कस्प (विलक्षणता): Difference between revisions
m (16 revisions imported from alpha:कस्प_(विलक्षणता)) |
No edit summary |
||
| Line 67: | Line 67: | ||
{{Algebraic curves navbox}} | {{Algebraic curves navbox}} | ||
{{DEFAULTSORT:Cusp (Singularity)}} | {{DEFAULTSORT:Cusp (Singularity)}} | ||
[[Category:All articles lacking in-text citations|Cusp (Singularity)]] | |||
[[Category: | [[Category:All articles with unsourced statements|Cusp (Singularity)]] | ||
[[Category:Created On 24/11/2022]] | [[Category:Articles lacking in-text citations from April 2021|Cusp (Singularity)]] | ||
[[Category: | [[Category:Articles with invalid date parameter in template|Cusp (Singularity)]] | ||
[[Category:Articles with short description|Cusp (Singularity)]] | |||
[[Category:Articles with unsourced statements from July 2019|Cusp (Singularity)]] | |||
[[Category:Collapse templates|Cusp (Singularity)]] | |||
[[Category:Created On 24/11/2022|Cusp (Singularity)]] | |||
[[Category:Machine Translated Page|Cusp (Singularity)]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Cusp (Singularity)]] | |||
[[Category:Pages with script errors|Cusp (Singularity)]] | |||
[[Category:Short description with empty Wikidata description|Cusp (Singularity)]] | |||
[[Category:Sidebars with styles needing conversion|Cusp (Singularity)]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates generating microformats|Cusp (Singularity)]] | |||
[[Category:Templates that are not mobile friendly|Cusp (Singularity)]] | |||
[[Category:Templates using TemplateData|Cusp (Singularity)]] | |||
[[Category:Wikipedia metatemplates|Cusp (Singularity)]] | |||
[[Category:बीजगणितीय वक्र|Cusp (Singularity)]] | |||
[[Category:विलक्षणता सिद्धांत|Cusp (Singularity)]] | |||
Revision as of 14:29, 7 December 2022
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (April 2021) (Learn how and when to remove this template message) |
गणित में, एक विलक्षणता, जिसे कभी-कभी पुराने ग्रंथों में स्पिनोड कहा जाता है, वक्र पर एक बिंदु होता है जहां एक गतिमान बिंदु को दिशा के प्रतिकूल होना चाहिए। एक विशिष्ट उदाहरण चित्र में दिया गया है। इस प्रकार पुच्छल वक्र एक प्रकार का विलक्षण बिंदु है।
एक विश्लेषणात्मक , पैरामीट्रिक समीकरण द्वारा समतल वक्र द्वारा को परिभाषित किया गया है -
पुच्छल एक बिंदु है जहां f और g यौगिक दोनों के व्युत्पन्न शून्य हैं और दिशात्मक व्युत्पन्न ,स्पर्शरेखा की दिशा में चिह्न बदलता है| ). पुच्छल का अर्थ स्थानीय विलक्षणताएं हैं कि उनमें पैरामीटर t का केवल एक मान सम्मलित करते हैं, स्व-प्रतिच्छेदन बिंदुओं के विपरीत जिसमें एक से अधिक मान सम्मलित होते हैं। कुछ संदर्भों में, दिशात्मक व्युत्पन्न पर स्थिति को छोड़ा जा सकता है, चूंकि, इस विषय में, विलक्षणता एक नियमित बिंदु की तरह दिख सकती है।
निहित समीकरण द्वारा परिभाषित वक्र के लिए
पुच्छल ऐसा चिकना बिंदु है, जहां F टेलर के विस्तार की निम्नतम डिग्री का अनुबंध एक रैखिक बहुपद की शक्ति हैं; चूंकि, सभी एकवचन बिंदु जिनके पास यह संपत्ति है वे पुच्छल नहीं हैं| प्यूसेक्स श्रृंखला के सिद्धांत का तात्पर्य है कि, यदि F एक विश्लेषणात्मक कार्य है (उदाहरण के लिए एक बहुपद), निर्देशांक का एक रैखिक परिवर्तन वक्र को पुच्छल के परस्पर में पैरामीट्रिजेशन होने की अनुमति देता है, जैसा कि
जहाँ a एक वास्तविक संख्या है, m एक धनात्मक सम पूर्णांक है, और S(t), m से बड़ी कोटि k बिजली की श्रृंखला का एक का ऑर्डर है| संख्या m को कभी-कभी पुच्छ का क्रम या बहुलता कहा जाता है, और यह F की निम्नतम डिग्री का अन्य- भाग शून्य की डिग्री के बराबर होता हैकुछ संदर्भों में, विलक्षणता की परिभाषा दो गण के विलक्षणता के विषय तक ही सीमित है- यदि, जहां m = 2 का विषय है।
रेने थॉम और व्लादिमीर अर्नोल्ड द्वारा भिन्न -भिन्न कार्यों द्वारा परिभाषित घटता के लिए समतल घटता और अंतर्निहित रूप से परिभाषित वक्रों की परिभाषाएँ सामान्यीकृत की गई हैं: एक वक्र में बिंदु पर एक पुच्छ होता है यदि परिवेश स्थान,में बिंदु के परस्पर एक भिन्नता है जो वक्र को ऊपर परिभाषित विलक्षणता में से एक को मापित करता है।
अंतर ज्यामिति में वर्गीकरण
दो चर के एक चिकने वास्तविक-मूल्यवान फलन पर विचार करें, मान लीजिए f(x,-y) जहां x और y वास्तविक संख्याएं हैं। अतः f तल से रेखा तक फलन है। इस प्रकार के सभी चिकने कार्यों के स्थान पर समतल का डिफियोमोर्फिज्म के समूह और लाइन के डिफियोमोर्फिज्म, आशय यह है कि स्रोत और लक्ष्य दोनों में समन्वय के डिफियोमोर्फिज्म परिवर्तन द्वारा कार्य किया जाता है। यह क्रिया पूरे कार्य स्थान को समतुल्य वर्गों में विभाजित करती है, अर्थात समूह क्रिया की कक्षाएँ।
तुल्यता वर्गों के ऐसे परिवार को Ak± द्वारा निरूपित किया जाता है| जहाँ k एक गैर-ऋणात्मक पूर्णांक है। यह अंकन V. I. अर्नोल्ड द्वारा प्रस्तावित किया गया था। एक फलन f को Ak± प्रकार का कहा जाता है यदि यह x2 ± yk+1 की कक्षा में स्थित है ± औरk+1 , अर्थात स्रोत और लक्ष्य में समन्वय का एक भिन्न परिवर्तन सम्मलित है जो f को इन रूपों में से एक में ले जाता है। ये सरल रूप x2 ± yk+1Ak± एकवचन प्रकार के लिए सामान्य रूप देने के लिए कहा जाता है। ध्यान दें कि A2n+ A2n− के समान हैं| चूंकि स्रोत में निर्देशांक (x, y) → (x, −y) के डिफियोमोर्फिक परिवर्तन से x2 + y2n+1 से x2 − y2n+1 हो जाता है। + और2n+1 से x2 - और2n+1. तो हम ± को A2n± संकेतन से हटा सकते हैं।
विलक्षणता तब A2n समकक्ष वर्गों के प्रतिनिधियों के शून्य-स्तर-का द्वारा दिए जाते हैं, जहां n ≥ 1 एक पूर्णांक है।[citation needed]
उदाहरण
- x2 − y3 = 0 द्वारा एक साधारण पुच्छ दिया जाता है, अर्थात A2-एकवचन प्रकार का शून्य-स्तर-समूह है। चलो f(x,-y) X और Y का एक अच्छा कार्य हो और साधारण के लिए मान लें, कि f(0,-0) = 0। तब (0, 0) पर f की एक प्रकार A2-एकवचनता की विशेषता हो सकती है:
- एक पतित द्विघात भाग होने के लिए, यदि f की टेलर श्रृंखला में द्विघात शब्द एक पूर्ण वर्ग बनाते हैं, कहा जाता है L(x, y)2, जहां L(x, y) x और y में रैखिक है, और
- L(x, y) f(x, y) की टेलर श्रृंखला में घन शब्द को विभाजित नहीं करता है।
- एक 'रैम्फॉइड विलक्षणता' मूल रूप से एक विलक्षणता को दर्शाता है जैसे कि दोनों शाखाएं स्पर्शरेखा के एक ही तरफ हैं, जैसे कि समीकरण के वक्र के लिए चूंकि इस तरह की विलक्षणता उसी अंतर वर्ग में है जो समीकरण के आधार के रूप में है जो कि प्रकार A4 की विलक्षणता है, इस शब्द को ऐसी सभी विलक्षणताओं तक बढ़ा दिया गया है| ये विलक्षणता कास्टिक और तरंग मोर्चों के रूप में गैर-सामान्य हैं। रैम्फॉइड पुच्छल और साधारण पुच्छ गैर-विरूपक हैं। पैरामीट्रिक रूप है .
एक प्रकार के लिए ए4-एकवचनता के लिए हमें f की आवश्यकता है कि एक पतित द्विघात भाग हो (यह प्रकार A≥2 देता है), एक और विभाज्यता स्थिति (प्रकार A≥4 देता है) , और एक अंतिम अविभाज्यता स्थिति (बिल्कुल A4 प्रकार देते हुए)।
यह देखने के लिए कि ये अतिरिक्त विभाज्यता की स्थितियाँ जहा से आती हैं, मान लें कि f में एक पतित द्विघात भाग L2 है और वह L घन पदों को विभाजित करता है। यह अनुसरण करता है कि f की तीसरा गण टेलर श्रृंखला L2 ± LQ द्वारा दी गई है जहां Q x और y में द्विघात है। हम यह दिखाने के लिए वर्ग को पूरा कर सकते हैं किL2 ± LQ = (L ± ½Q)2 – ¼Q4। दिखाने के लिए हम वर्ग को पूरा कर सकते हैं।चर का एक अलग परिवर्तन कर 1.सकते हैं (इस विषय में हम रैखिक रूप से स्वतंत्र रैखिक भागों के साथ बहुपदों को प्रतिस्थापित करते हैं) ताकि (L ± ½Q)2 − ¼Q4 → x12 + P1 जहां P1 x में चतुर्थक बहुपद (क्रम चार) हैx1 और Y1. प्रकार A≥4 के लिए विभाज्यता की स्थिति क्या वह X1 है P को विभाजित करता है| अगर X1 P1 को विभाजित नहीं करता है तो हमारे पास टाइप A3 है (शून्य-स्तर-समूह यहाँ एक तकनोडे है)। अगर X1 P1 को विभाजित करता है हम x पर वर्ग पूरा करते हैं x12 + P1 और निर्देशांक बदलें ताकि हमारे पास x22 + P2जहां P2 x2 में क्विंटिक बहुपद (पांच क्रम) है और Y2. अगर X2 P2 को विभाजित नहीं करता है तो हमारे पास बिल्कुल टाइप A4 है,शून्य-स्तर-समूह एक रैम्फॉइड पुच्छल होगा।
अनुप्रयोग
विलक्षणता स्वाभाविक रूप से दिखाई देते हैं जब एक समतल में प्रक्षेपण त्रि-आयामी यूक्लिडियन अंतरिक्ष में एक चिकना वक्र होता है। सामान्य तौर पर, इस तरह का प्रक्षेपण एक वक्र होता है सामान्य तौर पर, इस तरह का प्रक्षेपण एक वक्र होता है जिसकी विलक्षणता स्व-क्रॉसिंग बिंदु और साधारण विलक्षणता होती हैस्व-क्रॉसिंग बिंदु तब दिखाई देते हैं जब वक्र के दो भिन्न-भिन्न बिंदुओं का एक ही प्रक्षेपण होता है। साधारण विलक्षणता तब प्रकट होते हैं जब वक्र की स्पर्शरेखा प्रक्षेपण की दिशा के समानांतर होती है अधिक जटिल विलक्षणताएँ तब होती हैं जब कई घटनाएँ एक साथ घटित होती हैं।उदाहरण के लिए, विभक्ति बिंदुओं (और लहरदार बिंदुओं के लिए) के लिए रैम्फॉइड क्यूप्स होते हैं, जिसके लिए स्पर्शरेखा प्रक्षेपण की दिशा के समानांतर होती है।
कई विषयों में, अधिकांश कंप्यूटर दृष्टि और कंप्यूटर ग्राफिक्स में, अनुमानित वक्र प्रक्षेपण के एक (चिकनी) स्थानिक वस्तु के प्रतिबंध के महत्वपूर्ण बिंदु का वक्र है।एक पुच्छ इस प्रकार वस्तु (दृष्टि) या उसकी छाया (कंप्यूटर ग्राफिक्स) की छवि के समोच्च की विलक्षणता के रूप में प्रकट होता है।
कास्टिक और लहर मोर्चों वक्रों के अन्य उदाहरण हैं जो वास्तविक दुनिया में दिखाई दे रहे हैं।
यह भी देखें
- तबाही सिद्धांत पुच्छल आपदा
- कारडायोड
संदर्भ
- Bruce, J. W.; Giblin, Peter (1984). Curves and Singularities. Cambridge University Press. ISBN 978-0-521-42999-3.
- Porteous, Ian (1994). Geometric Differentiation. Cambridge University Press. ISBN 978-0-521-39063-7.