विद्युत स्थितिज ऊर्जा: Difference between revisions
No edit summary |
No edit summary |
||
| Line 15: | Line 15: | ||
विद्युत स्थितिज ऊर्जा शब्द का उपयोग [[समय-परिवर्तन प्रणाली]] के रूप में होता है, समय-परिवर्तनीय [[विद्युत क्षेत्र|विद्युत क्षेत्रों]] वाले सिस्टम में [[संभावित ऊर्जा]] का वर्णन करने के लिए किया जाता है, जबकि इलेक्ट्रोस्टैटिक संभावित ऊर्जा शब्द का उपयोग [[समय-अपरिवर्तनीय प्रणाली]] के रूप में होता है, समय-अपरिवर्तनीय विद्युत क्षेत्रों वाले सिस्टम में संभावित ऊर्जा का वर्णन करने के लिए किया जाता है। | विद्युत स्थितिज ऊर्जा शब्द का उपयोग [[समय-परिवर्तन प्रणाली]] के रूप में होता है, समय-परिवर्तनीय [[विद्युत क्षेत्र|विद्युत क्षेत्रों]] वाले सिस्टम में [[संभावित ऊर्जा]] का वर्णन करने के लिए किया जाता है, जबकि इलेक्ट्रोस्टैटिक संभावित ऊर्जा शब्द का उपयोग [[समय-अपरिवर्तनीय प्रणाली]] के रूप में होता है, समय-अपरिवर्तनीय विद्युत क्षेत्रों वाले सिस्टम में संभावित ऊर्जा का वर्णन करने के लिए किया जाता है। | ||
==परिभाषा== | =='''परिभाषा'''== | ||
बिंदु आवेशों की एक प्रणाली की विद्युत स्थितिज ऊर्जा को उस [[कार्य (भौतिकी)|कार्य भौतिकी]] के रूप में परिभाषित किया जाता है, जो आवेशों की इस प्रणाली को एक साथ पास लाकर इकट्ठा करने के लिए आवश्यक है, जैसा कि सिस्टम में अनंत दूरी से होता है। वैकल्पिक रूप से किसी दिए गए आवेश या आवेश प्रणाली की विद्युत स्थितिज ऊर्जा को बिना किसी त्वरण के आवेश या आवेश प्रणाली को अनंत से वर्तमान विन्यास तक लाने में बाहरी एजेंट द्वारा किया गया कुल कार्य कहा जाता है। | बिंदु आवेशों की एक प्रणाली की विद्युत स्थितिज ऊर्जा को उस [[कार्य (भौतिकी)|कार्य भौतिकी]] के रूप में परिभाषित किया जाता है, जो आवेशों की इस प्रणाली को एक साथ पास लाकर इकट्ठा करने के लिए आवश्यक है, जैसा कि सिस्टम में अनंत दूरी से होता है। वैकल्पिक रूप से किसी दिए गए आवेश या आवेश प्रणाली की विद्युत स्थितिज ऊर्जा को बिना किसी त्वरण के आवेश या आवेश प्रणाली को अनंत से वर्तमान विन्यास तक लाने में बाहरी एजेंट द्वारा किया गया कुल कार्य कहा जाता है। | ||
{{block indent}} | {{block indent}} | ||
| Line 39: | Line 39: | ||
Φ\Phi आवेशों द्वारा उत्पन्न विद्युत क्षमता है, जो स्थिति r का एक फलन है।}} | Φ\Phi आवेशों द्वारा उत्पन्न विद्युत क्षमता है, जो स्थिति r का एक फलन है।}} | ||
==इकाइयाँ== | =='''इकाइयाँ'''== | ||
विद्युत स्थितिज ऊर्जा की SI इकाई जूल है, जिसका नाम अंग्रेजी भौतिक विज्ञानी [[जेम्स प्रेस्कॉट जूल]] के नाम पर रखा गया है[[ और | और]] सीजीएस प्रणाली में एर्ग ऊर्जा की इकाई है जो 10−7 जूल के बराबर है। इसके अलावा [[इलेक्ट्रॉनवोल्ट]] का उपयोग किया जा सकता है, 1 eV = 1.602×10<sup>−19</sup>जूल। | विद्युत स्थितिज ऊर्जा की SI इकाई जूल है, जिसका नाम अंग्रेजी भौतिक विज्ञानी [[जेम्स प्रेस्कॉट जूल]] के नाम पर रखा गया है[[ और | और]] सीजीएस प्रणाली में एर्ग ऊर्जा की इकाई है जो 10−7 जूल के बराबर है। इसके अलावा [[इलेक्ट्रॉनवोल्ट]] का उपयोग किया जा सकता है, 1 eV = 1.602×10<sup>−19</sup>जूल। | ||
==एक बिंदु आवेश की स्थिरवैद्युत स्थितिज ऊर्जा== | =='''एक बिंदु आवेश की स्थिरवैद्युत स्थितिज ऊर्जा'''== | ||
===एक बिंदु आवेश q दूसरे बिंदु आवेश की उपस्थिति में Q=== | ===एक बिंदु आवेश q दूसरे बिंदु आवेश की उपस्थिति में Q=== | ||
| Line 93: | Line 93: | ||
}} | }} | ||
===n बिंदु आवेश Q की उपस्थिति में एक बिंदु आवेश q<sub>i</sub>=== | ==='''n बिंदु आवेश Q की उपस्थिति में एक बिंदु आवेश q<sub>i</sub>'''=== | ||
[[File:Electric potential energy 3 charge.gif|thumb|Q के कारण q की स्थिरवैद्युत स्थितिज ऊर्जा<sub>1</sub> और प्र<sub>2</sub> चार्ज प्रणाली:<math>U_E = q\frac{1}{4 \pi \varepsilon_0} \left(\frac{Q_1}{r_1} + \frac{Q_2}{r_2} \right) </math>]]स्थिरवैद्युत स्थितिज ऊर्जा, यू<sub>E</sub>, एक बिंदु आवेश q का n बिंदु आवेश Q की उपस्थिति में<sub>i</sub>संदर्भ स्थिति के रूप में आवेशों के बीच अनंत पृथक्करण को लेते हुए, यह है: | [[File:Electric potential energy 3 charge.gif|thumb|Q के कारण q की स्थिरवैद्युत स्थितिज ऊर्जा<sub>1</sub> और प्र<sub>2</sub> चार्ज प्रणाली:<math>U_E = q\frac{1}{4 \pi \varepsilon_0} \left(\frac{Q_1}{r_1} + \frac{Q_2}{r_2} \right) </math>]]स्थिरवैद्युत स्थितिज ऊर्जा, यू<sub>E</sub>, एक बिंदु आवेश q का n बिंदु आवेश Q की उपस्थिति में<sub>i</sub>संदर्भ स्थिति के रूप में आवेशों के बीच अनंत पृथक्करण को लेते हुए, यह है: | ||
| Line 106: | Line 106: | ||
जहाँ <math>k_\text{e} = \frac{1}{4\pi\varepsilon_0}</math> कूलम्ब स्थिरांक है, r<sub>i</sub>बिंदु आवेश q और Q के बीच की दूरी है<sub>i</sub>, और q और Q<sub>i</sub>आरोपों के निर्दिष्ट मूल्य हैं। | जहाँ <math>k_\text{e} = \frac{1}{4\pi\varepsilon_0}</math> कूलम्ब स्थिरांक है, r<sub>i</sub>बिंदु आवेश q और Q के बीच की दूरी है<sub>i</sub>, और q और Q<sub>i</sub>आरोपों के निर्दिष्ट मूल्य हैं। | ||
==बिंदु आवेशों की प्रणाली में संग्रहित इलेक्ट्रोस्टैटिक स्थितिज ऊर्जा== | =='''बिंदु आवेशों की प्रणाली में संग्रहित इलेक्ट्रोस्टैटिक स्थितिज ऊर्जा'''== | ||
स्थिरवैद्युत स्थितिज ऊर्जा U<sub>E</sub> एन चार्ज क्यू की एक प्रणाली में संग्रहीत<sub>1</sub>, क्यू<sub>2</sub>, …, क्यू<sub>''N''</sub> पदों पर आर<sub>1</sub>, आर<sub>2</sub>, …, आर<sub>''N''</sub> क्रमशः, है: | स्थिरवैद्युत स्थितिज ऊर्जा U<sub>E</sub> एन चार्ज क्यू की एक प्रणाली में संग्रहीत<sub>1</sub>, क्यू<sub>2</sub>, …, क्यू<sub>''N''</sub> पदों पर आर<sub>1</sub>, आर<sub>2</sub>, …, आर<sub>''N''</sub> क्रमशः, है: | ||
{{NumBlk|| | {{NumBlk|| | ||
| Line 141: | Line 141: | ||
}} | }} | ||
===एक बिंदु आवेश की प्रणाली में संग्रहीत ऊर्जा=== | ==='''एक बिंदु आवेश की प्रणाली में संग्रहीत ऊर्जा'''=== | ||
मात्र एक बिंदु आवेश वाले सिस्टम की इलेक्ट्रोस्टैटिक संभावित ऊर्जा शून्य है, क्योंकि इलेक्ट्रोस्टैटिक बल का कोई अन्य स्रोत नहीं है जिसके विरुद्ध किसी बाहरी एजेंट को बिंदु आवेश को अनंत से उसके अंतिम समष्टि तक ले जाने के लिए काम करना होगा। | मात्र एक बिंदु आवेश वाले सिस्टम की इलेक्ट्रोस्टैटिक संभावित ऊर्जा शून्य है, क्योंकि इलेक्ट्रोस्टैटिक बल का कोई अन्य स्रोत नहीं है जिसके विरुद्ध किसी बाहरी एजेंट को बिंदु आवेश को अनंत से उसके अंतिम समष्टि तक ले जाने के लिए काम करना होगा। | ||
| Line 147: | Line 147: | ||
एक बिंदु आवेश की अपनी इलेक्ट्रोस्टैटिक क्षमता के साथ परस्पर क्रिया के संबंध में एक सामान्य प्रश्न उठता है। चूँकि यह अंतःक्रिया स्वयं बिंदु आवेश को समष्टि ांतरित करने का कार्य नहीं करती है, इसलिए यह सिस्टम की संग्रहीत ऊर्जा में योगदान नहीं करती है। | एक बिंदु आवेश की अपनी इलेक्ट्रोस्टैटिक क्षमता के साथ परस्पर क्रिया के संबंध में एक सामान्य प्रश्न उठता है। चूँकि यह अंतःक्रिया स्वयं बिंदु आवेश को समष्टि ांतरित करने का कार्य नहीं करती है, इसलिए यह सिस्टम की संग्रहीत ऊर्जा में योगदान नहीं करती है। | ||
===दो बिंदु आवेशों की प्रणाली में संग्रहीत ऊर्जा=== | ==='''दो बिंदु आवेशों की प्रणाली में संग्रहीत ऊर्जा'''=== | ||
एक बिंदु आवेश, q, को एक बिंदु आवेश, Q के निकट उसकी अंतिम स्थिति में लाने पर विचार करें<sub>1</sub>. ''Q'' के कारण विद्युत क्षमता Φ(r)<sub>1</sub> है | एक बिंदु आवेश, q, को एक बिंदु आवेश, Q के निकट उसकी अंतिम स्थिति में लाने पर विचार करें<sub>1</sub>. ''Q'' के कारण विद्युत क्षमता Φ(r)<sub>1</sub> है | ||
<math display="block"> \Phi(r) = k_e \frac{Q_1}{r} </math> | <math display="block"> \Phi(r) = k_e \frac{Q_1}{r} </math> | ||
| Line 154: | Line 154: | ||
जहां आर<sub>1</sub> दो बिंदु आवेशों के बीच पृथक्करण है। | जहां आर<sub>1</sub> दो बिंदु आवेशों के बीच पृथक्करण है। | ||
===तीन बिंदु आवेशों की प्रणाली में संग्रहीत ऊर्जा=== | ==='''तीन बिंदु आवेशों की प्रणाली में संग्रहीत ऊर्जा'''=== | ||
तीन आवेशों की प्रणाली की इलेक्ट्रोस्टैटिक संभावित ऊर्जा को Q की इलेक्ट्रोस्टैटिक संभावित ऊर्जा के साथ भ्रमित नहीं किया जाना चाहिए<sub>1</sub> दो आरोपों के कारण Q<sub>2</sub> और प्र<sub>3</sub>, क्योंकि उत्तरार्द्ध में दो आवेशों Q की प्रणाली की इलेक्ट्रोस्टैटिक संभावित ऊर्जा सम्मिलित नहीं है<sub>2</sub> और प्र<sub>3</sub>. | तीन आवेशों की प्रणाली की इलेक्ट्रोस्टैटिक संभावित ऊर्जा को Q की इलेक्ट्रोस्टैटिक संभावित ऊर्जा के साथ भ्रमित नहीं किया जाना चाहिए<sub>1</sub> दो आरोपों के कारण Q<sub>2</sub> और प्र<sub>3</sub>, क्योंकि उत्तरार्द्ध में दो आवेशों Q की प्रणाली की इलेक्ट्रोस्टैटिक संभावित ऊर्जा सम्मिलित नहीं है<sub>2</sub> और प्र<sub>3</sub>. | ||
| Line 191: | Line 191: | ||
}} | }} | ||
== निर्वात में इलेक्ट्रोस्टैटिक क्षेत्र वितरण में संग्रहीत ऊर्जा == | == '''निर्वात में इलेक्ट्रोस्टैटिक क्षेत्र वितरण में संग्रहीत ऊर्जा''' == | ||
ऊर्जा घनत्व, या प्रति इकाई आयतन ऊर्जा, <math display="inline">\frac{dU}{dV}</math>, एक सतत चार्ज वितरण के [[इलेक्ट्रोस्टैटिक क्षेत्र]] का है: | ऊर्जा घनत्व, या प्रति इकाई आयतन ऊर्जा, <math display="inline">\frac{dU}{dV}</math>, एक सतत चार्ज वितरण के [[इलेक्ट्रोस्टैटिक क्षेत्र]] का है: | ||
| Line 236: | Line 236: | ||
}} | }} | ||
==इलेक्ट्रॉनिक तत्वों में संग्रहित ऊर्जा== | =='''इलेक्ट्रॉनिक तत्वों में संग्रहित ऊर्जा'''== | ||
[[File:Electronic component electrolytic capacitors.jpg|right|thumb|150x150px यू है<sub>E</sub>={{sfrac|1|2}} सीवी<sup>2</sup>]]सर्किट में कुछ तत्व ऊर्जा को एक रूप से दूसरे रूप में परिवर्तित कर सकते हैं। उदाहरण के लिए, एक अवरोधक विद्युत ऊर्जा को ऊष्मा में परिवर्तित करता है। इसे जूल का प्रथम नियम कहा जाता है। एक संधारित्र इसे अपने विद्युत क्षेत्र में संग्रहीत करता है। एक संधारित्र में संग्रहीत कुल इलेक्ट्रोस्टैटिक संभावित ऊर्जा द्वारा दी गई है | [[File:Electronic component electrolytic capacitors.jpg|right|thumb|150x150px यू है<sub>E</sub>={{sfrac|1|2}} सीवी<sup>2</sup>]]सर्किट में कुछ तत्व ऊर्जा को एक रूप से दूसरे रूप में परिवर्तित कर सकते हैं। उदाहरण के लिए, एक अवरोधक विद्युत ऊर्जा को ऊष्मा में परिवर्तित करता है। इसे जूल का प्रथम नियम कहा जाता है। एक संधारित्र इसे अपने विद्युत क्षेत्र में संग्रहीत करता है। एक संधारित्र में संग्रहीत कुल इलेक्ट्रोस्टैटिक संभावित ऊर्जा द्वारा दी गई है | ||
<math display="block"> U_E = \frac{1}{2}QV = \frac{1}{2} CV^2 = \frac{Q^2}{2C}</math> | <math display="block"> U_E = \frac{1}{2}QV = \frac{1}{2} CV^2 = \frac{Q^2}{2C}</math> | ||
| Line 283: | Line 283: | ||
ये पश्चात वाली दो अभिव्यक्तियाँ मात्र उन स्थितियों के लिए मान्य हैं जब चार्ज की सबसे छोटी वृद्धि शून्य है (<math>dq \to 0</math>) जैसे धात्विक इलेक्ट्रोडों की उपस्थिति में ढांकता हुआ या कई आवेशों वाले ढांकता हुआ। | ये पश्चात वाली दो अभिव्यक्तियाँ मात्र उन स्थितियों के लिए मान्य हैं जब चार्ज की सबसे छोटी वृद्धि शून्य है (<math>dq \to 0</math>) जैसे धात्विक इलेक्ट्रोडों की उपस्थिति में ढांकता हुआ या कई आवेशों वाले ढांकता हुआ। | ||
==टिप्पणियाँ== | =='''टिप्पणियाँ'''== | ||
{{reflist|group=note|refs=.}} | {{reflist|group=note|refs=.}} | ||
== संदर्भ == | == '''संदर्भ''' == | ||
{{reflist|refs=.}} | {{reflist|refs=.}} | ||
==बाहरी संबंध== | =='''बाहरी संबंध'''== | ||
*{{Commons category inline}} | *{{Commons category inline}} | ||
Revision as of 16:10, 29 November 2023
विद्युत क्षमता या विद्युत शक्ति के साथ भ्रमित न हों।
यह लेख भौतिक परिमाण विद्युत स्थितिज ऊर्जा के बारे में है। विद्युत ऊर्जा के लिए, विद्युत ऊर्जा देखें। ऊर्जा स्रोतों के लिए, ऊर्जा विकास देखें। बिजली उत्पादन के लिए, बिजली उत्पादन देखें।यह लेख भौतिक परिमाण विद्युत स्थितिज ऊर्जा के बारे में है। विद्युत ऊर्जा के लिए, विद्युत ऊर्जा देखें। ऊर्जा स्रोतों के लिए, ऊर्जा विकास देखें। बिजली उत्पादन के लिए, बिजली उत्पादन देखें।
| Electric potential energy | |
|---|---|
सामान्य प्रतीक | UE |
| Si इकाई | joule (J) |
अन्य मात्राओं से व्युत्पत्तियां | UE = C · V2 / 2 |
| Articles about |
| Electromagnetism |
|---|
विद्युत स्थितिज ऊर्जा जूल में मापी गई, एक स्थितिज ऊर्जा के रूप में है, जो रूढ़िवादी बल कूलम्ब बलों से उत्पन्न होती है और एक परिभाषित भौतिक प्रणाली के भीतर बिंदु विद्युत आवेश के एक विशेष समूह के विन्यास से जुड़ी होती है। किसी वस्तु को उसके स्वयं के विद्युत आवेश या अन्य विद्युत आवेशित वस्तुओं के सापेक्ष स्थिति के आधार पर विद्युत स्थितिज ऊर्जा कहा जा सकता है.
विद्युत स्थितिज ऊर्जा शब्द का उपयोग समय-परिवर्तन प्रणाली के रूप में होता है, समय-परिवर्तनीय विद्युत क्षेत्रों वाले सिस्टम में संभावित ऊर्जा का वर्णन करने के लिए किया जाता है, जबकि इलेक्ट्रोस्टैटिक संभावित ऊर्जा शब्द का उपयोग समय-अपरिवर्तनीय प्रणाली के रूप में होता है, समय-अपरिवर्तनीय विद्युत क्षेत्रों वाले सिस्टम में संभावित ऊर्जा का वर्णन करने के लिए किया जाता है।
परिभाषा
बिंदु आवेशों की एक प्रणाली की विद्युत स्थितिज ऊर्जा को उस कार्य भौतिकी के रूप में परिभाषित किया जाता है, जो आवेशों की इस प्रणाली को एक साथ पास लाकर इकट्ठा करने के लिए आवश्यक है, जैसा कि सिस्टम में अनंत दूरी से होता है। वैकल्पिक रूप से किसी दिए गए आवेश या आवेश प्रणाली की विद्युत स्थितिज ऊर्जा को बिना किसी त्वरण के आवेश या आवेश प्रणाली को अनंत से वर्तमान विन्यास तक लाने में बाहरी एजेंट द्वारा किया गया कुल कार्य कहा जाता है।
विद्युत क्षेत्र E की उपस्थिति में स्थिति r पर एक बिंदु आवेश q की इलेक्ट्रोस्टैटिक संभावित ऊर्जा UE को संदर्भ स्थिति r ref [नोट 1] से लाने के लिए इलेक्ट्रोस्टैटिक बल द्वारा किए गए कार्य W के नकारात्मक के रूप में परिभाषित किया गया है। वह स्थिति r.[1][2]: §25-1
जहां E इलेक्ट्रोस्टैटिक क्षेत्र है और dr संदर्भ स्थिति rref से अंतिम स्थिति r तक वक्र में विस्थापन वेक्टर है।
विद्युत क्षमता की उपस्थिति में स्थिति r पर एक बिंदु आवेश q की इलेक्ट्रोस्टैटिक संभावित ऊर्जा UE Φ\Phi को आवेश और विद्युत क्षमता के उत्पाद के रूप में परिभाषित किया गया है।
,
जहाँ
Φ\Phi आवेशों द्वारा उत्पन्न विद्युत क्षमता है, जो स्थिति r का एक फलन है।इकाइयाँ
विद्युत स्थितिज ऊर्जा की SI इकाई जूल है, जिसका नाम अंग्रेजी भौतिक विज्ञानी जेम्स प्रेस्कॉट जूल के नाम पर रखा गया है और सीजीएस प्रणाली में एर्ग ऊर्जा की इकाई है जो 10−7 जूल के बराबर है। इसके अलावा इलेक्ट्रॉनवोल्ट का उपयोग किया जा सकता है, 1 eV = 1.602×10−19जूल।
एक बिंदु आवेश की स्थिरवैद्युत स्थितिज ऊर्जा
एक बिंदु आवेश q दूसरे बिंदु आवेश की उपस्थिति में Q
स्थिर वैद्युत स्थितिज ऊर्जा UE एक बिंदु आवेश Q की उपस्थिति में स्थिति 'r' पर एक बिंदु आवेश q का आवेशों के बीच एक अनंत पृथक्करण को संदर्भ स्थिति के रूप में लेते हुए, है:
जहाँ, कूलम्ब स्थिरांक है, r बिंदु आवेश q और Q के बीच की दूरी है और q और Q आवेश हैं, आवेशों का निरपेक्ष मान नहीं - अर्थात, सूत्र में रखे जाने पर एक इलेक्ट्रॉन का आवेश ऋणात्मक मान के रूप में होगा. प्रमाण की निम्नलिखित रूपरेखा विद्युत स्थितिज ऊर्जा की परिभाषा और कूलम्ब के नियम से इस सूत्र की व्युत्पत्ति बताती है.
किसी आवेश q पर कार्य करने वाले स्थिर वैद्युत बल F को विद्युत क्षेत्र E के संदर्भ में इस प्रकार लिखा जा सकता है
परिभाषा के अनुसार एक बिंदु आवेश q की इलेक्ट्रोस्टैटिक संभावित ऊर्जा UE में परिवर्तन, जो एक विद्युत क्षेत्र E की उपस्थिति में संदर्भ स्थिति rref से स्थिति r तक चला गया है, इसे संदर्भ से लाने के लिए इलेक्ट्रोस्टैटिक बल द्वारा किए गए कार्य का नकारात्मक है। स्थिति rref उस स्थिति r के लिए।
* r = आवेश q के 3डी स्थान में स्थिति, कार्तीय निर्देशांक r = (x, y, z) का उपयोग करते हुए, r = (0,0,0) पर Q आवेश की स्थिति लेते हुए, अदिश r = |r| स्थिति वेक्टर का आदर्श है, *ds = rref से r तक जाने वाले पथ C के साथ अंतर विस्थापन वेक्टर
- mm इलेक्ट्रोस्टैटिक बल द्वारा चार्ज को संदर्भ स्थिति rref से r तक लाने के लिए किया गया कार्य है,
आमतौर पर जब rref अनंत होता है तो UE को शून्य पर सेट किया जाता है:
जब कर्ल ∇ × E शून्य होता है, तो ऊपर दी गई रेखा इंटीग्रल चुने गए विशिष्ट पथ C पर निर्भर नहीं करती है, बल्कि केवल उसके अंतिम बिंदुओं पर निर्भर करती है। यह समय-अपरिवर्तनीय विद्युत क्षेत्रों में होता है। जब इलेक्ट्रोस्टैटिक संभावित ऊर्जा के बारे में बात की जाती है, तो समय-अपरिवर्तनीय विद्युत क्षेत्रों को हमेशा माना जाता है, इस मामले में, विद्युत क्षेत्र रूढ़िवादी है और कूलम्ब के नियम का उपयोग किया जा सकता है।
कूलम्ब के नियम का उपयोग करते हुए, यह ज्ञात है कि एक असतत बिंदु आवेश Q द्वारा निर्मित इलेक्ट्रोस्टैटिक बल F और विद्युत क्षेत्र E, रेडियल रूप से Q से निर्देशित होते हैं। स्थिति वेक्टर r और विस्थापन वेक्टर s की परिभाषा से, यह इस प्रकार है कि r और s Q से भी रेडियल रूप से निर्देशित हैं। इसलिए, E और ds समानांतर होने चाहिए:
कूलम्ब के नियम का उपयोग करके, विद्युत क्षेत्र दिया जाता है
{\displaystyle |\mathbf {E} |=E={\frac {1}{4\pi \varepsilon _{0}}}{\frac {Q}{s^{2}}}}
और अभिन्न का मूल्यांकन आसानी से किया जा सकता है:
n बिंदु आवेश Q की उपस्थिति में एक बिंदु आवेश qi
स्थिरवैद्युत स्थितिज ऊर्जा, यूE, एक बिंदु आवेश q का n बिंदु आवेश Q की उपस्थिति मेंiसंदर्भ स्थिति के रूप में आवेशों के बीच अनंत पृथक्करण को लेते हुए, यह है:
जहाँ कूलम्ब स्थिरांक है, riबिंदु आवेश q और Q के बीच की दूरी हैi, और q और Qiआरोपों के निर्दिष्ट मूल्य हैं।
बिंदु आवेशों की प्रणाली में संग्रहित इलेक्ट्रोस्टैटिक स्थितिज ऊर्जा
स्थिरवैद्युत स्थितिज ऊर्जा UE एन चार्ज क्यू की एक प्रणाली में संग्रहीत1, क्यू2, …, क्यूN पदों पर आर1, आर2, …, आरN क्रमशः, है:
|
|
(1) |
जहां, प्रत्येक i मान के लिए, Φ('r'i) r पर स्थित आवेश को छोड़कर सभी बिंदु आवेशों के कारण स्थिरवैद्युत विभव हैi,[note 1] और इसके समतुल्य है:
दो आवेशों की प्रणाली में संग्रहीत इलेक्ट्रोस्टैटिक संभावित ऊर्जा यूई दूसरे द्वारा उत्पन्न इलेक्ट्रोस्टैटिक क्षमता में एक चार्ज की इलेक्ट्रोस्टैटिक संभावित ऊर्जा के बराबर है। कहने का तात्पर्य यह है कि यदि आवेश q1 एक इलेक्ट्रोस्टैटिक क्षमता Φ1 उत्पन्न करता है, जो स्थिति r का एक फलन है, तो
अन्य आवेश के संबंध में भी यही गणना करने पर हमें प्राप्त होता है
इलेक्ट्रोस्टैटिक संभावित ऊर्जा परस्पर साझा की जाती है and ,तो कुल संग्रहीत ऊर्जा है
इसे यह कहकर सामान्यीकृत किया जा सकता है कि इलेक्ट्रोस्टैटिक संभावित ऊर्जाUE की एक प्रणाली में संग्रहित है N क्रमशः r1, r2, …, rN स्थिति पर q1, q2, …, qN को चार्ज करता है:
एक बिंदु आवेश की प्रणाली में संग्रहीत ऊर्जा
मात्र एक बिंदु आवेश वाले सिस्टम की इलेक्ट्रोस्टैटिक संभावित ऊर्जा शून्य है, क्योंकि इलेक्ट्रोस्टैटिक बल का कोई अन्य स्रोत नहीं है जिसके विरुद्ध किसी बाहरी एजेंट को बिंदु आवेश को अनंत से उसके अंतिम समष्टि तक ले जाने के लिए काम करना होगा।
एक बिंदु आवेश की अपनी इलेक्ट्रोस्टैटिक क्षमता के साथ परस्पर क्रिया के संबंध में एक सामान्य प्रश्न उठता है। चूँकि यह अंतःक्रिया स्वयं बिंदु आवेश को समष्टि ांतरित करने का कार्य नहीं करती है, इसलिए यह सिस्टम की संग्रहीत ऊर्जा में योगदान नहीं करती है।
दो बिंदु आवेशों की प्रणाली में संग्रहीत ऊर्जा
एक बिंदु आवेश, q, को एक बिंदु आवेश, Q के निकट उसकी अंतिम स्थिति में लाने पर विचार करें1. Q के कारण विद्युत क्षमता Φ(r)1 है
तीन बिंदु आवेशों की प्रणाली में संग्रहीत ऊर्जा
तीन आवेशों की प्रणाली की इलेक्ट्रोस्टैटिक संभावित ऊर्जा को Q की इलेक्ट्रोस्टैटिक संभावित ऊर्जा के साथ भ्रमित नहीं किया जाना चाहिए1 दो आरोपों के कारण Q2 और प्र3, क्योंकि उत्तरार्द्ध में दो आवेशों Q की प्रणाली की इलेक्ट्रोस्टैटिक संभावित ऊर्जा सम्मिलित नहीं है2 और प्र3.
तीन आवेशों की प्रणाली में संग्रहीत इलेक्ट्रोस्टैटिक संभावित ऊर्जा है:
(1) में दिए गए सूत्र का उपयोग करके तीन आवेशों की प्रणाली की इलेक्ट्रोस्टैटिक स्थितिज ऊर्जा होगी:
जहाँ Φ (
1 ) \Phi ({\mathbf {r}}_{1}) आवेश Q2 और Q3 द्वारा निर्मित r1 में विद्युत क्षमता है,
जहाँ rij आवेश Qi और Qj के बीच की दूरी है।
यदि हम सब कुछ जोड़ दें:
अंत में हम पाते हैं कि इलेक्ट्रोस्टैटिक संभावित ऊर्जा तीन आवेशों की प्रणाली में संग्रहीत होती है:
निर्वात में इलेक्ट्रोस्टैटिक क्षेत्र वितरण में संग्रहीत ऊर्जा
ऊर्जा घनत्व, या प्रति इकाई आयतन ऊर्जा, , एक सतत चार्ज वितरण के इलेक्ट्रोस्टैटिक क्षेत्र का है:
कोई निरंतर चार्ज वितरण की इलेक्ट्रोस्टैटिक संभावित ऊर्जा के लिए समीकरण ले सकता है और इसे इलेक्ट्रोस्टैटिक क्षेत्र के संदर्भ में रख सकता है।
चूँकि विभेदक रूप में स्थिरवैद्युत क्षेत्र के लिए गॉस का नियम बताता है
- \mathbf{E} विद्युत क्षेत्र सदिश है
- \rho किसी सामग्री में बंधे द्विध्रुवीय आवेशों सहित कुल आवेश घनत्व हैl
- \varepsilon _{0} मुक्त स्थान की परमिटिटिविटी है,
जब
तो, अब निम्नलिखित विचलन वेक्टर पहचान का उपयोग कर रहे हैं
हमारे पास है
विचलन प्रमेय का उपयोग करना और क्षेत्र को अनंत पर लेना
तो, ऊर्जा घनत्व, या प्रति इकाई आयतन ऊर्जा
इलेक्ट्रोस्टैटिक क्षेत्र का है
इलेक्ट्रॉनिक तत्वों में संग्रहित ऊर्जा
सर्किट में कुछ तत्व ऊर्जा को एक रूप से दूसरे रूप में परिवर्तित कर सकते हैं। उदाहरण के लिए, एक अवरोधक विद्युत ऊर्जा को ऊष्मा में परिवर्तित करता है। इसे जूल का प्रथम नियम कहा जाता है। एक संधारित्र इसे अपने विद्युत क्षेत्र में संग्रहीत करता है। एक संधारित्र में संग्रहीत कुल इलेक्ट्रोस्टैटिक संभावित ऊर्जा द्वारा दी गई है
कोई संधारित्र पर अनंत लघु वृद्धि में आवेश एकत्रित कर सकता है, � � → 0 {\displaystyle dq\to 0}
ताकि प्रत्येक वेतन वृद्धि को उसके अंतिम स्थान पर इकट्ठा करने के लिए किए गए कार्य की मात्रा को इस प्रकार व्यक्त किया जा सके
इस प्रकार संधारित्र को पूरी तरह से चार्ज करने के लिए किया गया कुल कार्य तब होता है
कुल स्थिरवैद्युत स्थितिज ऊर्जा को विद्युत क्षेत्र के रूप में भी व्यक्त किया जा सकता है
(संधारित्र प्लेटों के बीच ऊर्जा हस्तांतरण पर आधारित एक आभासी प्रयोग से पता चलता है कि जब इलेक्ट्रोस्टैटिक ऊर्जा को विद्युत क्षेत्र और विस्थापन सदिश के संदर्भ में व्यक्त किया जाता है तो एक अतिरिक्त शब्द को ध्यान में रखा जाना चाहिए [1].
जबकि यह अतिरिक्त ऊर्जा इंसुलेटर के साथ काम करते समय रद्द हो जाती है, सामान्यतः इसे नजरअंदाज नहीं किया जा सकता है, उदाहरण के लिए अर्धचालक के साथ।)
किसी आवेशित ढांकता हुआ के भीतर संग्रहित कुल स्थिरवैद्युत स्थितिज ऊर्जा को निरंतर आयतन आवेश के रूप में भी व्यक्त किया जा सकता है, ,
ये पश्चात वाली दो अभिव्यक्तियाँ मात्र उन स्थितियों के लिए मान्य हैं जब चार्ज की सबसे छोटी वृद्धि शून्य है () जैसे धात्विक इलेक्ट्रोडों की उपस्थिति में ढांकता हुआ या कई आवेशों वाले ढांकता हुआ।
टिप्पणियाँ
- ↑ The factor of one half accounts for the 'double counting' of charge pairs. For example, consider the case of just two charges.
संदर्भ
- ↑ Sallese (2016-06-01). "अर्धचालकों में स्थिरवैद्युत ऊर्जा का एक नया घटक". The European Physical Journal B (in English). 89 (6): 136. doi:10.1140/epjb/e2016-60865-4. ISSN 1434-6036. S2CID 120731496.
बाहरी संबंध
Media related to विद्युत स्थितिज ऊर्जा at Wikimedia Commons