रासायनिक गतिकी: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Study of the rates of chemical reactions}} {{Use American English|date = April 2019}} रासायनिक कैनेटीक्स, जिसे...")
 
m (21 revisions imported from alpha:रासायनिक_गतिकी)
 
(20 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Study of the rates of chemical reactions}}
{{short description|Study of the rates of chemical reactions}}
{{Use American English|date = April 2019}}
'''रासायनिक गतिकी''', जिसे प्रतिक्रिया गतिकी भी कहा जाता है, भौतिक रसायन शास्त्र की शाखा है जो रासायनिक प्रतिक्रियाओं की दरों को समझने से संबंधित है। यह रासायनिक ऊष्मप्रवैगिकी के विपरीत है, जो उस दिशा से संबंधित है जिसमें प्रतिक्रिया होती है किंतु अपने आप में इसकी दर के बारे में कुछ नहीं बताता है। रासायनिक गतिकी में इस बात की पड़ताल सम्मिलित है कि कैसे प्रयोगात्मक स्थितियां रासायनिक प्रतिक्रिया की गति को प्रभावित करती हैं और प्रतिक्रिया तंत्र के बारे में जानकारी प्राप्त करती हैं, साथ ही गणितीय मॉडल का निर्माण भी करती हैं जो रासायनिक प्रतिक्रिया की विशेषताओं का भी वर्णन कर सकते हैं।
रासायनिक कैनेटीक्स, जिसे रिएक्शन कैनेटीक्स भी कहा जाता है, भौतिक रसायन शास्त्र की शाखा है जो रासायनिक प्रतिक्रियाओं की दरों को समझने से संबंधित है। यह रासायनिक ऊष्मप्रवैगिकी के विपरीत है, जो उस दिशा से संबंधित है जिसमें प्रतिक्रिया होती है लेकिन अपने आप में इसकी दर के बारे में कुछ नहीं बताता है। रासायनिक कैनेटीक्स में इस बात की पड़ताल शामिल है कि कैसे प्रयोगात्मक स्थितियां रासायनिक प्रतिक्रिया की गति को प्रभावित करती हैं और प्रतिक्रिया तंत्र के बारे में जानकारी प्राप्त करती हैं।
== इतिहास ==
रासायनिक गतिकी का अग्रणी कार्य 1850 में जर्मन रसायनज्ञ लुडविग विल्हेल्मी द्वारा किया गया था।<ref name="GW1" /> उन्होंने प्रयोगात्मक रूप से सुक्रोज के व्युत्क्रमण की दर का अध्ययन किया और उन्होंने इस प्रतिक्रिया की प्रतिक्रिया गतिकी के निर्धारण के लिए एकीकृत दर नियम का उपयोग किया। उनके कार्य पर 34 साल बाद विल्हेम ओस्टवाल्ड ने ध्यान दिया था। विल्हेमी के बाद, 1864 में, पीटर वाएज और केटो गुल्डबर्ग ने सामूहिक क्रिया के नियम को तैयार करके रासायनिक गतिकी के विकास का प्रारंभ किया, जिसमें कहा गया है कि रासायनिक प्रतिक्रिया की गति प्रतिक्रियाशील पदार्थों की मात्रा के समानुपाती होती है।<ref name="GW1">C.M. Guldberg and P. Waage,"Studies Concerning Affinity" ''Forhandlinger i Videnskabs-Selskabet i Christiania'' (1864), 35</ref><ref name="GW2">P. Waage, "Experiments for Determining the Affinity Law" ,''Forhandlinger i Videnskabs-Selskabet i Christiania'', (1864) 92.</ref><ref name="GW3">C.M. Guldberg, "Concerning the Laws of Chemical Affinity", ''Forhandlinger i Videnskabs-Selskabet i Christiania'' (1864) 111</ref>


== इतिहास ==
वान' टी हॉफ ने रासायनिक गतिशीलता का अध्ययन किया और 1884 में अपने प्रसिद्ध एट्यूड्स डी डायनेमिक चिमिक को प्रकाशित किया था।<ref>{{Cite book|url=https://archive.org/details/studiesinchemica00hoffrich|title=रासायनिक गतिकी में अध्ययन|last=Hoff|first=J. H. van't (Jacobus Henricus van't)|last2=Cohen|first2=Ernst|last3=Ewan|first3=Thomas|date=1896-01-01|publisher=Amsterdam : F. Muller; London : Williams & Norgate}}</ref> 1901 में उन्हें रासायनिक गतिकी के नियमों और विलयनों में आसमाटिक दबाव की खोज द्वारा प्रदान की गई असाधारण सेवाओं की पहचान के लिए रसायन विज्ञान में प्रथम नोबेल पुरस्कार से सम्मानित किया गया था।<ref>[https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1901/ The Nobel Prize in Chemistry 1901], Nobel Prizes and Laureates, official website.</ref> वैन 'टी हॉफ के बाद, रासायनिक गतिकी प्रतिक्रिया दरों के प्रयोगात्मक निर्धारण से संबंधित है जिससे दर नियम और प्रतिक्रिया दर स्थिरांक प्राप्त होते हैं। शून्य-क्रम प्रतिक्रियाओं के लिए अपेक्षाकृत सरल दर नियम उपस्थित हैं (जिसके लिए प्रतिक्रिया दर एकाग्रता से स्वतंत्र हैं), प्रथम-क्रम प्रतिक्रियाएँ, और द्वितीय-क्रम प्रतिक्रियाएँ, और दूसरों के लिए प्राप्त की जा सकती हैं। प्राथमिक प्रतिक्रियाएं सामूहिक क्रिया के नियम का पालन करती हैं, किंतु चरणबद्ध प्रतिक्रियाओं के दर नियम को विभिन्न प्राथमिक चरणों के दर नियमों के संयोजन से प्राप्त करना पड़ता है, और यह अधिक जटिल हो सकता है। लगातार प्रतिक्रियाओं में, दर-निर्धारण चरण अधिकांशतः गतिकी निर्धारित करता है। लगातार पहले क्रम की प्रतिक्रियाओं में, स्थिर अवस्था (रसायन विज्ञान) समीपता दर नियम को सरल बना सकता है। प्रतिक्रिया के लिए सक्रियण ऊर्जा प्रयोगात्मक रूप से अरहेनियस समीकरण और आइरिंग समीकरण के माध्यम से निर्धारित की जाती है। प्रतिक्रिया की दर को प्रभावित करने वाले मुख्य कारकों में सम्मिलित हैं: अभिकारकों की भौतिक स्थिति, अभिकारकों की सांद्रता, जिस तापमान पर प्रतिक्रिया होती है, और प्रतिक्रिया में कोई उत्प्रेरक उपस्थित हैं या नहीं है।
1864 में, पीटर वाएज और केटो गुल्डबर्ग ने बड़े पैमाने पर कार्रवाई के कानून को तैयार करके रासायनिक कैनेटीक्स के विकास की शुरुआत की, जिसमें कहा गया है कि रासायनिक प्रतिक्रिया की गति प्रतिक्रियाशील पदार्थों की मात्रा के समानुपाती होती है।<ref name="GW1">C.M. Guldberg and P. Waage,"Studies Concerning Affinity" ''Forhandlinger i Videnskabs-Selskabet i Christiania'' (1864), 35</ref><ref name="GW2">P. Waage, "Experiments for Determining the Affinity Law" ,''Forhandlinger i Videnskabs-Selskabet i Christiania'', (1864) 92.</ref><ref name="GW3">C.M. Guldberg, "Concerning the Laws of Chemical Affinity", ''Forhandlinger i Videnskabs-Selskabet i Christiania'' (1864) 111</ref>
जेकोबस हेनरिकस वैन 'टी हॉफ | वान' टी हॉफ ने रासायनिक गतिशीलता का अध्ययन किया और 1884 में अपने प्रसिद्ध एट्यूड्स डी डायनेमिक चिमिक को प्रकाशित किया।<ref>{{Cite book|url=https://archive.org/details/studiesinchemica00hoffrich|title=रासायनिक गतिकी में अध्ययन|last=Hoff|first=J. H. van't (Jacobus Henricus van't)|last2=Cohen|first2=Ernst|last3=Ewan|first3=Thomas|date=1896-01-01|publisher=Amsterdam : F. Muller; London : Williams & Norgate}}</ref> 1901 में उन्हें रासायनिक गतिकी के नियमों और विलयनों में आसमाटिक दबाव की खोज द्वारा प्रदान की गई असाधारण सेवाओं की पहचान के लिए रसायन विज्ञान में प्रथम नोबेल पुरस्कार से सम्मानित किया गया था।<ref>[https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1901/ The Nobel Prize in Chemistry 1901], Nobel Prizes and Laureates, official website.</ref> वैन 'टी हॉफ के बाद, रासायनिक कैनेटीक्स प्रतिक्रिया दरों के प्रयोगात्मक निर्धारण से संबंधित है जिससे दर कानून और प्रतिक्रिया दर स्थिरांक प्राप्त होते हैं। दर कानून # शून्य-क्रम प्रतिक्रियाओं के लिए अपेक्षाकृत सरल दर कानून मौजूद हैं (जिसके लिए प्रतिक्रिया दर एकाग्रता से स्वतंत्र हैं), दर समीकरण # प्रथम-क्रम प्रतिक्रियाएँ, और द्वितीय-क्रम प्रतिक्रियाएँ, और दूसरों के लिए प्राप्त की जा सकती हैं। प्राथमिक प्रतिक्रियाएं सामूहिक कार्रवाई के नियम का पालन करती हैं, लेकिन चरणबद्ध प्रतिक्रियाओं के दर कानून को विभिन्न प्राथमिक चरणों के दर कानूनों के संयोजन से प्राप्त करना पड़ता है, और यह जटिल हो सकता है। लगातार प्रतिक्रियाओं में, दर-निर्धारण कदम अक्सर कैनेटीक्स निर्धारित करता है। लगातार पहले क्रम की प्रतिक्रियाओं में, एक स्थिर अवस्था (रसायन विज्ञान) सन्निकटन दर कानून को सरल बना सकता है। एक प्रतिक्रिया के लिए सक्रियण ऊर्जा प्रयोगात्मक रूप से अरहेनियस समीकरण और आइरिंग समीकरण के माध्यम से निर्धारित की जाती है। प्रतिक्रिया की दर को प्रभावित करने वाले मुख्य कारकों में शामिल हैं: अभिकारकों की भौतिक स्थिति, अभिकारकों की सांद्रता, जिस तापमान पर प्रतिक्रिया होती है, और प्रतिक्रिया में कोई उत्प्रेरक मौजूद हैं या नहीं।


अलेक्जेंडर निकोलाइविच गोर्बन और याब्लोन्स्की ने सुझाव दिया है कि रासायनिक गतिकी के इतिहास को तीन युगों में विभाजित किया जा सकता है।<ref>A.N. Gorban, G.S. Yablonsky [https://www.researchgate.net/publication/281411623_Three_Waves_of_Chemical_Dynamics Three Waves of Chemical Dynamics], ''Mathematical Modelling of Natural Phenomena'' 10(5) (2015), p. 1–5.</ref> पहला वैन 'टी हॉफ तरंग है जो रासायनिक प्रतिक्रियाओं के सामान्य नियमों की खोज कर रहा है और कैनेटीक्स को ऊष्मप्रवैगिकी से संबंधित कर रहा है। दूसरे को निकोले सेमेनोव-सिरिल नॉर्मन हिंशेलवुड लहर कहा जा सकता है, विशेष रूप से चेन रिएक्शन # रासायनिक चेन रिएक्शन के लिए प्रतिक्रिया तंत्र पर जोर देने के साथ। तीसरा रदरफोर्ड एरिस और रासायनिक प्रतिक्रिया नेटवर्क के विस्तृत गणितीय विवरण से जुड़ा है।
गोर्बन और याब्लोन्स्की ने सुझाव दिया है कि रासायनिक गतिकी के इतिहास को तीन युगों में विभाजित किया जा सकता है।<ref>A.N. Gorban, G.S. Yablonsky [https://www.researchgate.net/publication/281411623_Three_Waves_of_Chemical_Dynamics Three Waves of Chemical Dynamics], ''Mathematical Modelling of Natural Phenomena'' 10(5) (2015), p. 1–5.</ref> पहला वैन 'टी हॉफ तरंग है जो रासायनिक प्रतिक्रियाओं के सामान्य नियमों की खोज कर रहा है और गतिकी को ऊष्मप्रवैगिकी से संबंधित कर रहा है। दूसरे को विशेष रूप से श्रृंखला प्रतिक्रियाओं के लिए प्रतिक्रिया तंत्र पर जोर देने के साथ सेमेनोव-हिंशेलवुड वेव कहा जा सकता है। तीसरा एरिस और रासायनिक प्रतिक्रिया नेटवर्क के विस्तृत गणितीय विवरण से जुड़ा है।


== प्रतिक्रिया दर को प्रभावित करने वाले कारक ==
== प्रतिक्रिया दर को प्रभावित करने वाले कारक ==


=== अभिकारकों की प्रकृति ===
=== अभिकारकों की प्रकृति ===
प्रतिक्रिया की दर इस बात पर निर्भर करती है कि कौन से पदार्थ प्रतिक्रिया कर रहे हैं। अम्ल/क्षार प्रतिक्रियाएँ, लवण का निर्माण और आयन विनिमय आमतौर पर तेज़ प्रतिक्रियाएँ होती हैं। जब अणुओं के बीच सहसंयोजक बंध बनता है और जब बड़े अणु बनते हैं, तो अभिक्रिया धीमी हो जाती है।
प्रतिक्रिया की दर इस बात पर निर्भर करती है कि कौन से पदार्थ प्रतिक्रिया कर रहे हैं। अम्ल/क्षार प्रतिक्रियाएँ, लवण का निर्माण और आयन विनिमय सामान्यतः तीव्र प्रतिक्रियाएँ होती हैं। जब अणुओं के मध्य सहसंयोजक बंध बनता है और जब बड़े अणु बनते हैं, तो अभिक्रिया धीमी हो जाती है।


प्रतिक्रियाशील अणुओं में बांड की प्रकृति और ताकत उनके उत्पादों में परिवर्तन की दर को बहुत प्रभावित करती है।
प्रतिक्रियाशील अणुओं में बंधों की प्रकृति और शक्ति उनके उत्पादों में परिवर्तन की दर को बहुत प्रभावित करती है।


=== शारीरिक अवस्था ===
=== भौतिक अवस्था ===
किसी अभिकारक की भौतिक अवस्था (ठोस, द्रव या गैस) भी परिवर्तन की दर का एक महत्वपूर्ण कारक है। जब अभिकारक उसी चरण (पदार्थ) में होते हैं, जैसा कि जलीय घोल में होता है, तो तापीय गति उन्हें संपर्क में लाती है। हालांकि, जब वे अलग-अलग चरणों में होते हैं, तो प्रतिक्रिया अभिकारकों के बीच इंटरफेस तक ही सीमित होती है। प्रतिक्रिया केवल उनके संपर्क के क्षेत्र में हो सकती है; तरल और गैस के मामले में, तरल की सतह पर। प्रतिक्रिया को पूरा करने के लिए जोर से हिलाने और हिलाने की आवश्यकता हो सकती है। इसका मतलब यह है कि एक ठोस या तरल अभिकारक को जितना अधिक सूक्ष्म रूप से विभाजित किया जाता है, प्रति इकाई आयतन में उसका सतह क्षेत्र उतना ही अधिक होता है और जितना अधिक वह अन्य अभिकारक के साथ संपर्क करता है, इस प्रकार प्रतिक्रिया उतनी ही तेज होती है। एक सादृश्य बनाने के लिए, उदाहरण के लिए, जब कोई आग लगाता है, तो वह लकड़ी के चिप्स और छोटी शाखाओं का उपयोग करता है - कोई तुरंत बड़े लट्ठों से शुरू नहीं करता है। कार्बनिक रसायन विज्ञान में, पानी पर प्रतिक्रियाएँ इस नियम का अपवाद हैं कि विषम प्रतिक्रियाओं की तुलना में सजातीय प्रतिक्रियाएँ तेजी से होती हैं (वे प्रतिक्रियाएँ जिनमें विलेय और विलायक ठीक से मिश्रित नहीं होते हैं)
किसी अभिकारक की भौतिक अवस्था (ठोस, द्रव या गैस) भी परिवर्तन की दर का महत्वपूर्ण कारक है। जब अभिकारक उसी चरण (पदार्थ) में होते हैं, जैसा कि जलीय घोल में होता है, तो तापीय गति उन्हें संपर्क में लाती है। चूँकि, जब वे अलग-अलग चरणों में होते हैं, तो प्रतिक्रिया अभिकारकों के मध्य अंतराफलक तक ही सीमित होती है। प्रतिक्रिया केवल उनके संपर्क के क्षेत्र में हो सकती है; तरल और गैस की स्थितियों में, प्रतिक्रिया केवल उनके संपर्क क्षेत्र में, तरल की सतह पर ही हो सकती है। प्रतिक्रिया को पूरा करने के लिए प्रबल कंपन और उत्तेजक की आवश्यकता हो सकती है। इसका अर्थ यह है कि ठोस या तरल अभिकारक को जितना अधिक सूक्ष्म रूप से विभाजित किया जाता है, प्रति इकाई आयतन में उसका सतह क्षेत्र उतना ही अधिक होता है और जितना अधिक वह अन्य अभिकारक के साथ संपर्क करता है, इस प्रकार प्रतिक्रिया उतनी ही तीव्र होती है। सादृश्य बनाने के लिए, उदाहरण के लिए, जब कोई आग लगाता है, तो वह लकड़ी के चिप्स और छोटी शाखाओं का उपयोग करता है - कोई तुरंत बड़े लट्ठों से प्रारंभ नहीं करता है। कार्बनिक रसायन विज्ञान में, जल पर प्रतिक्रियाएँ इस नियम का अपवाद हैं कि विषम प्रतिक्रियाओं की तुलना में सजातीय प्रतिक्रियाएँ तीव्रता से होती हैं (वे प्रतिक्रियाएँ जिनमें विलेय और विलायक ठीक से मिश्रित नहीं होते हैं)


=== ठोस अवस्था का सतह क्षेत्र ===
=== ठोस अवस्था का सतह क्षेत्र ===
एक ठोस में, केवल वे कण जो सतह पर होते हैं, प्रतिक्रिया में शामिल हो सकते हैं। एक ठोस को छोटे भागों में कुचलने का मतलब है कि सतह पर अधिक कण मौजूद हैं, और इन और प्रतिक्रियाशील कणों के बीच टकराव की आवृत्ति बढ़ जाती है, और इसलिए प्रतिक्रिया अधिक तेज़ी से होती है। उदाहरण के लिए, शर्बत (पाउडर) मैलिक एसिड (एक कमजोर कार्बनिक अम्ल) और सोडियम हाइड्रोजन कार्बोनेट के बहुत महीन पाउडर का मिश्रण है। मुंह में लार के संपर्क में आने पर, ये रसायन जल्दी से घुल जाते हैं और प्रतिक्रिया करते हैं, कार्बन डाइऑक्साइड छोड़ते हैं और फ़िज़ी सनसनी प्रदान करते हैं। इसके अलावा, पटाखे निर्माता ठोस अभिकारकों के सतह क्षेत्र को उस दर को नियंत्रित करने के लिए संशोधित करते हैं जिस पर आतिशबाजी में ईंधन ऑक्सीकृत होते हैं, इसका उपयोग विविध प्रभाव पैदा करने के लिए किया जाता है। उदाहरण के लिए, एक खोल में सीमित रूप से विभाजित एल्यूमीनियम हिंसक रूप से फट जाता है। यदि एल्यूमीनियम के बड़े टुकड़ों का उपयोग किया जाता है, तो प्रतिक्रिया धीमी होती है और चिंगारी जलती हुई धातु के टुकड़ों के रूप में दिखाई देती है।
एक ठोस में, केवल वे कण जो सतह पर होते हैं, प्रतिक्रिया में सम्मिलित हो सकते हैं। ठोस को छोटे भागों में कुचलने का अर्थ है कि सतह पर अधिक कण उपस्थित हैं, और इन और प्रतिक्रियाशील कणों के मध्य संघटन की आवृत्ति बढ़ जाती है, और इसलिए प्रतिक्रिया अधिक तीव्रता़ी से होती है। उदाहरण के लिए, शर्बत (पाउडर) मैलिक एसिड (एक कमजोर कार्बनिक अम्ल) और सोडियम हाइड्रोजन कार्बोनेट के बहुत महीन पाउडर का मिश्रण है। मुंह में लार के संपर्क में आने पर, ये रसायन जल्दी से घुल जाते हैं और प्रतिक्रिया करते हैं, कार्बन डाइऑक्साइड छोड़ते हैं और चक्कर आने की अनुभूति होती है। इसके अतिरिक्त, आतिशबाजी निर्माता ठोस अभिकारकों के सतह क्षेत्र को उस दर को नियंत्रित करने के लिए संशोधित करते हैं जिस पर आतिशबाजी में ईंधन ऑक्सीकृत होते हैं, इसका उपयोग विविध प्रभाव उत्पन्न करने के लिए किया जाता है। उदाहरण के लिए, खोल में सीमित रूप से विभाजित एल्यूमीनियम हिंसक रूप से फट जाता है। यदि एल्यूमीनियम के बड़े टुकड़ों का उपयोग किया जाता है, तो प्रतिक्रिया धीमी होती है और चिंगारी जलती हुई धातु के टुकड़ों के रूप में दिखाई देती है।


=== एकाग्रता ===
=== एकाग्रता ===
{{main article|Rate equation}}
{{main article|दर समीकरण}}
प्रतिक्रियाएँ प्रतिक्रियाशील प्रजातियों के टकराव के कारण होती हैं। अणुओं या आयनों के टकराने की आवृत्ति उनकी सांद्रता पर निर्भर करती है। अणुओं की भीड़ जितनी अधिक होती है, उनके आपस में टकराने और प्रतिक्रिया करने की संभावना उतनी ही अधिक होती है। इस प्रकार, अभिकारकों की सांद्रता में वृद्धि के परिणामस्वरूप आमतौर पर प्रतिक्रिया दर में वृद्धि होती है, जबकि सांद्रता में कमी का आमतौर पर विपरीत प्रभाव पड़ता है। उदाहरण के लिए, हवा (21% ऑक्सीजन) की तुलना में शुद्ध ऑक्सीजन में दहन अधिक तेजी से होगा।
 
प्रतिक्रियाएँ प्रतिक्रियाशील प्रजातियों के संघटन के कारण होती हैं। अणुओं या आयनों के टकराने की आवृत्ति उनकी सांद्रता पर निर्भर करती है। अणुओं की भीड़ जितनी अधिक होती है, उनके आपस में टकराने और प्रतिक्रिया करने की संभावना उतनी ही अधिक होती है। इस प्रकार, अभिकारकों की सांद्रता में वृद्धि के परिणामस्वरूप सामान्यतः प्रतिक्रिया दर में वृद्धि होती है, जबकि सांद्रता में कमी का सामान्यतः विपरीत प्रभाव पड़ता है। उदाहरण के लिए, हवा (21% ऑक्सीजन) की तुलना में शुद्ध ऑक्सीजन में दहन अधिक तीव्रता से होता है।


दर समीकरण अभिकारकों और उपस्थित अन्य प्रजातियों की सांद्रता पर प्रतिक्रिया दर की विस्तृत निर्भरता को दर्शाता है। गणितीय रूप प्रतिक्रिया तंत्र पर निर्भर करते हैं। किसी दिए गए प्रतिक्रिया के लिए वास्तविक दर समीकरण प्रयोगात्मक रूप से निर्धारित किया जाता है और प्रतिक्रिया तंत्र के बारे में जानकारी प्रदान करता है। दर समीकरण की गणितीय अभिव्यक्ति अक्सर द्वारा दी जाती है
दर समीकरण अभिकारकों और उपस्थित अन्य प्रजातियों की सांद्रता पर प्रतिक्रिया दर की विस्तृत निर्भरता को दर्शाता है। गणितीय रूप प्रतिक्रिया तंत्र पर निर्भर करते हैं। किसी दिए गए प्रतिक्रिया के लिए वास्तविक दर समीकरण प्रयोगात्मक रूप से निर्धारित किया जाता है और प्रतिक्रिया तंत्र के बारे में जानकारी प्रदान करता है। दर समीकरण की गणितीय अभिव्यक्ति अधिकांशतः द्वारा दी जाती है
:<math>v = \frac{\mathrm{d}c}{\mathrm{d}t} = k \prod_i c_i^{m_i}</math>
:<math>v = \frac{\mathrm{d}c}{\mathrm{d}t} = k \prod_i c_i^{m_i}</math>
यहां <math>k</math> प्रतिक्रिया दर स्थिर है, <math>c_i</math> अभिकारक i और की मोलर सांद्रता है <math>m_i</math> इस अभिकारक के लिए प्रतिक्रिया का आंशिक क्रम है। एक प्रतिक्रिया के लिए दर समीकरण केवल प्रयोगात्मक रूप से निर्धारित किया जा सकता है और अक्सर इसके स्टोइकोमेट्री # स्टोइकीओमेट्रिक गुणांक द्वारा इंगित नहीं किया जाता है।
यहां <math>k</math> प्रतिक्रिया दर स्थिर है, <math>c_i</math> अभिकारक i की मोलर सांद्रता है और <math>m_i</math> इस अभिकारक के लिए प्रतिक्रिया का आंशिक क्रम है। प्रतिक्रिया के लिए दर समीकरण केवल प्रयोगात्मक रूप से निर्धारित किया जा सकता है और अधिकांशतः इसके स्टोइकोमेट्री गुणांक द्वारा इंगित नहीं किया जाता है।


===तापमान===
===तापमान===
{{main article|Arrhenius equation}}
{{main article|अरहेनियस समीकरण}}
तापमान का आमतौर पर रासायनिक प्रतिक्रिया की दर पर बड़ा प्रभाव पड़ता है। उच्च तापमान पर अणुओं में अधिक तापीय ऊर्जा होती है। हालांकि टकराव की आवृत्ति उच्च तापमान पर अधिक होती है, यह अकेला ही प्रतिक्रिया की दर में वृद्धि के लिए बहुत कम अनुपात में योगदान देता है। अधिक महत्वपूर्ण तथ्य यह है कि प्रतिक्रिया करने के लिए पर्याप्त ऊर्जा वाले प्रतिक्रियाशील अणुओं का अनुपात (सक्रियण ऊर्जा से अधिक ऊर्जा: E > E<sub>''a''</sub>) काफी अधिक है और आणविक ऊर्जा के मैक्सवेल-बोल्ट्जमैन वितरण द्वारा विस्तार से समझाया गया है।


प्रतिक्रिया दर स्थिरांक पर तापमान का प्रभाव आमतौर पर अरहेनियस समीकरण का पालन करता है <math>k = A e^{-E_{\rm a}/(RT)}</math>, जहां ए पूर्व-घातीय कारक या ए-कारक है, ई<sub>a</sub> सक्रियण ऊर्जा है, R दाढ़ गैस स्थिरांक है और T परम तापमान है।<ref>[[Keith J. Laidler|Laidler, K. J.]] ''Chemical Kinetics'' (3rd ed., Harper and Row 1987) p.42 {{ISBN|0-06-043862-2}}</ref>
तापमान का सामान्यतः रासायनिक प्रतिक्रिया की दर पर बड़ा प्रभाव पड़ता है। उच्च तापमान पर अणुओं में अधिक तापीय ऊर्जा होती है। चूँकि संघटन की आवृत्ति उच्च तापमान पर अधिक होती है, यह अकेला ही प्रतिक्रिया की दर में वृद्धि के लिए बहुत कम अनुपात में योगदान देता है। अधिक महत्वपूर्ण तथ्य यह है कि प्रतिक्रिया करने के लिए पर्याप्त ऊर्जा वाले प्रतिक्रियाशील अणुओं का अनुपात (सक्रियण ऊर्जा से अधिक ऊर्जा: E > E<sub>''a''</sub>) अधिक है और आणविक ऊर्जा के मैक्सवेल-बोल्ट्जमैन वितरण द्वारा विस्तार से समझाया गया है।
किसी दिए गए तापमान पर, प्रतिक्रिया की रासायनिक दर ए-कारक के मूल्य, सक्रियण ऊर्जा की भयावहता और अभिकारकों की सांद्रता पर निर्भर करती है। आमतौर पर, तीव्र प्रतिक्रियाओं के लिए अपेक्षाकृत छोटी सक्रियण ऊर्जा की आवश्यकता होती है।


यह 'अंगूठे का नियम' है कि प्रत्येक 10 डिग्री सेल्सियस तापमान वृद्धि के लिए रासायनिक प्रतिक्रियाओं की दर दोगुनी हो जाती है, यह एक आम गलत धारणा है। इसे जैविक प्रणालियों के विशेष मामले से सामान्यीकृत किया जा सकता है, जहां Q10 (तापमान गुणांक)|α (तापमान गुणांक) अक्सर 1.5 और 2.5 के बीच होता है।
प्रतिक्रिया दर स्थिरांक पर तापमान का प्रभाव सामान्यतः अरहेनियस समीकरण <math>k = A e^{-E_{\rm a}/(RT)}</math> का पालन करता है, जहां A पूर्व-घातीय कारक या A-कारक है, E<sub>a</sub> सक्रियण ऊर्जा है, R मोलर गैस स्थिरांक है और T पूर्ण तापमान है।<ref>[[Keith J. Laidler|Laidler, K. J.]] ''Chemical Kinetics'' (3rd ed., Harper and Row 1987) p.42 {{ISBN|0-06-043862-2}}</ref>


तेजी से प्रतिक्रियाओं के कैनेटीक्स का अध्ययन तापमान कूद विधि से किया जा सकता है। इसमें तापमान में तेज वृद्धि का उपयोग करना और संतुलन में वापसी के विश्राम समय का अवलोकन करना शामिल है। तापमान वृद्धि उपकरण का एक विशेष रूप से उपयोगी रूप शॉक ट्यूब है, जो तेजी से गैस के तापमान को 1000 डिग्री से अधिक बढ़ा सकता है।
किसी दिए गए तापमान पर, प्रतिक्रिया की रासायनिक दर A-कारक के मूल्य, सक्रियण ऊर्जा के परिमाण और अभिकारकों की सांद्रता पर निर्भर करती है। सामान्यतः, तीव्र प्रतिक्रियाओं के लिए अपेक्षाकृत छोटी सक्रियण ऊर्जा की आवश्यकता होती है।


=== उत्प्रेरक ===
यह 'अंगूठे का नियम' है कि प्रत्येक 10 डिग्री सेल्सियस तापमान वृद्धि के लिए रासायनिक प्रतिक्रियाओं की दर दोगुनी हो जाती है, यह सामान्यतः गलत धारणा है। इसे जैविक प्रणालियों के विशेष स्थितियों से सामान्यीकृत किया जा सकता है, जहां Q10 (तापमान गुणांक)|α (तापमान गुणांक) अधिकांशतः 1.5 और 2.5 के मध्य होता है।
{{main article|Catalysis}}
[[Image:Activation energy.svg|thumb|right|एक काल्पनिक एंडोथर्मिक रासायनिक प्रतिक्रिया में एक उत्प्रेरक के प्रभाव को दर्शाने वाला सामान्य संभावित ऊर्जा आरेख। उत्प्रेरक की उपस्थिति कम सक्रियता ऊर्जा के साथ एक नया प्रतिक्रिया मार्ग (लाल रंग में दिखाया गया) खोलती है। अंतिम परिणाम और समग्र ऊष्मप्रवैगिकी समान हैं।]]उत्प्रेरक एक पदार्थ है जो रासायनिक प्रतिक्रिया की दर को बदल देता है लेकिन बाद में यह रासायनिक रूप से अपरिवर्तित रहता है। उत्प्रेरक कम सक्रियण ऊर्जा के साथ होने वाली एक नई प्रतिक्रिया तंत्र प्रदान करके प्रतिक्रिया की दर को बढ़ाता है। ऑटोकैटलिसिस में एक प्रतिक्रिया उत्पाद ही उस प्रतिक्रिया के लिए एक उत्प्रेरक है जो सकारात्मक प्रतिक्रिया की ओर ले जाता है। प्रोटीन जो जैव रासायनिक प्रतिक्रियाओं में उत्प्रेरक के रूप में कार्य करते हैं उन्हें एंजाइम कहा जाता है। माइकलिस-मेंटेन कैनेटीक्स एंजाइम कैनेटीक्स का वर्णन करता है। एक उत्प्रेरक संतुलन की स्थिति को प्रभावित नहीं करता है, क्योंकि उत्प्रेरक आगे और पीछे की प्रतिक्रियाओं को समान रूप से गति देता है।


कुछ कार्बनिक अणुओं में, विशिष्ट प्रतिस्थापियों का पड़ोसी समूह की भागीदारी में प्रतिक्रिया दर पर प्रभाव हो सकता है।{{citation needed|date=November 2014}}
तीव्रता से प्रतिक्रियाओं के गतिकी का अध्ययन तापमान जंप विधि से किया जा सकता है। इसमें तापमान में तीव्र वृद्धि का उपयोग करना और संतुलन में वापसी के विश्राम समय का अवलोकन करना सम्मिलित है। तापमान वृद्धि उपकरण का विशेष रूप से उपयोगी रूप शॉक ट्यूब है, जो तीव्रता से गैस के तापमान को 1000 डिग्री से अधिक बढ़ा सकता है।


=== उत्प्रेरक ===
{{main article|उत्प्रेरण}}
[[Image:Activation energy.svg|thumb|right|एक काल्पनिक एंडोथर्मिक रासायनिक प्रतिक्रिया में उत्प्रेरक के प्रभाव को दर्शाने वाला सामान्य संभावित ऊर्जा आरेख। उत्प्रेरक की उपस्थिति कम सक्रियता ऊर्जा के साथ नया प्रतिक्रिया मार्ग (लाल रंग में दिखाया गया) खोलती है। अंतिम परिणाम और समग्र ऊष्मप्रवैगिकी समान हैं।]]उत्प्रेरक पदार्थ है जो रासायनिक प्रतिक्रिया की दर को बदल देता है किंतु बाद में यह रासायनिक रूप से अपरिवर्तित रहता है। उत्प्रेरक कम सक्रियण ऊर्जा के साथ होने वाली नई प्रतिक्रिया तंत्र प्रदान करके प्रतिक्रिया की दर को बढ़ाता है। ऑटोकैटलिसिस में प्रतिक्रिया उत्पाद ही उस प्रतिक्रिया के लिए उत्प्रेरक है जो सकारात्मक प्रतिक्रिया की ओर ले जाता है। प्रोटीन जो जैव रासायनिक प्रतिक्रियाओं में उत्प्रेरक के रूप में कार्य करते हैं उन्हें एंजाइम कहा जाता है। माइकलिस-मेंटेन गतिकी एंजाइम गतिकी का वर्णन करता है। उत्प्रेरक संतुलन की स्थिति को प्रभावित नहीं करता है, क्योंकि उत्प्रेरक आगे और पीछे की प्रतिक्रियाओं को समान रूप से गति देता है।


कुछ कार्बनिक अणुओं में, विशिष्ट प्रतिस्थापियों का पड़ोसी समूह की भागीदारी में प्रतिक्रिया दर पर प्रभाव हो सकता है।
===दबाव===
===दबाव===
गैसीय प्रतिक्रिया में दबाव बढ़ने से अभिकारकों के बीच टकराव की संख्या में वृद्धि होगी, प्रतिक्रिया की दर में वृद्धि होगी। ऐसा इसलिए है क्योंकि गैस की गतिविधि (रसायन विज्ञान) सीधे गैस के आंशिक दबाव के समानुपाती होती है। यह विलयन की सान्द्रता बढ़ाने के प्रभाव के समान है।
गैसीय प्रतिक्रिया में दबाव बढ़ने से अभिकारकों के मध्य संघटन की संख्या में वृद्धि होगी, जिससे प्रतिक्रिया की दर में वृद्धि होती है। ऐसा इसलिए है क्योंकि गैस की गतिविधि (रसायन विज्ञान) सीधे गैस के आंशिक दबाव के समानुपाती होती है। यह विलयन की सान्द्रता बढ़ाने के प्रभाव के समान है।


इस सीधे जन-क्रिया प्रभाव के अतिरिक्त, दबाव के कारण दर गुणांक स्वयं बदल सकते हैं। कई उच्च-तापमान गैस-चरण प्रतिक्रियाओं के दर गुणांक और उत्पाद बदलते हैं यदि मिश्रण में एक निष्क्रिय गैस जोड़ा जाता है; इस आशय की विविधताओं को पतन और रासायनिक सक्रियता कहा जाता है। ये घटनाएँ गर्मी हस्तांतरण की तुलना में तेजी से होने वाली एक्सोथर्मिक या एंडोथर्मिक प्रतिक्रियाओं के कारण होती हैं, जिससे प्रतिक्रिया करने वाले अणुओं में गैर-थर्मल ऊर्जा वितरण (गैर-बोल्ट्जमैन वितरण) होता है। दबाव बढ़ाने से प्रतिक्रिया करने वाले अणुओं और बाकी सिस्टम के बीच गर्मी हस्तांतरण दर बढ़ जाती है, जिससे यह प्रभाव कम हो जाता है।
इस स्पष्ट द्रव्यमान-क्रिया प्रभाव के अतिरिक्त, दबाव के कारण दर गुणांक स्वयं बदल सकते हैं। कई उच्च-तापमान गैस-चरण प्रतिक्रियाओं के दर गुणांक और उत्पाद बदलते हैं यदि मिश्रण में निष्क्रिय गैस जोड़ा जाता है; इस आशय की विविधताओं को पतन और रासायनिक सक्रियता कहा जाता है। ये घटनाएँ गर्मी हस्तांतरण की तुलना में तीव्रता से होने वाली एक्सोथर्मिक या एंडोथर्मिक प्रतिक्रियाओं के कारण होती हैं, जिससे प्रतिक्रिया करने वाले अणुओं में गैर-थर्मल ऊर्जा वितरण (गैर-बोल्ट्जमैन वितरण) होता है। दबाव बढ़ाने से प्रतिक्रिया करने वाले अणुओं और शेष प्रणाली के मध्य गर्मी हस्तांतरण दर बढ़ जाती है, जिससे यह प्रभाव कम हो जाता है।


संघनित-चरण दर गुणांक भी दबाव से प्रभावित हो सकते हैं, हालांकि मापने योग्य प्रभाव के लिए उच्च दबाव की आवश्यकता होती है क्योंकि आयन और अणु बहुत संकुचित नहीं होते हैं। इस आशय का अक्सर हीरे की निहाई का उपयोग करके अध्ययन किया जाता है।
संघनित-चरण दर गुणांक भी दबाव से प्रभावित हो सकते हैं, चूँकि मापने योग्य प्रभाव के लिए उच्च दबाव की आवश्यकता होती है क्योंकि आयन और अणु बहुत संकुचित नहीं होते हैं। इस आशय का अध्ययन अधिकांशतः हीरे की निहाई का उपयोग करके किया जाता है।


एक प्रतिक्रिया के कैनेटीक्स का दबाव कूद दृष्टिकोण के साथ भी अध्ययन किया जा सकता है। इसमें दबाव में तेजी से बदलाव करना और संतुलन में वापसी के विश्राम समय का अवलोकन करना शामिल है।
एक प्रतिक्रिया के गतिकी का दबाव जंप दृष्टिकोण के साथ भी अध्ययन किया जा सकता है। इसमें दबाव में तीव्रता से बदलाव करना और संतुलन में वापसी के विश्राम के समय का अवलोकन करना सम्मिलित है।


===प्रकाश का अवशोषण===
===प्रकाश का अवशोषण===
एक रासायनिक प्रतिक्रिया के लिए सक्रियण ऊर्जा तब प्रदान की जा सकती है जब एक अभिकारक अणु उपयुक्त तरंग दैर्ध्य के प्रकाश को अवशोषित करता है और उत्तेजित अवस्था में पदोन्नत किया जाता है। प्रकाश द्वारा शुरू की गई प्रतिक्रियाओं का अध्ययन प्रकाश रसायन है, एक प्रमुख उदाहरण प्रकाश संश्लेषण है।
एक रासायनिक प्रतिक्रिया के लिए सक्रियण ऊर्जा तब प्रदान की जा सकती है जब अभिकारक अणु उपयुक्त तरंग दैर्ध्य के प्रकाश को अवशोषित करता है और उत्तेजित अवस्था में पहुंच जाता है। प्रकाश द्वारा प्रारंभ की गई प्रतिक्रियाओं का अध्ययन प्रकाश रसायन है, इस प्रकार प्रमुख उदाहरण प्रकाश संश्लेषण है।
 
== प्रायोगिक तरीके ==
फ़ाइल: रिएक्शन कैनेटीक्स सिस्टम nz805z932.tiff | अंगूठा|दाहिना | स्पिनको डिवीजन मॉडल 260 रिएक्शन कैनेटीक्स सिस्टम ने आणविक प्रतिक्रियाओं की सटीक दर स्थिरांक को मापा।
प्रतिक्रिया दरों के प्रायोगिक निर्धारण में यह मापना शामिल है कि समय के साथ अभिकारकों या उत्पादों की सांद्रता कैसे बदलती है। उदाहरण के लिए, एक अभिकारक की सांद्रता को स्पेक्ट्रोफोटोमेट्री द्वारा तरंग दैर्ध्य पर मापा जा सकता है जहां सिस्टम में कोई अन्य अभिकारक या उत्पाद प्रकाश को अवशोषित नहीं करता है।
 
जिन अभिक्रियाओं में कम से कम कई मिनट लगते हैं, उनके लिए अभिकारकों को रुचि के तापमान पर मिलाने के बाद प्रेक्षण शुरू करना संभव है।


=== तेज प्रतिक्रिया ===
== प्रायोगिक विधियाँ ==
तेज प्रतिक्रियाओं के लिए, अभिकारकों को मिलाने और उन्हें एक निर्दिष्ट तापमान पर लाने के लिए आवश्यक समय प्रतिक्रिया के आधे जीवन से तुलनीय या अधिक हो सकता है।<ref name=Laidler>[[Keith J. Laidler|Laidler, K. J.]] ''Chemical Kinetics'' (3rd ed., Harper and Row 1987) p.33-39 {{ISBN|0-06-043862-2}}</ref> धीमी गति से मिश्रण चरण के बिना तेजी से प्रतिक्रिया शुरू करने के लिए विशेष तरीके शामिल हैं
प्रतिक्रिया दरों के प्रायोगिक निर्धारण में यह मापना सम्मिलित है कि समय के साथ अभिकारकों या उत्पादों की सांद्रता कैसे बदलती है। उदाहरण के लिए, अभिकारक की सांद्रता को स्पेक्ट्रोफोटोमेट्री द्वारा तरंग दैर्ध्य पर मापा जा सकता है जहां प्रणाली में कोई अन्य अभिकारक या उत्पाद प्रकाश को अवशोषित नहीं करता है।


* रुकी हुई प्रवाह विधियाँ, जो मिश्रण समय को एक मिलीसेकंड के क्रम तक कम कर सकती हैं<ref name=Laidler/><ref>Espenson, J.H. ''Chemical Kinetics and Reaction Mechanisms'' (2nd ed., McGraw-Hill 2002), p.254-256 {{ISBN|0-07-288362-6}}</ref><ref name=Atkins793>Atkins P. and de Paula J., ''Physical Chemistry'' (8th ed., W.H. Freeman 2006) p.793 {{ISBN|0-7167-8759-8}}</ref> रुकी हुई प्रवाह विधियों की सीमाएँ हैं, उदाहरण के लिए, हमें गैसों या विलयनों को मिलाने में लगने वाले समय पर विचार करने की आवश्यकता है और यह उपयुक्त नहीं है यदि आधा जीवन सेकंड के सौवें हिस्से से कम है।
जिन अभिक्रियाओं में कम से कम कई मिनट लगते हैं, उनके लिए अभिकारकों को रुचि के तापमान पर मिलाने के बाद प्रेक्षण प्रारंभ करना संभव है।
* आराम (भौतिकी) के तरीके जैसे कि तापमान कूद और दबाव कूद, जिसमें प्रारंभिक रूप से संतुलन में एक पूर्व-मिश्रित प्रणाली तेजी से हीटिंग या अवसादन से परेशान होती है ताकि यह अब संतुलन में न रहे, और संतुलन वापस संतुलन में मनाया जाता है।<ref name=Laidler/><ref>Espenson, J.H. ''Chemical Kinetics and Reaction Mechanisms'' (2nd ed., McGraw-Hill 2002), p.256-8 {{ISBN|0-07-288362-6}}</ref><ref>Steinfeld J.I., Francisco J.S. and Hase W.L. ''Chemical Kinetics and Dynamics'' (2nd ed., Prentice-Hall 1999) p.140-3 {{ISBN|0-13-737123-3}}</ref><ref name=Atkins805>Atkins P. and de Paula J., ''Physical Chemistry'' (8th ed., W.H. Freeman 2006) pp.805-7 {{ISBN|0-7167-8759-8}}</ref> उदाहरण के लिए, इस पद्धति का उपयोग न्यूट्रलाइजेशन (रसायन विज्ञान) एच का अध्ययन करने के लिए किया गया है<sub>3</sub>O<sup>+</sup> + ओह<sup>-</sup> सामान्य परिस्थितियों में 1 μs या उससे कम के आधे जीवन के साथ।<ref name=Laidler/><ref name=Atkins805/>* फ्लैश फोटोलिसिस, जिसमें एक लेजर पल्स रेडिकल (रसायन विज्ञान) जैसी अत्यधिक उत्तेजित प्रजातियों का उत्पादन करती है, जिनकी प्रतिक्रियाओं का अध्ययन किया जाता है।<ref name=Atkins793/><ref>Laidler, K.J. ''Chemical Kinetics'' (3rd ed., Harper and Row 1987) p.359-360 {{ISBN|0-06-043862-2}}</ref><ref>Espenson, J.H. ''Chemical Kinetics and Reaction Mechanisms'' (2nd ed., McGraw-Hill 2002), p.264-6 {{ISBN|0-07-288362-6}}</ref><ref>Steinfeld J.I., Francisco J.S. and Hase W.L. ''Chemical Kinetics and Dynamics'' (2nd ed., Prentice-Hall 1999) p.94-97 {{ISBN|0-13-737123-3}}</ref>


=== तीव्र प्रतिक्रिया ===
तीव्र प्रतिक्रियाओं के लिए, अभिकारकों को मिलाने और उन्हें निर्दिष्ट तापमान पर लाने के लिए आवश्यक समय प्रतिक्रिया के आधे जीवन से तुलनीय या अधिक हो सकता है।<ref name=Laidler>[[Keith J. Laidler|Laidler, K. J.]] ''Chemical Kinetics'' (3rd ed., Harper and Row 1987) p.33-39 {{ISBN|0-06-043862-2}}</ref> धीमी गति से मिश्रण चरण के बिना तीव्रता से प्रतिक्रिया प्रारंभ करने के लिए विशेष विधियाँ सम्मिलित हैं


* रुकी हुई प्रवाह विधियाँ, जो मिश्रण समय को मिलीसेकंड के क्रम तक कम कर सकती हैं<ref name=Laidler/><ref>Espenson, J.H. ''Chemical Kinetics and Reaction Mechanisms'' (2nd ed., McGraw-Hill 2002), p.254-256 {{ISBN|0-07-288362-6}}</ref><ref name=Atkins793>Atkins P. and de Paula J., ''Physical Chemistry'' (8th ed., W.H. Freeman 2006) p.793 {{ISBN|0-7167-8759-8}}</ref> रुकी हुई प्रवाह विधियों की सीमाएँ हैं, उदाहरण के लिए, हमें गैसों या विलयनों को मिलाने में लगने वाले समय पर विचार करने की आवश्यकता है और यह उपयुक्त नहीं है यदि आधा जीवन सेकंड के सौवें भागो से कम है।
* रासायनिक विश्राम विधियाँ जैसे कि तापमान जंप और दबाव जंप, जिसमें प्रारंभिक रूप से संतुलन में पूर्व-मिश्रित प्रणाली तीव्रता से हीटिंग या अवसादन से परेशान होती है जिससे यह अब संतुलन में न रहे, और संतुलन में वापस विश्राम देखा जाता है।<ref name=Laidler/><ref>Espenson, J.H. ''Chemical Kinetics and Reaction Mechanisms'' (2nd ed., McGraw-Hill 2002), p.256-8 {{ISBN|0-07-288362-6}}</ref><ref>Steinfeld J.I., Francisco J.S. and Hase W.L. ''Chemical Kinetics and Dynamics'' (2nd ed., Prentice-Hall 1999) p.140-3 {{ISBN|0-13-737123-3}}</ref><ref name=Atkins805>Atkins P. and de Paula J., ''Physical Chemistry'' (8th ed., W.H. Freeman 2006) pp.805-7 {{ISBN|0-7167-8759-8}}</ref> उदाहरण के लिए, सामान्य परिस्थितियों में 1 μs या उससे कम के आधे जीवन के साथ इस पद्धति का उपयोग उदासीनीकरण (रसायन विज्ञान) H<sub>3</sub>O<sup>+</sup> + OH<sup>−</sup> का अध्ययन करने के लिए किया गया है।<ref name=Laidler/><ref name=Atkins805/>
*फ्लैश फोटोलिसिस, जिसमें लेजर पल्स रेडिकल (रसायन विज्ञान) जैसी अत्यधिक उत्तेजित प्रजातियों का उत्पादन करती है, जिनकी प्रतिक्रियाओं का अध्ययन किया जाता है।<ref name="Atkins793" /><ref>Laidler, K.J. ''Chemical Kinetics'' (3rd ed., Harper and Row 1987) p.359-360 {{ISBN|0-06-043862-2}}</ref><ref>Espenson, J.H. ''Chemical Kinetics and Reaction Mechanisms'' (2nd ed., McGraw-Hill 2002), p.264-6 {{ISBN|0-07-288362-6}}</ref><ref>Steinfeld J.I., Francisco J.S. and Hase W.L. ''Chemical Kinetics and Dynamics'' (2nd ed., Prentice-Hall 1999) p.94-97 {{ISBN|0-13-737123-3}}</ref>
== संतुलन ==
== संतुलन ==
जबकि रासायनिक कैनेटीक्स एक रासायनिक प्रतिक्रिया की दर से संबंधित है, ऊष्मप्रवैगिकी यह निर्धारित करती है कि प्रतिक्रियाएं किस हद तक होती हैं। उत्क्रमणीय प्रतिक्रिया में, रासायनिक संतुलन तब प्राप्त होता है जब अग्र और पश्च प्रतिक्रियाओं की दर बराबर होती है (गतिशील संतुलन का सिद्धांत) और अभिकारकों और उत्पादों की सांद्रता अब नहीं बदलती है। यह, उदाहरण के लिए, अमोनिया का उत्पादन करने के लिए नाइट्रोजन और हाइड्रोजन के संयोजन के लिए हैबर-बॉश प्रक्रिया द्वारा प्रदर्शित किया गया है। बेलौसोव-झाबोटिंस्की प्रतिक्रिया जैसी रासायनिक घड़ी प्रतिक्रियाएं प्रदर्शित करती हैं कि अंत में संतुलन प्राप्त करने से पहले घटक सांद्रता लंबे समय तक दोलन कर सकती है।
जबकि रासायनिक गतिकी रासायनिक प्रतिक्रिया की दर से संबंधित है, ऊष्मप्रवैगिकी यह निर्धारित करती है कि प्रतिक्रियाएं किस सीमा तक होती हैं। उत्क्रमणीय प्रतिक्रिया में, रासायनिक संतुलन तब प्राप्त होता है जब अग्र और पश्च प्रतिक्रियाओं की दर बराबर होती है (गतिशील संतुलन का सिद्धांत) और अभिकारकों और उत्पादों की सांद्रता अब नहीं बदलती है। यह, उदाहरण के लिए, अमोनिया का उत्पादन करने के लिए नाइट्रोजन और हाइड्रोजन के संयोजन के लिए हैबर-बॉश प्रक्रिया द्वारा प्रदर्शित किया गया है। बेलौसोव-झाबोटिंस्की प्रतिक्रिया जैसी रासायनिक घड़ी प्रतिक्रियाएं प्रदर्शित करती हैं कि अंत में संतुलन प्राप्त करने से पहले घटक सांद्रता लंबे समय तक दोलन कर सकती है।


== मुफ्त ऊर्जा ==
== मुक्त ऊर्जा ==
सामान्य शब्दों में, किसी प्रतिक्रिया का थर्मोडायनामिक मुक्त ऊर्जा | मुक्त ऊर्जा परिवर्तन (ΔG) यह निर्धारित करता है कि रासायनिक परिवर्तन होगा या नहीं, लेकिन कैनेटीक्स बताता है कि प्रतिक्रिया कितनी तेज़ है। एक प्रतिक्रिया बहुत ऊष्माक्षेपी हो सकती है और एक बहुत ही सकारात्मक एन्ट्रापी परिवर्तन हो सकता है लेकिन अगर प्रतिक्रिया बहुत धीमी है तो व्यवहार में ऐसा नहीं होगा। यदि एक अभिकारक दो उत्पादों का उत्पादन कर सकता है, तो थर्मोडायनामिक रूप से सबसे स्थिर एक सामान्य रूप से बनेगा, विशेष परिस्थितियों को छोड़कर जब प्रतिक्रिया को गतिज प्रतिक्रिया नियंत्रण के तहत कहा जाता है। कर्टिन-हैममेट सिद्धांत तब लागू होता है जब तेजी से परस्पर परिवर्तित होने वाले दो अभिकारकों के लिए उत्पाद अनुपात का निर्धारण किया जाता है, प्रत्येक एक अलग उत्पाद में जाता है। मुक्त-ऊर्जा संबंधों से प्रतिक्रिया के लिए प्रतिक्रिया दर स्थिरांक के बारे में भविष्यवाणी करना संभव है।
सामान्य शब्दों में, किसी प्रतिक्रिया का मुक्त ऊर्जा परिवर्तन (ΔG) यह निर्धारित करता है कि रासायनिक परिवर्तन होगा या नहीं, किंतु गतिकी बताता है कि प्रतिक्रिया कितनी तीव्र है। प्रतिक्रिया बहुत ऊष्माक्षेपी हो सकती है और एक बहुत ही सकारात्मक एन्ट्रापी परिवर्तन हो सकता है किंतु यदि प्रतिक्रिया बहुत धीमी है तो व्यवहार में ऐसा नहीं होता है। यदि अभिकारक दो उत्पादों का उत्पादन कर सकता है, तो थर्मोडायनामिक रूप से सबसे स्थिर सामान्य रूप से बनेगा, विशेष परिस्थितियों को छोड़कर जब प्रतिक्रिया को गतिज प्रतिक्रिया नियंत्रण के अनुसार कहा जाता है। कर्टिन-हैममेट सिद्धांत तब प्रयुक्त होता है जब तीव्रता से परस्पर परिवर्तित होने वाले दो अभिकारकों के लिए उत्पाद अनुपात का निर्धारण किया जाता है, प्रत्येक अलग उत्पाद में जाता है। मुक्त-ऊर्जा संबंधों से प्रतिक्रिया के लिए प्रतिक्रिया दर स्थिरांक के बारे में पूर्वानुमान करना संभव है।


काइनेटिक आइसोटोप प्रभाव एक रासायनिक प्रतिक्रिया की दर में अंतर होता है जब एक अभिकारक में एक परमाणु को इसके एक आइसोटोप द्वारा प्रतिस्थापित किया जाता है।
काइनेटिक आइसोटोप प्रभाव रासायनिक प्रतिक्रिया की दर में अंतर होता है जब अभिकारक में परमाणु को इसके आइसोटोप द्वारा प्रतिस्थापित किया जाता है।


केमिकल कैनेटीक्स केमिकल इंजीनियरिंग में केमिकल रिएक्टर में रेजिडेंस टाइम डिस्ट्रीब्यूशन और हीट ट्रांसफर और पॉलीमर केमिस्ट्री में मोलर मास डिस्ट्रीब्यूशन के बारे में जानकारी प्रदान करता है। यह जंग इंजीनियरिंग में भी जानकारी प्रदान करता है।
रासायनिक गतिकी रासायनिक इंजीनियरिंग में रासायनिक रिएक्टर में रेजिडेंस टाइम डिस्ट्रीब्यूशन और हीट ट्रांसफर और पॉलीमर रसायन में मोलर मास डिस्ट्रीब्यूशन के बारे में जानकारी प्रदान करता है। यह संक्षारण इंजीनियरिंग में भी जानकारी प्रदान करता है।


== अनुप्रयोग और मॉडल ==
== अनुप्रयोग और मॉडल ==
गणितीय मॉडल जो रासायनिक प्रतिक्रिया कैनेटीक्स का वर्णन करते हैं, रसायनज्ञों और रासायनिक इंजीनियरों को खाद्य अपघटन, सूक्ष्मजीव विकास, समतापमंडलीय ओजोन अपघटन, और जैविक प्रणालियों के रसायन शास्त्र जैसी रासायनिक प्रक्रियाओं को बेहतर ढंग से समझने और उनका वर्णन करने के लिए उपकरण प्रदान करते हैं। इन मॉडलों का उपयोग रासायनिक रिएक्टरों के डिजाइन या संशोधन में उत्पाद उपज को अनुकूलित करने, अधिक कुशलता से उत्पादों को अलग करने और पर्यावरणीय रूप से हानिकारक उप-उत्पादों को खत्म करने के लिए भी किया जा सकता है। गैसोलीन और हल्की गैस में भारी हाइड्रोकार्बन की उत्प्रेरक क्रैकिंग करते समय, उदाहरण के लिए, काइनेटिक मॉडल का उपयोग तापमान और दबाव का पता लगाने के लिए किया जा सकता है, जिस पर गैसोलीन में भारी हाइड्रोकार्बन की उच्चतम उपज होगी।
गणितीय मॉडल जो रासायनिक प्रतिक्रिया गतिकी का वर्णन करते हैं, रसायनज्ञों और रासायनिक इंजीनियरों को खाद्य अपघटन, सूक्ष्मजीव विकास, समतापमंडलीय ओजोन अपघटन, और जैविक प्रणालियों के रसायन शास्त्र जैसी रासायनिक प्रक्रियाओं को उचित रूप से से समझने और उनका वर्णन करने के लिए उपकरण प्रदान करते हैं। इन मॉडलों का उपयोग रासायनिक रिएक्टरों के डिजाइन या संशोधन में उत्पाद उपज को अनुकूलित करने, अधिक कुशलता से उत्पादों को अलग करने और पर्यावरणीय रूप से हानिकारक उप-उत्पादों को नष्ट करने के लिए भी किया जा सकता है। गैसोलीन और हल्की गैस में भारी हाइड्रोकार्बन की उत्प्रेरक क्रैकिंग करते समय, उदाहरण के लिए, काइनेटिक मॉडल का उपयोग तापमान और दबाव का पता लगाने के लिए किया जा सकता है, जिस पर गैसोलीन में भारी हाइड्रोकार्बन की उच्चतम उपज होती है।


केमिकल कैनेटीक्स को सामान्य डिफरेंशियल इक्वेशन-सॉल्विंग (ODE-सॉल्विंग) और कर्व-फिटिंग के फंक्शन के रूप में विशेष पैकेज में मॉडलिंग के माध्यम से अक्सर मान्य और एक्सप्लोर किया जाता है।<ref name="ChemicalKinetics">{{cite web|url=http://www.civilized.com/files/sobnew.pdf|title=रासायनिक कैनेटीक्स: सरल बाध्यकारी: एफ + जी ⇋ बी|publisher=Civilized Software, Inc.| access-date = 2015-09-01}}</ref>
रासायनिक गतिकी को सामान्य डिफरेंशियल इक्वेशन-सॉल्विंग (ODE-सॉल्विंग) और कर्व-फिटिंग के कार्य के रूप में विशेष पैकेज में मॉडलिंग के माध्यम से अधिकांशतः मान्य और पता लगाया जाता है।<ref name="ChemicalKinetics">{{cite web|url=http://www.civilized.com/files/sobnew.pdf|title=रासायनिक कैनेटीक्स: सरल बाध्यकारी: एफ + जी ⇋ बी|publisher=Civilized Software, Inc.| access-date = 2015-09-01}}</ref>
 
=== संख्यात्मक विधियाँ ===
 
कुछ स्थितियों में, समीकरण विश्लेषणात्मक रूप से अघुलनशील होते हैं, किंतु डेटा मान दिए जाने पर संख्यात्मक विधियों का उपयोग करके हल किया जा सकता है। ऐसा करने के दो अलग-अलग विधियाँ हैं, या तो सॉफ़्टवेयर प्रोग्राम या गणितीय विधियों जैसे यूलर विधि का उपयोग करके। रासायनिक गतिकी के लिए सॉफ्टवेयर के उदाहरण हैं i) तेनुआ, जावा (प्रोग्रामिंग भाषा) ऐप जो रासायनिक प्रतिक्रियाओं को संख्यात्मक रूप से अनुकरण करता है और वास्तविक डेटा के सिमुलेशन की तुलना की अनुमति देता है, ii) गणना और अनुमानों के लिए पायथन (प्रोग्रामिंग भाषा) कोडिंग और iii) मॉडल, रिग्रेस, फिट के लिए किन्टेकस सॉफ्टवेयर कंपाइलर और प्रतिक्रियाओं को अनुकूलित किया जाता है।
=== संख्यात्मक तरीके ===
कुछ मामलों में, समीकरण विश्लेषणात्मक रूप से अघुलनशील होते हैं, लेकिन डेटा मान दिए जाने पर संख्यात्मक विधियों का उपयोग करके हल किया जा सकता है। ऐसा करने के दो अलग-अलग तरीके हैं, या तो सॉफ़्टवेयर प्रोग्राम या गणितीय विधियों जैसे यूलर विधि का उपयोग करके। रासायनिक कैनेटीक्स के लिए सॉफ्टवेयर के उदाहरण हैं i) तेनुआ, एक जावा (प्रोग्रामिंग भाषा) ऐप जो रासायनिक प्रतिक्रियाओं को संख्यात्मक रूप से अनुकरण करता है और वास्तविक डेटा के सिमुलेशन की तुलना की अनुमति देता है, ii) गणना और अनुमानों के लिए पायथन (प्रोग्रामिंग भाषा) कोडिंग और iii) किन्टेकस प्रतिक्रियाओं को मॉडल, रिग्रेस, फिट और ऑप्टिमाइज़ करने के लिए सॉफ्टवेयर कंपाइलर।


-संख्यात्मक एकीकरण: प्रथम क्रम प्रतिक्रिया के लिए ए → बी
-संख्यात्मक एकीकरण: प्रथम क्रम प्रतिक्रिया के लिए ए → बी
Line 99: Line 95:
इसे इस रूप में भी व्यक्त किया जा सकता है:
इसे इस रूप में भी व्यक्त किया जा सकता है:


:<math> d[A]/dt=f(t,[A]) \qquad \qquad</math> जो समान है    <math> y'=f(y, x) \qquad \qquad</math>
:<math> d[A]/dt=f(t,[A]) \qquad \qquad</math>  
यूलर और रनगे-कुट्टा विधियों से अवकल समीकरणों को हल करने के लिए हमें प्रारंभिक मानों की आवश्यकता होती है।
:जो <math> y'=f(y, x) \qquad \qquad</math>समान है
यूलर और रंज-कुट्टा विधियों से अवकल समीकरणों को हल करने के लिए हमें प्रारंभिक मानों की आवश्यकता होती है।


* यूलर विधि → सरल लेकिन गलत।
* यूलर विधि → सरल किंतु गलत।


किसी भी बिंदु पर <math> y'=f(y, x) \qquad \qquad</math> वैसा ही है जैसा कि;
किसी भी बिंदु पर <math> y'=f(y, x) \qquad \qquad</math> वैसा ही है जैसा कि;
Line 111: Line 108:
:<math> y'= dy/dx \qquad \qquad</math> ≃ ∆y/∆x = [y(x+∆x)-y(x)]/∆x
:<math> y'= dy/dx \qquad \qquad</math> ≃ ∆y/∆x = [y(x+∆x)-y(x)]/∆x


समीकरण का अज्ञात भाग y(x+Δx) है, जिसे पाया जा सकता है यदि हमारे पास प्रारंभिक मानों के लिए डेटा हो।
समीकरण का अज्ञात भाग y(x+Δx) है, जिसे पाया जा सकता है यदि हमारे पास प्रारंभिक मानों के लिए डेटा है।
 
* रंज-कुट्टा विधियाँ → यह यूलर विधि की तुलना में अधिक सटीक है।
इस विधि में, प्रारंभिक स्थिति आवश्यक है: ''y'' = ''y''<sub>0</sub> at ''x'' = ''x''<sub>0</sub>. समस्या y का मान ज्ञात करना है कि ''x'' = ''x''<sub>0</sub> + ''h'' है, जहाँ h नियतांक है।


* रनगे-कुट्टा विधियाँ → यह यूलर विधि की तुलना में अधिक सटीक है।
यह विश्लेषणात्मक रूप से दिखाया जा सकता है कि उस क्षण वक्र के माध्यम से समन्वय (''x''<sub>0</sub>, ''y''<sub>0</sub>) तीसरे क्रम के रंज-कुट्टा सूत्र द्वारा दिया गया है।
इस विधि में, प्रारंभिक स्थिति आवश्यक है: y = y<sub>0</sub> एक्स = एक्स पर<sub>0</sub>. समस्या यह है कि x = x होने पर y का मान ज्ञात करना है<sub>0</sub> + h, जहाँ h एक नियतांक है।


यह विश्लेषणात्मक रूप से दिखाया जा सकता है कि उस क्षण वक्र के माध्यम से समन्वय (x<sub>0</sub>, वाई<sub>0</sub>) तीसरे क्रम के रनगे-कुट्टा सूत्र द्वारा दिया गया है।
प्रथम-क्रम के साधारण समीकरणों में, रंज-कुट्टा विधि गणितीय मॉडल का उपयोग करती है जो तापमान और प्रतिक्रिया की दर के मध्य संबंध का प्रतिनिधित्व करती है। अलग-अलग सांद्रता के लिए अलग-अलग तापमान पर प्रतिक्रिया की दर की गणना करना इसके योग्य है। प्राप्त समीकरण <math>dr/dt = R/T+r\Delta H^\circ/RT^2</math> है।


प्रथम-क्रम के साधारण समीकरणों में, रनगे-कुट्टा विधि एक गणितीय मॉडल का उपयोग करती है जो तापमान और प्रतिक्रिया की दर के बीच संबंध का प्रतिनिधित्व करती है। अलग-अलग सांद्रता के लिए अलग-अलग तापमान पर प्रतिक्रिया की दर की गणना करना इसके लायक है। प्राप्त समीकरण है: <math>dr/dt = R/T+r\Delta H^\circ/RT^2</math> * स्टोचैस्टिक तरीके → अंतर दर कानूनों और गतिज स्थिरांक की संभावनाएं।
* स्टोचैस्टिक विधियाँ → अंतर दर नियमों और गतिज स्थिरांक की संभावनाएं।
प्रत्यक्ष और व्युत्क्रम दर स्थिरांक के साथ एक संतुलन प्रतिक्रिया में, बी से ए के बजाय ए से बी में बदलना आसान होता है।
* प्रत्यक्ष और व्युत्क्रम दर स्थिरांक के साथ संतुलन प्रतिक्रिया में, बी से ए के अतिरिक्त ए से बी में बदलना आसान होता है।


संभाव्यता संगणनाओं के लिए, हर बार यह जानने के लिए कि क्या प्रतिक्रिया ए से बी या दूसरी तरफ चलती है, एक सीमा के साथ तुलना करने के लिए एक यादृच्छिक संख्या का चयन करें।
संभाव्यता संगणनाओं के लिए, हर बार यह जानने के लिए कि क्या प्रतिक्रिया ए से बी या दूसरी तरफ चलती है, सीमा के साथ तुलना करने के लिए यादृच्छिक संख्या का चयन किया जाता है।


== यह भी देखें ==
== यह भी देखें ==
* Autocatalytic प्रतिक्रियाएं और आदेश निर्माण
* ऑटोकैटलिटिक प्रतिक्रियाएं और आदेश निर्माण
* विस्फोट
* विस्फोट
* विद्युत रासायनिक कैनेटीक्स
* विद्युत रासायनिक गतिकी
*यूरोकिन
*यूरोकिन
* ज्वाला गति
* ज्वाला गति
* विषम कटैलिसीस
* विषम कटैलिसीस
* आंतरिक निम्न-आयामी कई गुना
* आंतरिक निम्न-आयामी मैनिफोल्ड
* एमएलएबी रासायनिक कैनेटीक्स मॉडलिंग पैकेज
* एमएलएबी रासायनिक गतिकी मॉडलिंग पैकेज
* गैर-तापीय सतह प्रतिक्रिया
* गैर-तापीय सतह प्रतिक्रिया
* प्रयोगात्मक डेटा के लिए रासायनिक दर स्थिरांक फिट करने के लिए पॉटरव्हील मैटलैब टूलबॉक्स
* प्रयोगात्मक डेटा के लिए रासायनिक दर स्थिरांक फिट करने के लिए पॉटरव्हील मैटलैब टूलबॉक्स
Line 139: Line 138:
== संदर्भ ==
== संदर्भ ==
{{reflist}}
{{reflist}}
==इस पेज में लापता आंतरिक लिंक की सूची==


== बाहरी संबंध ==
== बाहरी संबंध ==
Line 156: Line 151:
* [https://code.google.com/p/kinpy/ Kinpy: Python code generator for solving kinetic equations]
* [https://code.google.com/p/kinpy/ Kinpy: Python code generator for solving kinetic equations]
* [https://av.tib.eu/media/34661?pag=1 Reaction rate law and reaction profile - a question of temperature, concentration, solvent and catalyst - how fast will a reaction proceed] (Video by SciFox on TIB AV-Portal)
* [https://av.tib.eu/media/34661?pag=1 Reaction rate law and reaction profile - a question of temperature, concentration, solvent and catalyst - how fast will a reaction proceed] (Video by SciFox on TIB AV-Portal)
{{Reaction mechanisms}}
{{BranchesofChemistry}}
{{BranchesofChemistry}}
{{Chemical eng}}
{{Authority control}}
[[Category:रासायनिक बलगतिकी| ]]
[[Category:रासायनिक बलगतिकी| ]]
[[Category: जेकोबस हेनरिकस वैन 'टी हॉफ]]
[[Category: जेकोबस हेनरिकस वैन 'टी हॉफ]]
Line 168: Line 158:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 29/11/2022]]
[[Category:Created On 29/11/2022]]
[[Category:Vigyan Ready]]

Latest revision as of 14:46, 14 December 2023

रासायनिक गतिकी, जिसे प्रतिक्रिया गतिकी भी कहा जाता है, भौतिक रसायन शास्त्र की शाखा है जो रासायनिक प्रतिक्रियाओं की दरों को समझने से संबंधित है। यह रासायनिक ऊष्मप्रवैगिकी के विपरीत है, जो उस दिशा से संबंधित है जिसमें प्रतिक्रिया होती है किंतु अपने आप में इसकी दर के बारे में कुछ नहीं बताता है। रासायनिक गतिकी में इस बात की पड़ताल सम्मिलित है कि कैसे प्रयोगात्मक स्थितियां रासायनिक प्रतिक्रिया की गति को प्रभावित करती हैं और प्रतिक्रिया तंत्र के बारे में जानकारी प्राप्त करती हैं, साथ ही गणितीय मॉडल का निर्माण भी करती हैं जो रासायनिक प्रतिक्रिया की विशेषताओं का भी वर्णन कर सकते हैं।

इतिहास

रासायनिक गतिकी का अग्रणी कार्य 1850 में जर्मन रसायनज्ञ लुडविग विल्हेल्मी द्वारा किया गया था।[1] उन्होंने प्रयोगात्मक रूप से सुक्रोज के व्युत्क्रमण की दर का अध्ययन किया और उन्होंने इस प्रतिक्रिया की प्रतिक्रिया गतिकी के निर्धारण के लिए एकीकृत दर नियम का उपयोग किया। उनके कार्य पर 34 साल बाद विल्हेम ओस्टवाल्ड ने ध्यान दिया था। विल्हेमी के बाद, 1864 में, पीटर वाएज और केटो गुल्डबर्ग ने सामूहिक क्रिया के नियम को तैयार करके रासायनिक गतिकी के विकास का प्रारंभ किया, जिसमें कहा गया है कि रासायनिक प्रतिक्रिया की गति प्रतिक्रियाशील पदार्थों की मात्रा के समानुपाती होती है।[1][2][3]

वान' टी हॉफ ने रासायनिक गतिशीलता का अध्ययन किया और 1884 में अपने प्रसिद्ध एट्यूड्स डी डायनेमिक चिमिक को प्रकाशित किया था।[4] 1901 में उन्हें रासायनिक गतिकी के नियमों और विलयनों में आसमाटिक दबाव की खोज द्वारा प्रदान की गई असाधारण सेवाओं की पहचान के लिए रसायन विज्ञान में प्रथम नोबेल पुरस्कार से सम्मानित किया गया था।[5] वैन 'टी हॉफ के बाद, रासायनिक गतिकी प्रतिक्रिया दरों के प्रयोगात्मक निर्धारण से संबंधित है जिससे दर नियम और प्रतिक्रिया दर स्थिरांक प्राप्त होते हैं। शून्य-क्रम प्रतिक्रियाओं के लिए अपेक्षाकृत सरल दर नियम उपस्थित हैं (जिसके लिए प्रतिक्रिया दर एकाग्रता से स्वतंत्र हैं), प्रथम-क्रम प्रतिक्रियाएँ, और द्वितीय-क्रम प्रतिक्रियाएँ, और दूसरों के लिए प्राप्त की जा सकती हैं। प्राथमिक प्रतिक्रियाएं सामूहिक क्रिया के नियम का पालन करती हैं, किंतु चरणबद्ध प्रतिक्रियाओं के दर नियम को विभिन्न प्राथमिक चरणों के दर नियमों के संयोजन से प्राप्त करना पड़ता है, और यह अधिक जटिल हो सकता है। लगातार प्रतिक्रियाओं में, दर-निर्धारण चरण अधिकांशतः गतिकी निर्धारित करता है। लगातार पहले क्रम की प्रतिक्रियाओं में, स्थिर अवस्था (रसायन विज्ञान) समीपता दर नियम को सरल बना सकता है। प्रतिक्रिया के लिए सक्रियण ऊर्जा प्रयोगात्मक रूप से अरहेनियस समीकरण और आइरिंग समीकरण के माध्यम से निर्धारित की जाती है। प्रतिक्रिया की दर को प्रभावित करने वाले मुख्य कारकों में सम्मिलित हैं: अभिकारकों की भौतिक स्थिति, अभिकारकों की सांद्रता, जिस तापमान पर प्रतिक्रिया होती है, और प्रतिक्रिया में कोई उत्प्रेरक उपस्थित हैं या नहीं है।

गोर्बन और याब्लोन्स्की ने सुझाव दिया है कि रासायनिक गतिकी के इतिहास को तीन युगों में विभाजित किया जा सकता है।[6] पहला वैन 'टी हॉफ तरंग है जो रासायनिक प्रतिक्रियाओं के सामान्य नियमों की खोज कर रहा है और गतिकी को ऊष्मप्रवैगिकी से संबंधित कर रहा है। दूसरे को विशेष रूप से श्रृंखला प्रतिक्रियाओं के लिए प्रतिक्रिया तंत्र पर जोर देने के साथ सेमेनोव-हिंशेलवुड वेव कहा जा सकता है। तीसरा एरिस और रासायनिक प्रतिक्रिया नेटवर्क के विस्तृत गणितीय विवरण से जुड़ा है।

प्रतिक्रिया दर को प्रभावित करने वाले कारक

अभिकारकों की प्रकृति

प्रतिक्रिया की दर इस बात पर निर्भर करती है कि कौन से पदार्थ प्रतिक्रिया कर रहे हैं। अम्ल/क्षार प्रतिक्रियाएँ, लवण का निर्माण और आयन विनिमय सामान्यतः तीव्र प्रतिक्रियाएँ होती हैं। जब अणुओं के मध्य सहसंयोजक बंध बनता है और जब बड़े अणु बनते हैं, तो अभिक्रिया धीमी हो जाती है।

प्रतिक्रियाशील अणुओं में बंधों की प्रकृति और शक्ति उनके उत्पादों में परिवर्तन की दर को बहुत प्रभावित करती है।

भौतिक अवस्था

किसी अभिकारक की भौतिक अवस्था (ठोस, द्रव या गैस) भी परिवर्तन की दर का महत्वपूर्ण कारक है। जब अभिकारक उसी चरण (पदार्थ) में होते हैं, जैसा कि जलीय घोल में होता है, तो तापीय गति उन्हें संपर्क में लाती है। चूँकि, जब वे अलग-अलग चरणों में होते हैं, तो प्रतिक्रिया अभिकारकों के मध्य अंतराफलक तक ही सीमित होती है। प्रतिक्रिया केवल उनके संपर्क के क्षेत्र में हो सकती है; तरल और गैस की स्थितियों में, प्रतिक्रिया केवल उनके संपर्क क्षेत्र में, तरल की सतह पर ही हो सकती है। प्रतिक्रिया को पूरा करने के लिए प्रबल कंपन और उत्तेजक की आवश्यकता हो सकती है। इसका अर्थ यह है कि ठोस या तरल अभिकारक को जितना अधिक सूक्ष्म रूप से विभाजित किया जाता है, प्रति इकाई आयतन में उसका सतह क्षेत्र उतना ही अधिक होता है और जितना अधिक वह अन्य अभिकारक के साथ संपर्क करता है, इस प्रकार प्रतिक्रिया उतनी ही तीव्र होती है। सादृश्य बनाने के लिए, उदाहरण के लिए, जब कोई आग लगाता है, तो वह लकड़ी के चिप्स और छोटी शाखाओं का उपयोग करता है - कोई तुरंत बड़े लट्ठों से प्रारंभ नहीं करता है। कार्बनिक रसायन विज्ञान में, जल पर प्रतिक्रियाएँ इस नियम का अपवाद हैं कि विषम प्रतिक्रियाओं की तुलना में सजातीय प्रतिक्रियाएँ तीव्रता से होती हैं (वे प्रतिक्रियाएँ जिनमें विलेय और विलायक ठीक से मिश्रित नहीं होते हैं)

ठोस अवस्था का सतह क्षेत्र

एक ठोस में, केवल वे कण जो सतह पर होते हैं, प्रतिक्रिया में सम्मिलित हो सकते हैं। ठोस को छोटे भागों में कुचलने का अर्थ है कि सतह पर अधिक कण उपस्थित हैं, और इन और प्रतिक्रियाशील कणों के मध्य संघटन की आवृत्ति बढ़ जाती है, और इसलिए प्रतिक्रिया अधिक तीव्रता़ी से होती है। उदाहरण के लिए, शर्बत (पाउडर) मैलिक एसिड (एक कमजोर कार्बनिक अम्ल) और सोडियम हाइड्रोजन कार्बोनेट के बहुत महीन पाउडर का मिश्रण है। मुंह में लार के संपर्क में आने पर, ये रसायन जल्दी से घुल जाते हैं और प्रतिक्रिया करते हैं, कार्बन डाइऑक्साइड छोड़ते हैं और चक्कर आने की अनुभूति होती है। इसके अतिरिक्त, आतिशबाजी निर्माता ठोस अभिकारकों के सतह क्षेत्र को उस दर को नियंत्रित करने के लिए संशोधित करते हैं जिस पर आतिशबाजी में ईंधन ऑक्सीकृत होते हैं, इसका उपयोग विविध प्रभाव उत्पन्न करने के लिए किया जाता है। उदाहरण के लिए, खोल में सीमित रूप से विभाजित एल्यूमीनियम हिंसक रूप से फट जाता है। यदि एल्यूमीनियम के बड़े टुकड़ों का उपयोग किया जाता है, तो प्रतिक्रिया धीमी होती है और चिंगारी जलती हुई धातु के टुकड़ों के रूप में दिखाई देती है।

एकाग्रता

प्रतिक्रियाएँ प्रतिक्रियाशील प्रजातियों के संघटन के कारण होती हैं। अणुओं या आयनों के टकराने की आवृत्ति उनकी सांद्रता पर निर्भर करती है। अणुओं की भीड़ जितनी अधिक होती है, उनके आपस में टकराने और प्रतिक्रिया करने की संभावना उतनी ही अधिक होती है। इस प्रकार, अभिकारकों की सांद्रता में वृद्धि के परिणामस्वरूप सामान्यतः प्रतिक्रिया दर में वृद्धि होती है, जबकि सांद्रता में कमी का सामान्यतः विपरीत प्रभाव पड़ता है। उदाहरण के लिए, हवा (21% ऑक्सीजन) की तुलना में शुद्ध ऑक्सीजन में दहन अधिक तीव्रता से होता है।

दर समीकरण अभिकारकों और उपस्थित अन्य प्रजातियों की सांद्रता पर प्रतिक्रिया दर की विस्तृत निर्भरता को दर्शाता है। गणितीय रूप प्रतिक्रिया तंत्र पर निर्भर करते हैं। किसी दिए गए प्रतिक्रिया के लिए वास्तविक दर समीकरण प्रयोगात्मक रूप से निर्धारित किया जाता है और प्रतिक्रिया तंत्र के बारे में जानकारी प्रदान करता है। दर समीकरण की गणितीय अभिव्यक्ति अधिकांशतः द्वारा दी जाती है

यहां प्रतिक्रिया दर स्थिर है, अभिकारक i की मोलर सांद्रता है और इस अभिकारक के लिए प्रतिक्रिया का आंशिक क्रम है। प्रतिक्रिया के लिए दर समीकरण केवल प्रयोगात्मक रूप से निर्धारित किया जा सकता है और अधिकांशतः इसके स्टोइकोमेट्री गुणांक द्वारा इंगित नहीं किया जाता है।

तापमान

तापमान का सामान्यतः रासायनिक प्रतिक्रिया की दर पर बड़ा प्रभाव पड़ता है। उच्च तापमान पर अणुओं में अधिक तापीय ऊर्जा होती है। चूँकि संघटन की आवृत्ति उच्च तापमान पर अधिक होती है, यह अकेला ही प्रतिक्रिया की दर में वृद्धि के लिए बहुत कम अनुपात में योगदान देता है। अधिक महत्वपूर्ण तथ्य यह है कि प्रतिक्रिया करने के लिए पर्याप्त ऊर्जा वाले प्रतिक्रियाशील अणुओं का अनुपात (सक्रियण ऊर्जा से अधिक ऊर्जा: E > Ea) अधिक है और आणविक ऊर्जा के मैक्सवेल-बोल्ट्जमैन वितरण द्वारा विस्तार से समझाया गया है।

प्रतिक्रिया दर स्थिरांक पर तापमान का प्रभाव सामान्यतः अरहेनियस समीकरण का पालन करता है, जहां A पूर्व-घातीय कारक या A-कारक है, Ea सक्रियण ऊर्जा है, R मोलर गैस स्थिरांक है और T पूर्ण तापमान है।[7]

किसी दिए गए तापमान पर, प्रतिक्रिया की रासायनिक दर A-कारक के मूल्य, सक्रियण ऊर्जा के परिमाण और अभिकारकों की सांद्रता पर निर्भर करती है। सामान्यतः, तीव्र प्रतिक्रियाओं के लिए अपेक्षाकृत छोटी सक्रियण ऊर्जा की आवश्यकता होती है।

यह 'अंगूठे का नियम' है कि प्रत्येक 10 डिग्री सेल्सियस तापमान वृद्धि के लिए रासायनिक प्रतिक्रियाओं की दर दोगुनी हो जाती है, यह सामान्यतः गलत धारणा है। इसे जैविक प्रणालियों के विशेष स्थितियों से सामान्यीकृत किया जा सकता है, जहां Q10 (तापमान गुणांक)|α (तापमान गुणांक) अधिकांशतः 1.5 और 2.5 के मध्य होता है।

तीव्रता से प्रतिक्रियाओं के गतिकी का अध्ययन तापमान जंप विधि से किया जा सकता है। इसमें तापमान में तीव्र वृद्धि का उपयोग करना और संतुलन में वापसी के विश्राम समय का अवलोकन करना सम्मिलित है। तापमान वृद्धि उपकरण का विशेष रूप से उपयोगी रूप शॉक ट्यूब है, जो तीव्रता से गैस के तापमान को 1000 डिग्री से अधिक बढ़ा सकता है।

उत्प्रेरक

एक काल्पनिक एंडोथर्मिक रासायनिक प्रतिक्रिया में उत्प्रेरक के प्रभाव को दर्शाने वाला सामान्य संभावित ऊर्जा आरेख। उत्प्रेरक की उपस्थिति कम सक्रियता ऊर्जा के साथ नया प्रतिक्रिया मार्ग (लाल रंग में दिखाया गया) खोलती है। अंतिम परिणाम और समग्र ऊष्मप्रवैगिकी समान हैं।

उत्प्रेरक पदार्थ है जो रासायनिक प्रतिक्रिया की दर को बदल देता है किंतु बाद में यह रासायनिक रूप से अपरिवर्तित रहता है। उत्प्रेरक कम सक्रियण ऊर्जा के साथ होने वाली नई प्रतिक्रिया तंत्र प्रदान करके प्रतिक्रिया की दर को बढ़ाता है। ऑटोकैटलिसिस में प्रतिक्रिया उत्पाद ही उस प्रतिक्रिया के लिए उत्प्रेरक है जो सकारात्मक प्रतिक्रिया की ओर ले जाता है। प्रोटीन जो जैव रासायनिक प्रतिक्रियाओं में उत्प्रेरक के रूप में कार्य करते हैं उन्हें एंजाइम कहा जाता है। माइकलिस-मेंटेन गतिकी एंजाइम गतिकी का वर्णन करता है। उत्प्रेरक संतुलन की स्थिति को प्रभावित नहीं करता है, क्योंकि उत्प्रेरक आगे और पीछे की प्रतिक्रियाओं को समान रूप से गति देता है।

कुछ कार्बनिक अणुओं में, विशिष्ट प्रतिस्थापियों का पड़ोसी समूह की भागीदारी में प्रतिक्रिया दर पर प्रभाव हो सकता है।

दबाव

गैसीय प्रतिक्रिया में दबाव बढ़ने से अभिकारकों के मध्य संघटन की संख्या में वृद्धि होगी, जिससे प्रतिक्रिया की दर में वृद्धि होती है। ऐसा इसलिए है क्योंकि गैस की गतिविधि (रसायन विज्ञान) सीधे गैस के आंशिक दबाव के समानुपाती होती है। यह विलयन की सान्द्रता बढ़ाने के प्रभाव के समान है।

इस स्पष्ट द्रव्यमान-क्रिया प्रभाव के अतिरिक्त, दबाव के कारण दर गुणांक स्वयं बदल सकते हैं। कई उच्च-तापमान गैस-चरण प्रतिक्रियाओं के दर गुणांक और उत्पाद बदलते हैं यदि मिश्रण में निष्क्रिय गैस जोड़ा जाता है; इस आशय की विविधताओं को पतन और रासायनिक सक्रियता कहा जाता है। ये घटनाएँ गर्मी हस्तांतरण की तुलना में तीव्रता से होने वाली एक्सोथर्मिक या एंडोथर्मिक प्रतिक्रियाओं के कारण होती हैं, जिससे प्रतिक्रिया करने वाले अणुओं में गैर-थर्मल ऊर्जा वितरण (गैर-बोल्ट्जमैन वितरण) होता है। दबाव बढ़ाने से प्रतिक्रिया करने वाले अणुओं और शेष प्रणाली के मध्य गर्मी हस्तांतरण दर बढ़ जाती है, जिससे यह प्रभाव कम हो जाता है।

संघनित-चरण दर गुणांक भी दबाव से प्रभावित हो सकते हैं, चूँकि मापने योग्य प्रभाव के लिए उच्च दबाव की आवश्यकता होती है क्योंकि आयन और अणु बहुत संकुचित नहीं होते हैं। इस आशय का अध्ययन अधिकांशतः हीरे की निहाई का उपयोग करके किया जाता है।

एक प्रतिक्रिया के गतिकी का दबाव जंप दृष्टिकोण के साथ भी अध्ययन किया जा सकता है। इसमें दबाव में तीव्रता से बदलाव करना और संतुलन में वापसी के विश्राम के समय का अवलोकन करना सम्मिलित है।

प्रकाश का अवशोषण

एक रासायनिक प्रतिक्रिया के लिए सक्रियण ऊर्जा तब प्रदान की जा सकती है जब अभिकारक अणु उपयुक्त तरंग दैर्ध्य के प्रकाश को अवशोषित करता है और उत्तेजित अवस्था में पहुंच जाता है। प्रकाश द्वारा प्रारंभ की गई प्रतिक्रियाओं का अध्ययन प्रकाश रसायन है, इस प्रकार प्रमुख उदाहरण प्रकाश संश्लेषण है।

प्रायोगिक विधियाँ

प्रतिक्रिया दरों के प्रायोगिक निर्धारण में यह मापना सम्मिलित है कि समय के साथ अभिकारकों या उत्पादों की सांद्रता कैसे बदलती है। उदाहरण के लिए, अभिकारक की सांद्रता को स्पेक्ट्रोफोटोमेट्री द्वारा तरंग दैर्ध्य पर मापा जा सकता है जहां प्रणाली में कोई अन्य अभिकारक या उत्पाद प्रकाश को अवशोषित नहीं करता है।

जिन अभिक्रियाओं में कम से कम कई मिनट लगते हैं, उनके लिए अभिकारकों को रुचि के तापमान पर मिलाने के बाद प्रेक्षण प्रारंभ करना संभव है।

तीव्र प्रतिक्रिया

तीव्र प्रतिक्रियाओं के लिए, अभिकारकों को मिलाने और उन्हें निर्दिष्ट तापमान पर लाने के लिए आवश्यक समय प्रतिक्रिया के आधे जीवन से तुलनीय या अधिक हो सकता है।[8] धीमी गति से मिश्रण चरण के बिना तीव्रता से प्रतिक्रिया प्रारंभ करने के लिए विशेष विधियाँ सम्मिलित हैं

  • रुकी हुई प्रवाह विधियाँ, जो मिश्रण समय को मिलीसेकंड के क्रम तक कम कर सकती हैं[8][9][10] रुकी हुई प्रवाह विधियों की सीमाएँ हैं, उदाहरण के लिए, हमें गैसों या विलयनों को मिलाने में लगने वाले समय पर विचार करने की आवश्यकता है और यह उपयुक्त नहीं है यदि आधा जीवन सेकंड के सौवें भागो से कम है।
  • रासायनिक विश्राम विधियाँ जैसे कि तापमान जंप और दबाव जंप, जिसमें प्रारंभिक रूप से संतुलन में पूर्व-मिश्रित प्रणाली तीव्रता से हीटिंग या अवसादन से परेशान होती है जिससे यह अब संतुलन में न रहे, और संतुलन में वापस विश्राम देखा जाता है।[8][11][12][13] उदाहरण के लिए, सामान्य परिस्थितियों में 1 μs या उससे कम के आधे जीवन के साथ इस पद्धति का उपयोग उदासीनीकरण (रसायन विज्ञान) H3O+ + OH का अध्ययन करने के लिए किया गया है।[8][13]
  • फ्लैश फोटोलिसिस, जिसमें लेजर पल्स रेडिकल (रसायन विज्ञान) जैसी अत्यधिक उत्तेजित प्रजातियों का उत्पादन करती है, जिनकी प्रतिक्रियाओं का अध्ययन किया जाता है।[10][14][15][16]

संतुलन

जबकि रासायनिक गतिकी रासायनिक प्रतिक्रिया की दर से संबंधित है, ऊष्मप्रवैगिकी यह निर्धारित करती है कि प्रतिक्रियाएं किस सीमा तक होती हैं। उत्क्रमणीय प्रतिक्रिया में, रासायनिक संतुलन तब प्राप्त होता है जब अग्र और पश्च प्रतिक्रियाओं की दर बराबर होती है (गतिशील संतुलन का सिद्धांत) और अभिकारकों और उत्पादों की सांद्रता अब नहीं बदलती है। यह, उदाहरण के लिए, अमोनिया का उत्पादन करने के लिए नाइट्रोजन और हाइड्रोजन के संयोजन के लिए हैबर-बॉश प्रक्रिया द्वारा प्रदर्शित किया गया है। बेलौसोव-झाबोटिंस्की प्रतिक्रिया जैसी रासायनिक घड़ी प्रतिक्रियाएं प्रदर्शित करती हैं कि अंत में संतुलन प्राप्त करने से पहले घटक सांद्रता लंबे समय तक दोलन कर सकती है।

मुक्त ऊर्जा

सामान्य शब्दों में, किसी प्रतिक्रिया का मुक्त ऊर्जा परिवर्तन (ΔG) यह निर्धारित करता है कि रासायनिक परिवर्तन होगा या नहीं, किंतु गतिकी बताता है कि प्रतिक्रिया कितनी तीव्र है। प्रतिक्रिया बहुत ऊष्माक्षेपी हो सकती है और एक बहुत ही सकारात्मक एन्ट्रापी परिवर्तन हो सकता है किंतु यदि प्रतिक्रिया बहुत धीमी है तो व्यवहार में ऐसा नहीं होता है। यदि अभिकारक दो उत्पादों का उत्पादन कर सकता है, तो थर्मोडायनामिक रूप से सबसे स्थिर सामान्य रूप से बनेगा, विशेष परिस्थितियों को छोड़कर जब प्रतिक्रिया को गतिज प्रतिक्रिया नियंत्रण के अनुसार कहा जाता है। कर्टिन-हैममेट सिद्धांत तब प्रयुक्त होता है जब तीव्रता से परस्पर परिवर्तित होने वाले दो अभिकारकों के लिए उत्पाद अनुपात का निर्धारण किया जाता है, प्रत्येक अलग उत्पाद में जाता है। मुक्त-ऊर्जा संबंधों से प्रतिक्रिया के लिए प्रतिक्रिया दर स्थिरांक के बारे में पूर्वानुमान करना संभव है।

काइनेटिक आइसोटोप प्रभाव रासायनिक प्रतिक्रिया की दर में अंतर होता है जब अभिकारक में परमाणु को इसके आइसोटोप द्वारा प्रतिस्थापित किया जाता है।

रासायनिक गतिकी रासायनिक इंजीनियरिंग में रासायनिक रिएक्टर में रेजिडेंस टाइम डिस्ट्रीब्यूशन और हीट ट्रांसफर और पॉलीमर रसायन में मोलर मास डिस्ट्रीब्यूशन के बारे में जानकारी प्रदान करता है। यह संक्षारण इंजीनियरिंग में भी जानकारी प्रदान करता है।

अनुप्रयोग और मॉडल

गणितीय मॉडल जो रासायनिक प्रतिक्रिया गतिकी का वर्णन करते हैं, रसायनज्ञों और रासायनिक इंजीनियरों को खाद्य अपघटन, सूक्ष्मजीव विकास, समतापमंडलीय ओजोन अपघटन, और जैविक प्रणालियों के रसायन शास्त्र जैसी रासायनिक प्रक्रियाओं को उचित रूप से से समझने और उनका वर्णन करने के लिए उपकरण प्रदान करते हैं। इन मॉडलों का उपयोग रासायनिक रिएक्टरों के डिजाइन या संशोधन में उत्पाद उपज को अनुकूलित करने, अधिक कुशलता से उत्पादों को अलग करने और पर्यावरणीय रूप से हानिकारक उप-उत्पादों को नष्ट करने के लिए भी किया जा सकता है। गैसोलीन और हल्की गैस में भारी हाइड्रोकार्बन की उत्प्रेरक क्रैकिंग करते समय, उदाहरण के लिए, काइनेटिक मॉडल का उपयोग तापमान और दबाव का पता लगाने के लिए किया जा सकता है, जिस पर गैसोलीन में भारी हाइड्रोकार्बन की उच्चतम उपज होती है।

रासायनिक गतिकी को सामान्य डिफरेंशियल इक्वेशन-सॉल्विंग (ODE-सॉल्विंग) और कर्व-फिटिंग के कार्य के रूप में विशेष पैकेज में मॉडलिंग के माध्यम से अधिकांशतः मान्य और पता लगाया जाता है।[17]

संख्यात्मक विधियाँ

कुछ स्थितियों में, समीकरण विश्लेषणात्मक रूप से अघुलनशील होते हैं, किंतु डेटा मान दिए जाने पर संख्यात्मक विधियों का उपयोग करके हल किया जा सकता है। ऐसा करने के दो अलग-अलग विधियाँ हैं, या तो सॉफ़्टवेयर प्रोग्राम या गणितीय विधियों जैसे यूलर विधि का उपयोग करके। रासायनिक गतिकी के लिए सॉफ्टवेयर के उदाहरण हैं i) तेनुआ, जावा (प्रोग्रामिंग भाषा) ऐप जो रासायनिक प्रतिक्रियाओं को संख्यात्मक रूप से अनुकरण करता है और वास्तविक डेटा के सिमुलेशन की तुलना की अनुमति देता है, ii) गणना और अनुमानों के लिए पायथन (प्रोग्रामिंग भाषा) कोडिंग और iii) मॉडल, रिग्रेस, फिट के लिए किन्टेकस सॉफ्टवेयर कंपाइलर और प्रतिक्रियाओं को अनुकूलित किया जाता है।

-संख्यात्मक एकीकरण: प्रथम क्रम प्रतिक्रिया के लिए ए → बी

अभिकारक A का विभेदक समीकरण है:

इसे इस रूप में भी व्यक्त किया जा सकता है:

जो समान है

यूलर और रंज-कुट्टा विधियों से अवकल समीकरणों को हल करने के लिए हमें प्रारंभिक मानों की आवश्यकता होती है।

  • यूलर विधि → सरल किंतु गलत।

किसी भी बिंदु पर वैसा ही है जैसा कि;

असतत वृद्धि के रूप में हम अंतरों को अनुमानित कर सकते हैं:

≃ ∆y/∆x = [y(x+∆x)-y(x)]/∆x

समीकरण का अज्ञात भाग y(x+Δx) है, जिसे पाया जा सकता है यदि हमारे पास प्रारंभिक मानों के लिए डेटा है।

  • रंज-कुट्टा विधियाँ → यह यूलर विधि की तुलना में अधिक सटीक है।

इस विधि में, प्रारंभिक स्थिति आवश्यक है: y = y0 at x = x0. समस्या y का मान ज्ञात करना है कि x = x0 + h है, जहाँ h नियतांक है।

यह विश्लेषणात्मक रूप से दिखाया जा सकता है कि उस क्षण वक्र के माध्यम से समन्वय (x0, y0) तीसरे क्रम के रंज-कुट्टा सूत्र द्वारा दिया गया है।

प्रथम-क्रम के साधारण समीकरणों में, रंज-कुट्टा विधि गणितीय मॉडल का उपयोग करती है जो तापमान और प्रतिक्रिया की दर के मध्य संबंध का प्रतिनिधित्व करती है। अलग-अलग सांद्रता के लिए अलग-अलग तापमान पर प्रतिक्रिया की दर की गणना करना इसके योग्य है। प्राप्त समीकरण है।

  • स्टोचैस्टिक विधियाँ → अंतर दर नियमों और गतिज स्थिरांक की संभावनाएं।
  • प्रत्यक्ष और व्युत्क्रम दर स्थिरांक के साथ संतुलन प्रतिक्रिया में, बी से ए के अतिरिक्त ए से बी में बदलना आसान होता है।

संभाव्यता संगणनाओं के लिए, हर बार यह जानने के लिए कि क्या प्रतिक्रिया ए से बी या दूसरी तरफ चलती है, सीमा के साथ तुलना करने के लिए यादृच्छिक संख्या का चयन किया जाता है।

यह भी देखें

  • ऑटोकैटलिटिक प्रतिक्रियाएं और आदेश निर्माण
  • विस्फोट
  • विद्युत रासायनिक गतिकी
  • यूरोकिन
  • ज्वाला गति
  • विषम कटैलिसीस
  • आंतरिक निम्न-आयामी मैनिफोल्ड
  • एमएलएबी रासायनिक गतिकी मॉडलिंग पैकेज
  • गैर-तापीय सतह प्रतिक्रिया
  • प्रयोगात्मक डेटा के लिए रासायनिक दर स्थिरांक फिट करने के लिए पॉटरव्हील मैटलैब टूलबॉक्स
  • प्रतिक्रिया प्रगति गतिज विश्लेषण
  • संक्षारण इंजीनियरिंग

संदर्भ

  1. 1.0 1.1 C.M. Guldberg and P. Waage,"Studies Concerning Affinity" Forhandlinger i Videnskabs-Selskabet i Christiania (1864), 35
  2. P. Waage, "Experiments for Determining the Affinity Law" ,Forhandlinger i Videnskabs-Selskabet i Christiania, (1864) 92.
  3. C.M. Guldberg, "Concerning the Laws of Chemical Affinity", Forhandlinger i Videnskabs-Selskabet i Christiania (1864) 111
  4. Hoff, J. H. van't (Jacobus Henricus van't); Cohen, Ernst; Ewan, Thomas (1896-01-01). रासायनिक गतिकी में अध्ययन. Amsterdam : F. Muller; London : Williams & Norgate.
  5. The Nobel Prize in Chemistry 1901, Nobel Prizes and Laureates, official website.
  6. A.N. Gorban, G.S. Yablonsky Three Waves of Chemical Dynamics, Mathematical Modelling of Natural Phenomena 10(5) (2015), p. 1–5.
  7. Laidler, K. J. Chemical Kinetics (3rd ed., Harper and Row 1987) p.42 ISBN 0-06-043862-2
  8. 8.0 8.1 8.2 8.3 Laidler, K. J. Chemical Kinetics (3rd ed., Harper and Row 1987) p.33-39 ISBN 0-06-043862-2
  9. Espenson, J.H. Chemical Kinetics and Reaction Mechanisms (2nd ed., McGraw-Hill 2002), p.254-256 ISBN 0-07-288362-6
  10. 10.0 10.1 Atkins P. and de Paula J., Physical Chemistry (8th ed., W.H. Freeman 2006) p.793 ISBN 0-7167-8759-8
  11. Espenson, J.H. Chemical Kinetics and Reaction Mechanisms (2nd ed., McGraw-Hill 2002), p.256-8 ISBN 0-07-288362-6
  12. Steinfeld J.I., Francisco J.S. and Hase W.L. Chemical Kinetics and Dynamics (2nd ed., Prentice-Hall 1999) p.140-3 ISBN 0-13-737123-3
  13. 13.0 13.1 Atkins P. and de Paula J., Physical Chemistry (8th ed., W.H. Freeman 2006) pp.805-7 ISBN 0-7167-8759-8
  14. Laidler, K.J. Chemical Kinetics (3rd ed., Harper and Row 1987) p.359-360 ISBN 0-06-043862-2
  15. Espenson, J.H. Chemical Kinetics and Reaction Mechanisms (2nd ed., McGraw-Hill 2002), p.264-6 ISBN 0-07-288362-6
  16. Steinfeld J.I., Francisco J.S. and Hase W.L. Chemical Kinetics and Dynamics (2nd ed., Prentice-Hall 1999) p.94-97 ISBN 0-13-737123-3
  17. "रासायनिक कैनेटीक्स: सरल बाध्यकारी: एफ + जी ⇋ बी" (PDF). Civilized Software, Inc. Retrieved 2015-09-01.

बाहरी संबंध