बेल का प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
m (47 revisions imported from alpha:बेल_का_प्रमेय)
 
(23 intermediate revisions by 2 users not shown)
Line 2: Line 2:
{{Redirect|"बेल असमानता"|संबंधित प्रयोग|बेल परीक्षण}}
{{Redirect|"बेल असमानता"|संबंधित प्रयोग|बेल परीक्षण}}


'''बेल का प्रमेय''' एक शब्द है जिसमें भौतिकी में कई निकट से संबंधित परिणाम सम्मलित हैं, जो यह निर्धारित करते हैं कि [[क्वांटम यांत्रिकी]] स्थानीय छिपे-चर सिद्धांतों के साथ असंगत है, माप की प्रकृति के बारे में कुछ मूलभूत धारणाएं दी गई हैं। यहां "स्थानीय" स्थानीयता के सिद्धांत को संदर्भित करता है, यह विचार कि एक कण केवल अपने तत्काल परिवेश से प्रभावित हो सकता है, और भौतिक क्षेत्रों द्वारा मध्यस्थता वाली बातचीत [[प्रकाश की गति]] से अधिक तेजी से नहीं फैल सकती है। "छिपे हुए चर" क्वांटम कणों के अनुमानित गुण हैं जो क्वांटम सिद्धांत में सम्मलित नहीं हैं लेकिन फिर भी प्रयोगों के परिणाम को प्रभावित करते हैं। भौतिक विज्ञानी [[जॉन स्टीवर्ट बेल]] के शब्दों में, जिनके लिए परिणामों के इस परिवार का नाम रखा गया है, "यदि [एक छिपा-चर सिद्धांत] स्थानीय है तो यह क्वांटम यांत्रिकी से सहमत नहीं होगा, और यदि यह क्वांटम यांत्रिकी से सहमत है तो यह स्थानीय नहीं होगा "।<ref>{{cite book  | first = John S. | last = Bell | author-link = John Stewart Bell | title = क्वांटम यांत्रिकी में बोलने योग्य और अकथनीय| publisher = Cambridge University Press | date = 1987  | page = 65 | isbn = 9780521368698 | oclc = 15053677}}</ref>
'''बेल का प्रमेय''' एक टर्म है जिसमें भौतिकी में कई निकट से संबंधित परिणाम सम्मलित हैं, जो यह निर्धारित करते हैं कि [[क्वांटम यांत्रिकी]] में, स्थानीय छिपे-चर सिद्धांतों के साथ असंगत है, माप के गुण के बारे में कुछ मूलभूत धारणाएं दी गई हैं। यहां "स्थानीय" स्थानीयता के सिद्धांत (भौतिकी में) को संदर्भित करता है, यह विवरण कि एक कण केवल अपने तत्काल परिवेश से प्रभावित हो सकता है, और भौतिक क्षेत्रों द्वारा मध्यस्थ परस्पर क्रिया [[प्रकाश की गति]] से अधिक तेजी से नहीं विस्तृत हो सकती है। "भौतिकी में, एक छिपा-चर सिद्धांत" क्वांटम कणों के अनुमानित गुण हैं जो क्वांटम सिद्धांत में सम्मलित नहीं हैं लेकिन फिर भी प्रयोगों के परिणाम को प्रभावित करते हैं। भौतिक विज्ञानी [[जॉन स्टीवर्ट बेल]] के टर्म में, "यदि एक छिपा-चर सिद्धांत स्थानीय है तो यह क्वांटम यांत्रिकी से सहमत नहीं होगा, और यदि यह क्वांटम यांत्रिकी से सहमत है तो यह स्थानीय नहीं होगा "।<ref>{{cite book  | first = John S. | last = Bell | author-link = John Stewart Bell | title = क्वांटम यांत्रिकी में बोलने योग्य और अकथनीय| publisher = Cambridge University Press | date = 1987  | page = 65 | isbn = 9780521368698 | oclc = 15053677}}</ref>


यह शब्द मोटे तौर पर कई अलग-अलग व्युत्पत्तियों पर क्रियान्वित होता है, जिनमें से सबसे पहले बेल द्वारा 1964 में "ऑन द आइंस्टीन पोडॉल्स्की रोसेन [[ ईपीआर विरोधाभास |ईपीआर विरोधाभास]] शीर्षक वाले पेपर में पेश किया गया था। बेल का पेपर 1935 के एक विचार प्रयोग की प्रतिक्रिया थी जिसे [[अल्बर्ट आइंस्टीन]], [[बोरिस पोडॉल्स्की]] और [[नाथन रोसेन]] ने प्रस्तावित किया था, जिसमें तर्क दिया गया था कि क्वांटम भौतिकी एक "अधूरा" सिद्धांत है।<ref name="EPR">{{cite journal | title = Can Quantum-Mechanical Description of Physical Reality be Considered Complete? | date = 1935-05-15 | first1 = A. | last1 = Einstein |first2=B. |last2 = Podolsky |first3=N. |last3 = Rosen | author-link1 = Albert Einstein | author-link2 = Boris Podolsky | author-link3 = Nathan Rosen | journal = [[Physical Review]] | volume = 47 | issue = 10 | pages = 777–780 | bibcode = 1935PhRv...47..777E |doi = 10.1103/PhysRev.47.777 | doi-access = free }}</ref><ref name="Bell1964">{{cite journal | last1 = Bell | first1 = J. S. | author-link = John Stewart Bell | year = 1964 | title = आइंस्टीन पोडॉल्स्की रोसेन विरोधाभास पर| url = https://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf | journal = [[Physics Physique Физика]] | volume = 1 | issue = 3| pages = 195–200 | doi = 10.1103/PhysicsPhysiqueFizika.1.195 }}</ref> 1935 तक, यह पहले से ही माना गया था कि क्वांटम भौतिकी की भविष्यवाणियाँ संभाव्य हैं। आइंस्टीन, पोडॉल्स्की और रोसेन ने एक परिदृश्य प्रस्तुत किया जिसमें [[कण|कणों]] की एक जोड़ी तैयार करना सम्मलित है जैसे कि जोड़ी की क्वांटम स्थिति उलझी हुई है, और फिर कणों को मनमाने ढंग से बड़ी दूरी पर अलग करना सम्मलित है। प्रयोगकर्ता के पास संभावित मापों का विकल्प होता है जो किसी एक कण पर किया जा सकता है। जब वे एक माप चुनते हैं और एक परिणाम प्राप्त करते हैं, तो दूसरे कण की क्वांटम स्थिति स्पष्ट रूप से उस परिणाम के आधार पर तुरंत एक नई स्थिति में बदल जाती है, चाहे दूसरा कण कितना भी दूर क्यों न हो। इससे पता चलता है कि या तो पहले कण की माप ने किसी तरह प्रकाश की गति से भी तेज गति से दूसरे कण के साथ बातचीत की, या उलझे हुए कणों में कुछ अनमापी संपत्ति थी जो अलग होने से पहले उनकी अंतिम क्वांटम स्थिति को पूर्व-निर्धारित करती थी। इसलिए, स्थानीयता मानते हुए, क्वांटम यांत्रिकी अधूरी होनी चाहिए, क्योंकि यह कण की वास्तविक भौतिक विशेषताओं का पूरा विवरण नहीं दे सकती है। दूसरे शब्दों में, [[इलेक्ट्रॉन]] और फोटॉन जैसे क्वांटम कणों में कुछ ऐसे गुण या गुण होने चाहिए जो क्वांटम सिद्धांत में सम्मलित नहीं हैं, और क्वांटम सिद्धांत की भविष्यवाणियों में अनिश्चितता इन गुणों की अज्ञानता या अज्ञातता के कारण होगी, जिन्हें पश्चात में "छिपे हुए चर" कहा गया।
यह संबंध कई अलग-अलग व्युत्पत्तियों पर क्रियान्वित होता है, इनमें से पहला परिचय बेल द्वारा 1964 में "ऑन द आइंस्टीन पोडॉल्स्की रोसेन [[ ईपीआर विरोधाभास |ईपीआर पैराडॉक्स]]" नामक पेपर में दिया गया था। बेल का पेपर 1935 के एक विचार प्रयोग (एक काल्पनिक स्थिति) की प्रतिक्रिया थी जिसे [[अल्बर्ट आइंस्टीन]], [[बोरिस पोडॉल्स्की]] और [[नाथन रोसेन]] ने प्रस्तावित किया था, जिसमें तर्क दिया गया था कि क्वांटम भौतिकी एक "अधूरा" सिद्धांत है।<ref name="EPR">{{cite journal | title = Can Quantum-Mechanical Description of Physical Reality be Considered Complete? | date = 1935-05-15 | first1 = A. | last1 = Einstein |first2=B. |last2 = Podolsky |first3=N. |last3 = Rosen | author-link1 = Albert Einstein | author-link2 = Boris Podolsky | author-link3 = Nathan Rosen | journal = [[Physical Review]] | volume = 47 | issue = 10 | pages = 777–780 | bibcode = 1935PhRv...47..777E |doi = 10.1103/PhysRev.47.777 | doi-access = free }}</ref><ref name="Bell1964">{{cite journal | last1 = Bell | first1 = J. S. | author-link = John Stewart Bell | year = 1964 | title = आइंस्टीन पोडॉल्स्की रोसेन विरोधाभास पर| url = https://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf | journal = [[Physics Physique Физика]] | volume = 1 | issue = 3| pages = 195–200 | doi = 10.1103/PhysicsPhysiqueFizika.1.195 }}</ref> 1935 तक, यह पहले से ही माना गया था कि क्वांटम भौतिकी का पूर्वानुमान संभाव्य हैं। आइंस्टीन, पोडॉल्स्की और रोसेन ने एक परिदृश्य प्रस्तुत किया जिसमें [[कण|कणों]] की एक जोड़ी तैयार करना सम्मलित है जैसे कि जोड़ी की क्वांटम स्थिति क्वांटम उलझाव है, और फिर कणों को स्वेच्छया से बड़ी दूरी पर अलग करना सम्मलित है। प्रयोगकर्ता के पास संभावित मापों का चयन होता है जो किसी एक कण पर किया जा सकता है। जब वे एक माप चुनते हैं और एक परिणाम प्राप्त करते हैं, तो दूसरे कण की क्वांटम स्थिति स्पष्ट रूप से उस परिणाम के आधार पर तुरंत एक नई स्थिति में बदल जाती है, चाहे दूसरा कण कितना भी दूर क्यों न हो। इससे पता चलता है कि या तो पहले कण की माप ने किसी तरह प्रकाश की गति से भी तेज गति से दूसरे कण के साथ अंत:क्रिया की, या उलझे हुए कणों में कुछ अनमापी गुण था जो अलग होने से पहले उनकी अंतिम क्वांटम स्थिति को पूर्व-निर्धारित करता था। इसलिए, स्थानीयता मानते हुए, क्वांटम यांत्रिकी अधूरी होनी चाहिए, क्योंकि यह कण की वास्तविक भौतिक विशेषताओं का पूरा विवरण नहीं दे सकती है। दूसरे टर्म में, [[इलेक्ट्रॉन]] और फोटॉन जैसे क्वांटम कणों में कुछ ऐसे गुण होने चाहिए जो क्वांटम सिद्धांत में सम्मलित नहीं हैं, और क्वांटम सिद्धांत की पूर्वानुमान में अनिश्चितता इन गुणों की अज्ञानता या अज्ञातता के कारण होगी, जिन्हें पश्चात में "छिपे हुए चर" कहा गया।


बेल ने क्वांटम उलझाव के विश्लेषण को बहुत आगे बढ़ाया। उन्होंने यह निष्कर्ष निकाला कि यदि उलझे हुए जोड़े के दो अलग-अलग कणों पर माप स्वतंत्र रूप से किया जाता है, तो यह धारणा कि परिणाम प्रत्येक आधे के भीतर छिपे हुए चर पर निर्भर करते हैं, इस बात पर गणितीय बाधा उत्पन्न होती है कि दोनों मापों के परिणाम कैसे सहसंबद्ध हैं। इस बाधा को पश्चात में बेल असमानता का नाम दिया गया। बेल ने तब दिखाया कि क्वांटम भौतिकी उन सहसंबंधों की भविष्यवाणी करती है जो इस असमानता का उल्लंघन करते हैं। परिणामस्वरूप, छिपे हुए चर क्वांटम भौतिकी की भविष्यवाणियों को समझाने का एकमात्र तरीका यह है कि वे "नॉनलोकल" हैं, जिसका अर्थ यह है कि किसी तरह दो कण तुरंत बातचीत करने में सक्षम हैं, भले ही वे कितने भी व्यापक रूप से अलग क्यों न हों।<ref name="C.B. Parker 1994 542">{{cite book | first = Sybil B. | last = Parker | title = मैकग्रा-हिल इनसाइक्लोपीडिया ऑफ फिजिक्स| edition = 2nd | page = [https://archive.org/details/mcgrawhillencycl1993park/page/542 542] | date = 1994 | publisher = McGraw-Hill | isbn = 978-0-07-051400-3 | url = https://archive.org/details/mcgrawhillencycl1993park| url-access = registration }}</ref><ref name = "ND Mermin 1993-07">{{cite journal | last = Mermin |first = N. David |author-link=N. David Mermin |title = छिपे हुए चर और जॉन बेल के दो प्रमेय| journal = [[Reviews of Modern Physics]] | volume = 65 |pages = 803–15 | number = 3| date = July 1993  | url = http://cqi.inf.usi.ch/qic/Mermin1993.pdf |arxiv=1802.10119|doi = 10.1103/RevModPhys.65.803 |bibcode = 1993RvMP...65..803M |s2cid = 119546199 }}</ref>
बेल ने क्वांटम उलझाव के विश्लेषण को बहुत आगे बढ़ाया। उन्होंने यह निष्कर्ष निकाला कि यदि उलझे हुए जोड़े के दो अलग-अलग कणों पर माप स्वतंत्र रूप से किया जाता है, तो यह धारणा का परिणाम प्रत्येक आधे के भीतर छिपे हुए चर पर निर्भर करते हैं, इस बात पर गणितीय बाधा उत्पन्न होती है कि दोनों मापों के परिणाम कैसे सहसंबद्ध हैं। इस बाधा को पश्चात में बेल असमानता का नाम दिया गया। बेल ने तब सिद्ध किया कि क्वांटम भौतिकी उन सहसंबंधों की पूर्वानुमान करती है जो इस असमानता का उल्लंघन करते हैं। परिणामस्वरूप, छिपे हुए चर क्वांटम भौतिकी की पूर्वानुमान को समझाने का एकमात्र उपाय यह है कि वे "गैर स्थानीय" हैं, जिसका अर्थ यह है कि किसी तरह दो कण तुरंत अंत:क्रिया. करने में सक्षम हैं, भले ही वे कितने भी व्यापक रूप से अलग क्यों न हों।<ref name="C.B. Parker 1994 542">{{cite book | first = Sybil B. | last = Parker | title = मैकग्रा-हिल इनसाइक्लोपीडिया ऑफ फिजिक्स| edition = 2nd | page = [https://archive.org/details/mcgrawhillencycl1993park/page/542 542] | date = 1994 | publisher = McGraw-Hill | isbn = 978-0-07-051400-3 | url = https://archive.org/details/mcgrawhillencycl1993park| url-access = registration }}</ref><ref name = "ND Mermin 1993-07">{{cite journal | last = Mermin |first = N. David |author-link=N. David Mermin |title = छिपे हुए चर और जॉन बेल के दो प्रमेय| journal = [[Reviews of Modern Physics]] | volume = 65 |pages = 803–15 | number = 3| date = July 1993  | url = http://cqi.inf.usi.ch/qic/Mermin1993.pdf |arxiv=1802.10119|doi = 10.1103/RevModPhys.65.803 |bibcode = 1993RvMP...65..803M |s2cid = 119546199 }}</ref>


अगले वर्षों में बेल के प्रमेय पर कई बदलाव सामने रखे गए, जिससे अन्य निकट संबंधी स्थितियों का परिचय दिया गया, जिन्हें सामान्यतः बेल (या "बेल-प्रकार") असमानताओं के रूप में जाना जाता है। बेल के प्रमेय का परीक्षण करने के लिए डिज़ाइन किया गया पहला प्राथमिक प्रयोग 1972 में [[जॉन क्लॉसर]] और [[स्टुअर्ट फ्रीडमैन]] द्वारा किया गया था।<ref>{{cite press release |url=https://www.nobelprize.org/prizes/physics/2022/press-release/ |title=The Nobel Prize in Physics 2022 |date=October 4, 2022 |work=[[Nobel Prize]] |publisher=[[The Royal Swedish Academy of Sciences]] |access-date=6 October 2022}}</ref> अधिक उन्नत प्रयोग, जिन्हें सामूहिक रूप से बेल परीक्षण के रूप में जाना जाता है, तब से कई बार किए गए हैं। अधिकांशतः, इन प्रयोगों का लक्ष्य "खामियों को संवृत करना" होता है, अर्थात प्रयोगात्मक डिजाइन या सेट-अप की समस्याओं को सुधारना जो सैद्धांतिक रूप से पहले के बेल परीक्षणों के निष्कर्षों की वैधता को प्रभावित कर सकता है। आज तक, बेल परीक्षणों ने लगातार पाया है कि भौतिक प्रणालियाँ क्वांटम यांत्रिकी का पालन करती हैं और बेल असमानताओं का उल्लंघन करती हैं; कहने का तात्पर्य यह है कि इन प्रयोगों के परिणाम किसी भी स्थानीय छिपे हुए चर सिद्धांत के साथ असंगत हैं।<ref name="NAT-20180509">{{cite journal |author=The BIG Bell Test Collaboration |title=मानवीय विकल्पों के साथ स्थानीय यथार्थवाद को चुनौती देना|date=9 May 2018 |journal=[[Nature (journal)|Nature]] |volume=557 |issue=7704 |pages=212–216 |doi=10.1038/s41586-018-0085-3 |pmid=29743691 |bibcode=2018Natur.557..212B |arxiv=1805.04431 |s2cid=13665914 }}</ref><ref>{{Cite web|url=https://www.quantamagazine.org/20170207-bell-test-quantum-loophole/|title=प्रयोग क्वांटम विचित्रता की पुष्टि करता है|last=Wolchover|first=Natalie|author-link=Natalie Wolchover|date=2017-02-07|work=[[Quanta Magazine]]|language=en-US|access-date=2020-02-08}}</ref>
अगले वर्षों में बेल के प्रमेय पर कई बदलाव प्रस्तुत करे गए, जिससे अन्य निकट संबंधी स्थितियों का परिचय दिया गया, जिन्हें सामान्यतः बेल या "बेल-प्रकार" असमानताओं के रूप में जाना जाता है। बेल के प्रमेय का परीक्षण करने के लिए डिज़ाइन किया गया पहला प्राथमिक प्रयोग 1972 में [[जॉन क्लॉसर]] और [[स्टुअर्ट फ्रीडमैन]] द्वारा किया गया था।<ref>{{cite press release |url=https://www.nobelprize.org/prizes/physics/2022/press-release/ |title=The Nobel Prize in Physics 2022 |date=October 4, 2022 |work=[[Nobel Prize]] |publisher=[[The Royal Swedish Academy of Sciences]] |access-date=6 October 2022}}</ref> अधिक उन्नत प्रयोग, जिन्हें सामूहिक रूप से बेल परीक्षण के रूप में जाना जाता है, तब से कई बार किए गए हैं। अधिकांशतः, इन प्रयोगों का लक्ष्य "त्रुटि को संवृत करना" होता है, अर्थात प्रयोगात्मक डिजाइन या सेट-अप की समस्याओं को सुधारना जो सैद्धांतिक रूप से पहले के बेल परीक्षणों के निष्कर्षों की वैधता को प्रभावित कर सकता है। आज तक, बेल परीक्षणों ने लगातार पाया है कि भौतिक प्रणालियाँ क्वांटम यांत्रिकी का पालन करती हैं और बेल असमानताओं का उल्लंघन करती हैं; तात्पर्य यह है कि इन प्रयोगों के परिणाम किसी भी स्थानीय छिपे हुए चर सिद्धांत के साथ असंगत हैं।<ref name="NAT-20180509">{{cite journal |author=The BIG Bell Test Collaboration |title=मानवीय विकल्पों के साथ स्थानीय यथार्थवाद को चुनौती देना|date=9 May 2018 |journal=[[Nature (journal)|Nature]] |volume=557 |issue=7704 |pages=212–216 |doi=10.1038/s41586-018-0085-3 |pmid=29743691 |bibcode=2018Natur.557..212B |arxiv=1805.04431 |s2cid=13665914 }}</ref><ref>{{Cite web|url=https://www.quantamagazine.org/20170207-bell-test-quantum-loophole/|title=प्रयोग क्वांटम विचित्रता की पुष्टि करता है|last=Wolchover|first=Natalie|author-link=Natalie Wolchover|date=2017-02-07|work=[[Quanta Magazine]]|language=en-US|access-date=2020-02-08}}</ref>


सहसंबंधों पर बेल-प्रकार की बाधा को सिद्ध करना करने के लिए आवश्यक मान्यताओं की सटीक प्रकृति पर भौतिकविदों और दार्शनिकों द्वारा बहस की गई है। हालाँकि बेल के प्रमेय का महत्व संदेह में नहीं है, [[क्वांटम यांत्रिकी की व्याख्या]] के लिए इसके पूर्ण निहितार्थ अनसुलझे हैं।
सहसंबंधों पर बेल-प्रकार की बाधा को सिद्ध करना करने के लिए आवश्यक मान्यताओं की सटीक प्रकृति पर भौतिकविदों और दार्शनिकों द्वारा तर्क किया गया है। चूंकि बेल के प्रमेय का महत्व संशय में नहीं है, [[क्वांटम यांत्रिकी की व्याख्या]] के लिए इसके पूर्ण निहितार्थ अनसुलझे हैं।


==प्रमेय==
==प्रमेय==
मूल विचार पर कई भिन्नताएं हैं, कुछ दूसरों की तुलना में अधिक मजबूत गणितीय धारणाओं को नियोजित करते हैं।<ref name="Stanford">{{Cite SEP|bell-theorem|title=बेल का प्रमेय|first = Abner | last = Shimony|author-link=Abner Shimony}}</ref> गौरतलब है कि बेल-प्रकार के प्रमेय स्थानीय छिपे हुए चर के किसी विशेष सिद्धांत का उल्लेख नहीं करते हैं, बल्कि यह दर्शाते हैं कि क्वांटम भौतिकी प्रकृति की शास्त्रीय तस्वीरों के पीछे की सामान्य धारणाओं का उल्लंघन करती है। 1964 में बेल द्वारा सिद्ध किया गया मूल प्रमेय प्रयोग के लिए सबसे उपयुक्त नहीं है, और पश्चात के उदाहरण के साथ बेल-प्रकार की असमानताओं की शैली को पेश करना सुविधाजनक है।<ref name="mike-and-ike"/>
मूल विचार पर कई भिन्नताएं हैं, कुछ दूसरों की समानता में अधिक मजबूत गणितीय धारणाओं को नियोजित करते हैं।<ref name="Stanford">{{Cite SEP|bell-theorem|title=बेल का प्रमेय|first = Abner | last = Shimony|author-link=Abner Shimony}}</ref> विचारणीय है कि बेल-प्रकार के प्रमेय स्थानीय छिपे हुए चर के किसी विशेष सिद्धांत का उल्लेख नहीं करते हैं, बल्कि यह दर्शाते हैं कि क्वांटम भौतिकी स्वभाव के मान्य वर्णन के पीछे की सामान्य धारणाओं का उल्लंघन करती है। 1964 में बेल द्वारा सिद्ध किया गया मूल प्रमेय प्रयोग के लिए सबसे उपयुक्त नहीं है, और पश्चात के उदाहरण के साथ बेल-प्रकार की असमानताओं की शैली को प्रस्तुत करना सुविधाजनक है।<ref name="mike-and-ike"/>


काल्पनिक पात्र [[ऐलिस और बॉब]] व्यापक रूप से अलग-अलग स्थानों पर खड़े हैं। उनके सहयोगी विक्टर कणों की एक जोड़ी तैयार करते हैं और एक को ऐलिस और दूसरे को बॉब को भेजते हैं। जब ऐलिस को अपना कण प्राप्त होता है, तो वह दो संभावित मापों में से एक को निष्पादित करना चुनती है (संभव कौन सा निर्णय लेने के लिए एक सिक्का उछालकर)। इन मापों को निरूपित करें <math>A_0</math> और <math>A_1</math>. दोनों <math>A_0</math> और <math>A_1</math> द्विआधारी माप हैं: का परिणाम <math>A_0</math> या तो है <math>+1</math> या <math>-1</math>, और इसी तरह के लिए <math>A_1</math>. जब बॉब को अपना कण प्राप्त होता है, तो वह दो मापों में से एक को चुनता है, <math>B_0</math> और <math>B_1</math>, जो दोनों बाइनरी भी हैं।
काल्पनिक पात्र [[ऐलिस और बॉब]] व्यापक रूप से अलग-अलग स्थानों पर खड़े हैं। उनके सहयोगी विक्टर कणों की एक जोड़ी तैयार करते हैं और एक को ऐलिस और दूसरे को बॉब को भेजते हैं। जब ऐलिस को अपना कण प्राप्त होता है, तो वह दो संभावित मापों में से एक को निष्पादित करना चुनती है (संभव कौन सा निर्णय लेने के लिए एक सिक्का उछालकर)। इन मापों को निरूपित करें <math>A_0</math> और <math>A_1</math>. दोनों <math>A_0</math> और <math>A_1</math> द्विआधारी माप हैं: का परिणाम <math>A_0</math> या तो है <math>+1</math> या <math>-1</math>, और इसी तरह के लिए <math>A_1</math>. जब बॉब को अपना कण प्राप्त होता है, तो वह दो मापों में से एक को चुनता है, <math>B_0</math> और <math>B_1</math>, जो दोनों बाइनरी भी हैं।
Line 20: Line 20:


<math display="block">a_0b_0 + a_0b_1 + a_1b_0-a_1b_1 = (a_0+a_1)b_0 + (a_0-a_1)b_1 \, .</math>
<math display="block">a_0b_0 + a_0b_1 + a_1b_0-a_1b_1 = (a_0+a_1)b_0 + (a_0-a_1)b_1 \, .</math>
क्योंकि दोनों <math>a_0</math> और <math>a_1</math> मान लीजिए <math>\pm 1</math>, तो कोई <math>a_0 = a_1</math> या <math>a_0 = -a_1</math>. पूर्व मामले में, <math>(a_0-a_1)b_1 = 0</math>, जबकि पश्चात वाले मामले में, <math>(a_0+a_1)b_0 = 0</math>. तो, उपरोक्त अभिव्यंजक के दाईं ओर का एक पद गायब हो जाएगा, और दूसरा बराबर हो जाएगा <math>\pm 2</math>. परिणामस्वरूप, यदि प्रयोग कई परीक्षणों में दोहराया जाता है, तो विक्टर कणों के नए जोड़े तैयार करता है, संयोजन का औसत मूल्य <math>a_0b_0 + a_0b_1 + a_1b_0-a_1b_1</math> सभी परीक्षणों में 2 से कम या उसके बराबर होगा। कोई भी एकल परीक्षण इस मात्रा को माप नहीं सकता है, क्योंकि ऐलिस और बॉब प्रत्येक केवल एक माप चुन सकते हैं, लेकिन इस धारणा पर कि अंतर्निहित गुण उपस्थित हैं, योग का औसत मूल्य सिर्फ है प्रत्येक पद के औसत का योग. औसत दर्शाने के लिए कोण कोष्ठक का उपयोग करना,
क्योंकि दोनों <math>a_0</math> और <math>a_1</math> मान लीजिए <math>\pm 1</math>, तो कोई <math>a_0 = a_1</math> या <math>a_0 = -a_1</math>. पूर्व स्थिति में, <math>(a_0-a_1)b_1 = 0</math>, जबकि पश्चात वाले स्थिति में, <math>(a_0+a_1)b_0 = 0</math>. तो, उपरोक्त अभिव्यंजक के दाईं ओर का एक पद गायब हो जाएगा, और दूसरा बराबर हो जाएगा <math>\pm 2</math>. परिणामस्वरूप, यदि प्रयोग कई परीक्षणों में दोहराया जाता है, तो विक्टर कणों के नए जोड़े तैयार करता है, संयोजन का औसत मूल्य <math>a_0b_0 + a_0b_1 + a_1b_0-a_1b_1</math> सभी परीक्षणों में 2 से कम या उसके बराबर होगा। कोई भी एकल परीक्षण इस मात्रा को माप नहीं सकता है, क्योंकि ऐलिस और बॉब प्रत्येक केवल एक माप चुन सकते हैं, लेकिन इस धारणा पर कि अंतर्निहित गुण उपस्थित हैं, योग का औसत मूल्य सिर्फ है प्रत्येक पद के औसत का योग. औसत दर्शाने के लिए कोण कोष्ठक का उपयोग करना,
<math display="block">\langle A_0B_0 \rangle + \langle A_0B_1 \rangle + \langle A_1B_0 \rangle - \langle A_1B_1 \rangle \leq 2 \, .</math>
<math display="block">\langle A_0B_0 \rangle + \langle A_0B_1 \rangle + \langle A_1B_0 \rangle - \langle A_1B_1 \rangle \leq 2 \, .</math>
यह एक बेल असमानता है, विशेष रूप से, [[सीएचएसएच असमानता]]।<ref name="mike-and-ike">{{Cite book|last1=Nielsen|first1=Michael A.|last2=Chuang|first2=Isaac L.|title=क्वांटम संगणना और क्वांटम सूचना|author-link1=Michael Nielsen |author-link2=Isaac Chuang |title-link=क्वांटम संगणना और क्वांटम सूचना |publisher=Cambridge University Press|location=Cambridge|year=2010|edition=2nd|oclc=844974180|isbn=978-1-107-00217-3}}</ref>{{Rp|115}} यहां इसकी व्युत्पत्ति दो मान्यताओं पर निर्भर करती है: पहला, अंतर्निहित भौतिक गुण <math>a_0, a_1, b_0,</math> और <math>b_1</math> देखे जाने या मापे जाने से स्वतंत्र रूप से अस्तित्व में रहना (कभी-कभी इसे यथार्थवाद की धारणा भी कहा जाता है); और दूसरा, ऐलिस की कार्रवाई का चुनाव बॉब के परिणाम को प्रभावित नहीं कर सकता या इसके विपरीत (जिसे अधिकांशतः स्थानीयता की धारणा कहा जाता है)।<ref name="mike-and-ike"/>{{Rp|117}}
यह एक बेल असमानता है, विशेष रूप से, [[सीएचएसएच असमानता]]।<ref name="mike-and-ike">{{Cite book|last1=Nielsen|first1=Michael A.|last2=Chuang|first2=Isaac L.|title=क्वांटम संगणना और क्वांटम सूचना|author-link1=Michael Nielsen |author-link2=Isaac Chuang |title-link=क्वांटम संगणना और क्वांटम सूचना |publisher=Cambridge University Press|location=Cambridge|year=2010|edition=2nd|oclc=844974180|isbn=978-1-107-00217-3}}</ref>{{Rp|115}} यहां इसकी व्युत्पत्ति दो मान्यताओं पर निर्भर करती है: पहला, अंतर्निहित भौतिक गुण <math>a_0, a_1, b_0,</math> और <math>b_1</math> देखे जाने या मापे जाने से स्वतंत्र रूप से अस्तित्व में रहना (कभी-कभी इसे यथार्थवाद की धारणा भी कहा जाता है); और दूसरा, ऐलिस की कार्रवाई का चुनाव बॉब के परिणाम को प्रभावित नहीं कर सकता या इसके विपरीत (जिसे अधिकांशतः स्थानीयता की धारणा कहा जाता है)।<ref name="mike-and-ike"/>{{Rp|117}}
Line 41: Line 41:
[[File:Chsh-illustration.png|thumb|सीएचएसएच गेम का एक उदाहरण: रेफरी, विक्टर, ऐलिस और बॉब को थोड़ा-थोड़ा भेजता है, और ऐलिस और बॉब रेफरी को थोड़ा-थोड़ा वापस भेजते हैं।]]सीएचएसएच असमानता को सीएचएसएच खेल के रूप में भी सोचा जा सकता है।<ref>{{cite book|last1=Cleve |first1=R. |author-link1=Richard Cleve |last2=Hoyer |first2=P. |last3=Toner |first3=B. |last4=Watrous |first4=J. |author-link4=John Watrous (computer scientist) |year=2004 |chapter=Consequences and limits of nonlocal strategies |title=Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004. |pages=236–249 |publisher=[[IEEE]] |doi=10.1109/CCC.2004.1313847 |isbn=0-7695-2120-7 |oclc=55954993 |arxiv=quant-ph/0404076 |bibcode=2004quant.ph..4076C|s2cid=8077237 }}</ref><ref>{{Cite journal|last1=Barnum|first1=H.|last2=Beigi|first2=S.|last3=Boixo|first3=S.|last4=Elliott|first4=M. B.|last5=Wehner|first5=S.|date=2010-04-06|title=स्थानीय क्वांटम मापन और नो-सिग्नलिंग क्वांटम सहसंबंध दर्शाते हैं|journal=[[Physical Review Letters]]|language=en|volume=104|issue=14|pages=140401|arxiv=0910.3952|bibcode=2010PhRvL.104n0401B|doi=10.1103/PhysRevLett.104.140401|pmid=20481921|s2cid=17298392|issn=0031-9007}}</ref> विक्टर दो बिट्स तैयार करता है, <math>x</math> और <math>y</math>, स्वतंत्र रूप से और यादृच्छिक रूप से। वह बिट भेजता है <math>x</math> ऐलिस और बिट के लिए <math>y</math> बॉब को. यदि ऐलिस और बॉब उत्तर बिट लौटाते हैं तो जीत जाते हैं <math>a</math> और <math>b</math> विक्टर को, संतुष्ट करते हुए
[[File:Chsh-illustration.png|thumb|सीएचएसएच गेम का एक उदाहरण: रेफरी, विक्टर, ऐलिस और बॉब को थोड़ा-थोड़ा भेजता है, और ऐलिस और बॉब रेफरी को थोड़ा-थोड़ा वापस भेजते हैं।]]सीएचएसएच असमानता को सीएचएसएच खेल के रूप में भी सोचा जा सकता है।<ref>{{cite book|last1=Cleve |first1=R. |author-link1=Richard Cleve |last2=Hoyer |first2=P. |last3=Toner |first3=B. |last4=Watrous |first4=J. |author-link4=John Watrous (computer scientist) |year=2004 |chapter=Consequences and limits of nonlocal strategies |title=Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004. |pages=236–249 |publisher=[[IEEE]] |doi=10.1109/CCC.2004.1313847 |isbn=0-7695-2120-7 |oclc=55954993 |arxiv=quant-ph/0404076 |bibcode=2004quant.ph..4076C|s2cid=8077237 }}</ref><ref>{{Cite journal|last1=Barnum|first1=H.|last2=Beigi|first2=S.|last3=Boixo|first3=S.|last4=Elliott|first4=M. B.|last5=Wehner|first5=S.|date=2010-04-06|title=स्थानीय क्वांटम मापन और नो-सिग्नलिंग क्वांटम सहसंबंध दर्शाते हैं|journal=[[Physical Review Letters]]|language=en|volume=104|issue=14|pages=140401|arxiv=0910.3952|bibcode=2010PhRvL.104n0401B|doi=10.1103/PhysRevLett.104.140401|pmid=20481921|s2cid=17298392|issn=0031-9007}}</ref> विक्टर दो बिट्स तैयार करता है, <math>x</math> और <math>y</math>, स्वतंत्र रूप से और यादृच्छिक रूप से। वह बिट भेजता है <math>x</math> ऐलिस और बिट के लिए <math>y</math> बॉब को. यदि ऐलिस और बॉब उत्तर बिट लौटाते हैं तो जीत जाते हैं <math>a</math> और <math>b</math> विक्टर को, संतुष्ट करते हुए
<math display="block">x y = a + b \mod 2 \, .</math>
<math display="block">x y = a + b \mod 2 \, .</math>
या, समकक्ष, ऐलिस और बॉब जीतते हैं यदि तार्किक और <math>x</math> और <math>y</math> का [[तार्किक XOR]] है <math>a</math> और <math>b</math>. ऐलिस और बॉब खेल से पहले अपनी इच्छानुसार किसी भी रणनीति पर सहमत हो सकते हैं, लेकिन खेल शुरू होने के पश्चात वे संवाद नहीं कर सकते। स्थानीय छिपे हुए चर पर आधारित किसी भी सिद्धांत में, ऐलिस और बॉब के जीतने की संभावना इससे अधिक नहीं है <math>3/4</math>, भले ही वे पहले से किसी भी रणनीति पर सहमत हों। हालाँकि, यदि वे एक उलझी हुई क्वांटम स्थिति साझा करते हैं, तो उनके जीतने की संभावना उतनी बड़ी हो सकती है
या, समकक्ष, ऐलिस और बॉब जीतते हैं यदि तार्किक और <math>x</math> और <math>y</math> का [[तार्किक XOR]] है <math>a</math> और <math>b</math>. ऐलिस और बॉब खेल से पहले अपनी इच्छानुसार किसी भी रणनीति पर सहमत हो सकते हैं, लेकिन खेल प्रारंभ होने के पश्चात वे संवाद नहीं कर सकते। स्थानीय छिपे हुए चर पर आधारित किसी भी सिद्धांत में, ऐलिस और बॉब के जीतने की संभावना इससे अधिक नहीं है <math>3/4</math>, भले ही वे पहले से किसी भी रणनीति पर सहमत हों। चूंकि, यदि वे एक उलझी हुई क्वांटम स्थिति साझा करते हैं, तो उनके जीतने की संभावना उतनी बड़ी हो सकती है
<math display="block">\frac{2+\sqrt{2}}{4} \approx 0.85 \, .</math>
<math display="block">\frac{2+\sqrt{2}}{4} \approx 0.85 \, .</math>
==विविधताएं और संबंधित परिणाम==
==विविधताएं और संबंधित परिणाम==


===बेल (1964)===
===बेल (1964)===
बेल का 1964 का पेपर बताता है कि प्रतिबंधित परिस्थितियों में, स्थानीय छिपे हुए चर मॉडल क्वांटम यांत्रिकी की भविष्यवाणियों को पुन: पेश कर सकते हैं। फिर वह प्रदर्शित करता है कि यह सामान्य रूप से सच नहीं हो सकता।<ref name="Bell1964" /> बेल आइंस्टीन-पोडॉल्स्की-रोसेन (ईपीआर) विचार प्रयोग के [[डेविड बोहम]] द्वारा किए गए परिशोधन पर विचार करते हैं। इस परिदृश्य में, कणों की एक जोड़ी एक साथ इस तरह से बनती है कि उन्हें एक स्पिन [[एकल अवस्था]] (जो एक उलझी हुई अवस्था का एक उदाहरण है) द्वारा वर्णित किया जाता है। फिर कण विपरीत दिशाओं में अलग हो जाते हैं। प्रत्येक कण को ​​स्टर्न-गेर्लाच प्रयोग द्वारा मापा जाता है। स्टर्न-गेर्लाच उपकरण, एक मापने वाला उपकरण जिसे विभिन्न दिशाओं में उन्मुख किया जा सकता है और जो दो संभावित परिणामों में से एक की रिपोर्ट करता है, जिसे निम्न द्वारा दर्शाया जा सकता है। <math>+1</math> और <math>-1</math>. प्रत्येक मापने वाले उपकरण का विन्यास एक इकाई [[यूक्लिडियन वेक्टर]] द्वारा दर्शाया गया है, और सेटिंग्स के साथ दो डिटेक्टरों के बीच [[क्वांटम सहसंबंध]] के लिए क्वांटम-मैकेनिकल भविष्यवाणी <math>\vec{a}</math> और <math>\vec{b}</math> है
बेल का 1964 का पेपर बताता है कि प्रतिबंधित परिस्थितियों में, स्थानीय छिपे हुए चर मॉडल क्वांटम यांत्रिकी की भविष्यवाणियों को पुन: प्रस्तुत कर सकते हैं। फिर वह प्रदर्शित करता है कि यह सामान्य रूप से सच नहीं हो सकता।<ref name="Bell1964" /> बेल आइंस्टीन-पोडॉल्स्की-रोसेन (ईपीआर) विचार प्रयोग के [[डेविड बोहम]] द्वारा किए गए परिशोधन पर विचार करते हैं। इस परिदृश्य में, कणों की एक जोड़ी एक साथ इस तरह से बनती है कि उन्हें एक स्पिन [[एकल अवस्था]] (जो एक उलझी हुई अवस्था का एक उदाहरण है) द्वारा वर्णित किया जाता है। फिर कण विपरीत दिशाओं में अलग हो जाते हैं। प्रत्येक कण को ​​स्टर्न-गेर्लाच प्रयोग द्वारा मापा जाता है। स्टर्न-गेर्लाच उपकरण, एक मापने वाला उपकरण जिसे विभिन्न दिशाओं में उन्मुख किया जा सकता है और जो दो संभावित परिणामों में से एक की रिपोर्ट करता है, जिसे निम्न द्वारा दर्शाया जा सकता है। <math>+1</math> और <math>-1</math>. प्रत्येक मापने वाले उपकरण का विन्यास एक इकाई [[यूक्लिडियन वेक्टर|यूक्लिडियन सदिश]] द्वारा दर्शाया गया है, और सेटिंग्स के साथ दो संसूचक के बीच [[क्वांटम सहसंबंध]] के लिए क्वांटम-मैकेनिकल पूर्वानुमान <math>\vec{a}</math> और <math>\vec{b}</math> है


<math display="block">P(\vec{a}, \vec{b}) = - \vec{a} \cdot \vec{b} \, .</math>विशेष रूप से, यदि दो डिटेक्टरों का अभिविन्यास समान है (<math>\vec{a} = \vec{b}</math>), तो एक माप का परिणाम निश्चित रूप से दूसरे के परिणाम का नकारात्मक होगा <math>P(\vec{a}, \vec{a}) = -1</math>. और यदि दो डिटेक्टरों का अभिविन्यास ऑर्थोगोनल है (<math>\vec{a} \cdot \vec{b} = 0</math>), तो परिणाम असंबंधित हैं, और <math>P(\vec{a}, \vec{b}) = 0</math>. बेल उदाहरण के द्वारा सिद्ध करना करते हैं कि इन विशेष स्थितियों को छिपे हुए चर के संदर्भ में समझाया जा सकता है, फिर यह दिखाने के लिए आगे बढ़ते हैं कि मध्यवर्ती कोणों से जुड़ी संभावनाओं की पूरी श्रृंखला नहीं हो सकती है।
<math display="block">P(\vec{a}, \vec{b}) = - \vec{a} \cdot \vec{b} \, .</math>विशेष रूप से, यदि दो संसूचको का अभिविन्यास समान है (<math>\vec{a} = \vec{b}</math>), तो एक माप का परिणाम निश्चित रूप से दूसरे के परिणाम का नकारात्मक होगा <math>P(\vec{a}, \vec{a}) = -1</math>. और यदि दो संसूचक का अभिविन्यास ऑर्थोगोनल है (<math>\vec{a} \cdot \vec{b} = 0</math>), तो परिणाम असंबंधित हैं, और <math>P(\vec{a}, \vec{b}) = 0</math>. बेल उदाहरण के द्वारा सिद्ध करना करते हैं कि इन विशेष स्थितियों को छिपे हुए चर के संदर्भ में समझाया जा सकता है, फिर यह दिखाने के लिए आगे बढ़ते हैं कि मध्यवर्ती कोणों से जुड़ी संभावनाओं की पूरी श्रृंखला नहीं हो सकती है।


बेल ने कहा कि इन सहसंबंधों के लिए एक स्थानीय छिपा हुआ चर मॉडल उन्हें कुछ छिपे हुए पैरामीटर के संभावित मूल्यों पर एक अभिन्न अंग के संदर्भ में समझाएगा। <math>\lambda</math>:
बेल ने कहा कि इन सहसंबंधों के लिए एक स्थानीय छिपा हुआ चर मॉडल उन्हें कुछ छिपे हुए पैरामीटर के संभावित मूल्यों पर एक अभिन्न अंग के संदर्भ में समझाएगा। <math>\lambda</math>:
<math display="block">P(\vec{a}, \vec{b}) = \int d\lambda\, \rho(\lambda) A(\vec{a}, \lambda) B(\vec{b}, \lambda) \, ,</math>
<math display="block">P(\vec{a}, \vec{b}) = \int d\lambda\, \rho(\lambda) A(\vec{a}, \lambda) B(\vec{b}, \lambda) \, ,</math>
कहाँ <math>\rho(\lambda)</math> एक संभाव्यता घनत्व फ़ंक्शन है। दो कार्य <math>A(\vec{a}, \lambda)</math> और <math>B(\vec{b}, \lambda)</math> ओरिएंटेशन वैक्टर और छिपे हुए चर को देखते हुए दो डिटेक्टरों की प्रतिक्रियाएँ प्रदान करें:
जहां <math>\rho(\lambda)</math> एक संभाव्यता घनत्व फ़ंक्शन है। दो कार्य <math>A(\vec{a}, \lambda)</math> और <math>B(\vec{b}, \lambda)</math> ओरिएंटेशन वैक्टर और छिपे हुए चर को देखते हुए दो संसूचको की प्रतिक्रियाएँ प्रदान करें:
<math display="block">A(\vec{a}, \lambda) = \pm 1, \, B(\vec{b}, \lambda) = \pm 1 \, .</math>
<math display="block">A(\vec{a}, \lambda) = \pm 1, \, B(\vec{b}, \lambda) = \pm 1 \, .</math>
महत्वपूर्ण रूप से, डिटेक्टर का परिणाम <math>A</math> पर निर्भर नहीं है <math>\vec{b}</math>, और इसी तरह का परिणाम भी <math>B</math> पर निर्भर नहीं है <math>\vec{a}</math>, क्योंकि दोनों डिटेक्टर भौतिक रूप से अलग-अलग हैं। अब हम मानते हैं कि प्रयोगकर्ता के पास दूसरे डिटेक्टर के लिए सेटिंग्स का विकल्प है: इसे या तो सेट किया जा सकता है <math>\vec{b}</math> या करने के लिए <math>\vec{c}</math>. बेल सिद्ध करना करते हैं कि डिटेक्टर सेटिंग के इन दो विकल्पों के बीच सहसंबंध में अंतर को असमानता को संतुष्ट करना चाहिए
महत्वपूर्ण रूप से, संसूचक का परिणाम <math>A</math> पर निर्भर नहीं है <math>\vec{b}</math>, और इसी तरह का परिणाम भी <math>B</math> पर निर्भर नहीं है <math>\vec{a}</math>, क्योंकि दोनों संसूचक भौतिक रूप से अलग-अलग हैं। अब हम मानते हैं कि प्रयोगकर्ता के पास दूसरे संसूचक के लिए सेटिंग्स का विकल्प है: इसे या तो सेट किया जा सकता है <math>\vec{b}</math> या करने के लिए <math>\vec{c}</math>. बेल सिद्ध करना करते हैं कि संसूचक सेटिंग के इन दो विकल्पों के बीच सहसंबंध में अंतर को असमानता को संतुष्ट करना चाहिए
<math display="block">|P(\vec{a}, \vec{b}) - P(\vec{a}, \vec{c})| \leq 1 + P(\vec{b}, \vec{c}) \, .</math>
<math display="block">|P(\vec{a}, \vec{b}) - P(\vec{a}, \vec{c})| \leq 1 + P(\vec{b}, \vec{c}) \, .</math>
हालाँकि, ऐसी स्थितियाँ खोजना आसान है जहाँ क्वांटम यांत्रिकी बेल असमानता का उल्लंघन करती है।<ref>{{Cite book|last=Griffiths|first=David J.|author-link=David J. Griffiths |title=क्वांटम यांत्रिकी का परिचय|title-link=क्वांटम यांत्रिकी का परिचय(book) |date=2005|publisher=Pearson Prentice Hall|isbn=0-13-111892-7|edition=2nd|location=Upper Saddle River, NJ|oclc=53926857}}</ref>{{Rp|425–426}} उदाहरण के लिए, वैक्टर दें <math>\vec{a}</math> और <math>\vec{b}</math> ओर्थोगोनल बनें, और रहने दें <math>\vec{c}</math> दोनों से 45° के कोण पर अपने तल में लेटें। तब
चूंकि, ऐसी स्थितियाँ ढूंढना आसान है जहाँ क्वांटम यांत्रिकी बेल असमानता का उल्लंघन करती है।<ref>{{Cite book|last=Griffiths|first=David J.|author-link=David J. Griffiths |title=क्वांटम यांत्रिकी का परिचय|title-link=क्वांटम यांत्रिकी का परिचय(book) |date=2005|publisher=Pearson Prentice Hall|isbn=0-13-111892-7|edition=2nd|location=Upper Saddle River, NJ|oclc=53926857}}</ref>{{Rp|425–426}} उदाहरण के लिए, वैक्टर दें <math>\vec{a}</math> और <math>\vec{b}</math> ओर्थोगोनल बनें, और रहने दें <math>\vec{c}</math> दोनों से 45° के कोण पर अपने तल में लेटें। तब
<math display="block">P(\vec{a},\vec{b}) = 0 \, ,</math>
<math display="block">P(\vec{a},\vec{b}) = 0 \, ,</math>
जबकि
जबकि
Line 62: Line 62:
लेकिन
लेकिन
<math display="block">\frac{\sqrt{2}}{2} \nleq 1 - \frac{\sqrt{2}}{2} \, .</math>
<math display="block">\frac{\sqrt{2}}{2} \nleq 1 - \frac{\sqrt{2}}{2} \, .</math>
इसलिए, कोई स्थानीय छिपा हुआ चर मॉडल नहीं है जो सभी विकल्पों के लिए क्वांटम यांत्रिकी की भविष्यवाणियों को पुन: पेश कर सके <math>\vec{a}</math>, <math>\vec{b}</math>, और <math>\vec{c}.</math> प्रायोगिक परिणाम शास्त्रीय वक्रों का खंडन करते हैं और क्वांटम यांत्रिकी द्वारा अनुमानित वक्र से मेल खाते हैं, जब तक प्रयोगात्मक कमियों को ध्यान में रखा जाता है।<ref name="Stanford"/>
इसलिए, कोई स्थानीय छिपा हुआ चर मॉडल नहीं है जो सभी विकल्पों के लिए क्वांटम यांत्रिकी की भविष्यवाणियों को पुन: प्रस्तुत कर सके <math>\vec{a}</math>, <math>\vec{b}</math>, और <math>\vec{c}.</math> प्रायोगिक परिणाम शास्त्रीय वक्रों का खंडन करते हैं और क्वांटम यांत्रिकी द्वारा अनुमानित वक्र से मेल खाते हैं, जब तक प्रयोगात्मक त्रुटियों को ध्यान में रखा जाता है।<ref name="Stanford"/>


बेल के 1964 प्रमेय के लिए पूर्ण सहसंबंध-विरोधी संभावना की आवश्यकता होती है: पहले डिटेक्टर से परिणाम जानकर, दूसरे डिटेक्टर से परिणाम के बारे में संभाव्यता-1 भविष्यवाणी करने की क्षमता। यह वास्तविकता के ईपीआर मानदंड से संबंधित है, आइंस्टीन, पोडॉल्स्की और रोसेन द्वारा 1935 के पेपर में पेश की गई एक अवधारणा। यह पेपर बताता है, यदि, किसी भी तरह से किसी प्रणाली को परेशान किए बिना, हम निश्चितता के साथ (अर्थात, एकता के बराबर संभावना के साथ) भौतिक मात्रा के मूल्य की भविष्यवाणी कर सकते हैं, तो उस मात्रा के अनुरूप वास्तविकता का एक तत्व उपस्थित है।<ref name="EPR"/>
बेल के 1964 प्रमेय के लिए पूर्ण सहसंबंध-विरोधी संभावना की आवश्यकता होती है: पहले संसूचक से परिणाम जानकर, दूसरे संसूचक से परिणाम के बारे में संभाव्यता-1 पूर्वानुमान करने की क्षमता। यह वास्तविकता के ईपीआर मानदंड से संबंधित है, आइंस्टीन, पोडॉल्स्की और रोसेन द्वारा 1935 के पेपर में प्रस्तुत की गई एक अवधारणा। यह पेपर बताता है, यदि, किसी भी तरह से किसी प्रणाली को भ्रमित किए बिना, हम निश्चितता के साथ (अर्थात, एकता के बराबर संभावना के साथ) भौतिक मात्रा के मूल्य की पूर्वानुमान कर सकते हैं, तो उस मात्रा के अनुरूप वास्तविकता का एक तत्व उपस्थित है।<ref name="EPR"/>
===GHZ–मर्मिन (1990)===
===GHZ–मर्मिन (1990)===
{{main|GHZ प्रयोग}}
{{main|GHZ प्रयोग}}


[[डेनियल ग्रीनबर्गर]], माइकल हॉर्न (भौतिक विज्ञानी)|माइकल ए हॉर्न और [[एंटोन ज़िलिंगर]] ने 1990 में एक चार-कण विचार प्रयोग प्रस्तुत किया, जिसे डेविड मर्मिन ने केवल तीन कणों का उपयोग करने के लिए सरल बना दिया।।<ref name="GHZ1990">{{cite journal |first1=D. |last1=Greenberger |author-link1=Daniel Greenberger |first2=M. |last2=Horne |author-link2=Michael A. Horne |first3=A. |last3=Shimony |author-link3=Abner Shimony |first4=A. |last4=Zeilinger |author-link4=Anton Zeilinger |title=असमानताओं के बिना बेल का प्रमेय|journal=[[American Journal of Physics]] |volume=58 |issue=12 |pages=1131 |year=1990|bibcode = 1990AmJPh..58.1131G |doi = 10.1119/1.16243 |doi-access=free }}</ref><ref name="mermin1990">{{cite journal |first=N. David |last=Mermin |author-link=N. David Mermin |title=क्वांटम रहस्यों पर दोबारा गौर किया गया|journal=[[American Journal of Physics]] |volume=58 |issue=8 |pages=731–734 |year=1990|bibcode = 1990AmJPh..58..731M |doi = 10.1119/1.16503}}</ref> इस विचार प्रयोग में, विक्टर क्वांटम अवस्था द्वारा वर्णित तीन स्पिन-1/2 कणों का एक सेट उत्पन्न करता है
[[डेनियल ग्रीनबर्गर]], माइकल हॉर्न (भौतिक विज्ञानी) माइकल ए हॉर्न और [[एंटोन ज़िलिंगर]] ने 1990 में एक चार-कण विचार प्रयोग प्रस्तुत किया, जिसे डेविड मर्मिन ने केवल तीन कणों का उपयोग करने के लिए सरल बना दिया।<ref name="GHZ1990">{{cite journal |first1=D. |last1=Greenberger |author-link1=Daniel Greenberger |first2=M. |last2=Horne |author-link2=Michael A. Horne |first3=A. |last3=Shimony |author-link3=Abner Shimony |first4=A. |last4=Zeilinger |author-link4=Anton Zeilinger |title=असमानताओं के बिना बेल का प्रमेय|journal=[[American Journal of Physics]] |volume=58 |issue=12 |pages=1131 |year=1990|bibcode = 1990AmJPh..58.1131G |doi = 10.1119/1.16243 |doi-access=free }}</ref><ref name="mermin1990">{{cite journal |first=N. David |last=Mermin |author-link=N. David Mermin |title=क्वांटम रहस्यों पर दोबारा गौर किया गया|journal=[[American Journal of Physics]] |volume=58 |issue=8 |pages=731–734 |year=1990|bibcode = 1990AmJPh..58..731M |doi = 10.1119/1.16503}}</ref> इस विचार प्रयोग में, विक्टर क्वांटम अवस्था द्वारा वर्णित तीन स्पिन-1/2 कणों का एक समूह उत्पन्न करता है
<math display="block">|\psi\rangle = \frac{1}{\sqrt{2}}(|000\rangle - |111\rangle) \, , </math>
<math display="block">|\psi\rangle = \frac{1}{\sqrt{2}}(|000\rangle - |111\rangle) \, , </math>
जहाँ ऊपर बताया गया है, <math>|0\rangle</math> और <math>|1\rangle</math> पाउली मैट्रिक्स के अभिलक्षणिक सदिश हैं <math>\sigma_z</math>. इसके पश्चात विक्टर ऐलिस, बॉब और चार्ली को एक-एक कण भेजता है, जो अलग-अलग स्थानों पर प्रतीक्षा करते हैं। ऐलिस या तो उपाय <math>\sigma_x</math> या <math>\sigma_y</math> उसके कण पर, और बॉब और चार्ली भी ऐसा ही करते हैं। प्रत्येक माप का परिणाम या तो है <math>+1</math> या <math>-1</math>. बोर्न नियम को थ्री-क्विबिट अवस्था में क्रियान्वित करना <math>|\psi\rangle</math>, विक्टर भविष्यवाणी करता है कि जब भी तीन मापों में एक सम्मलित होग <math>\sigma_x</math> और दो <math>\sigma_y</math>का, परिणामों का उत्पाद सदैव रहेगा <math>+1</math>. यह इस प्रकार है क्योंकि <math>|\psi\rangle</math> का एक अभिलक्षणिक सदिश है <math>\sigma_x \otimes \sigma_y \otimes \sigma_y</math> eigenvalue के साथ <math>+1</math>, और इसी तरह के लिए <math>\sigma_y \otimes \sigma_x \otimes \sigma_y</math> और <math>\sigma_y \otimes \sigma_y \otimes \sigma_x</math>. इसलिए, ऐलिस के परिणाम को जानना <math>\sigma_x</math> ए के लिए माप और बॉब का परिणाम <math>\sigma_y</math> माप, विक्टर प्रायिकता 1 के साथ भविष्यवाणी कर सकता है कि चार्ली किस परिणाम पर लौटेगा <math>\sigma_y</math> माप। वास्तविकता के ईपीआर मानदंड के अनुसार, परिणाम के अनुरूप वास्तविकता का एक तत्व होगा <math>\sigma_y</math> चार्ली की कक्षा पर माप। दरअसल, यही तर्क माप और तीनों क्वैबिट दोनों पर क्रियान्वित होता है। वास्तविकता के ईपीआर मानदंड के अनुसार, प्रत्येक कण में एक निर्देश सेट होता है जो परिणाम निर्धारित करता है <math>\sigma_x</math> या <math>\sigma_y</math> उस पर माप. फिर तीनों कणों के सेट का वर्णन निर्देश सेट द्वारा किया जाएगा
जहाँ ऊपर बताया गया है, <math>|0\rangle</math> और <math>|1\rangle</math> पाउली मैट्रिक्स के अभिलक्षणिक सदिश हैं <math>\sigma_z</math>. इसके पश्चात विक्टर ऐलिस, बॉब और चार्ली को एक-एक कण भेजता है, जो अलग-अलग स्थानों पर प्रतीक्षा करते हैं। ऐलिस या तो उपाय <math>\sigma_x</math> या <math>\sigma_y</math> उसके कण पर, और बॉब और चार्ली भी ऐसा ही करते हैं। प्रत्येक माप का परिणाम या तो है <math>+1</math> या <math>-1</math>. बोर्न नियम को थ्री-क्विबिट अवस्था में क्रियान्वित करना <math>|\psi\rangle</math>, विक्टर पूर्वानुमान करता है कि जब भी तीन मापों में एक सम्मलित होग <math>\sigma_x</math> और दो <math>\sigma_y</math>का, परिणामों का उत्पाद सदैव रहेगा <math>+1</math>. यह इस प्रकार है क्योंकि <math>|\psi\rangle</math> का एक अभिलक्षणिक सदिश है <math>\sigma_x \otimes \sigma_y \otimes \sigma_y</math> अभिलाक्षणिक मान के साथ <math>+1</math>, और इसी तरह के लिए <math>\sigma_y \otimes \sigma_x \otimes \sigma_y</math> और <math>\sigma_y \otimes \sigma_y \otimes \sigma_x</math>. इसलिए, ऐलिस के परिणाम को जानना <math>\sigma_x</math> ए के लिए माप और बॉब का परिणाम <math>\sigma_y</math> माप, विक्टर प्रायिकता 1 के साथ पूर्वानुमान कर सकता है कि चार्ली किस परिणाम पर लौटेगा <math>\sigma_y</math> माप। वास्तविकता के ईपीआर मानदंड के अनुसार, परिणाम के अनुरूप वास्तविकता का एक तत्व होगा <math>\sigma_y</math> चार्ली की कक्षा पर माप। दरअसल, यही तर्क माप और तीनों क्वैबिट दोनों पर क्रियान्वित होता है। वास्तविकता के ईपीआर मानदंड के अनुसार, प्रत्येक कण में एक निर्देश समूह होता है जो परिणाम निर्धारित करता है <math>\sigma_x</math> या <math>\sigma_y</math> उस पर माप. फिर तीनों कणों के समूह का वर्णन निर्देश समूह द्वारा किया जाएगा
<math display="block">(a_x,a_y,b_x,b_y,c_x,c_y) \, , </math>
<math display="block">(a_x,a_y,b_x,b_y,c_x,c_y) \, , </math>
प्रत्येक प्रविष्टि के साथ या तो <math>-1</math> या <math>+1</math>, और प्रत्येक <math>\sigma_x</math> या <math>\sigma_y</math> माप बस उचित मूल्य लौटा रहा है।
प्रत्येक प्रविष्टि के साथ या तो <math>-1</math> या <math>+1</math>, और प्रत्येक <math>\sigma_x</math> या <math>\sigma_y</math> माप बस उचित मूल्य लौटा रहा है।
Line 78: Line 78:
क्योंकि दोनों में से किसी एक का वर्ग <math>-1</math> या <math>+1</math> है <math>1</math>. कोष्ठक में प्रत्येक कारक बराबर है <math>+1</math>, इसलिए
क्योंकि दोनों में से किसी एक का वर्ग <math>-1</math> या <math>+1</math> है <math>1</math>. कोष्ठक में प्रत्येक कारक बराबर है <math>+1</math>, इसलिए
<math display="block">a_x b_x c_x = +1 \, , </math>
<math display="block">a_x b_x c_x = +1 \, , </math>
और ऐलिस, बॉब और चार्ली के परिणामों का उत्पाद होगा <math>+1</math> संभाव्यता एकता के साथ. लेकिन यह क्वांटम भौतिकी के साथ असंगत है: विक्टर अवस्था का उपयोग करके भविष्यवाणी कर सकता है <math>|\psi\rangle</math> वह माप <math>\sigma_x \otimes \sigma_x \otimes \sigma_x</math> इसके अतिरिक्त  उपज होगी <math>-1</math> संभाव्यता एकता के साथ.
और ऐलिस, बॉब और चार्ली के परिणामों का उत्पाद होगा <math>+1</math> संभाव्यता एकता के साथ. लेकिन यह क्वांटम भौतिकी के साथ असंगत है: विक्टर अवस्था का उपयोग करके पूर्वानुमान कर सकता है <math>|\psi\rangle</math> वह माप <math>\sigma_x \otimes \sigma_x \otimes \sigma_x</math> इसके अतिरिक्त  उपज होगी <math>-1</math> संभाव्यता एकता के साथ.


इस विचार प्रयोग को पारंपरिक बेल असमानता के रूप में या समकक्ष रूप से, सीएचएसएच गेम के समान भावना में एक गैर-स्थानीय गेम के रूप में भी पुनर्निर्मित किया जा सकता है।<ref name="Brassard 2004">{{Cite journal|arxiv = quant-ph/0408052|last1 = Brassard|first1 = Gilles|title = मर्मिन के मल्टी-प्लेयर गेम को छद्म टेलीपैथी के ढांचे में दोबारा ढालना|last2 = Broadbent|first2 = Anne|last3 = Tapp|first3 = Alain|year = 2005 |journal=Quantum Information and Computation |volume=5 |issue=7 |pages=538–550|doi = 10.26421/QIC5.7-2|bibcode = 2004quant.ph..8052B |author-link1 = Gilles Brassard |author-link2 = Anne Broadbent }}</ref> इसमें ऐलिस, बॉब और चार्ली को बिट्स प्राप्त होते हैं <math>x,y,z</math> विक्टर से, सदैव एक सम संख्या रखने का वादा किया, अर्थात, <math>x\oplus y\oplus z = 0</math>, और उसे बिट्स वापस भेजें <math>a,b,c</math>. यदि वे गेम जीतते हैं <math>a,b,c</math> को छोड़कर सभी इनपुट के लिए विषम संख्या है <math>x=y=z=0</math>, जब उन्हें सम संख्या की आवश्यकता होती है। अर्थात वे गेम जीत जाते हैं <math>a \oplus b \oplus c = x \lor y \lor z</math>. स्थानीय छिपे हुए चर के साथ उनकी जीत की उच्चतम संभावना 3/4 हो सकती है, जबकि उपरोक्त क्वांटम रणनीति का उपयोग करके वे इसे निश्चितता के साथ प्राप्त करते हैं। यह [[क्वांटम छद्म टेलीपैथी]] का एक उदाहरण है।
इस विचार प्रयोग को पारंपरिक बेल असमानता के रूप में या समकक्ष रूप से, सीएचएसएच गेम के समान भावना में एक गैर-स्थानीय गेम के रूप में भी पुनर्निर्मित किया जा सकता है।<ref name="Brassard 2004">{{Cite journal|arxiv = quant-ph/0408052|last1 = Brassard|first1 = Gilles|title = मर्मिन के मल्टी-प्लेयर गेम को छद्म टेलीपैथी के ढांचे में दोबारा ढालना|last2 = Broadbent|first2 = Anne|last3 = Tapp|first3 = Alain|year = 2005 |journal=Quantum Information and Computation |volume=5 |issue=7 |pages=538–550|doi = 10.26421/QIC5.7-2|bibcode = 2004quant.ph..8052B |author-link1 = Gilles Brassard |author-link2 = Anne Broadbent }}</ref> इसमें ऐलिस, बॉब और चार्ली को बिट्स प्राप्त होते हैं <math>x,y,z</math> विक्टर से, सदैव एक सम संख्या रखने का वादा किया, अर्थात, <math>x\oplus y\oplus z = 0</math>, और उसे बिट्स वापस भेजें <math>a,b,c</math>. यदि वे गेम जीतते हैं <math>a,b,c</math> को छोड़कर सभी इनपुट के लिए विषम संख्या है <math>x=y=z=0</math>, जब उन्हें सम संख्या की आवश्यकता होती है। अर्थात वे गेम जीत जाते हैं <math>a \oplus b \oplus c = x \lor y \lor z</math>. स्थानीय छिपे हुए चर के साथ उनकी जीत की उच्चतम संभावना 3/4 हो सकती है, जबकि उपरोक्त क्वांटम रणनीति का उपयोग करके वे इसे निश्चितता के साथ प्राप्त करते हैं। यह [[क्वांटम छद्म टेलीपैथी]] का एक उदाहरण है।
Line 84: Line 84:
===कोचेन-स्पेकर प्रमेय (1967)===
===कोचेन-स्पेकर प्रमेय (1967)===
{{main|कोचेन-स्पेकर प्रमेय}}
{{main|कोचेन-स्पेकर प्रमेय}}
क्वांटम सिद्धांत में, [[ हिल्बर्ट स्थान ]] के लिए ऑर्थोनॉर्मल आधार उन मापों का प्रतिनिधित्व करते हैं जो उस हिल्बर्ट स्पेस वाले सिस्टम पर किए जा सकते हैं। किसी आधार में प्रत्येक वेक्टर उस माप के संभावित परिणाम का प्रतिनिधित्व करता है।{{refn|group=note|In more detail, as developed by [[Paul Dirac]],<ref>{{cite book|first=Paul Adrien Maurice |last=Dirac |author-link=Paul Dirac |title=The Principles of Quantum Mechanics |title-link=The Principles of Quantum Mechanics |publisher=Clarendon Press |location=Oxford |year=1930}}</ref> [[David Hilbert]],<ref>{{cite book|first=David |last=Hilbert |author-link=David Hilbert |title=Lectures on the Foundations of Physics 1915–1927: Relativity, Quantum Theory and Epistemology |publisher=Springer |doi=10.1007/b12915 |editor-first1=Tilman |editor-last1=Sauer |editor-first2=Ulrich |editor-last2=Majer |year=2009 |isbn=978-3-540-20606-4 |oclc=463777694}}</ref> [[John von Neumann]],<ref>{{cite book|first=John |last=von Neumann |author-link=John von Neumann |title=Mathematische Grundlagen der Quantenmechanik |publisher=Springer |location=Berlin |year=1932}} English translation: {{cite book|title=Mathematical Foundations of Quantum Mechanics |title-link=Mathematical Foundations of Quantum Mechanics |publisher=Princeton University Press |year=1955 |translator-first=Robert T. |translator-last=Beyer |translator-link=Robert T. Beyer}}</ref> and [[Hermann Weyl]],<ref>{{cite book|first=Hermann |last=Weyl |author-link=Hermann Weyl |title=The Theory of Groups and Quantum Mechanics |orig-year=1931 |publisher=Dover |year=1950 |isbn=978-0-486-60269-1 |translator-first=H. P. |translator-last=Robertson |translator-link=Howard P. Robertson}} Translated from the German {{cite book |title=Gruppentheorie und Quantenmechanik |year=1931 |edition=2nd |publisher={{ill|S. Hirzel Verlag|de}}}}</ref> the state of a quantum mechanical system is a vector <math>|\psi\rangle</math> belonging to a ([[Separable space|separable]]) Hilbert space <math>\mathcal H</math>. Physical quantities of interest — position, momentum, energy, spin — are represented by "observables", which are [[self-adjoint operator|self-adjoint]] linear [[Operator (physics)|operator]]s acting on the Hilbert space. When an observable is measured, the result will be one of its eigenvalues with probability given by the [[Born rule]]: in the simplest case the eigenvalue <math>\eta</math> is non-degenerate and the probability is given by <math>|\langle \eta|\psi\rangle|^2</math>, where <math>|\eta\rangle</math> is its associated eigenvector. More generally, the eigenvalue is degenerate and the probability is given by <math>\langle \psi|P_\eta\psi\rangle</math>, where <math>P_\eta</math> is the projector onto its associated eigenspace. For the purposes of this discussion, we can take the eigenvalues to be non-degenerate.}} मान लीजिए कि एक छिपा हुआ चर <math>\lambda</math> उपस्थित है, जिससे कि इसका मूल्य जान सकें <math>\lambda</math> किसी भी माप के परिणाम के बारे में निश्चितता दर्शाएगा। का मान दिया गया है <math>\lambda</math>, प्रत्येक माप परिणाम - अर्थात, हिल्बर्ट अंतरिक्ष में प्रत्येक वेक्टर - या तो असंभव है या गारंटीकृत है। कोचेन-स्पेकर कॉन्फ़िगरेशन कई इंटरलॉकिंग आधारों से बने वैक्टरों का एक सीमित सेट है, इस संपत्ति के साथ कि इसमें एक वेक्टर सदैव असंभव होगा जब इसे एक आधार से संबंधित माना जाएगा और दूसरे से संबंधित होने पर गारंटी दी जाएगी। दूसरे शब्दों में, कोचेन-स्पेकर कॉन्फ़िगरेशन एक बेरंग सेट है जो एक छिपे हुए चर को मानने की असंगतता को प्रदर्शित करता है <math>\lambda</math> माप परिणामों को नियंत्रित किया जा सकता है।<ref>{{cite book|first=Asher |last=Peres |author-link=Asher Peres |title=Quantum Theory: Concepts and Methods |title-link=Quantum Theory: Concepts and Methods |year=1993 |publisher=[[Kluwer]] |isbn=0-7923-2549-4 |oclc=28854083}}</ref>{{Rp|196–201}}
क्वांटम सिद्धांत में, [[ हिल्बर्ट स्थान ]] के लिए ऑर्थोनॉर्मल आधार उन मापों का प्रतिनिधित्व करते हैं जो उस हिल्बर्ट स्पेस वाले प्रणाली पर किए जा सकते हैं। किसी आधार में प्रत्येक सदिश उस माप के संभावित परिणाम का प्रतिनिधित्व करता है।{{refn|group=note|In more detail, as developed by [[Paul Dirac]],<ref>{{cite book|first=Paul Adrien Maurice |last=Dirac |author-link=Paul Dirac |title=The Principles of Quantum Mechanics |title-link=The Principles of Quantum Mechanics |publisher=Clarendon Press |location=Oxford |year=1930}}</ref> [[David Hilbert]],<ref>{{cite book|first=David |last=Hilbert |author-link=David Hilbert |title=Lectures on the Foundations of Physics 1915–1927: Relativity, Quantum Theory and Epistemology |publisher=Springer |doi=10.1007/b12915 |editor-first1=Tilman |editor-last1=Sauer |editor-first2=Ulrich |editor-last2=Majer |year=2009 |isbn=978-3-540-20606-4 |oclc=463777694}}</ref> [[John von Neumann]],<ref>{{cite book|first=John |last=von Neumann |author-link=John von Neumann |title=Mathematische Grundlagen der Quantenmechanik |publisher=Springer |location=Berlin |year=1932}} English translation: {{cite book|title=Mathematical Foundations of Quantum Mechanics |title-link=Mathematical Foundations of Quantum Mechanics |publisher=Princeton University Press |year=1955 |translator-first=Robert T. |translator-last=Beyer |translator-link=Robert T. Beyer}}</ref> and [[Hermann Weyl]],<ref>{{cite book|first=Hermann |last=Weyl |author-link=Hermann Weyl |title=The Theory of Groups and Quantum Mechanics |orig-year=1931 |publisher=Dover |year=1950 |isbn=978-0-486-60269-1 |translator-first=H. P. |translator-last=Robertson |translator-link=Howard P. Robertson}} Translated from the German {{cite book |title=Gruppentheorie und Quantenmechanik |year=1931 |edition=2nd |publisher={{ill|S. Hirzel Verlag|de}}}}</ref> the state of a quantum mechanical system is a vector <math>|\psi\rangle</math> belonging to a ([[Separable space|separable]]) Hilbert space <math>\mathcal H</math>. Physical quantities of interest — position, momentum, energy, spin — are represented by "observables", which are [[self-adjoint operator|self-adjoint]] linear [[Operator (physics)|operator]]s acting on the Hilbert space. When an observable is measured, the result will be one of its eigenvalues with probability given by the [[Born rule]]: in the simplest case the eigenvalue <math>\eta</math> is non-degenerate and the probability is given by <math>|\langle \eta|\psi\rangle|^2</math>, where <math>|\eta\rangle</math> is its associated eigenvector. More generally, the eigenvalue is degenerate and the probability is given by <math>\langle \psi|P_\eta\psi\rangle</math>, where <math>P_\eta</math> is the projector onto its associated eigenspace. For the purposes of this discussion, we can take the eigenvalues to be non-degenerate.}} मान लीजिए कि एक छिपा हुआ चर <math>\lambda</math> उपस्थित है, जिससे कि इसका मूल्य जान सकें <math>\lambda</math> किसी भी माप के परिणाम के बारे में निश्चितता दर्शाएगा। का मान दिया गया है <math>\lambda</math>, प्रत्येक माप परिणाम - अर्थात, हिल्बर्ट अंतरिक्ष में प्रत्येक सदिश - या तो असंभव है या गारंटीकृत है। कोचेन-स्पेकर कॉन्फ़िगरेशन कई इंटरलॉकिंग आधारों से बने वैक्टरों का एक सीमित समूह है, इस संपत्ति के साथ कि इसमें एक सदिश सदैव असंभव होगा जब इसे एक आधार से संबंधित माना जाएगा और दूसरे से संबंधित होने पर गारंटी दी जाएगी। दूसरे शब्दों में, कोचेन-स्पेकर कॉन्फ़िगरेशन एक बेरंग समूह है जो एक छिपे हुए चर को मानने की असंगतता को प्रदर्शित करता है <math>\lambda</math> माप परिणामों को नियंत्रित किया जा सकता है।<ref>{{cite book|first=Asher |last=Peres |author-link=Asher Peres |title=Quantum Theory: Concepts and Methods |title-link=Quantum Theory: Concepts and Methods |year=1993 |publisher=[[Kluwer]] |isbn=0-7923-2549-4 |oclc=28854083}}</ref>{{Rp|196–201}}


===स्वतंत्र इच्छा प्रमेय===
===स्वतंत्र इच्छा प्रमेय===
{{main|स्वतंत्र इच्छा प्रमेय}}
{{main|स्वतंत्र इच्छा प्रमेय}}
कोचेन-स्पेकर प्रकार के तर्क, इंटरलॉकिंग आधारों के विन्यास का उपयोग करते हुए, उलझी हुई जोड़ियों को मापने के विचार के साथ जोड़ा जा सकता है जो बेल-प्रकार की असमानताओं को रेखांकित करता है। इसे 1970 के दशक की प्रारंभ में कोचेन ने नोट किया था,<ref>{{Cite journal |last1=Redhead |first1=Michael |author-link1=Michael Redhead |last2=Brown |first2=Harvey |author-link2=Harvey R. Brown |date=1991-07-01 |title=क्वांटम यांत्रिकी में गैर-स्थानीयता|journal=[[Aristotelian Society|Proceedings of the Aristotelian Society, Supplementary Volumes]] |language=en |volume=65 |issue=1 |pages=119–160 |doi=10.1093/aristoteliansupp/65.1.119 |issn=0309-7013 |jstor=4106773 |quote=A similar approach was arrived at independently by Simon Kochen, although never published (private communication).}}</ref> हेवुड और रेडहेड,<ref>{{Cite journal|last1=Heywood|first1=Peter|last2=Redhead|first2=Michael L. G. |author-link2=Michael Redhead |date=May 1983|title=Nonlocality and the Kochen–Specker paradox |journal=[[Foundations of Physics]] |language=en|volume=13|issue=5|pages=481–499|doi=10.1007/BF00729511|bibcode=1983FoPh...13..481H |s2cid=120340929|issn=0015-9018}}</ref> सीढ़ियाँ,<ref>{{Cite journal|last=Stairs|first=Allen|date=December 1983|title=क्वांटम तर्क, यथार्थवाद, और मूल्य निश्चितता|journal=[[Philosophy of Science (journal)|Philosophy of Science]] |language=en|volume=50|issue=4|pages=578–602|doi=10.1086/289140|s2cid=122885859|issn=0031-8248}}</ref> और ब्राउन और स्वेतलिचनी।<ref>{{Cite journal|last1=Brown |first1=H. R. |author-link1=Harvey Brown (philosopher) |last2=Svetlichny|first2=G.|date=November 1990|title=गैर-स्थानीयता और ग्लीसन की लेम्मा। भाग I. नियतिवादी सिद्धांत|journal=[[Foundations of Physics]] |language=en|volume=20|issue=11|pages=1379–1387|doi=10.1007/BF01883492|bibcode=1990FoPh...20.1379B |s2cid=122868901 |issn=0015-9018}}</ref> जैसा कि ईपीआर ने बताया है, उलझे हुए जोड़े के एक आधे भाग पर माप परिणाम प्राप्त करने से दूसरे आधे भाग पर संबंधित माप के परिणाम के बारे में निश्चितता का पता चलता है। वास्तविकता का ईपीआर मानदंड यह मानता है कि चूंकि जोड़ी का दूसरा भाग परेशान नहीं था, इसलिए यह निश्चितता उससे संबंधित भौतिक संपत्ति के कारण होनी चाहिए।<ref>{{Cite journal|last1=Glick|first1=David|last2=Boge|first2=Florian J.|date=2019-10-22|title=Is the Reality Criterion Analytic?|journal=[[Erkenntnis]]|language=en|volume=86|issue=6|pages=1445–1451|arxiv=1909.11893|bibcode=2019arXiv190911893G|doi=10.1007/s10670-019-00163-w|s2cid=202889160|issn=0165-0106}}</ref> दूसरे शब्दों में, इस मानदंड के अनुसार, एक छिपा हुआ चर <math>\lambda</math> जोड़ी के दूसरे, अभी तक नापे गए आधे भाग के भीतर उपस्थित होना चाहिए। यदि पहली छमाही पर केवल एक माप पर विचार किया जाए तो कोई विरोधाभास उत्पन्न नहीं होता है। हालाँकि, यदि पर्यवेक्षक के पास कई संभावित मापों का विकल्प है, और उन मापों को परिभाषित करने वाले वैक्टर कोचेन-स्पेकर कॉन्फ़िगरेशन बनाते हैं, तो दूसरी छमाही पर कुछ परिणाम एक साथ असंभव और गारंटीकृत होंगे।
कोचेन-स्पेकर प्रकार के तर्क, इंटरलॉकिंग आधारों के विन्यास का उपयोग करते हुए, उलझी हुई जोड़ियों को मापने के विचार के साथ जोड़ा जा सकता है जो बेल-प्रकार की असमानताओं को रेखांकित करता है। इसे 1970 के दशक की प्रारंभ में कोचेन ने नोट किया था,<ref>{{Cite journal |last1=Redhead |first1=Michael |author-link1=Michael Redhead |last2=Brown |first2=Harvey |author-link2=Harvey R. Brown |date=1991-07-01 |title=क्वांटम यांत्रिकी में गैर-स्थानीयता|journal=[[Aristotelian Society|Proceedings of the Aristotelian Society, Supplementary Volumes]] |language=en |volume=65 |issue=1 |pages=119–160 |doi=10.1093/aristoteliansupp/65.1.119 |issn=0309-7013 |jstor=4106773 |quote=A similar approach was arrived at independently by Simon Kochen, although never published (private communication).}}</ref> हेवुड और रेडहेड,<ref>{{Cite journal|last1=Heywood|first1=Peter|last2=Redhead|first2=Michael L. G. |author-link2=Michael Redhead |date=May 1983|title=Nonlocality and the Kochen–Specker paradox |journal=[[Foundations of Physics]] |language=en|volume=13|issue=5|pages=481–499|doi=10.1007/BF00729511|bibcode=1983FoPh...13..481H |s2cid=120340929|issn=0015-9018}}</ref> सीढ़ियाँ,<ref>{{Cite journal|last=Stairs|first=Allen|date=December 1983|title=क्वांटम तर्क, यथार्थवाद, और मूल्य निश्चितता|journal=[[Philosophy of Science (journal)|Philosophy of Science]] |language=en|volume=50|issue=4|pages=578–602|doi=10.1086/289140|s2cid=122885859|issn=0031-8248}}</ref> और ब्राउन और स्वेतलिचनी।<ref>{{Cite journal|last1=Brown |first1=H. R. |author-link1=Harvey Brown (philosopher) |last2=Svetlichny|first2=G.|date=November 1990|title=गैर-स्थानीयता और ग्लीसन की लेम्मा। भाग I. नियतिवादी सिद्धांत|journal=[[Foundations of Physics]] |language=en|volume=20|issue=11|pages=1379–1387|doi=10.1007/BF01883492|bibcode=1990FoPh...20.1379B |s2cid=122868901 |issn=0015-9018}}</ref> जैसा कि ईपीआर ने बताया है, उलझे हुए जोड़े के एक आधे भाग पर माप परिणाम प्राप्त करने से दूसरे आधे भाग पर संबंधित माप के परिणाम के बारे में निश्चितता का पता चलता है। वास्तविकता का ईपीआर मानदंड यह मानता है कि चूंकि जोड़ी का दूसरा भाग क्षुब्ध नहीं था, इसलिए यह निश्चितता उससे संबंधित भौतिक संपत्ति के कारण होनी चाहिए।<ref>{{Cite journal|last1=Glick|first1=David|last2=Boge|first2=Florian J.|date=2019-10-22|title=Is the Reality Criterion Analytic?|journal=[[Erkenntnis]]|language=en|volume=86|issue=6|pages=1445–1451|arxiv=1909.11893|bibcode=2019arXiv190911893G|doi=10.1007/s10670-019-00163-w|s2cid=202889160|issn=0165-0106}}</ref> दूसरे शब्दों में, इस मानदंड के अनुसार, एक छिपा हुआ चर <math>\lambda</math> जोड़ी के दूसरे, अभी तक नापे गए आधे भाग के भीतर उपस्थित होना चाहिए। यदि पहली छमाही पर केवल एक माप पर विचार किया जाए तो कोई विरोधाभास उत्पन्न नहीं होता है। चूंकि, यदि पर्यवेक्षक के पास कई संभावित मापों का विकल्प है, और उन मापों को परिभाषित करने वाले सदिश कोचेन-स्पेकर संचय बनाते हैं, तो दूसरी छमाही पर कुछ परिणाम एक साथ असंभव और गारंटीकृत होंगे।


इस प्रकार के तर्क ने तब ध्यान आकर्षित किया जब इसका एक उदाहरण [[जॉन हॉर्टन कॉनवे]] और साइमन बी. कोचेन द्वारा [[स्वतंत्र इच्छा प्रमेय]] के नाम से आगे बढ़ाया गया।<ref>{{cite journal | last1 = Conway | first1 = John |first2=Simon |last2=Kochen | author-link1=John Horton Conway | author-link2=Simon B. Kochen |year = 2006 | title = स्वतंत्र इच्छा प्रमेय| journal = [[Foundations of Physics]] | volume = 36 | issue = 10 | pages = 1441 | doi = 10.1007/s10701-006-9068-6 |arxiv = quant-ph/0604079 |bibcode = 2006FoPh...36.1441C | s2cid = 12999337 }}</ref><ref>{{Cite web |last=Rehmeyer |first=Julie |date=2008-08-15 |title=Do subatomic particles have free will? |url=https://www.sciencenews.org/article/do-subatomic-particles-have-free-will |access-date=2022-04-23 |website=[[Science News]] |language=en-US}}</ref><ref>{{Cite web |last=Thomas |first=Rachel |date=2011-12-27 |title=John Conway – discovering free will (part I) |url=https://plus.maths.org/content/john-conway-discovering-free-will-part-i |access-date=2022-04-23 |website=[[Plus Magazine]] |language=en}}</ref> कॉनवे-कोचेन प्रमेय उलझे हुए क्वट्रिट्स (क्वांटम जानकारी की एक इकाई)की एक जोड़ी और [[आशेर पेरेज़]] द्वारा खोजे गए कोचेन-स्पेकर व्यवस्था के प्रारूप का उपयोग करता है।<ref>{{cite journal |last1=Conway |first1=John H. |first2=Simon |last2=Kochen | author-link1=John Horton Conway | author-link2=Simon B. Kochen |title=प्रबल स्वतंत्र इच्छा प्रमेय|journal= [[Notices of the AMS]] |volume=56 |issue=2 |year=2009 |pages=226–232 |url=http://www.ams.org/notices/200902/rtx090200226p.pdf}}</ref>
इस प्रकार के तर्क ने तब ध्यान आकर्षित किया जब इसका एक उदाहरण [[जॉन हॉर्टन कॉनवे]] और साइमन बी. कोचेन द्वारा [[स्वतंत्र इच्छा प्रमेय]] के नाम से आगे बढ़ाया गया।<ref>{{cite journal | last1 = Conway | first1 = John |first2=Simon |last2=Kochen | author-link1=John Horton Conway | author-link2=Simon B. Kochen |year = 2006 | title = स्वतंत्र इच्छा प्रमेय| journal = [[Foundations of Physics]] | volume = 36 | issue = 10 | pages = 1441 | doi = 10.1007/s10701-006-9068-6 |arxiv = quant-ph/0604079 |bibcode = 2006FoPh...36.1441C | s2cid = 12999337 }}</ref><ref>{{Cite web |last=Rehmeyer |first=Julie |date=2008-08-15 |title=Do subatomic particles have free will? |url=https://www.sciencenews.org/article/do-subatomic-particles-have-free-will |access-date=2022-04-23 |website=[[Science News]] |language=en-US}}</ref><ref>{{Cite web |last=Thomas |first=Rachel |date=2011-12-27 |title=John Conway – discovering free will (part I) |url=https://plus.maths.org/content/john-conway-discovering-free-will-part-i |access-date=2022-04-23 |website=[[Plus Magazine]] |language=en}}</ref> कॉनवे-कोचेन प्रमेय उलझे हुए क्वट्रिट्स (क्वांटम जानकारी की एक इकाई)की एक जोड़ी और [[आशेर पेरेज़]] द्वारा अन्वेषण गए कोचेन-स्पेकर व्यवस्था के प्रारूप का उपयोग करता है।<ref>{{cite journal |last1=Conway |first1=John H. |first2=Simon |last2=Kochen | author-link1=John Horton Conway | author-link2=Simon B. Kochen |title=प्रबल स्वतंत्र इच्छा प्रमेय|journal= [[Notices of the AMS]] |volume=56 |issue=2 |year=2009 |pages=226–232 |url=http://www.ams.org/notices/200902/rtx090200226p.pdf}}</ref>
===अर्धशास्त्रीय उलझाव===
===अर्धशास्त्रीय उलझाव===
{{main|स्पेक्केन्स खिलौना मॉडल|वर्नर अवस्था}}
{{main|स्पेक्केन्स खिलौना मॉडल|वर्नर अवस्था}}
जैसा कि बेल ने बताया, क्वांटम यांत्रिकी की कुछ भविष्यवाणियों को स्थानीय छिपे हुए चर मॉडल में दोहराया जा सकता है, जिसमें उलझाव से उत्पन्न सहसंबंधों के विशेष मामले भी सम्मलित हैं। बेल के प्रमेय के पश्चात के वर्षों में इस विषय का व्यवस्थित रूप से अध्ययन किया गया है। 1989 में, रेइनहार्ड एफ. वर्नर ने जिसे अब [[वर्नर राज्य|वर्नर अवस्था]] कहा जाता है, पेश किया, सिस्टम की एक जोड़ी के लिए संयुक्त क्वांटम अवस्था जो ईपीआर-प्रकार के सहसंबंध उत्पन्न करते हैं लेकिन एक छिपे हुए चर मॉडल को भी स्वीकार करते हैं।<ref>{{Cite journal|last=Werner|first=Reinhard F.|date=1989-10-01|title=क्वांटम एक छिपे हुए चर मॉडल को स्वीकार करते हुए आइंस्टीन-पोडॉल्स्की-रोसेन सहसंबंधों के साथ बताता है|journal=[[Physical Review A]]|language=en|volume=40|issue=8|pages=4277–4281|bibcode=1989PhRvA..40.4277W|doi=10.1103/PhysRevA.40.4277|pmid=9902666|issn=0556-2791}}</ref> वर्नर अवस्था द्विदलीय क्वांटम अवस्था हैं जो सममित [[क्रोनकर उत्पाद]]  टेंसर-उत्पाद रूप की इकाईता (भौतिकी) के तहत अपरिवर्तनीय हैं:
जैसा कि बेल ने बताया, क्वांटम यांत्रिकी की कुछ भविष्यवाणियों को स्थानीय छिपे हुए चर मॉडल में दोहराया जा सकता है, जिसमें उलझाव से उत्पन्न सहसंबंधों के विशेष स्थिति भी सम्मलित हैं। बेल के प्रमेय के पश्चात के वर्षों में इस विषय का व्यवस्थित रूप से अध्ययन किया गया है। 1989 में, रेइनहार्ड एफ. वर्नर ने जिसे अब [[वर्नर राज्य|वर्नर अवस्था]] कहा जाता है, प्रस्तुत किया, प्रणाली की एक जोड़ी के लिए संयुक्त क्वांटम अवस्था जो ईपीआर-प्रकार के सहसंबंध उत्पन्न करते हैं लेकिन एक छिपे हुए चर मॉडल को भी स्वीकार करते हैं।<ref>{{Cite journal|last=Werner|first=Reinhard F.|date=1989-10-01|title=क्वांटम एक छिपे हुए चर मॉडल को स्वीकार करते हुए आइंस्टीन-पोडॉल्स्की-रोसेन सहसंबंधों के साथ बताता है|journal=[[Physical Review A]]|language=en|volume=40|issue=8|pages=4277–4281|bibcode=1989PhRvA..40.4277W|doi=10.1103/PhysRevA.40.4277|pmid=9902666|issn=0556-2791}}</ref> वर्नर अवस्था द्विदलीय क्वांटम अवस्था हैं जो सममित [[क्रोनकर उत्पाद]]  टेंसर-उत्पाद रूप की इकाईता (भौतिकी) के तहत अपरिवर्तनीय हैं:


<math display="block">\rho_{AB} = (U \otimes U) \rho_{AB} (U^\dagger \otimes U^\dagger) \, .</math>
<math display="block">\rho_{AB} = (U \otimes U) \rho_{AB} (U^\dagger \otimes U^\dagger) \, .</math>
2004 में, [[रॉबर्ट स्पेकेंस]] ने एक [[स्पेकेन का खिलौना मॉडल|स्पेकेन का टोय  मॉडल]] पेश किया जो स्वतंत्रता की स्थानीय, विवेकाधीन डिग्री के आधार पर शुरू होता है और फिर एक ज्ञान संतुलन सिद्धांत क्रियान्वित करता है जो प्रतिबंधित करता है कि एक पर्यवेक्षक स्वतंत्रता की उन डिग्री के बारे में कितना जान सकता है, जिससे उन्हें छिपे हुए चर में बदल दिया जाता है। अंतर्निहित चर (ओंटिक अवस्था) के बारे में ज्ञान की अनुमत अवस्थाएँ (ज्ञान-मीमांसा अवस्थाएँ) क्वांटम अवस्थाओं की कुछ विशेषताओं की नकल करती हैं। टोय  मॉडल में सहसंबंध उलझाव के कुछ पहलुओं का अनुकरण कर सकते हैं, जैसे उलझाव की मोनोगैमी, लेकिन निर्माण से, टोय  मॉडल कभी भी बेल असमानता का उल्लंघन नहीं कर सकता है।<ref>{{Cite journal|author1-link=Robert Spekkens|last=Spekkens|first=Robert W.|date=2007-03-19|title=Evidence for the epistemic view of quantum states: A toy theory|journal=[[Physical Review A]]|language=en|volume=75|issue=3|pages=032110|arxiv=quant-ph/0401052|bibcode=2007PhRvA..75c2110S|doi=10.1103/PhysRevA.75.032110|s2cid=117284016|issn=1050-2947}}</ref><ref>{{Cite journal |last1=Catani |first1=Lorenzo |last2=Browne |first2=Dan E. |date=2017-07-27 |title=सभी आयामों में स्पेकेंस का खिलौना मॉडल और स्टेबलाइज़र क्वांटम यांत्रिकी के साथ इसका संबंध|journal=[[New Journal of Physics]] |volume=19 |issue=7 |pages=073035 |doi=10.1088/1367-2630/aa781c |bibcode=2017NJPh...19g3035C |s2cid=119428107 |issn=1367-2630|doi-access=free }}</ref>
2004 में, [[रॉबर्ट स्पेकेंस]] ने एक [[स्पेकेन का खिलौना मॉडल|स्पेकेन का टोय  मॉडल]] प्रस्तुत किया जो स्वतंत्रता की स्थानीय, विवेकाधीन डिग्री के आधार पर शुरू होता है और फिर एक ज्ञान संतुलन सिद्धांत क्रियान्वित करता है जो प्रतिबंधित करता है कि एक पर्यवेक्षक स्वतंत्रता की उन डिग्री के बारे में कितना जान सकता है, जिससे उन्हें छिपे हुए चर में बदल दिया जाता है। अंतर्निहित चर (ओंटिक अवस्था) के बारे में ज्ञान की अनुमत अवस्थाएँ (ज्ञान-मीमांसा अवस्थाएँ) क्वांटम अवस्थाओं की कुछ विशेषताओं की नकल करती हैं। टोय  मॉडल में सहसंबंध उलझाव के कुछ पहलुओं का अनुकरण कर सकते हैं, जैसे उलझाव की मोनोगैमी, लेकिन निर्माण से, टोय  मॉडल कभी भी बेल असमानता का उल्लंघन नहीं कर सकता है।<ref>{{Cite journal|author1-link=Robert Spekkens|last=Spekkens|first=Robert W.|date=2007-03-19|title=Evidence for the epistemic view of quantum states: A toy theory|journal=[[Physical Review A]]|language=en|volume=75|issue=3|pages=032110|arxiv=quant-ph/0401052|bibcode=2007PhRvA..75c2110S|doi=10.1103/PhysRevA.75.032110|s2cid=117284016|issn=1050-2947}}</ref><ref>{{Cite journal |last1=Catani |first1=Lorenzo |last2=Browne |first2=Dan E. |date=2017-07-27 |title=सभी आयामों में स्पेकेंस का खिलौना मॉडल और स्टेबलाइज़र क्वांटम यांत्रिकी के साथ इसका संबंध|journal=[[New Journal of Physics]] |volume=19 |issue=7 |pages=073035 |doi=10.1088/1367-2630/aa781c |bibcode=2017NJPh...19g3035C |s2cid=119428107 |issn=1367-2630|doi-access=free }}</ref>
==इतिहास==
==इतिहास==


Line 102: Line 102:
{{main|ईपीआर विरोधाभास|क्वांटम यांत्रिकी का इतिहास}}
{{main|ईपीआर विरोधाभास|क्वांटम यांत्रिकी का इतिहास}}


यह प्रश्न कि क्या क्वांटम यांत्रिकी को छिपे हुए चर द्वारा "पूरा" किया जा सकता है, क्वांटम सिद्धांत के प्रारंभिक वर्षों का है। क्वांटम मैकेनिक्स की अपनी गणितीय नींव में, हंगरी में जन्मे पॉलीमैथ [[जॉन वॉन न्यूमैन]] ने वह प्रस्तुत किया जो उन्होंने इस बात का प्रमाण होने का दावा किया था कि कोई छिपा हुआ पैरामीटर नहीं हो सकता है। वॉन न्यूमैन के प्रमाण की वैधता और निश्चितता पर [[ हंस रीचेनबैक ]] द्वारा, [[ग्रेटे हरमन]] द्वारा अधिक विस्तार से और संभवतः बातचीत में, चूंकि अल्बर्ट आइंस्टीन द्वारा प्रिंट में नहीं, प्रश्न उठाए गए थे।{{refn|group=note|See Reichenbach<ref>{{cite book|first=Hans |last=Reichenbach |author-link=Hans Reichenbach |title=Philosophic Foundations of Quantum Mechanics |year=1944 |publisher=University of California Press |page=14 |oclc=872622725}}</ref> and Jammer,<ref name="jammer1974">{{cite book|last=Jammer|first=Max|title=The Philosophy of Quantum Mechanics|publisher=John Wiley and Sons|year=1974|isbn=0-471-43958-4|author-link=Max Jammer}}</ref>{{Rp|276}} Mermin and Schack,<ref>{{cite journal|title=Homer nodded: von Neumann's surprising oversight |journal=[[Foundations of Physics]] |volume=48 |issue=9 |pages=1007–1020 |year=2018 |arxiv=1805.10311 |last1=Mermin |first1=N. David |last2=Schack |first2=Rüdiger |author-link1=N. David Mermin|doi=10.1007/s10701-018-0197-5 |bibcode=2018FoPh...48.1007M |s2cid=118951033 }}</ref> and for Einstein's remarks, Clauser and Shimony<ref>{{cite journal | last1 = Clauser | first1 = J. F. | last2 = Shimony | first2 = A. | title = Bell's theorem: Experimental tests and implications | url = http://www.physics.oregonstate.edu/~ostroveo/COURSES/ph651/Supplements_Phys651/RPP1978_Bell.pdf | journal = Reports on Progress in Physics | volume = 41 | issue = 12 | pages = 1881–1927 | year = 1978 | doi = 10.1088/0034-4885/41/12/002 | bibcode = 1978RPPh...41.1881C | citeseerx = 10.1.1.482.4728 | s2cid = 250885175 | access-date = 2017-10-28 | archive-date = 2017-09-23 | archive-url = https://web.archive.org/web/20170923004338/http://physics.oregonstate.edu/~ostroveo/COURSES/ph651/Supplements_Phys651/RPP1978_Bell.pdf | url-status = live }}</ref> and Wick.<ref name=":1"/>{{Rp|286}}}} (साइमन बी. कोचेन और [[अर्न्स्ट स्पेकर]] ने वॉन न्यूमैन की प्रमुख धारणा को 1961 की प्रारंभ में ही खारिज कर दिया था, लेकिन 1967 तक इसकी कोई आलोचना प्रकाशित नहीं की थी।<ref>{{Cite book |author-first1=John |author-last1=Conway |author-link1=John Horton Conway |author-first2=Simon |author-last2=Kochen |author-link2=Simon B. Kochen |chapter=The Geometry of the Quantum Paradoxes |pages=257–269 |title=Quantum [Un]speakables: From Bell to Quantum Information |date=2002 |publisher=Springer |editor-first1=Reinhold A. |editor-last1=Bertlmann |editor-link1=Reinhold Bertlmann |editor-first2=Anton |editor-last2=Zeilinger |editor-link2=Anton Zeilinger |isbn=3-540-42756-2 |location=Berlin |oclc=49404213}}</ref>)
यह प्रश्न कि क्या क्वांटम यांत्रिकी को छिपे हुए चर द्वारा "पूरा" किया जा सकता है, क्वांटम सिद्धांत के प्रारंभिक वर्षों का है। क्वांटम मैकेनिक्स की अपनी गणितीय नींव में, हंगरी में जन्मे पॉलीमैथ [[जॉन वॉन न्यूमैन]] ने वह प्रस्तुत किया जो उन्होंने इस बात का प्रमाण होने का दावा किया था कि कोई छिपा हुआ पैरामीटर नहीं हो सकता है। वॉन न्यूमैन के प्रमाण की वैधता और निश्चितता पर [[ हंस रीचेनबैक ]] द्वारा, [[ग्रेटे हरमन]] द्वारा अधिक विस्तार से और संभवतः बातचीत में, चूंकि अल्बर्ट आइंस्टीन द्वारा प्रिंट में नहीं, प्रश्न उठाए गए थे।{{refn|group=note|See Reichenbach<ref>{{cite book|first=Hans |last=Reichenbach |author-link=Hans Reichenbach |title=Philosophic Foundations of Quantum Mechanics |year=1944 |publisher=University of California Press |page=14 |oclc=872622725}}</ref> and Jammer,<ref name="jammer1974">{{cite book|last=Jammer|first=Max|title=The Philosophy of Quantum Mechanics|publisher=John Wiley and Sons|year=1974|isbn=0-471-43958-4|author-link=Max Jammer}}</ref>{{Rp|276}} Mermin and Schack,<ref>{{cite journal|title=Homer nodded: von Neumann's surprising oversight |journal=[[Foundations of Physics]] |volume=48 |issue=9 |pages=1007–1020 |year=2018 |arxiv=1805.10311 |last1=Mermin |first1=N. David |last2=Schack |first2=Rüdiger |author-link1=N. David Mermin|doi=10.1007/s10701-018-0197-5 |bibcode=2018FoPh...48.1007M |s2cid=118951033 }}</ref> and for Einstein's remarks, Clauser and Shimony<ref>{{cite journal | last1 = Clauser | first1 = J. F. | last2 = Shimony | first2 = A. | title = Bell's theorem: Experimental tests and implications | url = http://www.physics.oregonstate.edu/~ostroveo/COURSES/ph651/Supplements_Phys651/RPP1978_Bell.pdf | journal = Reports on Progress in Physics | volume = 41 | issue = 12 | pages = 1881–1927 | year = 1978 | doi = 10.1088/0034-4885/41/12/002 | bibcode = 1978RPPh...41.1881C | citeseerx = 10.1.1.482.4728 | s2cid = 250885175 | access-date = 2017-10-28 | archive-date = 2017-09-23 | archive-url = https://web.archive.org/web/20170923004338/http://physics.oregonstate.edu/~ostroveo/COURSES/ph651/Supplements_Phys651/RPP1978_Bell.pdf | url-status = live }}</ref> and Wick.<ref name=":1"/>{{Rp|286}}}} (साइमन बी. कोचेन और [[अर्न्स्ट स्पेकर]] ने वॉन न्यूमैन की प्रमुख धारणा को 1961 की प्रारंभ में ही अस्वीकृत कर दिया था, लेकिन 1967 तक इसकी कोई आलोचना प्रकाशित नहीं की थी।<ref>{{Cite book |author-first1=John |author-last1=Conway |author-link1=John Horton Conway |author-first2=Simon |author-last2=Kochen |author-link2=Simon B. Kochen |chapter=The Geometry of the Quantum Paradoxes |pages=257–269 |title=Quantum [Un]speakables: From Bell to Quantum Information |date=2002 |publisher=Springer |editor-first1=Reinhold A. |editor-last1=Bertlmann |editor-link1=Reinhold Bertlmann |editor-first2=Anton |editor-last2=Zeilinger |editor-link2=Anton Zeilinger |isbn=3-540-42756-2 |location=Berlin |oclc=49404213}}</ref>)


आइंस्टीन ने लगातार तर्क दिया कि क्वांटम यांत्रिकी एक पूर्ण सिद्धांत नहीं हो सकता। उनका पसंदीदा तर्क स्थानीयता के सिद्धांत पर निर्भर था:
आइंस्टीन ने लगातार तर्क दिया कि क्वांटम यांत्रिकी एक पूर्ण सिद्धांत नहीं हो सकता। उनका पसंदीदा तर्क स्थानीयता के सिद्धांत पर निर्भर था:
:दो आंशिक प्रणालियों ए और बी से बनी एक यांत्रिक प्रणाली पर विचार करें जो केवल सीमित समय के समय एक दूसरे के साथ बातचीत करती है। मान लीजिए कि उनकी परस्पर क्रिया से पहले ψ कार्य करता है। फिर उनकी परस्पर क्रिया होने के पश्चात श्रोडिंगर समीकरण ψ फ़ंक्शन प्रस्तुत करेगा। आइए अब हम आंशिक प्रणाली ए की भौतिक स्थिति को माप द्वारा यथासंभव पूर्ण रूप से निर्धारित करें। फिर क्वांटम यांत्रिकी हमें किए गए मापों से आंशिक प्रणाली बी के फ़ंक्शन और कुल प्रणाली के फ़ंक्शन से निर्धारित करने की अनुमति देती है। हालाँकि, यह निर्धारण एक परिणाम देता है जो इस पर निर्भर करता है कि की स्थिति को निर्दिष्ट करने वाले निर्धारण परिमाणों में से कौन सा मापा गया है (उदाहरण के लिए निर्देशांक या क्षण)। चूँकि अंतःक्रिया के पश्चात B की केवल एक ही भौतिक स्थिति हो सकती है और जिसे उचित रूप से B से अलग सिस्टम A पर किए गए विशेष माप पर निर्भर नहीं माना जा सकता है, इसलिए यह निष्कर्ष निकाला जा सकता है कि ψ फ़ंक्शन स्पष्ट रूप से भौतिक के साथ समन्वित नहीं है स्थिति। सिस्टम बी की समान भौतिक स्थिति के साथ कई ψ कार्यों का यह समन्वय फिर से दिखाता है कि ψ फ़ंक्शन को एक इकाई प्रणाली की भौतिक स्थिति के (पूर्ण) विवरण के रूप में व्याख्या नहीं किया जा सकता है।<ref>{{cite journal|first=Albert |last=Einstein |author-link=Albert Einstein |title=भौतिकी और वास्तविकता|journal=Journal of the Franklin Institute |volume=221 |number=3 |date=March 1936 |pages=349–382 |doi=10.1016/S0016-0032(36)91047-5 |bibcode=1936FrInJ.221..349E}}</ref>
:दो आंशिक प्रणालियों ए और बी से बनी एक यांत्रिक प्रणाली पर विचार करें जो केवल सीमित समय के समय एक दूसरे के साथ परस्पर क्रिया करती है। मान लीजिए कि उनकी परस्पर क्रिया से पहले ψ कार्य करता है। फिर उनकी परस्पर क्रिया होने के पश्चात श्रोडिंगर समीकरण ψ फ़ंक्शन प्रस्तुत करेगा। आइए अब हम आंशिक प्रणाली ए की भौतिक स्थिति को माप द्वारा यथासंभव पूर्ण रूप से निर्धारित करें। फिर क्वांटम यांत्रिकी हमें किए गए मापों से आंशिक प्रणाली बी के फलन और कुल प्रणाली के फलन से निर्धारित करने की अनुमति देती है। चूंकि, यह निर्धारण एक परिणाम देता है जो इस पर निर्भर करता है कि A की स्थिति को निर्दिष्ट करने वाले निर्धारण परिमाणों में से कौन सा मापा गया है (उदाहरण के लिए निर्देशांक या क्षण)। चूँकि अंतःक्रिया के पश्चात B की केवल एक ही भौतिक स्थिति हो सकती है और जिसे उचित रूप से B से अलग प्रणाली A पर किए गए विशेष माप पर निर्भर नहीं माना जा सकता है, इसलिए यह निष्कर्ष निकाला जा सकता है कि ψ फलन स्पष्ट रूप से भौतिक के साथ समन्वित नहीं है स्थिति। प्रणाली बी की समान भौतिक स्थिति के साथ कई ψ कार्यों का यह समन्वय फिर से दिखाता है कि ψ फलन को एक इकाई प्रणाली की भौतिक स्थिति के (पूर्ण) विवरण के रूप में व्याख्या नहीं किया जा सकता है।<ref>{{cite journal|first=Albert |last=Einstein |author-link=Albert Einstein |title=भौतिकी और वास्तविकता|journal=Journal of the Franklin Institute |volume=221 |number=3 |date=March 1936 |pages=349–382 |doi=10.1016/S0016-0032(36)91047-5 |bibcode=1936FrInJ.221..349E}}</ref>
ईपीआर विचार प्रयोग समान है, एक संयुक्त तरंग फ़ंक्शन द्वारा वर्णित दो अलग-अलग प्रणालियों और बी पर भी विचार किया जा रहा है। हालाँकि, ईपीआर पेपर उस विचार को जोड़ता है जिसे पश्चात में वास्तविकता के ईपीआर मानदंड के रूप में जाना जाता है, जिसके अनुसार संभावना 1 के साथ बी पर माप के परिणाम की भविष्यवाणी करने की क्षमता बी के भीतर वास्तविकता के एक तत्व के अस्तित्व को दर्शाती है।<ref>{{cite journal|first1=Nicholas |last1=Harrigan |first2=Robert W. |last2=Spekkens |title=आइंस्टीन, अपूर्णता, और क्वांटम अवस्थाओं का ज्ञानमीमांसीय दृष्टिकोण|journal=[[Foundations of Physics]] |volume=40 |issue=2 |pages=125 |year=2010 |doi=10.1007/s10701-009-9347-0 |arxiv=0706.2661|bibcode=2010FoPh...40..125H |s2cid=32755624 }}</ref>
ईपीआर विचार प्रयोग समान है, एक संयुक्त तरंग फलन द्वारा वर्णित दो अलग-अलग प्रणालियों A और B पर भी विचार किया जा रहा है। चूंकि, ईपीआर पेपर उस विचार को जोड़ता है जिसे पश्चात में वास्तविकता के ईपीआर मानदंड के रूप में जाना जाता है, जिसके अनुसार संभावना 1 के साथ बी पर माप के परिणाम की पूर्वानुमान करने की क्षमता B के भीतर वास्तविकता के एक तत्व के अस्तित्व को दर्शाती है।<ref>{{cite journal|first1=Nicholas |last1=Harrigan |first2=Robert W. |last2=Spekkens |title=आइंस्टीन, अपूर्णता, और क्वांटम अवस्थाओं का ज्ञानमीमांसीय दृष्टिकोण|journal=[[Foundations of Physics]] |volume=40 |issue=2 |pages=125 |year=2010 |doi=10.1007/s10701-009-9347-0 |arxiv=0706.2661|bibcode=2010FoPh...40..125H |s2cid=32755624 }}</ref>
 
1951 में, डेविड बोहम ने ईपीआर विचार प्रयोग का एक प्रकार प्रस्तावित किया जिसमें ईपीआर द्वारा विचार की गई स्थिति और गति माप के विपरीत, माप में संभावित परिणामों की अलग-अलग श्रेणियां होती हैं।<ref>{{cite book|last=Bohm |first=David |author-link=David Bohm |year=1989 |orig-date=1951 |title=क्वांटम सिद्धांत|publisher=Prentice-Hall |edition=Dover reprint |isbn=978-0-486-65969-5 |oclc=1103789975 |pages=614–623}}</ref> एक साल पहले, [[χ एन-शि यूएन जीडब्ल्यू यू]] और इरविंग शाकनोव ने उलझे हुए जोड़े में उत्पादित फोटॉन के ध्रुवीकरण को सफलतापूर्वक मापा था, जिससे ईपीआर विचार प्रयोग का बोहम संस्करण व्यावहारिक रूप से संभव हो गया था।<ref>{{cite journal |last1=Wu |first1=C.-S. |author-link=Chien-Shiung Wu |last2=Shaknov |first2=I. |year=1950 |title=बिखरे हुए विनाश विकिरण का कोणीय सहसंबंध|journal=[[Physical Review]] |volume=77 |issue=1 |pages=136 |bibcode=1950PhRv...77..136W |doi=10.1103/PhysRev.77.136}}</ref>
1951 में, डेविड बोहम ने ईपीआर विचार प्रयोग का एक प्रकार प्रस्तावित किया जिसमें ईपीआर द्वारा विचार की गई स्थिति और गति माप के विपरीत, माप में संभावित परिणामों की अलग-अलग श्रेणियां होती हैं।<ref>{{cite book|last=Bohm |first=David |author-link=David Bohm |year=1989 |orig-date=1951 |title=क्वांटम सिद्धांत|publisher=Prentice-Hall |edition=Dover reprint |isbn=978-0-486-65969-5 |oclc=1103789975 |pages=614–623}}</ref> एक साल पहले, [[χ एन-शि यूएन जीडब्ल्यू यू]] और इरविंग शाकनोव ने उलझे हुए जोड़े में उत्पादित फोटॉन के ध्रुवीकरण को सफलतापूर्वक मापा था, जिससे ईपीआर विचार प्रयोग का बोहम संस्करण व्यावहारिक रूप से संभव हो गया था।<ref>{{cite journal |last1=Wu |first1=C.-S. |author-link=Chien-Shiung Wu |last2=Shaknov |first2=I. |year=1950 |title=बिखरे हुए विनाश विकिरण का कोणीय सहसंबंध|journal=[[Physical Review]] |volume=77 |issue=1 |pages=136 |bibcode=1950PhRv...77..136W |doi=10.1103/PhysRev.77.136}}</ref>
1940 के दशक के अंत तक, गणितज्ञ [[जॉर्ज मैके]] की क्वांटम भौतिकी की नींव में रुचि बढ़ गई थी, और 1957 में उन्होंने अभिधारणाओं की एक सूची तैयार की, जिसे उन्होंने क्वांटम यांत्रिकी की सटीक परिभाषा के रूप में लिया।<ref>{{Cite journal |last=Mackey |first=George W. |author-link=George Mackey |title=क्वांटम मैकेनिक्स और हिल्बर्ट स्पेस|journal=[[The American Mathematical Monthly]] |year=1957 |volume=64 |number=8P2 |pages=45–57 |doi=10.1080/00029890.1957.11989120 |jstor=2308516}}</ref> मैके ने अनुमान लगाया कि इनमें से एक अभिधारणा निरर्थक थी, और इसके तुरंत पश्चात, एंड्रयू एम. ग्लीसन ने सिद्ध करना कर दिया कि यह वास्तव में अन्य अभिधारणाओं से अनुमान लगाने योग्य था।<ref name="gleason1957">{{cite journal|first=Andrew M.|author-link=Andrew M. Gleason|year = 1957|title = हिल्बर्ट स्थान के बंद उपस्थानों पर उपाय|url = http://www.iumj.indiana.edu/IUMJ/FULLTEXT/1957/6/56050|journal = [[Indiana University Mathematics Journal]]|volume = 6|issue=4|pages = 885–893|doi=10.1512/iumj.1957.6.56050|mr=0096113|last = Gleason|doi-access = free}}</ref><ref name="chernoff2009">{{Cite journal|last=Chernoff |first=Paul R. |author-link=Paul Chernoff |title=एंडी ग्लीसन और क्वांटम मैकेनिक्स|journal=[[Notices of the AMS]] |volume=56 |number=10 |pages=1253–1259 |url=https://www.ams.org/notices/200910/rtx091001236p.pdf}}</ref> ग्लीसन के प्रमेय ने एक तर्क प्रदान किया कि छिपे हुए चर सिद्धांतों का एक व्यापक वर्ग क्वांटम यांत्रिकी के साथ असंगत है।{{refn|group=note|A hidden-variable theory that is [[determinism|deterministic]] implies that the probability of a given outcome is ''always'' either 0 or 1. For example, a Stern–Gerlach measurement on a [[Spin (physics)|spin-1]] atom will report that the atom's angular momentum along the chosen axis is one of three possible values, which can be designated <math>-</math>, <math>0</math> and <math>+</math>. In a deterministic hidden-variable theory, there exists an underlying physical property that fixes the result found in the measurement. Conditional on the value of the underlying physical property, any given outcome (for example, a result of <math>+</math>) must be either impossible or guaranteed. But Gleason's theorem implies that there can be no such deterministic probability measure, because it proves that any probability measure must take the form of a mapping <math>u \to \langle \rho u, u \rangle</math> for some density operator <math>\rho</math>. This mapping is continuous on the [[unit sphere]] of the Hilbert space, and since this unit sphere is [[Connected (topology)|connected]], no continuous probability measure on it can be deterministic.<ref name="wilce2017">{{cite book|last=Wilce |first=A. |year=2017 |chapter-url=https://plato.stanford.edu/entries/qt-quantlog/ |chapter=Quantum Logic and Probability Theory |title=Stanford Encyclopedia of Philosophy |title-link=Stanford Encyclopedia of Philosophy|publisher=Metaphysics Research Lab, Stanford University }}</ref>{{rp|§1.3}}}} अधिक विशेष रूप से, ग्लीसन का प्रमेय छिपे हुए-परिवर्तनीय मॉडल को खारिज करता है जो गैर-प्रासंगिक हैं। क्वांटम यांत्रिकी के लिए किसी भी छिपे हुए-चर मॉडल में, ग्लीसन के प्रमेय के निहितार्थ से बचने के लिए, छिपे हुए चर सम्मलित होने चाहिए जो केवल मापी गई प्रणाली से संबंधित गुण नहीं हैं, बल्कि बाहरी संदर्भ पर भी निर्भर करते हैं जिसमें माप किया जाता है। इस प्रकार की निर्भरता को अधिकांशतः काल्पनिक या अवांछनीय के रूप में देखा जाता है; कुछ सेटिंग्स में, यह [[विशेष सापेक्षता]] के साथ असंगत है।<ref name="ND Mermin 1993-07" /><ref>{{Cite journal|last=Shimony |first=Abner |author-link=Abner Shimony |title=प्रासंगिक छिपे हुए परिवर्तनीय सिद्धांत और बेल की असमानताएँ|journal=[[British Journal for the Philosophy of Science]] |year=1984 |volume=35 |number=1 |pages=25–45 |doi=10.1093/bjps/35.1.25}}</ref> कोचेन-स्पेकर प्रमेय किरणों के एक विशिष्ट परिमित उपसमुच्चय का निर्माण करके इस कथन को परिष्कृत करता है, जिस पर ऐसी कोई संभाव्यता माप परिभाषित नहीं की जा सकती है।<ref name="ND Mermin 1993-07" /><ref>{{Cite journal|last=Peres|first=Asher|author-link=Asher Peres|date=1991|title=कोचेन-स्पेकर प्रमेय के दो सरल प्रमाण|url=http://stacks.iop.org/0305-4470/24/i=4/a=003|journal=[[Journal of Physics A: Mathematical and General]]|language=en|volume=24|issue=4|pages=L175–L178|doi=10.1088/0305-4470/24/4/003|issn=0305-4470|bibcode=1991JPhA...24L.175P}}</ref>
 
[[त्सुंग-दाओ ली]] 1960 में बेल के प्रमेय को प्राप्त करने के निकट आ गए। उन्होंने उन घटनाओं पर विचार किया जहां दो [[खाओ]] विपरीत दिशाओं में यात्रा करते हुए उत्पन्न हुए थे, और इस निष्कर्ष पर पहुंचे कि छिपे हुए चर उन सहसंबंधों की व्याख्या नहीं कर सकते हैं जो ऐसी स्थितियों में प्राप्त किए जा सकते हैं। हालाँकि, इस तथ्य के कारण जटिलताएँ पैदा हुईं कि काओन का क्षय हो गया, और वह बेल-प्रकार की असमानता को कम करने के लिए इतनी दूर नहीं गए।{{refn|group=note|This was reported by [[Max Jammer]].<ref name="jammer1974"/>{{Rp|308}} Lee is best known for his prediction with [[Chen-Ning Yang]] of the violation of parity conservation, a prediction that earned them the [[Nobel Prize in Physics|Nobel Prize]] after it was confirmed by [[Chien-Shiung Wu]], who did not share in the Prize.}}
1940 के दशक के अंत तक, गणितज्ञ [[जॉर्ज मैके]] की क्वांटम भौतिकी की नींव में रुचि बढ़ गई थी, और 1957 में उन्होंने अभिधारणाओं की एक सूची प्रस्तुत की, जिसे उन्होंने क्वांटम यांत्रिकी की सटीक परिभाषा के रूप में लिया।<ref>{{Cite journal |last=Mackey |first=George W. |author-link=George Mackey |title=क्वांटम मैकेनिक्स और हिल्बर्ट स्पेस|journal=[[The American Mathematical Monthly]] |year=1957 |volume=64 |number=8P2 |pages=45–57 |doi=10.1080/00029890.1957.11989120 |jstor=2308516}}</ref> मैके ने अनुमान लगाया कि इनमें से एक अभिधारणा निरर्थक थी, और इसके तुरंत पश्चात, एंड्रयू एम. ग्लीसन ने सिद्ध करना कर दिया कि यह वास्तव में अन्य अभिधारणाओं से अनुमान लगाने योग्य था।<ref name="gleason1957">{{cite journal|first=Andrew M.|author-link=Andrew M. Gleason|year = 1957|title = हिल्बर्ट स्थान के बंद उपस्थानों पर उपाय|url = http://www.iumj.indiana.edu/IUMJ/FULLTEXT/1957/6/56050|journal = [[Indiana University Mathematics Journal]]|volume = 6|issue=4|pages = 885–893|doi=10.1512/iumj.1957.6.56050|mr=0096113|last = Gleason|doi-access = free}}</ref><ref name="chernoff2009">{{Cite journal|last=Chernoff |first=Paul R. |author-link=Paul Chernoff |title=एंडी ग्लीसन और क्वांटम मैकेनिक्स|journal=[[Notices of the AMS]] |volume=56 |number=10 |pages=1253–1259 |url=https://www.ams.org/notices/200910/rtx091001236p.pdf}}</ref> ग्लीसन के प्रमेय ने एक तर्क प्रदान किया कि छिपे हुए चर सिद्धांतों का एक व्यापक वर्ग क्वांटम यांत्रिकी के साथ असंगत है।{{refn|group=note|A hidden-variable theory that is [[determinism|deterministic]] implies that the probability of a given outcome is ''always'' either 0 or 1. For example, a Stern–Gerlach measurement on a [[Spin (physics)|spin-1]] atom will report that the atom's angular momentum along the chosen axis is one of three possible values, which can be designated <math>-</math>, <math>0</math> and <math>+</math>. In a deterministic hidden-variable theory, there exists an underlying physical property that fixes the result found in the measurement. Conditional on the value of the underlying physical property, any given outcome (for example, a result of <math>+</math>) must be either impossible or guaranteed. But Gleason's theorem implies that there can be no such deterministic probability measure, because it proves that any probability measure must take the form of a mapping <math>u \to \langle \rho u, u \rangle</math> for some density operator <math>\rho</math>. This mapping is continuous on the [[unit sphere]] of the Hilbert space, and since this unit sphere is [[Connected (topology)|connected]], no continuous probability measure on it can be deterministic.<ref name="wilce2017">{{cite book|last=Wilce |first=A. |year=2017 |chapter-url=https://plato.stanford.edu/entries/qt-quantlog/ |chapter=Quantum Logic and Probability Theory |title=Stanford Encyclopedia of Philosophy |title-link=Stanford Encyclopedia of Philosophy|publisher=Metaphysics Research Lab, Stanford University }}</ref>{{rp|§1.3}}}} अधिक विशेष रूप से, ग्लीसन का प्रमेय छिपे हुए-परिवर्तनीय मॉडल को बहिष्कृत करता है जो गैर-प्रासंगिक हैं। क्वांटम यांत्रिकी के लिए किसी भी छिपे हुए-चर मॉडल में, ग्लीसन के प्रमेय के निहितार्थ से बचने के लिए, छिपे हुए चर सम्मलित होने चाहिए जो केवल मापी गई प्रणाली से संबंधित गुण नहीं हैं, बल्कि बाहरी संदर्भ पर भी निर्भर करते हैं जिसमें माप किया जाता है। इस प्रकार की निर्भरता को अधिकांशतः काल्पनिक या अवांछनीय के रूप में देखा जाता है; कुछ सेटिंग्स में, यह [[विशेष सापेक्षता]] के साथ असंगत है।<ref name="ND Mermin 1993-07" /><ref>{{Cite journal|last=Shimony |first=Abner |author-link=Abner Shimony |title=प्रासंगिक छिपे हुए परिवर्तनीय सिद्धांत और बेल की असमानताएँ|journal=[[British Journal for the Philosophy of Science]] |year=1984 |volume=35 |number=1 |pages=25–45 |doi=10.1093/bjps/35.1.25}}</ref> कोचेन-स्पेकर प्रमेय किरणों के एक विशिष्ट परिमित उपसमुच्चय का निर्माण करके इस कथन को परिष्कृत करता है, जिस पर ऐसी कोई संभाव्यता माप परिभाषित नहीं की जा सकती है।<ref name="ND Mermin 1993-07" /><ref>{{Cite journal|last=Peres|first=Asher|author-link=Asher Peres|date=1991|title=कोचेन-स्पेकर प्रमेय के दो सरल प्रमाण|url=http://stacks.iop.org/0305-4470/24/i=4/a=003|journal=[[Journal of Physics A: Mathematical and General]]|language=en|volume=24|issue=4|pages=L175–L178|doi=10.1088/0305-4470/24/4/003|issn=0305-4470|bibcode=1991JPhA...24L.175P}}</ref>
 
[[त्सुंग-दाओ ली]] 1960 में बेल के प्रमेय को प्राप्त करने के निकट आ गए। उन्होंने उन घटनाओं पर विचार किया जहां दो [[खाओ]] विपरीत दिशाओं में यात्रा करते हुए उत्पन्न हुए थे, और इस निष्कर्ष पर पहुंचे कि छिपे हुए चर उन सहसंबंधों की व्याख्या नहीं कर सकते हैं जो ऐसी स्थितियों में प्राप्त किए जा सकते हैं। चूंकि, इस तथ्य के कारण जटिलताएँ पैदा हुईं कि काओन का क्षय हो गया, और वह बेल-प्रकार की असमानता को कम करने के लिए इतनी दूर नहीं गए।{{refn|group=note|This was reported by [[Max Jammer]].<ref name="jammer1974"/>{{Rp|308}} Lee is best known for his prediction with [[Chen-Ning Yang]] of the violation of parity conservation, a prediction that earned them the [[Nobel Prize in Physics|Nobel Prize]] after it was confirmed by [[Chien-Shiung Wu]], who did not share in the Prize.}}


===बेल के प्रकाशन===
===बेल के प्रकाशन===
बेल ने अपने प्रमेय को तुलनात्मक रूप से अस्पष्ट पत्रिका में प्रकाशित करने का फैसला किया क्योंकि इसके लिए पृष्ठ शुल्क की आवश्यकता नहीं थी, वास्तव में उन लेखकों को भुगतान करना था जिन्होंने उस समय वहां प्रकाशित किया था। हालाँकि, पत्रिका ने लेखकों को वितरित करने के लिए लेखों की मुफ्त पुनर्मुद्रण प्रदान नहीं की थी, चूंकि, बेल को प्राप्त धनराशि प्रतियां खरीदने के लिए खर्च करनी पड़ी, जिसे वह अन्य भौतिकविदों को भेज सकते थे।<ref name=":0">{{Cite book|last=Whitaker|first=Andrew|url=https://books.google.com/books?id=3Rg9DAAAQBAJ&q=fizika|title=John Stewart Bell and Twentieth Century Physics: Vision and Integrity|date=2016|publisher=Oxford University Press|isbn=978-0-19-874299-9|language=en}}</ref> जबकि जर्नल में छपे लेखों में प्रकाशन का नाम केवल फिजिक्स के रूप में सूचीबद्ध था, कवर पर त्रिभाषी संस्करण फिजिक्स फिजिक Физика छपा था, यह दर्शाने के लिए कि यह अंग्रेजी, फ्रेंच और रूसी में लेख मुद्रित करेगा।<ref name=":1">{{cite book|last=Wick|first=David|chapter=Bell's Theorem |pages=92–100 |year=1995|title=The Infamous Boundary: Seven Decades of Heresy in Quantum Physics |publisher=Springer |location=New York|doi=10.1007/978-1-4612-4030-3_11|isbn=978-0-387-94726-6}}</ref>{{Rp|92–100, 289}}
बेल ने अपने प्रमेय को समानतात्मक रूप से अस्पष्ट पत्रिका में प्रकाशित करने का निर्णय किया क्योंकि इसके लिए पृष्ठ शुल्क की आवश्यकता नहीं थी, वास्तव में उन लेखकों को भुगतान करना था जिन्होंने उस समय वहां प्रकाशित किया था। चूंकि, पत्रिका ने लेखकों को वितरित करने के लिए लेखों की मुफ्त पुनर्मुद्रण प्रदान नहीं की थी, चूंकि, बेल को प्राप्त धनराशि प्रतियां खरीदने के लिए खर्च करनी पड़ी, जिसे वह अन्य भौतिकविदों को भेज सकते थे।<ref name=":0">{{Cite book|last=Whitaker|first=Andrew|url=https://books.google.com/books?id=3Rg9DAAAQBAJ&q=fizika|title=John Stewart Bell and Twentieth Century Physics: Vision and Integrity|date=2016|publisher=Oxford University Press|isbn=978-0-19-874299-9|language=en}}</ref> जबकि जर्नल में छपे लेखों में प्रकाशन का नाम केवल भौतिक विज्ञान के रूप में सूचीबद्ध था, कवर पर त्रिभाषी संस्करण फिजिक्स भौतिक विज्ञान छपा था, यह दर्शाने के लिए कि यह अंग्रेजी, फ्रेंच और रूसी में लेख मुद्रित करेगा।<ref name=":1">{{cite book|last=Wick|first=David|chapter=Bell's Theorem |pages=92–100 |year=1995|title=The Infamous Boundary: Seven Decades of Heresy in Quantum Physics |publisher=Springer |location=New York|doi=10.1007/978-1-4612-4030-3_11|isbn=978-0-387-94726-6}}</ref>{{Rp|92–100, 289}}


अपने 1964 के परिणाम को सिद्ध करना करने से पहले, बेल ने कोचेन-स्पेकर प्रमेय के समतुल्य परिणाम भी सिद्ध करना किया (इसलिए पश्चात वाले को कभी-कभी बेल-कोचेन-स्पेकर या बेल-केएस प्रमेय के रूप में भी जाना जाता है)। हालाँकि, इस प्रमेय के प्रकाशन में अनजाने में 1966 तक देरी हो गई।<ref name="ND Mermin 1993-07" /><ref name="Bell1966">{{cite journal | last1 = Bell | first1 = J. S. | title = क्वांटम यांत्रिकी में छिपे हुए चर की समस्या पर| journal = Reviews of Modern Physics | volume = 38 | issue = 3 | pages = 447–452 | year = 1966 | doi = 10.1103/revmodphys.38.447 |bibcode = 1966RvMP...38..447B | osti = 1444158 }}</ref> उस पेपर में, बेल ने तर्क दिया कि क्योंकि छिपे हुए चर के संदर्भ में क्वांटम घटना की व्याख्या के लिए गैर-स्थानीयता की आवश्यकता होगी, ईपीआर विरोधाभास को उस तरीके से हल किया गया है जो आइंस्टीन को सबसे कम पसंद आया होगा।<ref name="Bell1966"/>
अपने 1964 के परिणाम को सिद्ध करना करने से पहले, बेल ने कोचेन-स्पेकर प्रमेय के समतुल्य परिणाम भी सिद्ध करना किया (इसलिए पश्चात वाले को कभी-कभी बेल-कोचेन-स्पेकर या बेल-केएस प्रमेय के रूप में भी जाना जाता है)। चूंकि, इस प्रमेय के प्रकाशन में अनजाने में 1966 तक देरी हो गई।<ref name="ND Mermin 1993-07" /><ref name="Bell1966">{{cite journal | last1 = Bell | first1 = J. S. | title = क्वांटम यांत्रिकी में छिपे हुए चर की समस्या पर| journal = Reviews of Modern Physics | volume = 38 | issue = 3 | pages = 447–452 | year = 1966 | doi = 10.1103/revmodphys.38.447 |bibcode = 1966RvMP...38..447B | osti = 1444158 }}</ref> उस पेपर में, बेल ने तर्क दिया कि क्योंकि छिपे हुए चर के संदर्भ में क्वांटम घटना की व्याख्या के लिए गैर-स्थानीयता की आवश्यकता होगी, ईपीआर विरोधाभास को उस तरीके से हल किया गया है जो आइंस्टीन को सबसे कम पसंद आया होगा।<ref name="Bell1966"/>
==प्रयोग==
==प्रयोग==
[[Image:Bell-test-photon-analyer.png|450px|thumb|right|दो-चैनल बेल परीक्षण की योजना<br />स्रोत एस फोटॉन के जोड़े का उत्पादन करता है, जो विपरीत दिशाओं में भेजे जाते हैं। प्रत्येक फोटॉन को दो-चैनल ध्रुवीकरणकर्ता का सामना करना पड़ता है जिसका अभिविन्यास (ए या बी) प्रयोगकर्ता द्वारा निर्धारित किया जा सकता है। प्रत्येक चैनल से उभरते संकेतों का पता लगाया जाता है और संयोग मॉनिटर द्वारा चार प्रकार (++, −−, +− और −+) के संयोगों की गणना की जाती है।]]
[[Image:Bell-test-photon-analyer.png|450px|thumb|right|दो-चैनल बेल परीक्षण की योजना<br />स्रोत एस फोटॉन के जोड़े का उत्पादन करता है, जो विपरीत दिशाओं में भेजे जाते हैं। प्रत्येक फोटॉन को दो-चैनल ध्रुवीकरणकर्ता का सामना करना पड़ता है जिसका अभिविन्यास (ए या बी) प्रयोगकर्ता द्वारा निर्धारित किया जा सकता है। प्रत्येक चैनल से उभरते संकेतों का पता लगाया जाता है और संयोग मॉनिटर द्वारा चार प्रकार (++, −−, +− और −+) के संयोगों की गणना की जाती है।]]
{{main|बेल परीक्षण}}
{{main|बेल परीक्षण}}


1967 में, असामान्य शीर्षक फिजिक्स फिजिक फ़ैज़िका ने जॉन क्लॉसर का ध्यान आकर्षित किया, जिन्होंने तब बेल के पेपर की खोज की और इस बात पर विचार करना शुरू किया कि प्रयोगशाला में बेल परीक्षण कैसे किया जाए।<ref>{{Cite web|url=https://www.scientificamerican.com/article/how-the-hippies-saved-physics-science-counterculture-and-quantum-revival-excerpt/|title=How the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival [Excerpt]|last=Kaiser|first=David|author-link=David Kaiser|date=2012-01-30|website=[[Scientific American]]|language=en|access-date=2020-02-11}}</ref> क्लॉसर और स्टुअर्ट फ़्रीडमैन 1972 में बेल परीक्षण करने के लिए आगे बढ़े।<ref>{{cite journal|last1=Freedman|first1=S. J.|author-link=Stuart Freedman|last2=Clauser|first2=J. F.|author-link2=John Clauser|year=1972|title=स्थानीय छुपे-चर सिद्धांतों का प्रायोगिक परीक्षण|url=https://www.rpi.edu/dept/phys/Courses/PHYS4100/S06/BellsInequ1972.pdf|journal=[[Physical Review Letters]]|volume=28|issue=938|pages=938–941|bibcode=1972PhRvL..28..938F|doi=10.1103/PhysRevLett.28.938}}</ref><ref>{{cite thesis|url=https://escholarship.org/content/qt2f18n5nk/qt2f18n5nk.pdf?t=p2au19 |title=स्थानीय छुपे-चर सिद्धांतों का प्रायोगिक परीक्षण|first=Stuart Jay |last=Freedman |date=1972-05-05 |type=PhD |publisher=University of California, Berkeley}}</ref> यह केवल एक सीमित परीक्षण था, क्योंकि डिटेक्टर सेटिंग्स का चुनाव फोटॉनों के स्रोत छोड़ने से पहले किया गया था। 1982 में, [[एलेन पहलू]] और सहयोगियों ने इस सीमा को दूर करने के लिए एस्पेक्ट का प्रयोग किया।<ref>{{cite journal |first1=Alain |last1=Aspect |first2=Jean |last2=Dalibard |first3=Gérard |last3=Roger |year=1982 |title=समय-परिवर्तनशील विश्लेषकों का उपयोग करके बेल की असमानताओं का प्रायोगिक परीक्षण|journal=[[Physical Review Letters]] |volume=49 |issue=25 |pages=1804–7 |doi=10.1103/PhysRevLett.49.1804|bibcode = 1982PhRvL..49.1804A|doi-access=free }}</ref> इससे उत्तरोत्तर अधिक कठोर बेल परीक्षणों का चलन शुरू हुआ। GHZ विचार प्रयोग को 2000 में फोटोन के उलझे हुए त्रिक का उपयोग करके व्यवहार में क्रियान्वित किया गया था।<ref name="GHZ2000">{{cite journal |first1=Jian-Wei |last1=Pan |first2=D. |last2=Bouwmeester |first3=M. |last3=Daniell |first4=H. |last4=Weinfurter |first5=A. |last5=Zeilinger |year=2000 |title=तीन-फोटॉन GHZ उलझाव में क्वांटम नॉनलोकैलिटी का प्रायोगिक परीक्षण|journal=[[Nature (journal)|Nature]] |volume=403 |issue=6769 |pages=515–519 |bibcode=2000Natur.403..515P |doi=10.1038/35000514 |pmid=10676953|s2cid=4309261 }}</ref> 2002 तक, स्नातक प्रयोगशाला पाठ्यक्रमों में सीएचएसएच असमानता का परीक्षण संभव था।<ref>{{cite journal|title=स्नातक प्रयोगशाला में उलझे हुए फोटॉन, गैर-स्थानीयता और बेल असमानताएँ|first1=Dietrich |last1=Dehlinger |first2=M. W. |last2=Mitchell |journal=[[American Journal of Physics]] |volume=70 |pages=903–910 |year=2002 |issue=9 |doi=10.1119/1.1498860|arxiv=quant-ph/0205171 |bibcode=2002AmJPh..70..903D |s2cid=49487096 }}</ref>
1967 में, असामान्य शीर्षक फिजिक्स फिजिक फ़ैज़िका ने जॉन क्लॉसर का ध्यान आकर्षित किया, जिन्होंने तब बेल के पेपर की अन्वेषण की और इस बात पर विचार करना शुरू किया कि प्रयोगशाला में बेल परीक्षण कैसे किया जाए।<ref>{{Cite web|url=https://www.scientificamerican.com/article/how-the-hippies-saved-physics-science-counterculture-and-quantum-revival-excerpt/|title=How the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival [Excerpt]|last=Kaiser|first=David|author-link=David Kaiser|date=2012-01-30|website=[[Scientific American]]|language=en|access-date=2020-02-11}}</ref> क्लॉसर और स्टुअर्ट फ़्रीडमैन 1972 में बेल परीक्षण करने के लिए आगे बढ़े।<ref>{{cite journal|last1=Freedman|first1=S. J.|author-link=Stuart Freedman|last2=Clauser|first2=J. F.|author-link2=John Clauser|year=1972|title=स्थानीय छुपे-चर सिद्धांतों का प्रायोगिक परीक्षण|url=https://www.rpi.edu/dept/phys/Courses/PHYS4100/S06/BellsInequ1972.pdf|journal=[[Physical Review Letters]]|volume=28|issue=938|pages=938–941|bibcode=1972PhRvL..28..938F|doi=10.1103/PhysRevLett.28.938}}</ref><ref>{{cite thesis|url=https://escholarship.org/content/qt2f18n5nk/qt2f18n5nk.pdf?t=p2au19 |title=स्थानीय छुपे-चर सिद्धांतों का प्रायोगिक परीक्षण|first=Stuart Jay |last=Freedman |date=1972-05-05 |type=PhD |publisher=University of California, Berkeley}}</ref> यह केवल एक सीमित परीक्षण था, क्योंकि संसूचक सेटिंग्स का चुनाव फोटॉनों के स्रोत छोड़ने से पहले किया गया था। 1982 में, [[एलेन पहलू]] और सहयोगियों ने इस सीमा को दूर करने के लिए एस्पेक्ट का प्रयोग किया।<ref>{{cite journal |first1=Alain |last1=Aspect |first2=Jean |last2=Dalibard |first3=Gérard |last3=Roger |year=1982 |title=समय-परिवर्तनशील विश्लेषकों का उपयोग करके बेल की असमानताओं का प्रायोगिक परीक्षण|journal=[[Physical Review Letters]] |volume=49 |issue=25 |pages=1804–7 |doi=10.1103/PhysRevLett.49.1804|bibcode = 1982PhRvL..49.1804A|doi-access=free }}</ref> इससे उत्तरोत्तर अधिक कठोर बेल परीक्षणों का चलन शुरू हुआ। GHZ विचार प्रयोग को 2000 में फोटोन के उलझे हुए त्रिक का उपयोग करके व्यवहार में क्रियान्वित किया गया था।<ref name="GHZ2000">{{cite journal |first1=Jian-Wei |last1=Pan |first2=D. |last2=Bouwmeester |first3=M. |last3=Daniell |first4=H. |last4=Weinfurter |first5=A. |last5=Zeilinger |year=2000 |title=तीन-फोटॉन GHZ उलझाव में क्वांटम नॉनलोकैलिटी का प्रायोगिक परीक्षण|journal=[[Nature (journal)|Nature]] |volume=403 |issue=6769 |pages=515–519 |bibcode=2000Natur.403..515P |doi=10.1038/35000514 |pmid=10676953|s2cid=4309261 }}</ref> 2002 तक, स्नातक प्रयोगशाला पाठ्यक्रमों में सीएचएसएच असमानता का परीक्षण संभव था।<ref>{{cite journal|title=स्नातक प्रयोगशाला में उलझे हुए फोटॉन, गैर-स्थानीयता और बेल असमानताएँ|first1=Dietrich |last1=Dehlinger |first2=M. W. |last2=Mitchell |journal=[[American Journal of Physics]] |volume=70 |pages=903–910 |year=2002 |issue=9 |doi=10.1119/1.1498860|arxiv=quant-ph/0205171 |bibcode=2002AmJPh..70..903D |s2cid=49487096 }}</ref>
 
बेल परीक्षणों में, प्रायोगिक डिज़ाइन या सेट-अप की समस्याएं हो सकती हैं जो प्रयोगात्मक निष्कर्षों की वैधता को प्रभावित करती हैं। इन समस्याओं को अधिकांशतः अल्पता कहा जाता है। प्रयोग का उद्देश्य यह परीक्षण करना है कि क्या प्रकृति का वर्णन स्थानीय छिपे-चर सिद्धांत द्वारा किया जा सकता है, जो क्वांटम यांत्रिकी की भविष्यवाणियों का खंडन करेगा।


बेल परीक्षणों में, प्रायोगिक डिज़ाइन या सेट-अप की समस्याएं हो सकती हैं जो प्रयोगात्मक निष्कर्षों की वैधता को प्रभावित करती हैं। इन समस्याओं को अधिकांशतः खामियाँ कहा जाता है। प्रयोग का उद्देश्य यह परीक्षण करना है कि क्या प्रकृति का वर्णन स्थानीय छिपे-चर सिद्धांत द्वारा किया जा सकता है, जो क्वांटम यांत्रिकी की भविष्यवाणियों का खंडन करेगा।
वास्तविक प्रयोगों में सबसे प्रचलित त्रुटियां पता लगाने और स्थानीयता संबंधी त्रुटियां हैं।<ref name="larsson14">{{cite journal |last1=Larsson |first1=Jan-Åke |title=स्थानीय यथार्थवाद के बेल असमानता परीक्षणों में खामियाँ|journal=Journal of Physics A: Mathematical and Theoretical |date=2014 |volume=47 |issue=42 |page=424003 |doi=10.1088/1751-8113/47/42/424003 |arxiv=1407.0363 |bibcode=2014JPhA...47P4003L |s2cid=40332044 }}</ref> जब प्रयोग में कणों (सामान्यतः फोटॉन) का एक छोटा सा अंश पाया जाता है, तो पता लगाने का रास्ता विवृत जाता है, जिससे यह मानकर स्थानीय छिपे हुए चर के साथ डेटा की व्याख्या करना संभव हो जाता है कि पता लगाए गए कण एक गैर-प्रतिनिधि नमूना हैं। स्थानीयता की अल्पता तब विवृत होती है जब स्पेसटाइम अंतराल के साथ पता नहीं लगाया जाता है, जिससे एक माप के परिणाम के लिए सापेक्षता का खंडन किए बिना दूसरे को प्रभावित करना संभव हो जाता है। कुछ प्रयोगों में अतिरिक्त दोष हो सकते हैं जो बेल परीक्षण उल्लंघनों की स्थानीय-छिपी-परिवर्तनीय व्याख्या को संभव बनाते हैं।<ref>{{cite journal|first1=I. |last1=Gerhardt |first2=Q. |last2=Liu |first3=A. |last3=Lamas-Linares |first4=J. |last4=Skaar |first5=V. |last5=Scarani |first6=V. |last6=Makarov |first7=C. |last7=Kurtsiefer |display-authors=5|year=2011 |title=प्रायोगिक तौर पर बेल की असमानताओं का उल्लंघन करना|journal=[[Physical Review Letters]] |volume=107 |issue=17 |page=170404 |arxiv=1106.3224 |doi=10.1103/PhysRevLett.107.170404 |bibcode=2011PhRvL.107q0404G |pmid=22107491|s2cid=16306493 }}</ref>


वास्तविक प्रयोगों में सबसे प्रचलित खामियां पता लगाने और स्थानीयता संबंधी खामियां हैं।<ref name="larsson14">{{cite journal |last1=Larsson |first1=Jan-Åke |title=स्थानीय यथार्थवाद के बेल असमानता परीक्षणों में खामियाँ|journal=Journal of Physics A: Mathematical and Theoretical |date=2014 |volume=47 |issue=42 |page=424003 |doi=10.1088/1751-8113/47/42/424003 |arxiv=1407.0363 |bibcode=2014JPhA...47P4003L |s2cid=40332044 }}</ref> जब प्रयोग में कणों (सामान्यतः फोटॉन) का एक छोटा सा अंश पाया जाता है, तो पता लगाने का रास्ता खुल जाता है, जिससे यह मानकर स्थानीय छिपे हुए चर के साथ डेटा की व्याख्या करना संभव हो जाता है कि पता लगाए गए कण एक गैर-प्रतिनिधि नमूना हैं। स्थानीयता की खामी तब खुलती है जब स्पेसटाइम#स्पेसटाइम अंतराल के साथ पता नहीं लगाया जाता है, जिससे एक माप के परिणाम के लिए सापेक्षता का खंडन किए बिना दूसरे को प्रभावित करना संभव हो जाता है। कुछ प्रयोगों में अतिरिक्त दोष हो सकते हैं जो बेल परीक्षण उल्लंघनों की स्थानीय-छिपी-परिवर्तनीय व्याख्या को संभव बनाते हैं।<ref>{{cite journal|first1=I. |last1=Gerhardt |first2=Q. |last2=Liu |first3=A. |last3=Lamas-Linares |first4=J. |last4=Skaar |first5=V. |last5=Scarani |first6=V. |last6=Makarov |first7=C. |last7=Kurtsiefer |display-authors=5|year=2011 |title=प्रायोगिक तौर पर बेल की असमानताओं का उल्लंघन करना|journal=[[Physical Review Letters]] |volume=107 |issue=17 |page=170404 |arxiv=1106.3224 |doi=10.1103/PhysRevLett.107.170404 |bibcode=2011PhRvL.107q0404G |pmid=22107491|s2cid=16306493 }}</ref>
चूंकि स्थानीयता और पता लगाने की दोनों अल्पतायों को अलग-अलग प्रयोगों में संवृत कर दिया गया था, लेकिन एक ही प्रयोग में दोनों को एक साथ संवृत करना एक लंबे समय से चली आ रही चुनौती थी। यह अंततः 2015 में तीन प्रयोगों में प्राप्त किया गया।<ref>{{cite journal|title=क्वांटम 'डरावनापन' अब तक की सबसे कठिन परीक्षा से गुजरा है|journal=[[Nature News]] |date=27 August 2015|first=Zeeya|last=Merali|volume=525 |issue=7567|pages=14–15|doi=10.1038/nature.2015.18255 |pmid=26333448|bibcode=2015Natur.525...14M |s2cid=4409566|doi-access=free}}</ref><ref name="NYT-20151021">{{cite news |last=Markoff |first=Jack |title=क्षमा करें, आइंस्टीन। क्वांटम अध्ययन से पता चलता है कि 'डरावनी कार्रवाई' वास्तविक है।|url=https://www.nytimes.com/2015/10/22/science/quantum-theory-experiment-said-to-prove-spooky-interactions.html |date=21 October 2015 |work=[[New York Times]] |accessdate=21 October 2015 }}</ref><ref name="NTR-20151021">{{cite journal |author=Hensen, B. |title=Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres |date=21 October 2015 |journal=[[Nature (journal)|Nature]] |doi=10.1038/nature15759 |display-authors=etal |volume=526 |issue=7575 |pages=682–686 |bibcode=2015Natur.526..682H |pmid=26503041|arxiv=1508.05949 |s2cid=205246446 }}</ref><ref name="PRL115-250402">{{cite journal |last=Shalm |first=L. K. |title=स्थानीय यथार्थवाद का सशक्त बचाव-मुक्त परीक्षण|date=16 December 2015|journal=[[Physical Review Letters]] |display-authors=etal |volume=115|issue=25|page= 250402| doi=10.1103/PhysRevLett.115.250402 |bibcode=2015PhRvL.115y0402S |pmid=26722906|pmc=5815856|arxiv=1511.03189}}</ref><ref name="PRL115-250401">{{cite journal |last=Giustina |first=M. |title=उलझे हुए फोटोन के साथ बेल्स प्रमेय का महत्वपूर्ण-खामियों से मुक्त परीक्षण|date=16 December 2015|journal=[[Physical Review Letters]] |display-authors=etal |volume=115|issue=25|page= 250401| doi=10.1103/PhysRevLett.115.250401 |pmid=26722905|arxiv=1511.03190|bibcode=2015PhRvL.115y0401G|s2cid=13789503}}</ref>


हालाँकि स्थानीयता और पता लगाने की दोनों खामियों को अलग-अलग प्रयोगों में संवृत कर दिया गया था, लेकिन एक ही प्रयोग में दोनों को एक साथ संवृत करना एक लंबे समय से चली आ रही चुनौती थी। यह अंततः 2015 में तीन प्रयोगों में हासिल किया गया।<ref>{{cite journal|title=क्वांटम 'डरावनापन' अब तक की सबसे कठिन परीक्षा से गुजरा है|journal=[[Nature News]] |date=27 August 2015|first=Zeeya|last=Merali|volume=525 |issue=7567|pages=14–15|doi=10.1038/nature.2015.18255 |pmid=26333448|bibcode=2015Natur.525...14M |s2cid=4409566|doi-access=free}}</ref><ref name="NYT-20151021">{{cite news |last=Markoff |first=Jack |title=क्षमा करें, आइंस्टीन। क्वांटम अध्ययन से पता चलता है कि 'डरावनी कार्रवाई' वास्तविक है।|url=https://www.nytimes.com/2015/10/22/science/quantum-theory-experiment-said-to-prove-spooky-interactions.html |date=21 October 2015 |work=[[New York Times]] |accessdate=21 October 2015 }}</ref><ref name="NTR-20151021">{{cite journal |author=Hensen, B. |title=Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres |date=21 October 2015 |journal=[[Nature (journal)|Nature]] |doi=10.1038/nature15759 |display-authors=etal |volume=526 |issue=7575 |pages=682–686 |bibcode=2015Natur.526..682H |pmid=26503041|arxiv=1508.05949 |s2cid=205246446 }}</ref><ref name="PRL115-250402">{{cite journal |last=Shalm |first=L. K. |title=स्थानीय यथार्थवाद का सशक्त बचाव-मुक्त परीक्षण|date=16 December 2015|journal=[[Physical Review Letters]] |display-authors=etal |volume=115|issue=25|page= 250402| doi=10.1103/PhysRevLett.115.250402 |bibcode=2015PhRvL.115y0402S |pmid=26722906|pmc=5815856|arxiv=1511.03189}}</ref><ref name="PRL115-250401">{{cite journal |last=Giustina |first=M. |title=उलझे हुए फोटोन के साथ बेल्स प्रमेय का महत्वपूर्ण-खामियों से मुक्त परीक्षण|date=16 December 2015|journal=[[Physical Review Letters]] |display-authors=etal |volume=115|issue=25|page= 250401| doi=10.1103/PhysRevLett.115.250401 |pmid=26722905|arxiv=1511.03190|bibcode=2015PhRvL.115y0401G|s2cid=13789503}}</ref>
इन परिणामों के बारे में, एलेन एस्पेक्ट लिखते हैं कि कोई भी प्रयोग... पूरी तरह से त्रुटि से मुक्त नहीं कहा जा सकता है, लेकिन उनका कहना है कि प्रयोग अंतिम संदेह को दूर करते हैं कि हमें स्थानीय छिपे हुए चर को त्याग देना चाहिए, और शेष अल्पतायों के उदाहरणों को दूर बताया गया है भौतिकी में तर्क करने का सामान्य उपाए विदेशी और विदेशी है।<ref>{{cite journal |last=Aspect |first=Alain |date=December 16, 2015 |title=आइंस्टीन और बोह्र की क्वांटम बहस पर दरवाजा बंद करना|journal=[[Physics (magazine)|Physics]] |volume=8 |pages=123 |bibcode=2015PhyOJ...8..123A |doi=10.1103/Physics.8.123 |doi-access=free}}</ref>


इन परिणामों के बारे में, एलेन एस्पेक्ट लिखते हैं कि कोई भी प्रयोग... पूरी तरह से खामियों से मुक्त नहीं कहा जा सकता है, लेकिन उनका कहना है कि प्रयोग अंतिम संदेह को दूर करते हैं कि हमें स्थानीय छिपे हुए चर को त्याग देना चाहिए, और शेष खामियों के उदाहरणों को दूर बताया गया है भौतिकी में तर्क करने का सामान्य तरीका विदेशी और विदेशी है।<ref>{{cite journal |last=Aspect |first=Alain |date=December 16, 2015 |title=आइंस्टीन और बोह्र की क्वांटम बहस पर दरवाजा बंद करना|journal=[[Physics (magazine)|Physics]] |volume=8 |pages=123 |bibcode=2015PhyOJ...8..123A |doi=10.1103/Physics.8.123 |doi-access=free}}</ref>
बेल असमानताओं के उल्लंघन को प्रयोगात्मक रूप से मान्य करने के इन प्रयासों के परिणामस्वरूप पश्चात में क्लॉसर, एस्पेक्ट और एंटोन ज़िलिंगर को भौतिकी में 2022 नोबेल पुरस्कार से सम्मानित किया गया।<ref>{{Cite news |last1=Ahlander |first1=Johan |last2=Burger |first2=Ludwig |last3=Pollard |first3=Niklas |date=2022-10-04 |title=भौतिकी का नोबेल पुरस्कार 'डरावना' क्वांटम विज्ञान के विशेषज्ञों को जाता है|language=en |work=Reuters |url=https://www.reuters.com/world/aspect-clauser-zeilinger-win-2022-nobel-prize-physics-2022-10-04/ |access-date=2022-10-04}}</ref>
बेल असमानताओं के उल्लंघन को प्रयोगात्मक रूप से मान्य करने के इन प्रयासों के परिणामस्वरूप पश्चात में क्लॉसर, एस्पेक्ट और एंटोन ज़िलिंगर को भौतिकी में 2022 नोबेल पुरस्कार से सम्मानित किया गया।<ref>{{Cite news |last1=Ahlander |first1=Johan |last2=Burger |first2=Ludwig |last3=Pollard |first3=Niklas |date=2022-10-04 |title=भौतिकी का नोबेल पुरस्कार 'डरावना' क्वांटम विज्ञान के विशेषज्ञों को जाता है|language=en |work=Reuters |url=https://www.reuters.com/world/aspect-clauser-zeilinger-win-2022-nobel-prize-physics-2022-10-04/ |access-date=2022-10-04}}</ref>
== व्याख्याएँ ==
== व्याख्याएँ ==
Line 151: Line 155:
=== [[कोपेनहेगन व्याख्या]] ===
=== [[कोपेनहेगन व्याख्या]] ===


कोपेनहेगन व्याख्या क्वांटम यांत्रिकी के अर्थ के बारे में विचारों का एक संग्रह है जिसका श्रेय मुख्य रूप से [[नील्स बोह्र]] और [[वर्नर हाइजेनबर्ग]] को दिया जाता है। यह क्वांटम यांत्रिकी की कई प्रस्तावित व्याख्याओं में से सबसे पुरानी व्याख्याओं में से एक है, क्योंकि इसकी विशेषताएं 1925-1927 के समय क्वांटम यांत्रिकी के विकास की हैं, और यह सबसे अधिक सिखाई जाने वाली व्याख्याओं में से एक बनी हुई है।<ref name="Siddiqui2017">{{cite journal |title=How diverse are physics instructors' attitudes and approaches to teaching undergraduate level quantum mechanics?|year=2017|last1=Siddiqui|first1= Shabnam|last2=Singh|first2=Chandralekha|journal=European Journal of Physics|volume=38 |issue=3 |pages=035703|doi=10.1088/1361-6404/aa6131|bibcode=2017EJPh...38c5703S|doi-access=free}}</ref> कोपेनहेगन व्याख्या क्या है इसका कोई निश्चित ऐतिहासिक विवरण नहीं है। विशेष रूप से, बोह्र और हाइजेनबर्ग के विचारों के बीच मौलिक असहमति थी।<ref name="Faye-Stanford">{{Cite book|last=Faye|first=Jan|title=[[Stanford Encyclopedia of Philosophy]]|publisher=Metaphysics Research Lab, Stanford University|year=2019|editor-last=Zalta|editor-first=Edward N.|chapter=Copenhagen Interpretation of Quantum Mechanics|author-link=Jan Faye|chapter-url=https://plato.stanford.edu/entries/qm-copenhagen/|access-date=2021-09-16|archive-date=2019-04-29|archive-url=https://web.archive.org/web/20190429122253/https://plato.stanford.edu/entries/qm-copenhagen/|url-status=live}}</ref><ref name="camilleri2015">{{cite journal|first1=K. |last1=Camilleri |first2=M. |last2=Schlosshauer |title=Niels Bohr as Philosopher of Experiment: Does Decoherence Theory Challenge Bohr's Doctrine of Classical Concepts? |arxiv=1502.06547 |journal=[[Studies in History and Philosophy of Modern Physics]] |volume=49 |pages=73–83 |year=2015 |doi=10.1016/j.shpsb.2015.01.005|bibcode=2015SHPMP..49...73C |s2cid=27697360 }}</ref><ref>{{cite journal  |first=Asher |last=Peres |author-link=Asher Peres |title=पॉपर का प्रयोग और कोपेनहेगन व्याख्या|year=2002 |volume=33 |page=23 |journal=[[Studies in History and Philosophy of Modern Physics]] |arxiv=quant-ph/9910078|bibcode=1999quant.ph.10078P |doi=10.1016/S1355-2198(01)00034-X }}</ref> कोपेनहेगन संग्रह के भाग के रूप में सामान्यतः स्वीकार किए गए कुछ बुनियादी सिद्धांतों में यह विचार सम्मलित है कि क्वांटम यांत्रिकी आंतरिक रूप से अनिश्चित है, जिसमें बोर्न नियम का उपयोग करके संभावनाओं की गणना की जाती है,<ref>{{cite journal|last1=Bohr|first1=N.|year=1928|title=क्वांटम अभिधारणा और परमाणु सिद्धांत का हालिया विकास|journal=Nature|volume=121|issue=3050|pages=580–590|bibcode=1928Natur.121..580B|doi=10.1038/121580a0|doi-access=free}}, p. 586: "In this connexion [Born] succeeded in obtaining a statistical interpretation of the wave functions, allowing a calculation of the probability of the individual transition processes required by the quantum postulate."</ref> और [[पूरकता (भौतिकी)]]: कुछ गुणों को एक ही समय में एक ही प्रणाली के लिए संयुक्त रूप से परिभाषित नहीं किया जा सकता है। किसी प्रणाली की विशिष्ट संपत्ति के बारे में बात करने के लिए, उस प्रणाली को एक विशिष्ट प्रयोगशाला व्यवस्था के संदर्भ में माना जाना चाहिए। परस्पर अनन्य प्रयोगशाला व्यवस्थाओं के अनुरूप अवलोकन योग्य मात्राओं की एक साथ भविष्यवाणी नहीं की जा सकती है, लेकिन किसी प्रणाली को चिह्नित करने के लिए ऐसे कई परस्पर अनन्य प्रयोगों पर विचार करना आवश्यक है।<ref name="Faye-Stanford"/>बोह्र ने स्वयं यह तर्क देने के लिए पूरकता का उपयोग किया कि ईपीआर विरोधाभास भ्रामक था, क्योंकि स्थिति और गति के माप पूरक हैं, इसलिए एक को मापने का विकल्प चुनने से दूसरे को मापने की संभावना समाप्त हो जाती है। परिणामस्वरूप, उन्होंने तर्क दिया, प्रयोगशाला उपकरण की एक व्यवस्था के संबंध में निकाले गए तथ्य को दूसरे के माध्यम से निकाले गए तथ्य के साथ नहीं जोड़ा जा सकता है, और इसलिए, दूसरे कण के लिए पूर्व निर्धारित स्थिति और गति मूल्यों का अनुमान मान्य नहीं था।<ref name="jammer1974"/>{{rp|194–197}} बोह्र ने निष्कर्ष निकाला कि ईपीआर के तर्क उनके निष्कर्ष को उचित नहीं ठहराते हैं कि क्वांटम विवरण अनिवार्य रूप से अधूरा है।<ref name='Bohr1935'>{{cite journal |title=Can Quantum-Mechanical Description of Physical Reality be Considered Complete? |date=1935-10-13 |first=N. |last=Bohr |journal=[[Physical Review]] |volume=48 |issue=8 |pages=696–702 |doi=10.1103/PhysRev.48.696 |bibcode=1935PhRv...48..696B |url=https://cds.cern.ch/record/1060284/files/PhysRev.48.696.pdf |doi-access=free |access-date=2021-09-16 |archive-date=2020-01-09 |archive-url=https://web.archive.org/web/20200109203609/https://cds.cern.ch/record/1060284/files/PhysRev.48.696.pdf |url-status=live }}</ref>
कोपेनहेगन व्याख्या क्वांटम यांत्रिकी के अर्थ के बारे में विचारों का एक संग्रह है जिसका श्रेय मुख्य रूप से [[नील्स बोह्र]] और [[वर्नर हाइजेनबर्ग]] को दिया जाता है। यह क्वांटम यांत्रिकी की कई प्रस्तावित व्याख्याओं में से सबसे पुरानी व्याख्याओं में से एक है, क्योंकि इसकी विशेषताएं 1925-1927 के समय क्वांटम यांत्रिकी के विकास की हैं, और यह सबसे अधिक सिखाई जाने वाली व्याख्याओं में से एक बनी हुई है।<ref name="Siddiqui2017">{{cite journal |title=How diverse are physics instructors' attitudes and approaches to teaching undergraduate level quantum mechanics?|year=2017|last1=Siddiqui|first1= Shabnam|last2=Singh|first2=Chandralekha|journal=European Journal of Physics|volume=38 |issue=3 |pages=035703|doi=10.1088/1361-6404/aa6131|bibcode=2017EJPh...38c5703S|doi-access=free}}</ref> कोपेनहेगन व्याख्या क्या है इसका कोई निश्चित ऐतिहासिक विवरण नहीं है। विशेष रूप से, बोह्र और हाइजेनबर्ग के विचारों के बीच मौलिक असहमति थी।<ref name="Faye-Stanford">{{Cite book|last=Faye|first=Jan|title=[[Stanford Encyclopedia of Philosophy]]|publisher=Metaphysics Research Lab, Stanford University|year=2019|editor-last=Zalta|editor-first=Edward N.|chapter=Copenhagen Interpretation of Quantum Mechanics|author-link=Jan Faye|chapter-url=https://plato.stanford.edu/entries/qm-copenhagen/|access-date=2021-09-16|archive-date=2019-04-29|archive-url=https://web.archive.org/web/20190429122253/https://plato.stanford.edu/entries/qm-copenhagen/|url-status=live}}</ref><ref name="camilleri2015">{{cite journal|first1=K. |last1=Camilleri |first2=M. |last2=Schlosshauer |title=Niels Bohr as Philosopher of Experiment: Does Decoherence Theory Challenge Bohr's Doctrine of Classical Concepts? |arxiv=1502.06547 |journal=[[Studies in History and Philosophy of Modern Physics]] |volume=49 |pages=73–83 |year=2015 |doi=10.1016/j.shpsb.2015.01.005|bibcode=2015SHPMP..49...73C |s2cid=27697360 }}</ref><ref>{{cite journal  |first=Asher |last=Peres |author-link=Asher Peres |title=पॉपर का प्रयोग और कोपेनहेगन व्याख्या|year=2002 |volume=33 |page=23 |journal=[[Studies in History and Philosophy of Modern Physics]] |arxiv=quant-ph/9910078|bibcode=1999quant.ph.10078P |doi=10.1016/S1355-2198(01)00034-X }}</ref> कोपेनहेगन संग्रह के भाग के रूप में सामान्यतः स्वीकार किए गए कुछ मूलभूत सिद्धांतों में यह विचार सम्मलित है कि क्वांटम यांत्रिकी आंतरिक रूप से अनिश्चित है, जिसमें बोर्न नियम का उपयोग करके संभावनाओं की गणना की जाती है,<ref>{{cite journal|last1=Bohr|first1=N.|year=1928|title=क्वांटम अभिधारणा और परमाणु सिद्धांत का हालिया विकास|journal=Nature|volume=121|issue=3050|pages=580–590|bibcode=1928Natur.121..580B|doi=10.1038/121580a0|doi-access=free}}, p. 586: "In this connexion [Born] succeeded in obtaining a statistical interpretation of the wave functions, allowing a calculation of the probability of the individual transition processes required by the quantum postulate."</ref> और [[पूरकता (भौतिकी)]]: कुछ गुणों को एक ही समय में एक ही प्रणाली के लिए संयुक्त रूप से परिभाषित नहीं किया जा सकता है। किसी प्रणाली की विशिष्ट संपत्ति के बारे में बात करने के लिए, उस प्रणाली को एक विशिष्ट प्रयोगशाला व्यवस्था के संदर्भ में माना जाना चाहिए। परस्पर अनन्य प्रयोगशाला व्यवस्थाओं के अनुरूप अवलोकन योग्य मात्राओं की एक साथ पूर्वानुमान नहीं की जा सकती है, लेकिन किसी प्रणाली को चिह्नित करने के लिए ऐसे कई परस्पर अनन्य प्रयोगों पर विचार करना आवश्यक है।<ref name="Faye-Stanford"/>बोह्र ने स्वयं यह तर्क देने के लिए पूरकता का उपयोग किया कि ईपीआर विरोधाभास भ्रामक था, क्योंकि स्थिति और गति के माप पूरक हैं, इसलिए एक को मापने का विकल्प चुनने से दूसरे को मापने की संभावना समाप्त हो जाती है। परिणामस्वरूप, उन्होंने तर्क दिया, प्रयोगशाला उपकरण की एक व्यवस्था के संबंध में निकाले गए तथ्य को दूसरे के माध्यम से निकाले गए तथ्य के साथ नहीं जोड़ा जा सकता है, और इसलिए, दूसरे कण के लिए पूर्व निर्धारित स्थिति और गति मूल्यों का अनुमान मान्य नहीं था।<ref name="jammer1974"/>{{rp|194–197}} बोह्र ने निष्कर्ष निकाला कि ईपीआर के तर्क उनके निष्कर्ष को उचित नहीं ठहराते हैं कि क्वांटम विवरण अनिवार्य रूप से अधूरा है।<ref name='Bohr1935'>{{cite journal |title=Can Quantum-Mechanical Description of Physical Reality be Considered Complete? |date=1935-10-13 |first=N. |last=Bohr |journal=[[Physical Review]] |volume=48 |issue=8 |pages=696–702 |doi=10.1103/PhysRev.48.696 |bibcode=1935PhRv...48..696B |url=https://cds.cern.ch/record/1060284/files/PhysRev.48.696.pdf |doi-access=free |access-date=2021-09-16 |archive-date=2020-01-09 |archive-url=https://web.archive.org/web/20200109203609/https://cds.cern.ch/record/1060284/files/PhysRev.48.696.pdf |url-status=live }}</ref>


कोपेनहेगन-प्रकार की व्याख्याएं सामान्यतः बेल असमानताओं के उल्लंघन को उस धारणा को अस्वीकार करने के आधार के रूप में लेती हैं जिसे अधिकांशतः [[प्रतितथ्यात्मक निश्चितता]] या यथार्थवाद कहा जाता है, जो व्यापक दार्शनिक अर्थ में यथार्थवाद को छोड़ने के समान नहीं है।<ref>{{Cite journal|last=Werner|first=Reinhard F.|date=2014-10-24|title='बेल ने क्या किया' पर टिप्पणी करें|journal=[[Journal of Physics A: Mathematical and Theoretical]]|volume=47|issue=42|pages=424011|doi=10.1088/1751-8113/47/42/424011|issn=1751-8113 |bibcode=2014JPhA...47P4011W|s2cid=122180759 }}</ref><ref>{{cite book|last=Żukowski|first=Marek|title=Quantum &#91;Un&#93;Speakables II |chapter=Bell's Theorem Tells Us Not What Quantum Mechanics is, but What Quantum Mechanics is Not |date=2017|series=The Frontiers Collection|pages=175–185|editor-last=Bertlmann|editor-first=Reinhold|place=Cham|publisher=Springer International Publishing|doi=10.1007/978-3-319-38987-5_10|isbn=978-3-319-38985-1|editor2-last=Zeilinger|editor2-first=Anton |arxiv=1501.05640|s2cid=119214547}}</ref> उदाहरण के लिए, रोलैंड ओम्नेस छिपे हुए चरों की अस्वीकृति के लिए तर्क देते हैं और निष्कर्ष निकालते हैं कि क्वांटम यांत्रिकी संभवतः उतनी ही यथार्थवादी है जितनी इसके दायरे और परिपक्वता का कोई भी सिद्धांत कभी भी होगा।<ref name="omnes">{{cite book|first=R. |last=Omnès |author-link=Roland Omnès |title=क्वांटम यांत्रिकी की व्याख्या|publisher=Princeton University Press |year=1994 |isbn=978-0-691-03669-4 |oclc=439453957 }}</ref>{{Rp|531}} यह वह मार्ग भी है जो कोपेनहेगन परंपरा से आने वाली व्याख्याओं द्वारा अपनाया जाता है, जैसे [[सुसंगत इतिहास]] (अधिकांशतः कोपेनहेगन द्वारा सही तरीके से विज्ञापित किया जाता है),<ref>{{Cite journal|last=Hohenberg|first=P. C.|author-link=Pierre Hohenberg|date=2010-10-05|title=Colloquium : An introduction to consistent quantum theory|journal=[[Reviews of Modern Physics]] |language=en |volume=82 |issue=4 |pages=2835–2844 |arxiv=0909.2359 |doi=10.1103/RevModPhys.82.2835 |issn=0034-6861 |bibcode=2010RvMP...82.2835H|s2cid=20551033}}</ref> साथ ही [[QBism]].<ref>{{Cite book|chapter-url=https://plato.stanford.edu/entries/quantum-bayesian/|title=स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ फिलॉसफी|last=Healey|first=Richard|publisher=Metaphysics Research Lab, Stanford University|year=2016|editor-last=Zalta|editor-first=Edward N.|chapter=Quantum-Bayesian and Pragmatist Views of Quantum Theory|access-date=2021-09-16|archive-date=2021-08-17|archive-url=https://web.archive.org/web/20210817204745/https://plato.stanford.edu/entries/quantum-bayesian/|url-status=live}}</ref>
कोपेनहेगन-प्रकार की व्याख्याएं सामान्यतः बेल असमानताओं के उल्लंघन को उस धारणा को अस्वीकार करने के आधार के रूप में लेती हैं जिसे अधिकांशतः [[प्रतितथ्यात्मक निश्चितता]] या यथार्थवाद कहा जाता है, जो व्यापक दार्शनिक अर्थ में यथार्थवाद को छोड़ने के समान नहीं है।<ref>{{Cite journal|last=Werner|first=Reinhard F.|date=2014-10-24|title='बेल ने क्या किया' पर टिप्पणी करें|journal=[[Journal of Physics A: Mathematical and Theoretical]]|volume=47|issue=42|pages=424011|doi=10.1088/1751-8113/47/42/424011|issn=1751-8113 |bibcode=2014JPhA...47P4011W|s2cid=122180759 }}</ref><ref>{{cite book|last=Żukowski|first=Marek|title=Quantum &#91;Un&#93;Speakables II |chapter=Bell's Theorem Tells Us Not What Quantum Mechanics is, but What Quantum Mechanics is Not |date=2017|series=The Frontiers Collection|pages=175–185|editor-last=Bertlmann|editor-first=Reinhold|place=Cham|publisher=Springer International Publishing|doi=10.1007/978-3-319-38987-5_10|isbn=978-3-319-38985-1|editor2-last=Zeilinger|editor2-first=Anton |arxiv=1501.05640|s2cid=119214547}}</ref> उदाहरण के लिए, रोलैंड ओम्नेस छिपे हुए चरों की अस्वीकृति के लिए तर्क देते हैं और निष्कर्ष निकालते हैं कि क्वांटम यांत्रिकी संभवतः उतनी ही यथार्थवादी है जितनी इसके दायरे और परिपक्वता का कोई भी सिद्धांत कभी भी होगा।<ref name="omnes">{{cite book|first=R. |last=Omnès |author-link=Roland Omnès |title=क्वांटम यांत्रिकी की व्याख्या|publisher=Princeton University Press |year=1994 |isbn=978-0-691-03669-4 |oclc=439453957 }}</ref>{{Rp|531}} यह वह मार्ग भी है जो कोपेनहेगन परंपरा से आने वाली व्याख्याओं द्वारा अपनाया जाता है, जैसे [[सुसंगत इतिहास]] (अधिकांशतः कोपेनहेगन द्वारा सही तरीके से विज्ञापित किया जाता है),<ref>{{Cite journal|last=Hohenberg|first=P. C.|author-link=Pierre Hohenberg|date=2010-10-05|title=Colloquium : An introduction to consistent quantum theory|journal=[[Reviews of Modern Physics]] |language=en |volume=82 |issue=4 |pages=2835–2844 |arxiv=0909.2359 |doi=10.1103/RevModPhys.82.2835 |issn=0034-6861 |bibcode=2010RvMP...82.2835H|s2cid=20551033}}</ref> साथ ही [[QBism|क्यूबिज्म]].<ref>{{Cite book|chapter-url=https://plato.stanford.edu/entries/quantum-bayesian/|title=स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ फिलॉसफी|last=Healey|first=Richard|publisher=Metaphysics Research Lab, Stanford University|year=2016|editor-last=Zalta|editor-first=Edward N.|chapter=Quantum-Bayesian and Pragmatist Views of Quantum Theory|access-date=2021-09-16|archive-date=2021-08-17|archive-url=https://web.archive.org/web/20210817204745/https://plato.stanford.edu/entries/quantum-bayesian/|url-status=live}}</ref>
=== क्वांटम यांत्रिकी की [[कई-दुनिया की व्याख्या]] ===
=== क्वांटम यांत्रिकी की [[कई-दुनिया की व्याख्या]] ===


मैनी-वर्ल्ड्स व्याख्या, जिसे ह्यू एवरेट III व्याख्या के रूप में भी जाना जाता है, स्थानीय और नियतात्मक है, क्योंकि इसमें बिना पतन के क्वांटम यांत्रिकी का एकात्मक हिस्सा सम्मलित है। यह सहसंबंध उत्पन्न कर सकता है जो बेल असमानता का उल्लंघन करता है क्योंकि यह बेल की एक अंतर्निहित धारणा का उल्लंघन करता है कि माप का एक ही परिणाम होता है। वास्तव में, बेल के प्रमेय को कई-दुनिया के ढांचे में इस धारणा से सिद्ध किया जा सकता है कि माप का एक ही परिणाम होता है। इसलिए, बेल असमानता के उल्लंघन की व्याख्या एक प्रदर्शन के रूप में की जा सकती है कि माप के कई परिणाम होते हैं।<ref>{{cite journal |first1=David |last1=Deutsch |author-link1=David Deutsch |first2=Patrick |last2=Hayden |author-link2=Patrick Hayden (scientist) |title=उलझी हुई क्वांटम प्रणालियों में सूचना प्रवाह|journal=[[Proceedings of the Royal Society A]] |date=2000 |volume=456 |issue=1999 |pages=1759–1774 |doi=10.1098/rspa.2000.0585|arxiv=quant-ph/9906007|bibcode=2000RSPSA.456.1759D |s2cid=13998168 }}</ref>
मैनी-वर्ल्ड्स व्याख्या, जिसे ह्यू एवरेट III व्याख्या के रूप में भी जाना जाता है, स्थानीय और नियतात्मक है, क्योंकि इसमें बिना पतन के क्वांटम यांत्रिकी का एकात्मक भाग सम्मलित है। यह सहसंबंध उत्पन्न कर सकता है जो बेल असमानता का उल्लंघन करता है क्योंकि यह बेल की एक अंतर्निहित धारणा का उल्लंघन करता है कि माप का एक ही परिणाम होता है। वास्तव में, बेल के प्रमेय को कई-दुनिया के ढांचे में इस धारणा से सिद्ध किया जा सकता है कि माप का एक ही परिणाम होता है। इसलिए, बेल असमानता के उल्लंघन की व्याख्या एक प्रदर्शन के रूप में की जा सकती है कि माप के कई परिणाम होते हैं।<ref>{{cite journal |first1=David |last1=Deutsch |author-link1=David Deutsch |first2=Patrick |last2=Hayden |author-link2=Patrick Hayden (scientist) |title=उलझी हुई क्वांटम प्रणालियों में सूचना प्रवाह|journal=[[Proceedings of the Royal Society A]] |date=2000 |volume=456 |issue=1999 |pages=1759–1774 |doi=10.1098/rspa.2000.0585|arxiv=quant-ph/9906007|bibcode=2000RSPSA.456.1759D |s2cid=13998168 }}</ref>
 
बेल सहसंबंधों के लिए यह जो स्पष्टीकरण प्रदान करता है वह यह है कि जब ऐलिस और बॉब अपना माप करते हैं, तो वे स्थानीय शाखाओं में विभाजित हो जाते हैं। ऐलिस की प्रत्येक प्रति के दृष्टिकोण से, बॉब की कई प्रतियाँ अलग-अलग परिणामों का अनुभव कर रही हैं, इसलिए बॉब का कोई निश्चित परिणाम नहीं हो सकता है, और बॉब की प्रत्येक प्रति के दृष्टिकोण से भी यही सच है। वे पारस्परिक रूप से अच्छी तरह से परिभाषित परिणाम तभी प्राप्त करेंगे जब उनके भविष्य के प्रकाश शंकु ओवरलैप होंगे। इस बिंदु पर हम कह सकते हैं कि बेल सहसंबंध अस्तित्व में आना शुरू हो गया है, लेकिन यह पूरी तरह से स्थानीय तंत्र द्वारा निर्मित किया गया था। इसलिए, बेल असमानता के उल्लंघन की व्याख्या गैर-स्थानीयता के प्रमाण के रूप में नहीं की जा सकती है।<ref>{{Cite book|first1=Harvey R. |last1=Brown |author-link1=Harvey R. Brown |first2 = Christopher G. |last2=Timpson|chapter=Bell on Bell's Theorem: The Changing Face of Nonlocality|title=Quantum Nonlocality and Reality: 50 years of Bell's theorem |editor-first1=Mary |editor-last1=Bell |editor-first2=Shan |editor-last2=Gao |publisher=Cambridge University Press|year=2016|pages = 91–123|arxiv=1501.03521|doi=10.1017/CBO9781316219393.008|isbn = 9781316219393|s2cid = 118686956}}</ref>
बेल सहसंबंधों के लिए यह जो स्पष्टीकरण प्रदान करता है वह यह है कि जब ऐलिस और बॉब अपना माप करते हैं, तो वे स्थानीय शाखाओं में विभाजित हो जाते हैं। ऐलिस की प्रत्येक प्रति के दृष्टिकोण से, बॉब की कई प्रतियाँ अलग-अलग परिणामों का अनुभव कर रही हैं, इसलिए बॉब का कोई निश्चित परिणाम नहीं हो सकता है, और बॉब की प्रत्येक प्रति के दृष्टिकोण से भी यही सच है। वे पारस्परिक रूप से अच्छी तरह से परिभाषित परिणाम तभी प्राप्त करेंगे जब उनके भविष्य के प्रकाश शंकु ओवरलैप होंगे। इस बिंदु पर हम कह सकते हैं कि बेल सहसंबंध अस्तित्व में आना शुरू हो गया है, लेकिन यह पूरी तरह से स्थानीय तंत्र द्वारा निर्मित किया गया था। इसलिए, बेल असमानता के उल्लंघन की व्याख्या गैर-स्थानीयता के प्रमाण के रूप में नहीं की जा सकती है।<ref>{{Cite book|first1=Harvey R. |last1=Brown |author-link1=Harvey R. Brown |first2 = Christopher G. |last2=Timpson|chapter=Bell on Bell's Theorem: The Changing Face of Nonlocality|title=Quantum Nonlocality and Reality: 50 years of Bell's theorem |editor-first1=Mary |editor-last1=Bell |editor-first2=Shan |editor-last2=Gao |publisher=Cambridge University Press|year=2016|pages = 91–123|arxiv=1501.03521|doi=10.1017/CBO9781316219393.008|isbn = 9781316219393|s2cid = 118686956}}</ref>
=== गैर-स्थानीय छिपे हुए चर ===
=== गैर-स्थानीय छिपे हुए चर ===


छिपे हुए चर विचार के अधिकांश समर्थकों का मानना ​​है कि प्रयोगों ने स्थानीय छिपे हुए चर को खारिज कर दिया है।{{refn|group=note|[[E. T. Jaynes]] was one exception,<ref name="E.T. Jaynes 1989">{{Cite book |year=1989 |last1=Jaynes |first1=E. T. |title=Maximum Entropy and Bayesian Methods |chapter=Clearing up Mysteries — the Original Goal |pages=1–27 |url=http://bayes.wustl.edu/etj/articles/cmystery.pdf |doi=10.1007/978-94-015-7860-8_1 |isbn=978-90-481-4044-2 |citeseerx=10.1.1.46.1264 |access-date=2011-10-18 |archive-date=2011-10-28 |archive-url=https://web.archive.org/web/20111028131916/http://bayes.wustl.edu/etj/articles/cmystery.pdf |url-status=live }}</ref> but Jaynes' arguments have not generally been found persuasive.<ref name="Gill2002">{{cite book|chapter=Time, Finite Statistics, and Bell's Fifth Position|first=Richard D.|last=Gill|pages=179–206|title=Proceedings of the Conference Foundations of Probability and Physics - 2 : Växjö (Soland), Sweden, June 2-7, 2002 |volume=5|publisher=Växjö University Press|date=2002|arxiv=quant-ph/0301059 }}</ref>}} वे गैर-स्थानीय छिपे हुए चर सिद्धांत के माध्यम से बेल की असमानता के उल्लंघन को समझाते हुए, स्थानीयता को छोड़ने के लिए तैयार हैं, जिसमें कण अपने अवस्थाों के बारे में जानकारी का आदान-प्रदान करते हैं। यह क्वांटम यांत्रिकी की [[बोहम व्याख्या]] का आधार है, जिसके लिए आवश्यक है कि ब्रह्मांड के सभी कण अन्य सभी के साथ तुरंत जानकारी का आदान-प्रदान करने में सक्षम हों। गैर-स्थानीय छिपे हुए चर सिद्धांतों के लिए एक चुनौती यह समझाना है कि यह तात्कालिक संचार छिपे हुए चर के स्तर पर क्यों उपस्थित हो सकता है, लेकिन इसका उपयोग सिग्नल भेजने के लिए नहीं किया जा सकता है।<ref>{{Cite journal |last1=Wood |first1=Christopher J. |last2=Spekkens |first2=Robert W. |author-link2=Robert Spekkens |date=2015-03-03 |title=The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning |url=https://iopscience.iop.org/article/10.1088/1367-2630/17/3/033002 |journal=[[New Journal of Physics]] |volume=17 |issue=3 |pages=033002 |arxiv=1208.4119 |bibcode=2015NJPh...17c3002W |doi=10.1088/1367-2630/17/3/033002 |s2cid=118518558 |issn=1367-2630}}</ref> 2007 के एक प्रयोग ने गैर-बोहमियन गैर-स्थानीय छिपे हुए चर सिद्धांतों के एक बड़े वर्ग को खारिज कर दिया, चूंकि बोहमियन यांत्रिकी को नहीं।<ref>{{cite journal |doi=10.1038/nature05677 |title=गैर-स्थानीय यथार्थवाद का एक प्रायोगिक परीक्षण|year=2007 |last1=Gröblacher |first1=Simon |last2=Paterek |first2=Tomasz |last3=Kaltenbaek |first3=Rainer |last4=Brukner |first4=Časlav |last5=Żukowski |first5=Marek |last6=Aspelmeyer |first6=Markus |last7=Zeilinger |first7=Anton |journal=[[Nature (journal)|Nature]] |volume=446 |issue=7138 |pages=871–5 |pmid=17443179|bibcode = 2007Natur.446..871G | arxiv= 0704.2529 |s2cid=4412358 }}</ref>
छिपे हुए चर विचार के अधिकांश समर्थकों का मानना ​​है कि प्रयोगों ने स्थानीय छिपे हुए चर को बहिष्कृत कर दिया है।{{refn|group=note|[[E. T. Jaynes]] was one exception,<ref name="E.T. Jaynes 1989">{{Cite book |year=1989 |last1=Jaynes |first1=E. T. |title=Maximum Entropy and Bayesian Methods |chapter=Clearing up Mysteries — the Original Goal |pages=1–27 |url=http://bayes.wustl.edu/etj/articles/cmystery.pdf |doi=10.1007/978-94-015-7860-8_1 |isbn=978-90-481-4044-2 |citeseerx=10.1.1.46.1264 |access-date=2011-10-18 |archive-date=2011-10-28 |archive-url=https://web.archive.org/web/20111028131916/http://bayes.wustl.edu/etj/articles/cmystery.pdf |url-status=live }}</ref> but Jaynes' arguments have not generally been found persuasive.<ref name="Gill2002">{{cite book|chapter=Time, Finite Statistics, and Bell's Fifth Position|first=Richard D.|last=Gill|pages=179–206|title=Proceedings of the Conference Foundations of Probability and Physics - 2 : Växjö (Soland), Sweden, June 2-7, 2002 |volume=5|publisher=Växjö University Press|date=2002|arxiv=quant-ph/0301059 }}</ref>}} वे गैर-स्थानीय छिपे हुए चर सिद्धांत के माध्यम से बेल की असमानता के उल्लंघन को समझाते हुए, स्थानीयता को छोड़ने के लिए तैयार हैं, जिसमें कण अपने अवस्थाों के बारे में जानकारी का आदान-प्रदान करते हैं। यह क्वांटम यांत्रिकी की [[बोहम व्याख्या]] का आधार है, जिसके लिए आवश्यक है कि ब्रह्मांड के सभी कण अन्य सभी के साथ तुरंत जानकारी का आदान-प्रदान करने में सक्षम हों। गैर-स्थानीय छिपे हुए चर सिद्धांतों के लिए एक चुनौती यह समझाना है कि यह तात्कालिक संचार छिपे हुए चर के स्तर पर क्यों उपस्थित हो सकता है, लेकिन इसका उपयोग सिग्नल भेजने के लिए नहीं किया जा सकता है।<ref>{{Cite journal |last1=Wood |first1=Christopher J. |last2=Spekkens |first2=Robert W. |author-link2=Robert Spekkens |date=2015-03-03 |title=The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning |url=https://iopscience.iop.org/article/10.1088/1367-2630/17/3/033002 |journal=[[New Journal of Physics]] |volume=17 |issue=3 |pages=033002 |arxiv=1208.4119 |bibcode=2015NJPh...17c3002W |doi=10.1088/1367-2630/17/3/033002 |s2cid=118518558 |issn=1367-2630}}</ref> 2007 के एक प्रयोग ने गैर-बोहमियन गैर-स्थानीय छिपे हुए चर सिद्धांतों के एक बड़े वर्ग को अस्वीकृत कर दिया, तथापि बोहमियन यांत्रिकी को नहीं।<ref>{{cite journal |doi=10.1038/nature05677 |title=गैर-स्थानीय यथार्थवाद का एक प्रायोगिक परीक्षण|year=2007 |last1=Gröblacher |first1=Simon |last2=Paterek |first2=Tomasz |last3=Kaltenbaek |first3=Rainer |last4=Brukner |first4=Časlav |last5=Żukowski |first5=Marek |last6=Aspelmeyer |first6=Markus |last7=Zeilinger |first7=Anton |journal=[[Nature (journal)|Nature]] |volume=446 |issue=7138 |pages=871–5 |pmid=17443179|bibcode = 2007Natur.446..871G | arxiv= 0704.2529 |s2cid=4412358 }}</ref>


[[लेन-देन संबंधी व्याख्या|क्वांटम यांत्रिकी (टीआईक्यूएम) की लेन-देन व्याख्या]], जो समय में पीछे और आगे दोनों तरफ यात्रा करने वाली तरंगों को दर्शाती है, वैसे ही गैर-स्थानीय है।<ref>{{Cite journal|last=Kastner|first=Ruth E.|date=May 2010|title=क्रैमर की लेन-देन संबंधी व्याख्या में क्वांटम झूठा प्रयोग|url=https://linkinghub.elsevier.com/retrieve/pii/S135521981000002X|journal=[[Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics]] |language=en|volume=41|issue=2|pages=86–92|arxiv=0906.1626|bibcode=2010SHPMP..41...86K|doi=10.1016/j.shpsb.2010.01.001|s2cid=16242184|access-date=2021-09-16|archive-date=2018-06-24|archive-url=https://web.archive.org/web/20180624053010/https://linkinghub.elsevier.com/retrieve/pii/S135521981000002X|url-status=live}}</ref>
[[लेन-देन संबंधी व्याख्या|क्वांटम यांत्रिकी (टीआईक्यूएम) की लेन-देन व्याख्या]], जो समय में पीछे और आगे दोनों तरफ यात्रा करने वाली तरंगों को दर्शाती है, वैसे ही गैर-स्थानीय है।<ref>{{Cite journal|last=Kastner|first=Ruth E.|date=May 2010|title=क्रैमर की लेन-देन संबंधी व्याख्या में क्वांटम झूठा प्रयोग|url=https://linkinghub.elsevier.com/retrieve/pii/S135521981000002X|journal=[[Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics]] |language=en|volume=41|issue=2|pages=86–92|arxiv=0906.1626|bibcode=2010SHPMP..41...86K|doi=10.1016/j.shpsb.2010.01.001|s2cid=16242184|access-date=2021-09-16|archive-date=2018-06-24|archive-url=https://web.archive.org/web/20180624053010/https://linkinghub.elsevier.com/retrieve/pii/S135521981000002X|url-status=live}}</ref>
===अतिनियतिवाद===
===अतिनियतिवाद===
{{Main|अतिनियतिवाद}}
{{Main|अतिनियतिवाद}}
बेल के प्रमेय को प्राप्त करने के लिए एक आवश्यक धारणा यह है कि छिपे हुए चर माप सेटिंग्स के साथ सहसंबद्ध नहीं हैं। इस धारणा को इस आधार पर उचित ठहराया गया है कि प्रयोगकर्ता के पास सेटिंग्स चुनने की स्वतंत्र इच्छा है, और पहले स्थान पर विज्ञान करना आवश्यक है। एक (काल्पनिक) सिद्धांत जहां माप की पसंद आवश्यक रूप से मापी जा रही प्रणाली के साथ सहसंबद्ध होती है उसे सुपरडेटर्मिनिस्टिक के रूप में जाना जाता है।<ref name=larsson14/>
बेल के प्रमेय को प्राप्त करने के लिए एक आवश्यक धारणा यह है कि छिपे हुए चर माप समायोजन के साथ सहसंबद्ध नहीं हैं। इस धारणा को इस आधार पर उचित ठहराया गया है कि प्रयोगकर्ता के पास समायोजन चुनने की स्वतंत्र अभिलाषा है, और पहले स्थान पर विज्ञान करना आवश्यक है। एक (काल्पनिक) सिद्धांत जहां माप की पसंद आवश्यक रूप से मापी जा रही प्रणाली के साथ सहसंबद्ध होती है उसे अतिनियतिवादी के रूप में जाना जाता है।<ref name=larsson14/>


नियतिवादी मॉडल के कुछ समर्थकों ने स्थानीय छिपे हुए चर को नहीं छोड़ा है। उदाहरण के लिए, जेरार्ड टी हूफ्ट ने तर्क दिया है कि सुपरनियतिवाद को खारिज नहीं किया जा सकता है।<ref>{{cite book |last='t Hooft |first=Gerard |author-link=Gerard 't Hooft |title=क्वांटम यांत्रिकी की सेलुलर ऑटोमेटन व्याख्या|volume=185 |publisher=Springer |year=2016 |doi=10.1007/978-3-319-41285-6 |isbn=978-3-319-41284-9 |oclc=951761277 |series=Fundamental Theories of Physics |s2cid=7779840 |url=http://www.oapen.org/search?identifier=1002003 |access-date=2020-08-27 |archive-date=2021-12-29 |archive-url=https://web.archive.org/web/20211229062338/https://library.oapen.org/handle/20.500.12657/27994 |url-status=live }}</ref>
नियतिवादी मॉडल के कुछ समर्थकों ने स्थानीय छिपे हुए चर को नहीं छोड़ा है। उदाहरण के लिए, जेरार्ड टी हूफ्ट ने तर्क दिया है कि सुपरनियतिवाद को अस्वीकृत नहीं किया जा सकता है।<ref>{{cite book |last='t Hooft |first=Gerard |author-link=Gerard 't Hooft |title=क्वांटम यांत्रिकी की सेलुलर ऑटोमेटन व्याख्या|volume=185 |publisher=Springer |year=2016 |doi=10.1007/978-3-319-41285-6 |isbn=978-3-319-41284-9 |oclc=951761277 |series=Fundamental Theories of Physics |s2cid=7779840 |url=http://www.oapen.org/search?identifier=1002003 |access-date=2020-08-27 |archive-date=2021-12-29 |archive-url=https://web.archive.org/web/20211229062338/https://library.oapen.org/handle/20.500.12657/27994 |url-status=live }}</ref>
==यह भी देखें==
==यह भी देखें==
{{portal|physics}}
{{portal|physics}}
Line 222: Line 227:
{{wikibooks |क्वांटम यांत्रिकी}}
{{wikibooks |क्वांटम यांत्रिकी}}
{{wikiversity |बेल का प्रमेय}}
{{wikiversity |बेल का प्रमेय}}
{{Commons category|बेल का प्रमेय}}
* [https://www.youtube.com/watch?v=ta09WXiUqcQ मर्मिन: दूरी पर  स्पूकी  क्रिया? ओपेनहाइमर व्याख्यान]
* [https://www.youtube.com/watch?v=ta09WXiUqcQ मर्मिन: दूरी पर  स्पूकी  क्रिया? ओपेनहाइमर व्याख्यान]
* {{cite IEP |url-id=epr |title=बेल का प्रमेय}}
* {{cite IEP |url-id=epr |title=बेल का प्रमेय}}
* {{springer|title=बेल असमानताएँ|id=p/b110230 |mode=cs1}}
* {{springer|title=बेल असमानताएँ|id=p/b110230 |mode=cs1}}
{{Quantum mechanics topics}}
{{Quantum information}}
{{Authority control}}
[[Category: क्वांटम सूचना विज्ञान]] [[Category: क्वांटम माप]] [[Category: क्वांटम यांत्रिकी में प्रमेय]] [[Category: छिपा हुआ चर सिद्धांत]] [[Category: असमानता]] [[Category: 1964 परिचय]] [[Category: नो-गो प्रमेय]]  
[[Category: क्वांटम सूचना विज्ञान]] [[Category: क्वांटम माप]] [[Category: क्वांटम यांत्रिकी में प्रमेय]] [[Category: छिपा हुआ चर सिद्धांत]] [[Category: असमानता]] [[Category: 1964 परिचय]] [[Category: नो-गो प्रमेय]]  


Line 236: Line 236:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/11/2023]]
[[Category:Created On 18/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 11:14, 11 December 2023

बेल का प्रमेय एक टर्म है जिसमें भौतिकी में कई निकट से संबंधित परिणाम सम्मलित हैं, जो यह निर्धारित करते हैं कि क्वांटम यांत्रिकी में, स्थानीय छिपे-चर सिद्धांतों के साथ असंगत है, माप के गुण के बारे में कुछ मूलभूत धारणाएं दी गई हैं। यहां "स्थानीय" स्थानीयता के सिद्धांत (भौतिकी में) को संदर्भित करता है, यह विवरण कि एक कण केवल अपने तत्काल परिवेश से प्रभावित हो सकता है, और भौतिक क्षेत्रों द्वारा मध्यस्थ परस्पर क्रिया प्रकाश की गति से अधिक तेजी से नहीं विस्तृत हो सकती है। "भौतिकी में, एक छिपा-चर सिद्धांत" क्वांटम कणों के अनुमानित गुण हैं जो क्वांटम सिद्धांत में सम्मलित नहीं हैं लेकिन फिर भी प्रयोगों के परिणाम को प्रभावित करते हैं। भौतिक विज्ञानी जॉन स्टीवर्ट बेल के टर्म में, "यदि एक छिपा-चर सिद्धांत स्थानीय है तो यह क्वांटम यांत्रिकी से सहमत नहीं होगा, और यदि यह क्वांटम यांत्रिकी से सहमत है तो यह स्थानीय नहीं होगा "।[1]

यह संबंध कई अलग-अलग व्युत्पत्तियों पर क्रियान्वित होता है, इनमें से पहला परिचय बेल द्वारा 1964 में "ऑन द आइंस्टीन पोडॉल्स्की रोसेन ईपीआर पैराडॉक्स" नामक पेपर में दिया गया था। बेल का पेपर 1935 के एक विचार प्रयोग (एक काल्पनिक स्थिति) की प्रतिक्रिया थी जिसे अल्बर्ट आइंस्टीन, बोरिस पोडॉल्स्की और नाथन रोसेन ने प्रस्तावित किया था, जिसमें तर्क दिया गया था कि क्वांटम भौतिकी एक "अधूरा" सिद्धांत है।[2][3] 1935 तक, यह पहले से ही माना गया था कि क्वांटम भौतिकी का पूर्वानुमान संभाव्य हैं। आइंस्टीन, पोडॉल्स्की और रोसेन ने एक परिदृश्य प्रस्तुत किया जिसमें कणों की एक जोड़ी तैयार करना सम्मलित है जैसे कि जोड़ी की क्वांटम स्थिति क्वांटम उलझाव है, और फिर कणों को स्वेच्छया से बड़ी दूरी पर अलग करना सम्मलित है। प्रयोगकर्ता के पास संभावित मापों का चयन होता है जो किसी एक कण पर किया जा सकता है। जब वे एक माप चुनते हैं और एक परिणाम प्राप्त करते हैं, तो दूसरे कण की क्वांटम स्थिति स्पष्ट रूप से उस परिणाम के आधार पर तुरंत एक नई स्थिति में बदल जाती है, चाहे दूसरा कण कितना भी दूर क्यों न हो। इससे पता चलता है कि या तो पहले कण की माप ने किसी तरह प्रकाश की गति से भी तेज गति से दूसरे कण के साथ अंत:क्रिया की, या उलझे हुए कणों में कुछ अनमापी गुण था जो अलग होने से पहले उनकी अंतिम क्वांटम स्थिति को पूर्व-निर्धारित करता था। इसलिए, स्थानीयता मानते हुए, क्वांटम यांत्रिकी अधूरी होनी चाहिए, क्योंकि यह कण की वास्तविक भौतिक विशेषताओं का पूरा विवरण नहीं दे सकती है। दूसरे टर्म में, इलेक्ट्रॉन और फोटॉन जैसे क्वांटम कणों में कुछ ऐसे गुण होने चाहिए जो क्वांटम सिद्धांत में सम्मलित नहीं हैं, और क्वांटम सिद्धांत की पूर्वानुमान में अनिश्चितता इन गुणों की अज्ञानता या अज्ञातता के कारण होगी, जिन्हें पश्चात में "छिपे हुए चर" कहा गया।

बेल ने क्वांटम उलझाव के विश्लेषण को बहुत आगे बढ़ाया। उन्होंने यह निष्कर्ष निकाला कि यदि उलझे हुए जोड़े के दो अलग-अलग कणों पर माप स्वतंत्र रूप से किया जाता है, तो यह धारणा का परिणाम प्रत्येक आधे के भीतर छिपे हुए चर पर निर्भर करते हैं, इस बात पर गणितीय बाधा उत्पन्न होती है कि दोनों मापों के परिणाम कैसे सहसंबद्ध हैं। इस बाधा को पश्चात में बेल असमानता का नाम दिया गया। बेल ने तब सिद्ध किया कि क्वांटम भौतिकी उन सहसंबंधों की पूर्वानुमान करती है जो इस असमानता का उल्लंघन करते हैं। परिणामस्वरूप, छिपे हुए चर क्वांटम भौतिकी की पूर्वानुमान को समझाने का एकमात्र उपाय यह है कि वे "गैर स्थानीय" हैं, जिसका अर्थ यह है कि किसी तरह दो कण तुरंत अंत:क्रिया. करने में सक्षम हैं, भले ही वे कितने भी व्यापक रूप से अलग क्यों न हों।[4][5]

अगले वर्षों में बेल के प्रमेय पर कई बदलाव प्रस्तुत करे गए, जिससे अन्य निकट संबंधी स्थितियों का परिचय दिया गया, जिन्हें सामान्यतः बेल या "बेल-प्रकार" असमानताओं के रूप में जाना जाता है। बेल के प्रमेय का परीक्षण करने के लिए डिज़ाइन किया गया पहला प्राथमिक प्रयोग 1972 में जॉन क्लॉसर और स्टुअर्ट फ्रीडमैन द्वारा किया गया था।[6] अधिक उन्नत प्रयोग, जिन्हें सामूहिक रूप से बेल परीक्षण के रूप में जाना जाता है, तब से कई बार किए गए हैं। अधिकांशतः, इन प्रयोगों का लक्ष्य "त्रुटि को संवृत करना" होता है, अर्थात प्रयोगात्मक डिजाइन या सेट-अप की समस्याओं को सुधारना जो सैद्धांतिक रूप से पहले के बेल परीक्षणों के निष्कर्षों की वैधता को प्रभावित कर सकता है। आज तक, बेल परीक्षणों ने लगातार पाया है कि भौतिक प्रणालियाँ क्वांटम यांत्रिकी का पालन करती हैं और बेल असमानताओं का उल्लंघन करती हैं; तात्पर्य यह है कि इन प्रयोगों के परिणाम किसी भी स्थानीय छिपे हुए चर सिद्धांत के साथ असंगत हैं।[7][8]

सहसंबंधों पर बेल-प्रकार की बाधा को सिद्ध करना करने के लिए आवश्यक मान्यताओं की सटीक प्रकृति पर भौतिकविदों और दार्शनिकों द्वारा तर्क किया गया है। चूंकि बेल के प्रमेय का महत्व संशय में नहीं है, क्वांटम यांत्रिकी की व्याख्या के लिए इसके पूर्ण निहितार्थ अनसुलझे हैं।

प्रमेय

मूल विचार पर कई भिन्नताएं हैं, कुछ दूसरों की समानता में अधिक मजबूत गणितीय धारणाओं को नियोजित करते हैं।[9] विचारणीय है कि बेल-प्रकार के प्रमेय स्थानीय छिपे हुए चर के किसी विशेष सिद्धांत का उल्लेख नहीं करते हैं, बल्कि यह दर्शाते हैं कि क्वांटम भौतिकी स्वभाव के मान्य वर्णन के पीछे की सामान्य धारणाओं का उल्लंघन करती है। 1964 में बेल द्वारा सिद्ध किया गया मूल प्रमेय प्रयोग के लिए सबसे उपयुक्त नहीं है, और पश्चात के उदाहरण के साथ बेल-प्रकार की असमानताओं की शैली को प्रस्तुत करना सुविधाजनक है।[10]

काल्पनिक पात्र ऐलिस और बॉब व्यापक रूप से अलग-अलग स्थानों पर खड़े हैं। उनके सहयोगी विक्टर कणों की एक जोड़ी तैयार करते हैं और एक को ऐलिस और दूसरे को बॉब को भेजते हैं। जब ऐलिस को अपना कण प्राप्त होता है, तो वह दो संभावित मापों में से एक को निष्पादित करना चुनती है (संभव कौन सा निर्णय लेने के लिए एक सिक्का उछालकर)। इन मापों को निरूपित करें और . दोनों और द्विआधारी माप हैं: का परिणाम या तो है या , और इसी तरह के लिए . जब बॉब को अपना कण प्राप्त होता है, तो वह दो मापों में से एक को चुनता है, और , जो दोनों बाइनरी भी हैं।

मान लीजिए कि प्रत्येक माप से उस गुण का पता चलता है जो कण के पास पहले से उपस्थित है। उदाहरण के लिए, यदि ऐलिस मापना चुनती है और परिणाम प्राप्त करता है , तो उसे जो कण प्राप्त हुआ उसका मान था किसी संपत्ति के लिए .[note 1] निम्नलिखित संयोजन पर विचार करें:

क्योंकि दोनों और मान लीजिए , तो कोई या . पूर्व स्थिति में, , जबकि पश्चात वाले स्थिति में, . तो, उपरोक्त अभिव्यंजक के दाईं ओर का एक पद गायब हो जाएगा, और दूसरा बराबर हो जाएगा . परिणामस्वरूप, यदि प्रयोग कई परीक्षणों में दोहराया जाता है, तो विक्टर कणों के नए जोड़े तैयार करता है, संयोजन का औसत मूल्य सभी परीक्षणों में 2 से कम या उसके बराबर होगा। कोई भी एकल परीक्षण इस मात्रा को माप नहीं सकता है, क्योंकि ऐलिस और बॉब प्रत्येक केवल एक माप चुन सकते हैं, लेकिन इस धारणा पर कि अंतर्निहित गुण उपस्थित हैं, योग का औसत मूल्य सिर्फ है प्रत्येक पद के औसत का योग. औसत दर्शाने के लिए कोण कोष्ठक का उपयोग करना,
यह एक बेल असमानता है, विशेष रूप से, सीएचएसएच असमानता[10]: 115  यहां इसकी व्युत्पत्ति दो मान्यताओं पर निर्भर करती है: पहला, अंतर्निहित भौतिक गुण और देखे जाने या मापे जाने से स्वतंत्र रूप से अस्तित्व में रहना (कभी-कभी इसे यथार्थवाद की धारणा भी कहा जाता है); और दूसरा, ऐलिस की कार्रवाई का चुनाव बॉब के परिणाम को प्रभावित नहीं कर सकता या इसके विपरीत (जिसे अधिकांशतः स्थानीयता की धारणा कहा जाता है)।[10]: 117 

क्वांटम यांत्रिकी सीएचएसएच असमानता का उल्लंघन इस प्रकार कर सकती है। विक्टर क्वैबिट की एक जोड़ी तैयार करता है जिसका वर्णन वह बेल अवस्था द्वारा करता है

जहां और पाउली मैट्रिक्स में से एक के आइजेनस्टेटस

हैं,

इसके पश्चात विक्टर पहली कक्षा ऐलिस को और दूसरी बॉब को देता है। ऐलिस और बॉब के संभावित मापों के विकल्पों को भी पॉली मैट्रिक्स के संदर्भ में परिभाषित किया गया है। ऐलिस दोनों में से किसी एक अवलोकन को मापती है और :
और बॉब दोनों में से किसी एक अवलोकन को मापता है
विक्टर बोर्न नियम का उपयोग करके इन वेधशालाओं के जोड़े के लिए क्वांटम अपेक्षा मूल्यों की गणना कर सकता है:
जबकि प्रयोग के एकल परीक्षण में इन चार मापों में से केवल एक ही किया जा सकता है, योग
उन औसत मानों का योग देता है जो विक्टर कई परीक्षणों में प्राप्त करने की अपेक्षा करता है। यह मान 2 की शास्त्रीय ऊपरी सीमा से अधिक है जो स्थानीय छिपे हुए चर की परिकल्पना से निकाला गया था।[10]: 116  मूल्य वास्तव में यह सबसे बड़ा है जिसे क्वांटम भौतिकी अपेक्षा मूल्यों के इस संयोजन के लिए अनुमति देती है, जिससे यह त्सिरेलसन बाध्य हो जाता है।[13]: 140 

सीएचएसएच गेम का एक उदाहरण: रेफरी, विक्टर, ऐलिस और बॉब को थोड़ा-थोड़ा भेजता है, और ऐलिस और बॉब रेफरी को थोड़ा-थोड़ा वापस भेजते हैं।

सीएचएसएच असमानता को सीएचएसएच खेल के रूप में भी सोचा जा सकता है।[14][15] विक्टर दो बिट्स तैयार करता है, और , स्वतंत्र रूप से और यादृच्छिक रूप से। वह बिट भेजता है ऐलिस और बिट के लिए बॉब को. यदि ऐलिस और बॉब उत्तर बिट लौटाते हैं तो जीत जाते हैं और विक्टर को, संतुष्ट करते हुए

या, समकक्ष, ऐलिस और बॉब जीतते हैं यदि तार्किक और और का तार्किक XOR है और . ऐलिस और बॉब खेल से पहले अपनी इच्छानुसार किसी भी रणनीति पर सहमत हो सकते हैं, लेकिन खेल प्रारंभ होने के पश्चात वे संवाद नहीं कर सकते। स्थानीय छिपे हुए चर पर आधारित किसी भी सिद्धांत में, ऐलिस और बॉब के जीतने की संभावना इससे अधिक नहीं है , भले ही वे पहले से किसी भी रणनीति पर सहमत हों। चूंकि, यदि वे एक उलझी हुई क्वांटम स्थिति साझा करते हैं, तो उनके जीतने की संभावना उतनी बड़ी हो सकती है

विविधताएं और संबंधित परिणाम

बेल (1964)

बेल का 1964 का पेपर बताता है कि प्रतिबंधित परिस्थितियों में, स्थानीय छिपे हुए चर मॉडल क्वांटम यांत्रिकी की भविष्यवाणियों को पुन: प्रस्तुत कर सकते हैं। फिर वह प्रदर्शित करता है कि यह सामान्य रूप से सच नहीं हो सकता।[3] बेल आइंस्टीन-पोडॉल्स्की-रोसेन (ईपीआर) विचार प्रयोग के डेविड बोहम द्वारा किए गए परिशोधन पर विचार करते हैं। इस परिदृश्य में, कणों की एक जोड़ी एक साथ इस तरह से बनती है कि उन्हें एक स्पिन एकल अवस्था (जो एक उलझी हुई अवस्था का एक उदाहरण है) द्वारा वर्णित किया जाता है। फिर कण विपरीत दिशाओं में अलग हो जाते हैं। प्रत्येक कण को ​​स्टर्न-गेर्लाच प्रयोग द्वारा मापा जाता है। स्टर्न-गेर्लाच उपकरण, एक मापने वाला उपकरण जिसे विभिन्न दिशाओं में उन्मुख किया जा सकता है और जो दो संभावित परिणामों में से एक की रिपोर्ट करता है, जिसे निम्न द्वारा दर्शाया जा सकता है। और . प्रत्येक मापने वाले उपकरण का विन्यास एक इकाई यूक्लिडियन सदिश द्वारा दर्शाया गया है, और सेटिंग्स के साथ दो संसूचक के बीच क्वांटम सहसंबंध के लिए क्वांटम-मैकेनिकल पूर्वानुमान और है

विशेष रूप से, यदि दो संसूचको का अभिविन्यास समान है (), तो एक माप का परिणाम निश्चित रूप से दूसरे के परिणाम का नकारात्मक होगा . और यदि दो संसूचक का अभिविन्यास ऑर्थोगोनल है (), तो परिणाम असंबंधित हैं, और . बेल उदाहरण के द्वारा सिद्ध करना करते हैं कि इन विशेष स्थितियों को छिपे हुए चर के संदर्भ में समझाया जा सकता है, फिर यह दिखाने के लिए आगे बढ़ते हैं कि मध्यवर्ती कोणों से जुड़ी संभावनाओं की पूरी श्रृंखला नहीं हो सकती है।

बेल ने कहा कि इन सहसंबंधों के लिए एक स्थानीय छिपा हुआ चर मॉडल उन्हें कुछ छिपे हुए पैरामीटर के संभावित मूल्यों पर एक अभिन्न अंग के संदर्भ में समझाएगा। :

जहां एक संभाव्यता घनत्व फ़ंक्शन है। दो कार्य और ओरिएंटेशन वैक्टर और छिपे हुए चर को देखते हुए दो संसूचको की प्रतिक्रियाएँ प्रदान करें:
महत्वपूर्ण रूप से, संसूचक का परिणाम पर निर्भर नहीं है , और इसी तरह का परिणाम भी पर निर्भर नहीं है , क्योंकि दोनों संसूचक भौतिक रूप से अलग-अलग हैं। अब हम मानते हैं कि प्रयोगकर्ता के पास दूसरे संसूचक के लिए सेटिंग्स का विकल्प है: इसे या तो सेट किया जा सकता है या करने के लिए . बेल सिद्ध करना करते हैं कि संसूचक सेटिंग के इन दो विकल्पों के बीच सहसंबंध में अंतर को असमानता को संतुष्ट करना चाहिए
चूंकि, ऐसी स्थितियाँ ढूंढना आसान है जहाँ क्वांटम यांत्रिकी बेल असमानता का उल्लंघन करती है।[16]: 425–426  उदाहरण के लिए, वैक्टर दें और ओर्थोगोनल बनें, और रहने दें दोनों से 45° के कोण पर अपने तल में लेटें। तब
जबकि
लेकिन
इसलिए, कोई स्थानीय छिपा हुआ चर मॉडल नहीं है जो सभी विकल्पों के लिए क्वांटम यांत्रिकी की भविष्यवाणियों को पुन: प्रस्तुत कर सके , , और प्रायोगिक परिणाम शास्त्रीय वक्रों का खंडन करते हैं और क्वांटम यांत्रिकी द्वारा अनुमानित वक्र से मेल खाते हैं, जब तक प्रयोगात्मक त्रुटियों को ध्यान में रखा जाता है।[9]

बेल के 1964 प्रमेय के लिए पूर्ण सहसंबंध-विरोधी संभावना की आवश्यकता होती है: पहले संसूचक से परिणाम जानकर, दूसरे संसूचक से परिणाम के बारे में संभाव्यता-1 पूर्वानुमान करने की क्षमता। यह वास्तविकता के ईपीआर मानदंड से संबंधित है, आइंस्टीन, पोडॉल्स्की और रोसेन द्वारा 1935 के पेपर में प्रस्तुत की गई एक अवधारणा। यह पेपर बताता है, यदि, किसी भी तरह से किसी प्रणाली को भ्रमित किए बिना, हम निश्चितता के साथ (अर्थात, एकता के बराबर संभावना के साथ) भौतिक मात्रा के मूल्य की पूर्वानुमान कर सकते हैं, तो उस मात्रा के अनुरूप वास्तविकता का एक तत्व उपस्थित है।[2]

GHZ–मर्मिन (1990)

डेनियल ग्रीनबर्गर, माइकल हॉर्न (भौतिक विज्ञानी) माइकल ए हॉर्न और एंटोन ज़िलिंगर ने 1990 में एक चार-कण विचार प्रयोग प्रस्तुत किया, जिसे डेविड मर्मिन ने केवल तीन कणों का उपयोग करने के लिए सरल बना दिया।[17][18] इस विचार प्रयोग में, विक्टर क्वांटम अवस्था द्वारा वर्णित तीन स्पिन-1/2 कणों का एक समूह उत्पन्न करता है

जहाँ ऊपर बताया गया है, और पाउली मैट्रिक्स के अभिलक्षणिक सदिश हैं . इसके पश्चात विक्टर ऐलिस, बॉब और चार्ली को एक-एक कण भेजता है, जो अलग-अलग स्थानों पर प्रतीक्षा करते हैं। ऐलिस या तो उपाय या उसके कण पर, और बॉब और चार्ली भी ऐसा ही करते हैं। प्रत्येक माप का परिणाम या तो है या . बोर्न नियम को थ्री-क्विबिट अवस्था में क्रियान्वित करना , विक्टर पूर्वानुमान करता है कि जब भी तीन मापों में एक सम्मलित होग और दो का, परिणामों का उत्पाद सदैव रहेगा . यह इस प्रकार है क्योंकि का एक अभिलक्षणिक सदिश है अभिलाक्षणिक मान के साथ , और इसी तरह के लिए और . इसलिए, ऐलिस के परिणाम को जानना ए के लिए माप और बॉब का परिणाम माप, विक्टर प्रायिकता 1 के साथ पूर्वानुमान कर सकता है कि चार्ली किस परिणाम पर लौटेगा माप। वास्तविकता के ईपीआर मानदंड के अनुसार, परिणाम के अनुरूप वास्तविकता का एक तत्व होगा चार्ली की कक्षा पर माप। दरअसल, यही तर्क माप और तीनों क्वैबिट दोनों पर क्रियान्वित होता है। वास्तविकता के ईपीआर मानदंड के अनुसार, प्रत्येक कण में एक निर्देश समूह होता है जो परिणाम निर्धारित करता है या उस पर माप. फिर तीनों कणों के समूह का वर्णन निर्देश समूह द्वारा किया जाएगा
प्रत्येक प्रविष्टि के साथ या तो या , और प्रत्येक या माप बस उचित मूल्य लौटा रहा है।

यदि ऐलिस, बॉब और चार्ली सभी प्रदर्शन करते हैं माप, तो उनके परिणामों का उत्पाद होगा . इस मूल्य से अनुमान लगाया जा सकता है

क्योंकि दोनों में से किसी एक का वर्ग या है . कोष्ठक में प्रत्येक कारक बराबर है , इसलिए
और ऐलिस, बॉब और चार्ली के परिणामों का उत्पाद होगा संभाव्यता एकता के साथ. लेकिन यह क्वांटम भौतिकी के साथ असंगत है: विक्टर अवस्था का उपयोग करके पूर्वानुमान कर सकता है वह माप इसके अतिरिक्त उपज होगी संभाव्यता एकता के साथ.

इस विचार प्रयोग को पारंपरिक बेल असमानता के रूप में या समकक्ष रूप से, सीएचएसएच गेम के समान भावना में एक गैर-स्थानीय गेम के रूप में भी पुनर्निर्मित किया जा सकता है।[19] इसमें ऐलिस, बॉब और चार्ली को बिट्स प्राप्त होते हैं विक्टर से, सदैव एक सम संख्या रखने का वादा किया, अर्थात, , और उसे बिट्स वापस भेजें . यदि वे गेम जीतते हैं को छोड़कर सभी इनपुट के लिए विषम संख्या है , जब उन्हें सम संख्या की आवश्यकता होती है। अर्थात वे गेम जीत जाते हैं . स्थानीय छिपे हुए चर के साथ उनकी जीत की उच्चतम संभावना 3/4 हो सकती है, जबकि उपरोक्त क्वांटम रणनीति का उपयोग करके वे इसे निश्चितता के साथ प्राप्त करते हैं। यह क्वांटम छद्म टेलीपैथी का एक उदाहरण है।

कोचेन-स्पेकर प्रमेय (1967)

क्वांटम सिद्धांत में, हिल्बर्ट स्थान के लिए ऑर्थोनॉर्मल आधार उन मापों का प्रतिनिधित्व करते हैं जो उस हिल्बर्ट स्पेस वाले प्रणाली पर किए जा सकते हैं। किसी आधार में प्रत्येक सदिश उस माप के संभावित परिणाम का प्रतिनिधित्व करता है।[note 2] मान लीजिए कि एक छिपा हुआ चर उपस्थित है, जिससे कि इसका मूल्य जान सकें किसी भी माप के परिणाम के बारे में निश्चितता दर्शाएगा। का मान दिया गया है , प्रत्येक माप परिणाम - अर्थात, हिल्बर्ट अंतरिक्ष में प्रत्येक सदिश - या तो असंभव है या गारंटीकृत है। कोचेन-स्पेकर कॉन्फ़िगरेशन कई इंटरलॉकिंग आधारों से बने वैक्टरों का एक सीमित समूह है, इस संपत्ति के साथ कि इसमें एक सदिश सदैव असंभव होगा जब इसे एक आधार से संबंधित माना जाएगा और दूसरे से संबंधित होने पर गारंटी दी जाएगी। दूसरे शब्दों में, कोचेन-स्पेकर कॉन्फ़िगरेशन एक बेरंग समूह है जो एक छिपे हुए चर को मानने की असंगतता को प्रदर्शित करता है माप परिणामों को नियंत्रित किया जा सकता है।[24]: 196–201 

स्वतंत्र इच्छा प्रमेय

कोचेन-स्पेकर प्रकार के तर्क, इंटरलॉकिंग आधारों के विन्यास का उपयोग करते हुए, उलझी हुई जोड़ियों को मापने के विचार के साथ जोड़ा जा सकता है जो बेल-प्रकार की असमानताओं को रेखांकित करता है। इसे 1970 के दशक की प्रारंभ में कोचेन ने नोट किया था,[25] हेवुड और रेडहेड,[26] सीढ़ियाँ,[27] और ब्राउन और स्वेतलिचनी।[28] जैसा कि ईपीआर ने बताया है, उलझे हुए जोड़े के एक आधे भाग पर माप परिणाम प्राप्त करने से दूसरे आधे भाग पर संबंधित माप के परिणाम के बारे में निश्चितता का पता चलता है। वास्तविकता का ईपीआर मानदंड यह मानता है कि चूंकि जोड़ी का दूसरा भाग क्षुब्ध नहीं था, इसलिए यह निश्चितता उससे संबंधित भौतिक संपत्ति के कारण होनी चाहिए।[29] दूसरे शब्दों में, इस मानदंड के अनुसार, एक छिपा हुआ चर जोड़ी के दूसरे, अभी तक नापे गए आधे भाग के भीतर उपस्थित होना चाहिए। यदि पहली छमाही पर केवल एक माप पर विचार किया जाए तो कोई विरोधाभास उत्पन्न नहीं होता है। चूंकि, यदि पर्यवेक्षक के पास कई संभावित मापों का विकल्प है, और उन मापों को परिभाषित करने वाले सदिश कोचेन-स्पेकर संचय बनाते हैं, तो दूसरी छमाही पर कुछ परिणाम एक साथ असंभव और गारंटीकृत होंगे।

इस प्रकार के तर्क ने तब ध्यान आकर्षित किया जब इसका एक उदाहरण जॉन हॉर्टन कॉनवे और साइमन बी. कोचेन द्वारा स्वतंत्र इच्छा प्रमेय के नाम से आगे बढ़ाया गया।[30][31][32] कॉनवे-कोचेन प्रमेय उलझे हुए क्वट्रिट्स (क्वांटम जानकारी की एक इकाई)की एक जोड़ी और आशेर पेरेज़ द्वारा अन्वेषण गए कोचेन-स्पेकर व्यवस्था के प्रारूप का उपयोग करता है।[33]

अर्धशास्त्रीय उलझाव

जैसा कि बेल ने बताया, क्वांटम यांत्रिकी की कुछ भविष्यवाणियों को स्थानीय छिपे हुए चर मॉडल में दोहराया जा सकता है, जिसमें उलझाव से उत्पन्न सहसंबंधों के विशेष स्थिति भी सम्मलित हैं। बेल के प्रमेय के पश्चात के वर्षों में इस विषय का व्यवस्थित रूप से अध्ययन किया गया है। 1989 में, रेइनहार्ड एफ. वर्नर ने जिसे अब वर्नर अवस्था कहा जाता है, प्रस्तुत किया, प्रणाली की एक जोड़ी के लिए संयुक्त क्वांटम अवस्था जो ईपीआर-प्रकार के सहसंबंध उत्पन्न करते हैं लेकिन एक छिपे हुए चर मॉडल को भी स्वीकार करते हैं।[34] वर्नर अवस्था द्विदलीय क्वांटम अवस्था हैं जो सममित क्रोनकर उत्पाद टेंसर-उत्पाद रूप की इकाईता (भौतिकी) के तहत अपरिवर्तनीय हैं:

2004 में, रॉबर्ट स्पेकेंस ने एक स्पेकेन का टोय मॉडल प्रस्तुत किया जो स्वतंत्रता की स्थानीय, विवेकाधीन डिग्री के आधार पर शुरू होता है और फिर एक ज्ञान संतुलन सिद्धांत क्रियान्वित करता है जो प्रतिबंधित करता है कि एक पर्यवेक्षक स्वतंत्रता की उन डिग्री के बारे में कितना जान सकता है, जिससे उन्हें छिपे हुए चर में बदल दिया जाता है। अंतर्निहित चर (ओंटिक अवस्था) के बारे में ज्ञान की अनुमत अवस्थाएँ (ज्ञान-मीमांसा अवस्थाएँ) क्वांटम अवस्थाओं की कुछ विशेषताओं की नकल करती हैं। टोय मॉडल में सहसंबंध उलझाव के कुछ पहलुओं का अनुकरण कर सकते हैं, जैसे उलझाव की मोनोगैमी, लेकिन निर्माण से, टोय मॉडल कभी भी बेल असमानता का उल्लंघन नहीं कर सकता है।[35][36]

इतिहास

पृष्ठभूमि

यह प्रश्न कि क्या क्वांटम यांत्रिकी को छिपे हुए चर द्वारा "पूरा" किया जा सकता है, क्वांटम सिद्धांत के प्रारंभिक वर्षों का है। क्वांटम मैकेनिक्स की अपनी गणितीय नींव में, हंगरी में जन्मे पॉलीमैथ जॉन वॉन न्यूमैन ने वह प्रस्तुत किया जो उन्होंने इस बात का प्रमाण होने का दावा किया था कि कोई छिपा हुआ पैरामीटर नहीं हो सकता है। वॉन न्यूमैन के प्रमाण की वैधता और निश्चितता पर हंस रीचेनबैक द्वारा, ग्रेटे हरमन द्वारा अधिक विस्तार से और संभवतः बातचीत में, चूंकि अल्बर्ट आइंस्टीन द्वारा प्रिंट में नहीं, प्रश्न उठाए गए थे।[note 3] (साइमन बी. कोचेन और अर्न्स्ट स्पेकर ने वॉन न्यूमैन की प्रमुख धारणा को 1961 की प्रारंभ में ही अस्वीकृत कर दिया था, लेकिन 1967 तक इसकी कोई आलोचना प्रकाशित नहीं की थी।[42])

आइंस्टीन ने लगातार तर्क दिया कि क्वांटम यांत्रिकी एक पूर्ण सिद्धांत नहीं हो सकता। उनका पसंदीदा तर्क स्थानीयता के सिद्धांत पर निर्भर था:

दो आंशिक प्रणालियों ए और बी से बनी एक यांत्रिक प्रणाली पर विचार करें जो केवल सीमित समय के समय एक दूसरे के साथ परस्पर क्रिया करती है। मान लीजिए कि उनकी परस्पर क्रिया से पहले ψ कार्य करता है। फिर उनकी परस्पर क्रिया होने के पश्चात श्रोडिंगर समीकरण ψ फ़ंक्शन प्रस्तुत करेगा। आइए अब हम आंशिक प्रणाली ए की भौतिक स्थिति को माप द्वारा यथासंभव पूर्ण रूप से निर्धारित करें। फिर क्वांटम यांत्रिकी हमें किए गए मापों से आंशिक प्रणाली बी के फलन और कुल प्रणाली के फलन से निर्धारित करने की अनुमति देती है। चूंकि, यह निर्धारण एक परिणाम देता है जो इस पर निर्भर करता है कि A की स्थिति को निर्दिष्ट करने वाले निर्धारण परिमाणों में से कौन सा मापा गया है (उदाहरण के लिए निर्देशांक या क्षण)। चूँकि अंतःक्रिया के पश्चात B की केवल एक ही भौतिक स्थिति हो सकती है और जिसे उचित रूप से B से अलग प्रणाली A पर किए गए विशेष माप पर निर्भर नहीं माना जा सकता है, इसलिए यह निष्कर्ष निकाला जा सकता है कि ψ फलन स्पष्ट रूप से भौतिक के साथ समन्वित नहीं है स्थिति। प्रणाली बी की समान भौतिक स्थिति के साथ कई ψ कार्यों का यह समन्वय फिर से दिखाता है कि ψ फलन को एक इकाई प्रणाली की भौतिक स्थिति के (पूर्ण) विवरण के रूप में व्याख्या नहीं किया जा सकता है।[43]

ईपीआर विचार प्रयोग समान है, एक संयुक्त तरंग फलन द्वारा वर्णित दो अलग-अलग प्रणालियों A और B पर भी विचार किया जा रहा है। चूंकि, ईपीआर पेपर उस विचार को जोड़ता है जिसे पश्चात में वास्तविकता के ईपीआर मानदंड के रूप में जाना जाता है, जिसके अनुसार संभावना 1 के साथ बी पर माप के परिणाम की पूर्वानुमान करने की क्षमता B के भीतर वास्तविकता के एक तत्व के अस्तित्व को दर्शाती है।[44]

1951 में, डेविड बोहम ने ईपीआर विचार प्रयोग का एक प्रकार प्रस्तावित किया जिसमें ईपीआर द्वारा विचार की गई स्थिति और गति माप के विपरीत, माप में संभावित परिणामों की अलग-अलग श्रेणियां होती हैं।[45] एक साल पहले, χ एन-शि यूएन जीडब्ल्यू यू और इरविंग शाकनोव ने उलझे हुए जोड़े में उत्पादित फोटॉन के ध्रुवीकरण को सफलतापूर्वक मापा था, जिससे ईपीआर विचार प्रयोग का बोहम संस्करण व्यावहारिक रूप से संभव हो गया था।[46]

1940 के दशक के अंत तक, गणितज्ञ जॉर्ज मैके की क्वांटम भौतिकी की नींव में रुचि बढ़ गई थी, और 1957 में उन्होंने अभिधारणाओं की एक सूची प्रस्तुत की, जिसे उन्होंने क्वांटम यांत्रिकी की सटीक परिभाषा के रूप में लिया।[47] मैके ने अनुमान लगाया कि इनमें से एक अभिधारणा निरर्थक थी, और इसके तुरंत पश्चात, एंड्रयू एम. ग्लीसन ने सिद्ध करना कर दिया कि यह वास्तव में अन्य अभिधारणाओं से अनुमान लगाने योग्य था।[48][49] ग्लीसन के प्रमेय ने एक तर्क प्रदान किया कि छिपे हुए चर सिद्धांतों का एक व्यापक वर्ग क्वांटम यांत्रिकी के साथ असंगत है।[note 4] अधिक विशेष रूप से, ग्लीसन का प्रमेय छिपे हुए-परिवर्तनीय मॉडल को बहिष्कृत करता है जो गैर-प्रासंगिक हैं। क्वांटम यांत्रिकी के लिए किसी भी छिपे हुए-चर मॉडल में, ग्लीसन के प्रमेय के निहितार्थ से बचने के लिए, छिपे हुए चर सम्मलित होने चाहिए जो केवल मापी गई प्रणाली से संबंधित गुण नहीं हैं, बल्कि बाहरी संदर्भ पर भी निर्भर करते हैं जिसमें माप किया जाता है। इस प्रकार की निर्भरता को अधिकांशतः काल्पनिक या अवांछनीय के रूप में देखा जाता है; कुछ सेटिंग्स में, यह विशेष सापेक्षता के साथ असंगत है।[5][51] कोचेन-स्पेकर प्रमेय किरणों के एक विशिष्ट परिमित उपसमुच्चय का निर्माण करके इस कथन को परिष्कृत करता है, जिस पर ऐसी कोई संभाव्यता माप परिभाषित नहीं की जा सकती है।[5][52]

त्सुंग-दाओ ली 1960 में बेल के प्रमेय को प्राप्त करने के निकट आ गए। उन्होंने उन घटनाओं पर विचार किया जहां दो खाओ विपरीत दिशाओं में यात्रा करते हुए उत्पन्न हुए थे, और इस निष्कर्ष पर पहुंचे कि छिपे हुए चर उन सहसंबंधों की व्याख्या नहीं कर सकते हैं जो ऐसी स्थितियों में प्राप्त किए जा सकते हैं। चूंकि, इस तथ्य के कारण जटिलताएँ पैदा हुईं कि काओन का क्षय हो गया, और वह बेल-प्रकार की असमानता को कम करने के लिए इतनी दूर नहीं गए।[note 5]

बेल के प्रकाशन

बेल ने अपने प्रमेय को समानतात्मक रूप से अस्पष्ट पत्रिका में प्रकाशित करने का निर्णय किया क्योंकि इसके लिए पृष्ठ शुल्क की आवश्यकता नहीं थी, वास्तव में उन लेखकों को भुगतान करना था जिन्होंने उस समय वहां प्रकाशित किया था। चूंकि, पत्रिका ने लेखकों को वितरित करने के लिए लेखों की मुफ्त पुनर्मुद्रण प्रदान नहीं की थी, चूंकि, बेल को प्राप्त धनराशि प्रतियां खरीदने के लिए खर्च करनी पड़ी, जिसे वह अन्य भौतिकविदों को भेज सकते थे।[53] जबकि जर्नल में छपे लेखों में प्रकाशन का नाम केवल भौतिक विज्ञान के रूप में सूचीबद्ध था, कवर पर त्रिभाषी संस्करण फिजिक्स भौतिक विज्ञान छपा था, यह दर्शाने के लिए कि यह अंग्रेजी, फ्रेंच और रूसी में लेख मुद्रित करेगा।[41]: 92–100, 289 

अपने 1964 के परिणाम को सिद्ध करना करने से पहले, बेल ने कोचेन-स्पेकर प्रमेय के समतुल्य परिणाम भी सिद्ध करना किया (इसलिए पश्चात वाले को कभी-कभी बेल-कोचेन-स्पेकर या बेल-केएस प्रमेय के रूप में भी जाना जाता है)। चूंकि, इस प्रमेय के प्रकाशन में अनजाने में 1966 तक देरी हो गई।[5][54] उस पेपर में, बेल ने तर्क दिया कि क्योंकि छिपे हुए चर के संदर्भ में क्वांटम घटना की व्याख्या के लिए गैर-स्थानीयता की आवश्यकता होगी, ईपीआर विरोधाभास को उस तरीके से हल किया गया है जो आइंस्टीन को सबसे कम पसंद आया होगा।[54]

प्रयोग

दो-चैनल बेल परीक्षण की योजना
स्रोत एस फोटॉन के जोड़े का उत्पादन करता है, जो विपरीत दिशाओं में भेजे जाते हैं। प्रत्येक फोटॉन को दो-चैनल ध्रुवीकरणकर्ता का सामना करना पड़ता है जिसका अभिविन्यास (ए या बी) प्रयोगकर्ता द्वारा निर्धारित किया जा सकता है। प्रत्येक चैनल से उभरते संकेतों का पता लगाया जाता है और संयोग मॉनिटर द्वारा चार प्रकार (++, −−, +− और −+) के संयोगों की गणना की जाती है।

1967 में, असामान्य शीर्षक फिजिक्स फिजिक फ़ैज़िका ने जॉन क्लॉसर का ध्यान आकर्षित किया, जिन्होंने तब बेल के पेपर की अन्वेषण की और इस बात पर विचार करना शुरू किया कि प्रयोगशाला में बेल परीक्षण कैसे किया जाए।[55] क्लॉसर और स्टुअर्ट फ़्रीडमैन 1972 में बेल परीक्षण करने के लिए आगे बढ़े।[56][57] यह केवल एक सीमित परीक्षण था, क्योंकि संसूचक सेटिंग्स का चुनाव फोटॉनों के स्रोत छोड़ने से पहले किया गया था। 1982 में, एलेन पहलू और सहयोगियों ने इस सीमा को दूर करने के लिए एस्पेक्ट का प्रयोग किया।[58] इससे उत्तरोत्तर अधिक कठोर बेल परीक्षणों का चलन शुरू हुआ। GHZ विचार प्रयोग को 2000 में फोटोन के उलझे हुए त्रिक का उपयोग करके व्यवहार में क्रियान्वित किया गया था।[59] 2002 तक, स्नातक प्रयोगशाला पाठ्यक्रमों में सीएचएसएच असमानता का परीक्षण संभव था।[60]

बेल परीक्षणों में, प्रायोगिक डिज़ाइन या सेट-अप की समस्याएं हो सकती हैं जो प्रयोगात्मक निष्कर्षों की वैधता को प्रभावित करती हैं। इन समस्याओं को अधिकांशतः अल्पता कहा जाता है। प्रयोग का उद्देश्य यह परीक्षण करना है कि क्या प्रकृति का वर्णन स्थानीय छिपे-चर सिद्धांत द्वारा किया जा सकता है, जो क्वांटम यांत्रिकी की भविष्यवाणियों का खंडन करेगा।

वास्तविक प्रयोगों में सबसे प्रचलित त्रुटियां पता लगाने और स्थानीयता संबंधी त्रुटियां हैं।[61] जब प्रयोग में कणों (सामान्यतः फोटॉन) का एक छोटा सा अंश पाया जाता है, तो पता लगाने का रास्ता विवृत जाता है, जिससे यह मानकर स्थानीय छिपे हुए चर के साथ डेटा की व्याख्या करना संभव हो जाता है कि पता लगाए गए कण एक गैर-प्रतिनिधि नमूना हैं। स्थानीयता की अल्पता तब विवृत होती है जब स्पेसटाइम अंतराल के साथ पता नहीं लगाया जाता है, जिससे एक माप के परिणाम के लिए सापेक्षता का खंडन किए बिना दूसरे को प्रभावित करना संभव हो जाता है। कुछ प्रयोगों में अतिरिक्त दोष हो सकते हैं जो बेल परीक्षण उल्लंघनों की स्थानीय-छिपी-परिवर्तनीय व्याख्या को संभव बनाते हैं।[62]

चूंकि स्थानीयता और पता लगाने की दोनों अल्पतायों को अलग-अलग प्रयोगों में संवृत कर दिया गया था, लेकिन एक ही प्रयोग में दोनों को एक साथ संवृत करना एक लंबे समय से चली आ रही चुनौती थी। यह अंततः 2015 में तीन प्रयोगों में प्राप्त किया गया।[63][64][65][66][67]

इन परिणामों के बारे में, एलेन एस्पेक्ट लिखते हैं कि कोई भी प्रयोग... पूरी तरह से त्रुटि से मुक्त नहीं कहा जा सकता है, लेकिन उनका कहना है कि प्रयोग अंतिम संदेह को दूर करते हैं कि हमें स्थानीय छिपे हुए चर को त्याग देना चाहिए, और शेष अल्पतायों के उदाहरणों को दूर बताया गया है भौतिकी में तर्क करने का सामान्य उपाए विदेशी और विदेशी है।[68]

बेल असमानताओं के उल्लंघन को प्रयोगात्मक रूप से मान्य करने के इन प्रयासों के परिणामस्वरूप पश्चात में क्लॉसर, एस्पेक्ट और एंटोन ज़िलिंगर को भौतिकी में 2022 नोबेल पुरस्कार से सम्मानित किया गया।[69]

व्याख्याएँ

बेल के प्रमेय पर प्रतिक्रियाएँ अनेक और विविध रही हैं। मैक्सिमिलियन श्लोशाउर, जोहान्स कोफ्लर और ज़िलिंगर लिखते हैं कि बेल असमानताएं इस बात का अद्भुत उदाहरण प्रदान करती हैं कि कैसे हम कई प्रयोगों द्वारा परीक्षण किए गए कठोर सैद्धांतिक परिणाम प्राप्त कर सकते हैं, और फिर भी निहितार्थों के बारे में असहमत हैं।[70]

कोपेनहेगन व्याख्या

कोपेनहेगन व्याख्या क्वांटम यांत्रिकी के अर्थ के बारे में विचारों का एक संग्रह है जिसका श्रेय मुख्य रूप से नील्स बोह्र और वर्नर हाइजेनबर्ग को दिया जाता है। यह क्वांटम यांत्रिकी की कई प्रस्तावित व्याख्याओं में से सबसे पुरानी व्याख्याओं में से एक है, क्योंकि इसकी विशेषताएं 1925-1927 के समय क्वांटम यांत्रिकी के विकास की हैं, और यह सबसे अधिक सिखाई जाने वाली व्याख्याओं में से एक बनी हुई है।[71] कोपेनहेगन व्याख्या क्या है इसका कोई निश्चित ऐतिहासिक विवरण नहीं है। विशेष रूप से, बोह्र और हाइजेनबर्ग के विचारों के बीच मौलिक असहमति थी।[72][73][74] कोपेनहेगन संग्रह के भाग के रूप में सामान्यतः स्वीकार किए गए कुछ मूलभूत सिद्धांतों में यह विचार सम्मलित है कि क्वांटम यांत्रिकी आंतरिक रूप से अनिश्चित है, जिसमें बोर्न नियम का उपयोग करके संभावनाओं की गणना की जाती है,[75] और पूरकता (भौतिकी): कुछ गुणों को एक ही समय में एक ही प्रणाली के लिए संयुक्त रूप से परिभाषित नहीं किया जा सकता है। किसी प्रणाली की विशिष्ट संपत्ति के बारे में बात करने के लिए, उस प्रणाली को एक विशिष्ट प्रयोगशाला व्यवस्था के संदर्भ में माना जाना चाहिए। परस्पर अनन्य प्रयोगशाला व्यवस्थाओं के अनुरूप अवलोकन योग्य मात्राओं की एक साथ पूर्वानुमान नहीं की जा सकती है, लेकिन किसी प्रणाली को चिह्नित करने के लिए ऐसे कई परस्पर अनन्य प्रयोगों पर विचार करना आवश्यक है।[72]बोह्र ने स्वयं यह तर्क देने के लिए पूरकता का उपयोग किया कि ईपीआर विरोधाभास भ्रामक था, क्योंकि स्थिति और गति के माप पूरक हैं, इसलिए एक को मापने का विकल्प चुनने से दूसरे को मापने की संभावना समाप्त हो जाती है। परिणामस्वरूप, उन्होंने तर्क दिया, प्रयोगशाला उपकरण की एक व्यवस्था के संबंध में निकाले गए तथ्य को दूसरे के माध्यम से निकाले गए तथ्य के साथ नहीं जोड़ा जा सकता है, और इसलिए, दूसरे कण के लिए पूर्व निर्धारित स्थिति और गति मूल्यों का अनुमान मान्य नहीं था।[38]: 194–197  बोह्र ने निष्कर्ष निकाला कि ईपीआर के तर्क उनके निष्कर्ष को उचित नहीं ठहराते हैं कि क्वांटम विवरण अनिवार्य रूप से अधूरा है।[76]

कोपेनहेगन-प्रकार की व्याख्याएं सामान्यतः बेल असमानताओं के उल्लंघन को उस धारणा को अस्वीकार करने के आधार के रूप में लेती हैं जिसे अधिकांशतः प्रतितथ्यात्मक निश्चितता या यथार्थवाद कहा जाता है, जो व्यापक दार्शनिक अर्थ में यथार्थवाद को छोड़ने के समान नहीं है।[77][78] उदाहरण के लिए, रोलैंड ओम्नेस छिपे हुए चरों की अस्वीकृति के लिए तर्क देते हैं और निष्कर्ष निकालते हैं कि क्वांटम यांत्रिकी संभवतः उतनी ही यथार्थवादी है जितनी इसके दायरे और परिपक्वता का कोई भी सिद्धांत कभी भी होगा।[79]: 531  यह वह मार्ग भी है जो कोपेनहेगन परंपरा से आने वाली व्याख्याओं द्वारा अपनाया जाता है, जैसे सुसंगत इतिहास (अधिकांशतः कोपेनहेगन द्वारा सही तरीके से विज्ञापित किया जाता है),[80] साथ ही क्यूबिज्म.[81]

क्वांटम यांत्रिकी की कई-दुनिया की व्याख्या

मैनी-वर्ल्ड्स व्याख्या, जिसे ह्यू एवरेट III व्याख्या के रूप में भी जाना जाता है, स्थानीय और नियतात्मक है, क्योंकि इसमें बिना पतन के क्वांटम यांत्रिकी का एकात्मक भाग सम्मलित है। यह सहसंबंध उत्पन्न कर सकता है जो बेल असमानता का उल्लंघन करता है क्योंकि यह बेल की एक अंतर्निहित धारणा का उल्लंघन करता है कि माप का एक ही परिणाम होता है। वास्तव में, बेल के प्रमेय को कई-दुनिया के ढांचे में इस धारणा से सिद्ध किया जा सकता है कि माप का एक ही परिणाम होता है। इसलिए, बेल असमानता के उल्लंघन की व्याख्या एक प्रदर्शन के रूप में की जा सकती है कि माप के कई परिणाम होते हैं।[82]

बेल सहसंबंधों के लिए यह जो स्पष्टीकरण प्रदान करता है वह यह है कि जब ऐलिस और बॉब अपना माप करते हैं, तो वे स्थानीय शाखाओं में विभाजित हो जाते हैं। ऐलिस की प्रत्येक प्रति के दृष्टिकोण से, बॉब की कई प्रतियाँ अलग-अलग परिणामों का अनुभव कर रही हैं, इसलिए बॉब का कोई निश्चित परिणाम नहीं हो सकता है, और बॉब की प्रत्येक प्रति के दृष्टिकोण से भी यही सच है। वे पारस्परिक रूप से अच्छी तरह से परिभाषित परिणाम तभी प्राप्त करेंगे जब उनके भविष्य के प्रकाश शंकु ओवरलैप होंगे। इस बिंदु पर हम कह सकते हैं कि बेल सहसंबंध अस्तित्व में आना शुरू हो गया है, लेकिन यह पूरी तरह से स्थानीय तंत्र द्वारा निर्मित किया गया था। इसलिए, बेल असमानता के उल्लंघन की व्याख्या गैर-स्थानीयता के प्रमाण के रूप में नहीं की जा सकती है।[83]

गैर-स्थानीय छिपे हुए चर

छिपे हुए चर विचार के अधिकांश समर्थकों का मानना ​​है कि प्रयोगों ने स्थानीय छिपे हुए चर को बहिष्कृत कर दिया है।[note 6] वे गैर-स्थानीय छिपे हुए चर सिद्धांत के माध्यम से बेल की असमानता के उल्लंघन को समझाते हुए, स्थानीयता को छोड़ने के लिए तैयार हैं, जिसमें कण अपने अवस्थाों के बारे में जानकारी का आदान-प्रदान करते हैं। यह क्वांटम यांत्रिकी की बोहम व्याख्या का आधार है, जिसके लिए आवश्यक है कि ब्रह्मांड के सभी कण अन्य सभी के साथ तुरंत जानकारी का आदान-प्रदान करने में सक्षम हों। गैर-स्थानीय छिपे हुए चर सिद्धांतों के लिए एक चुनौती यह समझाना है कि यह तात्कालिक संचार छिपे हुए चर के स्तर पर क्यों उपस्थित हो सकता है, लेकिन इसका उपयोग सिग्नल भेजने के लिए नहीं किया जा सकता है।[86] 2007 के एक प्रयोग ने गैर-बोहमियन गैर-स्थानीय छिपे हुए चर सिद्धांतों के एक बड़े वर्ग को अस्वीकृत कर दिया, तथापि बोहमियन यांत्रिकी को नहीं।[87]

क्वांटम यांत्रिकी (टीआईक्यूएम) की लेन-देन व्याख्या, जो समय में पीछे और आगे दोनों तरफ यात्रा करने वाली तरंगों को दर्शाती है, वैसे ही गैर-स्थानीय है।[88]

अतिनियतिवाद

बेल के प्रमेय को प्राप्त करने के लिए एक आवश्यक धारणा यह है कि छिपे हुए चर माप समायोजन के साथ सहसंबद्ध नहीं हैं। इस धारणा को इस आधार पर उचित ठहराया गया है कि प्रयोगकर्ता के पास समायोजन चुनने की स्वतंत्र अभिलाषा है, और पहले स्थान पर विज्ञान करना आवश्यक है। एक (काल्पनिक) सिद्धांत जहां माप की पसंद आवश्यक रूप से मापी जा रही प्रणाली के साथ सहसंबद्ध होती है उसे अतिनियतिवादी के रूप में जाना जाता है।[61]

नियतिवादी मॉडल के कुछ समर्थकों ने स्थानीय छिपे हुए चर को नहीं छोड़ा है। उदाहरण के लिए, जेरार्ड टी हूफ्ट ने तर्क दिया है कि सुपरनियतिवाद को अस्वीकृत नहीं किया जा सकता है।[89]

यह भी देखें

टिप्पणियाँ

  1. We are for convenience assuming that the response of the detector to the underlying property is deterministic. This assumption can be replaced; it is equivalent to postulating a joint probability distribution over all the observables of the experiment.[11][12]
  2. In more detail, as developed by Paul Dirac,[20] David Hilbert,[21] John von Neumann,[22] and Hermann Weyl,[23] the state of a quantum mechanical system is a vector belonging to a (separable) Hilbert space . Physical quantities of interest — position, momentum, energy, spin — are represented by "observables", which are self-adjoint linear operators acting on the Hilbert space. When an observable is measured, the result will be one of its eigenvalues with probability given by the Born rule: in the simplest case the eigenvalue is non-degenerate and the probability is given by , where is its associated eigenvector. More generally, the eigenvalue is degenerate and the probability is given by , where is the projector onto its associated eigenspace. For the purposes of this discussion, we can take the eigenvalues to be non-degenerate.
  3. See Reichenbach[37] and Jammer,[38]: 276  Mermin and Schack,[39] and for Einstein's remarks, Clauser and Shimony[40] and Wick.[41]: 286 
  4. A hidden-variable theory that is deterministic implies that the probability of a given outcome is always either 0 or 1. For example, a Stern–Gerlach measurement on a spin-1 atom will report that the atom's angular momentum along the chosen axis is one of three possible values, which can be designated , and . In a deterministic hidden-variable theory, there exists an underlying physical property that fixes the result found in the measurement. Conditional on the value of the underlying physical property, any given outcome (for example, a result of ) must be either impossible or guaranteed. But Gleason's theorem implies that there can be no such deterministic probability measure, because it proves that any probability measure must take the form of a mapping for some density operator . This mapping is continuous on the unit sphere of the Hilbert space, and since this unit sphere is connected, no continuous probability measure on it can be deterministic.[50]: §1.3 
  5. This was reported by Max Jammer.[38]: 308  Lee is best known for his prediction with Chen-Ning Yang of the violation of parity conservation, a prediction that earned them the Nobel Prize after it was confirmed by Chien-Shiung Wu, who did not share in the Prize.
  6. E. T. Jaynes was one exception,[84] but Jaynes' arguments have not generally been found persuasive.[85]

संदर्भ

  1. Bell, John S. (1987). क्वांटम यांत्रिकी में बोलने योग्य और अकथनीय. Cambridge University Press. p. 65. ISBN 9780521368698. OCLC 15053677.
  2. 2.0 2.1 Einstein, A.; Podolsky, B.; Rosen, N. (1935-05-15). "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?". Physical Review. 47 (10): 777–780. Bibcode:1935PhRv...47..777E. doi:10.1103/PhysRev.47.777.
  3. 3.0 3.1 Bell, J. S. (1964). "आइंस्टीन पोडॉल्स्की रोसेन विरोधाभास पर" (PDF). Physics Physique Физика. 1 (3): 195–200. doi:10.1103/PhysicsPhysiqueFizika.1.195.
  4. Parker, Sybil B. (1994). मैकग्रा-हिल इनसाइक्लोपीडिया ऑफ फिजिक्स (2nd ed.). McGraw-Hill. p. 542. ISBN 978-0-07-051400-3.
  5. 5.0 5.1 5.2 5.3 Mermin, N. David (July 1993). "छिपे हुए चर और जॉन बेल के दो प्रमेय" (PDF). Reviews of Modern Physics. 65 (3): 803–15. arXiv:1802.10119. Bibcode:1993RvMP...65..803M. doi:10.1103/RevModPhys.65.803. S2CID 119546199.
  6. "The Nobel Prize in Physics 2022". Nobel Prize (Press release). The Royal Swedish Academy of Sciences. October 4, 2022. Retrieved 6 October 2022.
  7. The BIG Bell Test Collaboration (9 May 2018). "मानवीय विकल्पों के साथ स्थानीय यथार्थवाद को चुनौती देना". Nature. 557 (7704): 212–216. arXiv:1805.04431. Bibcode:2018Natur.557..212B. doi:10.1038/s41586-018-0085-3. PMID 29743691. S2CID 13665914.
  8. Wolchover, Natalie (2017-02-07). "प्रयोग क्वांटम विचित्रता की पुष्टि करता है". Quanta Magazine (in English). Retrieved 2020-02-08.
  9. 9.0 9.1 Shimony, Abner. "बेल का प्रमेय". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy.
  10. 10.0 10.1 10.2 10.3 Nielsen, Michael A.; Chuang, Isaac L. (2010). क्वांटम संगणना और क्वांटम सूचना (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-1-107-00217-3. OCLC 844974180.
  11. Fine, Arthur (1982-02-01). "Hidden Variables, Joint Probability, and the Bell Inequalities". Physical Review Letters (in English). 48 (5): 291–295. Bibcode:1982PhRvL..48..291F. doi:10.1103/PhysRevLett.48.291. ISSN 0031-9007.
  12. Braunstein, Samuel L.; Caves, Carlton M. (August 1990). "Wringing out better Bell inequalities". Annals of Physics (in English). 202 (1): 22–56. Bibcode:1990AnPhy.202...22B. doi:10.1016/0003-4916(90)90339-P.
  13. Rau, Jochen (2021). Quantum theory : an information processing approach. Oxford University Press. ISBN 978-0-192-65027-6. OCLC 1256446911.
  14. Cleve, R.; Hoyer, P.; Toner, B.; Watrous, J. (2004). "Consequences and limits of nonlocal strategies". Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004. IEEE. pp. 236–249. arXiv:quant-ph/0404076. Bibcode:2004quant.ph..4076C. doi:10.1109/CCC.2004.1313847. ISBN 0-7695-2120-7. OCLC 55954993. S2CID 8077237.
  15. Barnum, H.; Beigi, S.; Boixo, S.; Elliott, M. B.; Wehner, S. (2010-04-06). "स्थानीय क्वांटम मापन और नो-सिग्नलिंग क्वांटम सहसंबंध दर्शाते हैं". Physical Review Letters (in English). 104 (14): 140401. arXiv:0910.3952. Bibcode:2010PhRvL.104n0401B. doi:10.1103/PhysRevLett.104.140401. ISSN 0031-9007. PMID 20481921. S2CID 17298392.
  16. Griffiths, David J. (2005). क्वांटम यांत्रिकी का परिचय (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall. ISBN 0-13-111892-7. OCLC 53926857.
  17. Greenberger, D.; Horne, M.; Shimony, A.; Zeilinger, A. (1990). "असमानताओं के बिना बेल का प्रमेय". American Journal of Physics. 58 (12): 1131. Bibcode:1990AmJPh..58.1131G. doi:10.1119/1.16243.
  18. Mermin, N. David (1990). "क्वांटम रहस्यों पर दोबारा गौर किया गया". American Journal of Physics. 58 (8): 731–734. Bibcode:1990AmJPh..58..731M. doi:10.1119/1.16503.
  19. Brassard, Gilles; Broadbent, Anne; Tapp, Alain (2005). "मर्मिन के मल्टी-प्लेयर गेम को छद्म टेलीपैथी के ढांचे में दोबारा ढालना". Quantum Information and Computation. 5 (7): 538–550. arXiv:quant-ph/0408052. Bibcode:2004quant.ph..8052B. doi:10.26421/QIC5.7-2.
  20. Dirac, Paul Adrien Maurice (1930). The Principles of Quantum Mechanics. Oxford: Clarendon Press.
  21. Hilbert, David (2009). Sauer, Tilman; Majer, Ulrich (eds.). Lectures on the Foundations of Physics 1915–1927: Relativity, Quantum Theory and Epistemology. Springer. doi:10.1007/b12915. ISBN 978-3-540-20606-4. OCLC 463777694.
  22. von Neumann, John (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer. English translation: Mathematical Foundations of Quantum Mechanics. Translated by Beyer, Robert T. Princeton University Press. 1955.
  23. Weyl, Hermann (1950) [1931]. The Theory of Groups and Quantum Mechanics. Translated by Robertson, H. P. Dover. ISBN 978-0-486-60269-1. Translated from the German Gruppentheorie und Quantenmechanik (2nd ed.). S. Hirzel Verlag [de]. 1931.
  24. Peres, Asher (1993). Quantum Theory: Concepts and Methods. Kluwer. ISBN 0-7923-2549-4. OCLC 28854083.
  25. Redhead, Michael; Brown, Harvey (1991-07-01). "क्वांटम यांत्रिकी में गैर-स्थानीयता". Proceedings of the Aristotelian Society, Supplementary Volumes (in English). 65 (1): 119–160. doi:10.1093/aristoteliansupp/65.1.119. ISSN 0309-7013. JSTOR 4106773. A similar approach was arrived at independently by Simon Kochen, although never published (private communication).
  26. Heywood, Peter; Redhead, Michael L. G. (May 1983). "Nonlocality and the Kochen–Specker paradox". Foundations of Physics (in English). 13 (5): 481–499. Bibcode:1983FoPh...13..481H. doi:10.1007/BF00729511. ISSN 0015-9018. S2CID 120340929.
  27. Stairs, Allen (December 1983). "क्वांटम तर्क, यथार्थवाद, और मूल्य निश्चितता". Philosophy of Science (in English). 50 (4): 578–602. doi:10.1086/289140. ISSN 0031-8248. S2CID 122885859.
  28. Brown, H. R.; Svetlichny, G. (November 1990). "गैर-स्थानीयता और ग्लीसन की लेम्मा। भाग I. नियतिवादी सिद्धांत". Foundations of Physics (in English). 20 (11): 1379–1387. Bibcode:1990FoPh...20.1379B. doi:10.1007/BF01883492. ISSN 0015-9018. S2CID 122868901.
  29. Glick, David; Boge, Florian J. (2019-10-22). "Is the Reality Criterion Analytic?". Erkenntnis (in English). 86 (6): 1445–1451. arXiv:1909.11893. Bibcode:2019arXiv190911893G. doi:10.1007/s10670-019-00163-w. ISSN 0165-0106. S2CID 202889160.
  30. Conway, John; Kochen, Simon (2006). "स्वतंत्र इच्छा प्रमेय". Foundations of Physics. 36 (10): 1441. arXiv:quant-ph/0604079. Bibcode:2006FoPh...36.1441C. doi:10.1007/s10701-006-9068-6. S2CID 12999337.
  31. Rehmeyer, Julie (2008-08-15). "Do subatomic particles have free will?". Science News (in English). Retrieved 2022-04-23.
  32. Thomas, Rachel (2011-12-27). "John Conway – discovering free will (part I)". Plus Magazine (in English). Retrieved 2022-04-23.
  33. Conway, John H.; Kochen, Simon (2009). "प्रबल स्वतंत्र इच्छा प्रमेय" (PDF). Notices of the AMS. 56 (2): 226–232.
  34. Werner, Reinhard F. (1989-10-01). "क्वांटम एक छिपे हुए चर मॉडल को स्वीकार करते हुए आइंस्टीन-पोडॉल्स्की-रोसेन सहसंबंधों के साथ बताता है". Physical Review A (in English). 40 (8): 4277–4281. Bibcode:1989PhRvA..40.4277W. doi:10.1103/PhysRevA.40.4277. ISSN 0556-2791. PMID 9902666.
  35. Spekkens, Robert W. (2007-03-19). "Evidence for the epistemic view of quantum states: A toy theory". Physical Review A (in English). 75 (3): 032110. arXiv:quant-ph/0401052. Bibcode:2007PhRvA..75c2110S. doi:10.1103/PhysRevA.75.032110. ISSN 1050-2947. S2CID 117284016.
  36. Catani, Lorenzo; Browne, Dan E. (2017-07-27). "सभी आयामों में स्पेकेंस का खिलौना मॉडल और स्टेबलाइज़र क्वांटम यांत्रिकी के साथ इसका संबंध". New Journal of Physics. 19 (7): 073035. Bibcode:2017NJPh...19g3035C. doi:10.1088/1367-2630/aa781c. ISSN 1367-2630. S2CID 119428107.
  37. Reichenbach, Hans (1944). Philosophic Foundations of Quantum Mechanics. University of California Press. p. 14. OCLC 872622725.
  38. 38.0 38.1 38.2 Jammer, Max (1974). The Philosophy of Quantum Mechanics. John Wiley and Sons. ISBN 0-471-43958-4.
  39. Mermin, N. David; Schack, Rüdiger (2018). "Homer nodded: von Neumann's surprising oversight". Foundations of Physics. 48 (9): 1007–1020. arXiv:1805.10311. Bibcode:2018FoPh...48.1007M. doi:10.1007/s10701-018-0197-5. S2CID 118951033.
  40. Clauser, J. F.; Shimony, A. (1978). "Bell's theorem: Experimental tests and implications" (PDF). Reports on Progress in Physics. 41 (12): 1881–1927. Bibcode:1978RPPh...41.1881C. CiteSeerX 10.1.1.482.4728. doi:10.1088/0034-4885/41/12/002. S2CID 250885175. Archived (PDF) from the original on 2017-09-23. Retrieved 2017-10-28.
  41. 41.0 41.1 Wick, David (1995). "Bell's Theorem". The Infamous Boundary: Seven Decades of Heresy in Quantum Physics. New York: Springer. pp. 92–100. doi:10.1007/978-1-4612-4030-3_11. ISBN 978-0-387-94726-6.
  42. Conway, John; Kochen, Simon (2002). "The Geometry of the Quantum Paradoxes". In Bertlmann, Reinhold A.; Zeilinger, Anton (eds.). Quantum [Un]speakables: From Bell to Quantum Information. Berlin: Springer. pp. 257–269. ISBN 3-540-42756-2. OCLC 49404213.
  43. Einstein, Albert (March 1936). "भौतिकी और वास्तविकता". Journal of the Franklin Institute. 221 (3): 349–382. Bibcode:1936FrInJ.221..349E. doi:10.1016/S0016-0032(36)91047-5.
  44. Harrigan, Nicholas; Spekkens, Robert W. (2010). "आइंस्टीन, अपूर्णता, और क्वांटम अवस्थाओं का ज्ञानमीमांसीय दृष्टिकोण". Foundations of Physics. 40 (2): 125. arXiv:0706.2661. Bibcode:2010FoPh...40..125H. doi:10.1007/s10701-009-9347-0. S2CID 32755624.
  45. Bohm, David (1989) [1951]. क्वांटम सिद्धांत (Dover reprint ed.). Prentice-Hall. pp. 614–623. ISBN 978-0-486-65969-5. OCLC 1103789975.
  46. Wu, C.-S.; Shaknov, I. (1950). "बिखरे हुए विनाश विकिरण का कोणीय सहसंबंध". Physical Review. 77 (1): 136. Bibcode:1950PhRv...77..136W. doi:10.1103/PhysRev.77.136.
  47. Mackey, George W. (1957). "क्वांटम मैकेनिक्स और हिल्बर्ट स्पेस". The American Mathematical Monthly. 64 (8P2): 45–57. doi:10.1080/00029890.1957.11989120. JSTOR 2308516.
  48. Gleason, Andrew M. (1957). "हिल्बर्ट स्थान के बंद उपस्थानों पर उपाय". Indiana University Mathematics Journal. 6 (4): 885–893. doi:10.1512/iumj.1957.6.56050. MR 0096113.
  49. Chernoff, Paul R. "एंडी ग्लीसन और क्वांटम मैकेनिक्स" (PDF). Notices of the AMS. 56 (10): 1253–1259.
  50. Wilce, A. (2017). "Quantum Logic and Probability Theory". Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
  51. Shimony, Abner (1984). "प्रासंगिक छिपे हुए परिवर्तनीय सिद्धांत और बेल की असमानताएँ". British Journal for the Philosophy of Science. 35 (1): 25–45. doi:10.1093/bjps/35.1.25.
  52. Peres, Asher (1991). "कोचेन-स्पेकर प्रमेय के दो सरल प्रमाण". Journal of Physics A: Mathematical and General (in English). 24 (4): L175–L178. Bibcode:1991JPhA...24L.175P. doi:10.1088/0305-4470/24/4/003. ISSN 0305-4470.
  53. Whitaker, Andrew (2016). John Stewart Bell and Twentieth Century Physics: Vision and Integrity (in English). Oxford University Press. ISBN 978-0-19-874299-9.
  54. 54.0 54.1 Bell, J. S. (1966). "क्वांटम यांत्रिकी में छिपे हुए चर की समस्या पर". Reviews of Modern Physics. 38 (3): 447–452. Bibcode:1966RvMP...38..447B. doi:10.1103/revmodphys.38.447. OSTI 1444158.
  55. Kaiser, David (2012-01-30). "How the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival [Excerpt]". Scientific American (in English). Retrieved 2020-02-11.
  56. Freedman, S. J.; Clauser, J. F. (1972). "स्थानीय छुपे-चर सिद्धांतों का प्रायोगिक परीक्षण" (PDF). Physical Review Letters. 28 (938): 938–941. Bibcode:1972PhRvL..28..938F. doi:10.1103/PhysRevLett.28.938.
  57. Freedman, Stuart Jay (1972-05-05). स्थानीय छुपे-चर सिद्धांतों का प्रायोगिक परीक्षण (PDF) (PhD). University of California, Berkeley.
  58. Aspect, Alain; Dalibard, Jean; Roger, Gérard (1982). "समय-परिवर्तनशील विश्लेषकों का उपयोग करके बेल की असमानताओं का प्रायोगिक परीक्षण". Physical Review Letters. 49 (25): 1804–7. Bibcode:1982PhRvL..49.1804A. doi:10.1103/PhysRevLett.49.1804.
  59. Pan, Jian-Wei; Bouwmeester, D.; Daniell, M.; Weinfurter, H.; Zeilinger, A. (2000). "तीन-फोटॉन GHZ उलझाव में क्वांटम नॉनलोकैलिटी का प्रायोगिक परीक्षण". Nature. 403 (6769): 515–519. Bibcode:2000Natur.403..515P. doi:10.1038/35000514. PMID 10676953. S2CID 4309261.
  60. Dehlinger, Dietrich; Mitchell, M. W. (2002). "स्नातक प्रयोगशाला में उलझे हुए फोटॉन, गैर-स्थानीयता और बेल असमानताएँ". American Journal of Physics. 70 (9): 903–910. arXiv:quant-ph/0205171. Bibcode:2002AmJPh..70..903D. doi:10.1119/1.1498860. S2CID 49487096.
  61. 61.0 61.1 Larsson, Jan-Åke (2014). "स्थानीय यथार्थवाद के बेल असमानता परीक्षणों में खामियाँ". Journal of Physics A: Mathematical and Theoretical. 47 (42): 424003. arXiv:1407.0363. Bibcode:2014JPhA...47P4003L. doi:10.1088/1751-8113/47/42/424003. S2CID 40332044.
  62. Gerhardt, I.; Liu, Q.; Lamas-Linares, A.; Skaar, J.; Scarani, V.; et al. (2011). "प्रायोगिक तौर पर बेल की असमानताओं का उल्लंघन करना". Physical Review Letters. 107 (17): 170404. arXiv:1106.3224. Bibcode:2011PhRvL.107q0404G. doi:10.1103/PhysRevLett.107.170404. PMID 22107491. S2CID 16306493.
  63. Merali, Zeeya (27 August 2015). "क्वांटम 'डरावनापन' अब तक की सबसे कठिन परीक्षा से गुजरा है". Nature News. 525 (7567): 14–15. Bibcode:2015Natur.525...14M. doi:10.1038/nature.2015.18255. PMID 26333448. S2CID 4409566.
  64. Markoff, Jack (21 October 2015). "क्षमा करें, आइंस्टीन। क्वांटम अध्ययन से पता चलता है कि 'डरावनी कार्रवाई' वास्तविक है।". New York Times. Retrieved 21 October 2015.
  65. Hensen, B.; et al. (21 October 2015). "Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres". Nature. 526 (7575): 682–686. arXiv:1508.05949. Bibcode:2015Natur.526..682H. doi:10.1038/nature15759. PMID 26503041. S2CID 205246446.
  66. Shalm, L. K.; et al. (16 December 2015). "स्थानीय यथार्थवाद का सशक्त बचाव-मुक्त परीक्षण". Physical Review Letters. 115 (25): 250402. arXiv:1511.03189. Bibcode:2015PhRvL.115y0402S. doi:10.1103/PhysRevLett.115.250402. PMC 5815856. PMID 26722906.
  67. Giustina, M.; et al. (16 December 2015). "उलझे हुए फोटोन के साथ बेल्स प्रमेय का महत्वपूर्ण-खामियों से मुक्त परीक्षण". Physical Review Letters. 115 (25): 250401. arXiv:1511.03190. Bibcode:2015PhRvL.115y0401G. doi:10.1103/PhysRevLett.115.250401. PMID 26722905. S2CID 13789503.
  68. Aspect, Alain (December 16, 2015). "आइंस्टीन और बोह्र की क्वांटम बहस पर दरवाजा बंद करना". Physics. 8: 123. Bibcode:2015PhyOJ...8..123A. doi:10.1103/Physics.8.123.
  69. Ahlander, Johan; Burger, Ludwig; Pollard, Niklas (2022-10-04). "भौतिकी का नोबेल पुरस्कार 'डरावना' क्वांटम विज्ञान के विशेषज्ञों को जाता है". Reuters (in English). Retrieved 2022-10-04.
  70. Schlosshauer, Maximilian; Kofler, Johannes; Zeilinger, Anton (2013-01-06). "A Snapshot of Foundational Attitudes Toward Quantum Mechanics". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 44 (3): 222–230. arXiv:1301.1069. Bibcode:2013SHPMP..44..222S. doi:10.1016/j.shpsb.2013.04.004. S2CID 55537196.
  71. Siddiqui, Shabnam; Singh, Chandralekha (2017). "How diverse are physics instructors' attitudes and approaches to teaching undergraduate level quantum mechanics?". European Journal of Physics. 38 (3): 035703. Bibcode:2017EJPh...38c5703S. doi:10.1088/1361-6404/aa6131.
  72. 72.0 72.1 Faye, Jan (2019). "Copenhagen Interpretation of Quantum Mechanics". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Archived from the original on 2019-04-29. Retrieved 2021-09-16.
  73. Camilleri, K.; Schlosshauer, M. (2015). "Niels Bohr as Philosopher of Experiment: Does Decoherence Theory Challenge Bohr's Doctrine of Classical Concepts?". Studies in History and Philosophy of Modern Physics. 49: 73–83. arXiv:1502.06547. Bibcode:2015SHPMP..49...73C. doi:10.1016/j.shpsb.2015.01.005. S2CID 27697360.
  74. Peres, Asher (2002). "पॉपर का प्रयोग और कोपेनहेगन व्याख्या". Studies in History and Philosophy of Modern Physics. 33: 23. arXiv:quant-ph/9910078. Bibcode:1999quant.ph.10078P. doi:10.1016/S1355-2198(01)00034-X.
  75. Bohr, N. (1928). "क्वांटम अभिधारणा और परमाणु सिद्धांत का हालिया विकास". Nature. 121 (3050): 580–590. Bibcode:1928Natur.121..580B. doi:10.1038/121580a0., p. 586: "In this connexion [Born] succeeded in obtaining a statistical interpretation of the wave functions, allowing a calculation of the probability of the individual transition processes required by the quantum postulate."
  76. Bohr, N. (1935-10-13). "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?" (PDF). Physical Review. 48 (8): 696–702. Bibcode:1935PhRv...48..696B. doi:10.1103/PhysRev.48.696. Archived (PDF) from the original on 2020-01-09. Retrieved 2021-09-16.
  77. Werner, Reinhard F. (2014-10-24). "'बेल ने क्या किया' पर टिप्पणी करें". Journal of Physics A: Mathematical and Theoretical. 47 (42): 424011. Bibcode:2014JPhA...47P4011W. doi:10.1088/1751-8113/47/42/424011. ISSN 1751-8113. S2CID 122180759.
  78. Żukowski, Marek (2017). "Bell's Theorem Tells Us Not What Quantum Mechanics is, but What Quantum Mechanics is Not". In Bertlmann, Reinhold; Zeilinger, Anton (eds.). Quantum [Un]Speakables II. The Frontiers Collection. Cham: Springer International Publishing. pp. 175–185. arXiv:1501.05640. doi:10.1007/978-3-319-38987-5_10. ISBN 978-3-319-38985-1. S2CID 119214547.
  79. Omnès, R. (1994). क्वांटम यांत्रिकी की व्याख्या. Princeton University Press. ISBN 978-0-691-03669-4. OCLC 439453957.
  80. Hohenberg, P. C. (2010-10-05). "Colloquium : An introduction to consistent quantum theory". Reviews of Modern Physics (in English). 82 (4): 2835–2844. arXiv:0909.2359. Bibcode:2010RvMP...82.2835H. doi:10.1103/RevModPhys.82.2835. ISSN 0034-6861. S2CID 20551033.
  81. Healey, Richard (2016). "Quantum-Bayesian and Pragmatist Views of Quantum Theory". In Zalta, Edward N. (ed.). स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ फिलॉसफी. Metaphysics Research Lab, Stanford University. Archived from the original on 2021-08-17. Retrieved 2021-09-16.
  82. Deutsch, David; Hayden, Patrick (2000). "उलझी हुई क्वांटम प्रणालियों में सूचना प्रवाह". Proceedings of the Royal Society A. 456 (1999): 1759–1774. arXiv:quant-ph/9906007. Bibcode:2000RSPSA.456.1759D. doi:10.1098/rspa.2000.0585. S2CID 13998168.
  83. Brown, Harvey R.; Timpson, Christopher G. (2016). "Bell on Bell's Theorem: The Changing Face of Nonlocality". In Bell, Mary; Gao, Shan (eds.). Quantum Nonlocality and Reality: 50 years of Bell's theorem. Cambridge University Press. pp. 91–123. arXiv:1501.03521. doi:10.1017/CBO9781316219393.008. ISBN 9781316219393. S2CID 118686956.
  84. Jaynes, E. T. (1989). "Clearing up Mysteries — the Original Goal". Maximum Entropy and Bayesian Methods (PDF). pp. 1–27. CiteSeerX 10.1.1.46.1264. doi:10.1007/978-94-015-7860-8_1. ISBN 978-90-481-4044-2. Archived (PDF) from the original on 2011-10-28. Retrieved 2011-10-18.
  85. Gill, Richard D. (2002). "Time, Finite Statistics, and Bell's Fifth Position". Proceedings of the Conference Foundations of Probability and Physics - 2 : Växjö (Soland), Sweden, June 2-7, 2002. Vol. 5. Växjö University Press. pp. 179–206. arXiv:quant-ph/0301059.
  86. Wood, Christopher J.; Spekkens, Robert W. (2015-03-03). "The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning". New Journal of Physics. 17 (3): 033002. arXiv:1208.4119. Bibcode:2015NJPh...17c3002W. doi:10.1088/1367-2630/17/3/033002. ISSN 1367-2630. S2CID 118518558.
  87. Gröblacher, Simon; Paterek, Tomasz; Kaltenbaek, Rainer; Brukner, Časlav; Żukowski, Marek; Aspelmeyer, Markus; Zeilinger, Anton (2007). "गैर-स्थानीय यथार्थवाद का एक प्रायोगिक परीक्षण". Nature. 446 (7138): 871–5. arXiv:0704.2529. Bibcode:2007Natur.446..871G. doi:10.1038/nature05677. PMID 17443179. S2CID 4412358.
  88. Kastner, Ruth E. (May 2010). "क्रैमर की लेन-देन संबंधी व्याख्या में क्वांटम झूठा प्रयोग". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics (in English). 41 (2): 86–92. arXiv:0906.1626. Bibcode:2010SHPMP..41...86K. doi:10.1016/j.shpsb.2010.01.001. S2CID 16242184. Archived from the original on 2018-06-24. Retrieved 2021-09-16.
  89. 't Hooft, Gerard (2016). क्वांटम यांत्रिकी की सेलुलर ऑटोमेटन व्याख्या. Fundamental Theories of Physics. Vol. 185. Springer. doi:10.1007/978-3-319-41285-6. ISBN 978-3-319-41284-9. OCLC 951761277. S2CID 7779840. Archived from the original on 2021-12-29. Retrieved 2020-08-27.

अग्रिम पठन

निम्नलिखित सामान्य दर्शकों के लिए हैं।

  • एक्ज़ेल, अमीर डी. (2001). उलझाव: भौतिकी का सबसे बड़ा रहस्य. न्यूयॉर्क: चार वाल्स आठ विंडोज़.
  • अफ़ारित, ए.; सेलोरी, एफ. (1999). आइंस्टीन, पोडॉल्स्की और रोसेन विरोधाभास. न्यूयॉर्क और लंदन: प्लेनम प्रेस.
  • बग्गोट, जे. (1992). क्वांटम सिद्धांत का अर्थ. ऑक्सफोर्ड यूनिवरसिटि प्रेस.
  • गिल्डर, लुइसा (2008). उलझाव का युग: जब क्वांटम भौतिकी का पुनर्जन्म हुआ. न्यूयॉर्क: अल्फ्रेड ए. नोपफ.
  • ग्रीन, ब्रायन (2004). ब्रह्मांड का कपड़ा. विंटेज. ISBN 0-375-72720-5.
  • Mermin, एन. डेविड (1981). "परमाणु दुनिया को घर लाना: किसी के लिए भी क्वांटम रहस्य". अमेरिकन जर्नल ऑफ फिजिक्स. 49 (10): 940–943. Bibcode:1981AmJPh..49..940M. doi:10.1119/1.12594. S2CID 122724592.
  • मरीन, एन. डेविड (April 1985). "जब कोई नहीं देखता तो क्या चाँद वहाँ होता है? वास्तविकता और क्वांटम सिद्धांत". भौतिकी आज. 38 (4): 38–47. Bibcode:1985PhT....38d..38M. doi:10.1063/1.880968.

निम्नलिखित अधिक तकनीकी रूप से उन्मुख हैं।

बाहरी संबंध