इसके संबंध में समाकलन करने के लिए | यह दिखाया जा सकता है कि चक्रज इस समीकरण का पालन करता है। इसके संबंध में समाकलन करने के लिए <math>y</math> पथ आकार की अभिव्यक्ति प्राप्त करने के लिए, इसे एक कदम और आगे बढ़ाने की आवश्यकता है। | ||
(सीमन्स, धारा 54)। | (सीमन्स, धारा 54)। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[बेल्ट्रामी पहचान]] | * [[बेल्ट्रामी पहचान]] | ||
| Line 219: | Line 218: | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
* [https://mathworld.wolfram.com/TautochroneProblem.html Mathworld] | * [https://mathworld.wolfram.com/TautochroneProblem.html Mathworld] | ||
[[डी: ज़ाइक्लॉइड#द टॉटोक्रोनी ऑफ़ द साइक्लॉयड]] | [[डी: ज़ाइक्लॉइड#द टॉटोक्रोनी ऑफ़ द साइक्लॉयड]] | ||
[[Category:Articles with short description]] | |||
[[Category: | |||
[[Category:Created On 25/11/2022]] | [[Category:Created On 25/11/2022]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with math errors]] | |||
[[Category:Pages with math render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:यांत्रिकी]] | |||
[[Category:विमान वक्र]] | |||
Latest revision as of 21:44, 7 December 2022
एक टॉटोक्रोन या आइसोक्रोन कर्व (यूनानी उपसर्ग से टॉटो- जिसका अर्थ है समान या आइसो- बराबर, और क्रोनो टाइम है ) वह कर्व है जिसके लिए किसी वस्तु द्वारा एकसमान गुरुत्व में घर्षण के बिना उसके निम्नतम बिंदु तक फिसलने में लगने वाला समय उसके शुरुआती बिंदु से स्वतंत्र होता है। वक्र एक चक्रज है, और गुरुत्वाकर्षण के समय त्वरण पर त्रिज्या के वर्गमूल (वृत्त जो चक्रवात उत्पन्न करता है) के वर्गमूल के बराबर होता है। टॉटोक्रोन वक्र ब्राचिस्टोक्रोन वक्र से संबंधित है, जो एक चक्रज भी है।
टॉटोक्रोन समस्या
पेक्वॉड के बाएं हाथ के ट्राय-पॉट में था, साबुन के पत्थर के साथ मेरे चारों ओर चक्कर लगाते हुए, मैं पहली बार परोक्ष रूप से इस उल्लेखनीय तथ्य से प्रभावित हुआ था, कि ज्यामिति में चक्रज के साथ-साथ चलने वाले सभी पिंड, उदाहरण के लिए मेरा साबुन का पत्थर, से नीचे उतरेंगे किसी भी बिंदु पर ठीक उसी समय में।
मोबी डिक हरमन मेलविल द्वारा, 1851
टौटोक्रोन समस्या, इस वक्र की पहचान करने का प्रयास, 1659 में क्रिस्टियान ह्यूजेंस द्वारा हल किया गया था। उन्होंने मूल रूप से 1673 में प्रकाशित अपने होरोलोजियम ऑस्किलेटोरियम में ज्यामितीय रूप से साबित किया था कि वक्र एक चक्रवात है।
एक चक्रज पर जिसकी धुरी लंबवत पर खड़ी होती है और जिसका शीर्ष तल पर स्थित होता है, अवतरण के समय, जिसमें शरीर चक्रवात पर किसी भी बिंदु से प्रस्थान करने के बाद शीर्ष पर सबसे निचले बिंदु पर पहुंचता है, प्रत्येक के बराबर होता है अन्य ...[1]
चक्रज त्रिज्या के एक वृत्त पर बिंदु द्वारा दिया जाता है, जो एक वक्र का पता लगाता है, क्योंकि वृत्त x अक्ष के साथ घूमता है, जैसे:
बाद में इस समाधान का उपयोग ब्राचिस्टोक्रोन वक्र की समस्या को हल करने के लिए किया गया था। जोहान बर्नौली ने एक पेपर (एक्टा एरुडिटोरियम, 1697) में समस्या का समाधान किया।
टौटोक्रोन समस्या ह्यूजेंस द्वारा अधिक बारीकी से अध्ययन किया गया था जब यह महसूस किया गया था कि एक पेंडुलम, जो एक गोलाकार पथ का अनुसरण करता है, आइसोक्रोनस नहीं था और इस प्रकार उसकी पेंडुलम घड़ी अलग-अलग समय बताएगी, जो इस बात पर निर्भर करता है कि पेंडुलम कितनी दूर तक घूमता है। सही रास्ते का निर्धारण करने के बाद, क्रिस्टियान ह्यूजेन्स ने पेंडुलम घड़ियों को बनाने का प्रयास किया जो बॉब को निलंबित करने के लिए एक स्ट्रिंग का इस्तेमाल करते थे और स्ट्रिंग के शीर्ष के निकट गोलों को कसने के लिए टॉटोक्रोन वक्र के मार्ग को बदलते थे। ये प्रयास कई कारणों से अनुपयोगी साबित हुए। सबसे पहले, स्ट्रिंग का झुकाव घर्षण का कारण बनता है, दूसरा, समय की त्रुटियों के बहुत अधिक महत्वपूर्ण स्रोत थे जो किसी भी सैद्धांतिक सुधार को अभिभूत कर देते थे जो कि टौटोक्रोन वक्र पर यात्रा करने में मदद करता है। अंत में, एक पेंडुलम की "परिपत्र त्रुटि" कम हो जाती है, क्योंकि झूले की लंबाई कम हो जाती है, इसलिए घड़ी की अशुद्धि के इस स्रोत को बहुत कम कर सकता है।
बाद में, गणितज्ञ जोसेफ लुइस लाग्रेंज और लियोनहार्ड यूलर ने समस्या का एक विश्लेषणात्मक समाधान प्रदान किया।
लग्रांजी समाधान
यदि कण की स्थिति को सबसे कम बिंदु से आर्क की लंबाई s(t) द्वारा पैरामीट्रिज किया जाता है, तो गतिज ऊर्जा स्थितिज ऊर्जा ऊँचाई y(s).के समानुपाती होती है। वक्र एक समकालिक रेखा हो जाती है, यदि लैग्रेंजियन एक सरल आवर्त दोलक है तो : वक्र की ऊंचाई चाप की लंबाई के वर्ग के समानुपाती होनी चाहिए।
जहां लंबाई की इकाइयों को बदलकर आनुपातिकता के स्थिरांक को 1 पर सेट किया गया है।
इस संबंध का विभेदक रूप है
जो s को हटा देता है और dx और dy के लिए अवकल समीकरण को छोड़ देता है। समाधान खोजने के लिए, x को y के संदर्भ में एकीकृत करें:
जहां पे . यह अभिन्न एक वृत्त के नीचे का क्षेत्र है, जिसे स्वाभाविक रूप से एक त्रिभुज और एक वृत्ताकार पच्चर में काटा जा सकता है:
यह देखने के लिए कि यह एक अजीब पैरामीट्रिज्ड साइक्लोइड है, जो कोण को परिभाषित करके पारलौकिक और बीजगणितीय भागों को अलग करने के लिए परिवर्तनशील होता है
जो x, y और θ के पैमाने को छोड़कर मानक पैरामीट्रिजेशन है।
आभासी गुरुत्व समाधान
टौटोक्रोन समस्या का सबसे सरल समाधान है जो एक झुकाव के कोण और झुकाव पर एक कण द्वारा किए गए गुरुत्वाकर्षण के बीच सीधा संबंध करना है। 90° ऊर्ध्वाधर झुकाव पर एक कण पूर्ण गुरुत्वीय त्वरण , से गुजरता है जबकि क्षैतिज तल पर एक कण शून्य गुरुत्वाकर्षण त्वरण से गुजरता है। मध्यवर्ती कोणों पर, कण द्वारा "वर्चुअल ग्रेविटी" के कारण त्वरण है. ध्यान दें कि को वक्र और क्षैतिज की स्पर्शरेखा के बीच मापा जाता है, इस प्रकार, भिन्न होता है प्रति . क्षैतिज के ऊपर के कोणों को धनात्मक कोणों के रूप में माना जाता है।
टॉटोक्रोन वक्र के साथ मापे गए द्रव्यमान की स्थिति, , निम्नलिखित अंतर समीकरण द्वारा करना चाहिए:
जो, प्रारंभिक शर्तों के साथ and , समाधान है:
यह आसानी से सत्यापित किया जा सकता है कि यह समाधान अंतर समीकरण को हल करता है कि एक कण पर पहुंचेगा, किसी भी शुरुआती स्थिति से तक. समस्या अब एक वक्र बनाने की है जो द्रव्यमान को उपरोक्त गति का पालन करने का कारण बनेगी। न्यूटन के दूसरे नियम से पता चलता है कि गुरुत्वाकर्षण बल और द्रव्यमान के त्वरण से संबंधित हैं:
दूरी का स्पष्ट रूप, ,कष्टप्रद से भरा है, लेकिन हम अधिक प्रबंधनीय रूप प्राप्त करने के लिए अंतर कर सकते हैं:
यह समीकरण वक्र के कोण में परिवर्तन को वक्र के साथ दूरी में परिवर्तन से संबंधित करता है।अब हम कोण को अंतर लंबाई dx, dyऔर ds से संबंधित करने के लिए त्रिकोणमिति का उपयोग करते हैं:
उपरोक्त समीकरण में ds को dx से बदलने पर हम x के लिए :
इसी तरह, हम ds को dy के संदर्भ में भी व्यक्त कर सकते हैं और y के लिए के संदर्भ में हल कर सकते हैं:
and को प्रतिस्थापित करना, हम देखते हैं कि x और y के लिए ये पैरामीट्रिक समीकरण त्रिज्या r एक वृत्त पर एक बिंदु के हैं, जो वृत्त केंद्र के साथ एक क्षैतिज रेखा (एक चक्रवात) के साथ घूम रहा है।
ध्यान दें कि रेंज से है। and ताकि वक्र पर सबसे निचला बिंदु मूल बिंदु के साथ मेल खाता हो। इसलिए:
को हल करना और उसे याद रखना अन्वय के लिए आवश्यक समय है, एक पूरे चक्र का एक चौथाई होने के कारण, हम अन्वय समय को त्रिज्या r के संदर्भ में पाते हैं:
(प्रोक्टर पर आधारित, पीपी. 135–139)
हाबिल का हल
नील्स हेनरिक एबेल ने टौटोक्रोन समस्या (एबेल की यांत्रिक समस्या) के एक सामान्यीकृत संस्करण पर हमला किया, अर्थात्, एक फ़ंक्शन दिया गया है जो दी गई शुरुआती ऊंचाई के लिए वंश के कुल समय को निर्दिष्ट करता है। , इस परिणाम को प्राप्त करने वाले वक्र का समीकरण ज्ञात कीजिए। टौटोक्रोन समस्या हाबिल की यांत्रिक समस्या का एक विशेष मामला है जब एक स्थिरांक है।
एबेल का समाधान ऊर्जा के संरक्षण के सिद्धांत से शुरू होता है - चूंकि कण घर्षण रहित है, और इस प्रकार गर्मी के लिए कोई ऊर्जा नहीं खोता है, किसी भी बिंदु पर इसकी गतिज ऊर्जा इसके शुरुआती बिंदु से गुरुत्वाकर्षण ऊर्जा के अंतर के बराबर होती है। गतिज ऊर्जा है , और चूंकि कण एक वक्र के साथ चलने के लिए विवश है, इसका वेग सरल है , कहाँ पे वक्र के साथ मापी गई दूरी है। इसी तरह, प्रारंभिक ऊंचाई से गिरने में प्राप्त गुरुत्वाकर्षण संभावित ऊर्जा ऊंचाई तक है , इस प्रकार:
पिछले समीकरण में, हमने ऊंचाई के एक समारोह के रूप में वक्र के साथ शेष दूरी (l(y) के फलन के रूप में लिखने का अनुमान लगाया है, यह माना कि शेष दूरी को इस प्रकार घटाना चाहिए समय बढ़ता है (इस प्रकार ऋण चिह्न), और प्रपत्र में श्रृंखला नियम का उपयोग किया.
अब हम से एकीकृत करते हैं प्रति कण के गिरने के लिए आवश्यक कुल समय प्राप्त करने के लिए:
इसे एबेल का अभिन्न समीकरण कहा जाता है और हमें किसी कण में दिए गए वक्र के साथ गिरने के लिए समय की गणना करने की अनुमति देता है (जिसके लिए गणना करना आसान होगा)। लेकिन हाबिल की यांत्रिक समस्या के लिए बातचीत की आवश्यकता है , हम खोजना चाहते हैं, जिससे वक्र के लिए एक समीकरण सीधे तरीके से अनुसरण करेगा। आगे बढ़ने के लिए, हम ध्यान देते हैं कि दाईं ओर का समाकल साथ का घुमाव है और इस प्रकार परिवर्ती y के संबंध में दोनों पक्षों के लाप्लास रूपांतरण को लेंते है :
जहा . चूँकि , अब हमारे पास लाप्लास रूपांतरण के लिए एक व्यंजक है, लाप्लास के परिवर्तन के संदर्भ में:
यह वह सीमा है जहाँ तक हम निर्दिष्ट किए बिना जा सकते हैं . एक बार ज्ञात है, हम इसके लाप्लास परिवर्तन की गणना कर सकते हैं, के लाप्लास परिवर्तन की गणना कर सकते हैं और उसके बाद खोजने के लिए उलटा परिवर्तन (या करने का प्रयास करें) लें .
टौटोक्रोन समस्या के लिए, स्थिर है। चूँकि 1 का लाप्लास रूपांतरण है, अर्थात, है, हमें इससे आकृति फलन मिलता है
ऊपर लाप्लास परिवर्तन का फिर से उपयोग करते हुए, हम परिवर्तन को उल्टा करते हैं और निष्कर्ष निकालते हैं:
यह दिखाया जा सकता है कि चक्रज इस समीकरण का पालन करता है। इसके संबंध में समाकलन करने के लिए पथ आकार की अभिव्यक्ति प्राप्त करने के लिए, इसे एक कदम और आगे बढ़ाने की आवश्यकता है।
(सीमन्स, धारा 54)।
यह भी देखें
- बेल्ट्रामी पहचान
- ब्रचिस्टोक्रोन वक्र
- विविधताओं की गणना
- ज़ंजीर का
- चक्रवात
- गति के समीकरण # समान रूप से त्वरित रैखिक गति के समीकरण
संदर्भ
ग्रन्थसूची
- Simmons, George (1972). Differential Equations with Applications and Historical Notes. McGraw–Hill. ISBN 0-07-057540-1.
- Proctor, Richard Anthony (1878). A Treatise on the Cycloid and All Forms of Cycloidal Curves, and on the Use of Such Curves in Dealing with the Motions of Planets, Comets, etc., and of Matter Projected from the Sun.
बाहरी संबंध
