जैव-एलजीसीए: Difference between revisions

From Vigyanwiki
(Created page with "कम्प्यूटेशनल जीवविज्ञान और गणितीय और सैद्धांतिक जीवविज्ञान में,...")
 
m (11 revisions imported from alpha:जैव-एलजीसीए)
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
कम्प्यूटेशनल जीवविज्ञान और गणितीय और सैद्धांतिक जीवविज्ञान में, एक जैविक जाली-गैस सेलुलर ऑटोमेटन (बीआईओ-एलजीसीए) जैविक एजेंटों को स्थानांतरित करने और बातचीत करने के लिए एक अलग मॉडल है,<ref>{{Cite journal|last1=Deutsch|first1=Andreas|last2=Nava-Sedeño|first2=Josué Manik|last3=Syga|first3=Simon|last4=Hatzikirou|first4=Haralampos|date=2021-06-15|title=BIO-LGCA: A cellular automaton modelling class for analysing collective cell migration|journal=PLOS Computational Biology|language=en|volume=17|issue=6|pages=e1009066|doi=10.1371/journal.pcbi.1009066|issn=1553-7358|pmc=8232544|pmid=34129639|bibcode=2021PLSCB..17E9066D }}</ref> एक प्रकार का [[सेलुलर ऑटोमेटन]]। बीआईओ-एलजीसीए द्रव गतिशीलता में उपयोग किए जाने वाले [[ जाली गैस ऑटोमेटन ]]|लैटिस-गैस सेलुलर ऑटोमेटन (एलजीसीए) मॉडल पर आधारित है। एक बीआईओ-एलजीसीए मॉडल कोशिकाओं और अन्य गतिशील जैविक एजेंटों को एक अलग जाली पर चलने वाले बिंदु कणों के रूप में वर्णित करता है, जिससे आस-पास के कणों के साथ बातचीत होती है। क्लासिक सेलुलर ऑटोमेटन मॉडल के विपरीत, BIO-LGCA में कणों को उनकी स्थिति और वेग से परिभाषित किया जाता है। यह मुख्य रूप से घनत्व के बजाय गति में परिवर्तन के माध्यम से सक्रिय तरल पदार्थों और सामूहिक प्रवासन का मॉडल और विश्लेषण करने की अनुमति देता है। BIO-LGCA अनुप्रयोगों में कैंसर आक्रमण शामिल है<ref>{{Cite journal|last1=Reher|first1=David|last2=Klink|first2=Barbara|last3=Deutsch|first3=Andreas|last4=Voss-Böhme|first4=Anja|date=2017-08-11|title=Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model|url=https://doi.org/10.1186/s13062-017-0188-z|journal=Biology Direct|volume=12|issue=1|pages=18|doi=10.1186/s13062-017-0188-z|issn=1745-6150|pmc=5553611|pmid=28800767}}</ref> और [[कैंसर]].<ref name=":0">{{Cite journal|last1=Böttger|first1=Katrin|last2=Hatzikirou|first2=Haralambos|last3=Voss-Böhme|first3=Anja|last4=Cavalcanti-Adam|first4=Elisabetta Ada|last5=Herrero|first5=Miguel A.|last6=Deutsch|first6=Andreas|date=2015-09-03|editor-last=Alber|editor-first=Mark S|title=ट्यूमर की शुरुआत और दृढ़ता के लिए एक उभरता हुआ एली प्रभाव महत्वपूर्ण है|journal=PLOS Computational Biology|language=en|volume=11|issue=9|pages=e1004366|doi=10.1371/journal.pcbi.1004366|issn=1553-7358|pmc=4559422|pmid=26335202|bibcode=2015PLSCB..11E4366B }}</ref>
कम्प्यूटेशनल जीवविज्ञान और गणितीय और सैद्धांतिक जीवविज्ञान में, जैविक '''जालक-गैस कोशिकीय ऑटोमेटन (जैव-एलजीसीए)''' जैविक घटकों को स्थानांतरित करने और अन्तः क्रिया करने के लिए एक अलग मॉडल है,<ref>{{Cite journal|last1=Deutsch|first1=Andreas|last2=Nava-Sedeño|first2=Josué Manik|last3=Syga|first3=Simon|last4=Hatzikirou|first4=Haralampos|date=2021-06-15|title=BIO-LGCA: A cellular automaton modelling class for analysing collective cell migration|journal=PLOS Computational Biology|language=en|volume=17|issue=6|pages=e1009066|doi=10.1371/journal.pcbi.1009066|issn=1553-7358|pmc=8232544|pmid=34129639|bibcode=2021PLSCB..17E9066D }}</ref> जो [[सेलुलर ऑटोमेटन|कोशिकीय ऑटोमेटन (मशीनी मानव)]] का एक प्रकार है। जैव-एलजीसीए द्रव गतिशीलता में उपयोग किए जाने वाले [[ जाली गैस ऑटोमेटन |जालक गैस ऑटोमेटन]] (एलजीसीए) मॉडल पर आधारित है। जैव-एलजीसीए मॉडल कोशिकाओं और अन्य गतिशील जैविक घटकों को अलग जालक पर चलने वाले बिंदु कणों के रूप में वर्णित करता है, जिससे निकट के कणों के साथ अन्तः क्रिया होती है। अतः उत्कृष्ट कोशिकीय ऑटोमेटन मॉडल के विपरीत, जैव-एलजीसीए में कणों को उनकी स्थिति और वेग से परिभाषित किया जाता है। यह मुख्य रूप से घनत्व के अतिरिक्त गति में परिवर्तन के माध्यम से सक्रिय तरल पदार्थों और सामूहिक प्रवासन का मॉडल और विश्लेषण करने की अनुमति देता है। जैव-एलजीसीए अनुप्रयोगों में कैंसर का अन्तःक्षेप<ref>{{Cite journal|last1=Reher|first1=David|last2=Klink|first2=Barbara|last3=Deutsch|first3=Andreas|last4=Voss-Böhme|first4=Anja|date=2017-08-11|title=Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model|url=https://doi.org/10.1186/s13062-017-0188-z|journal=Biology Direct|volume=12|issue=1|pages=18|doi=10.1186/s13062-017-0188-z|issn=1745-6150|pmc=5553611|pmid=28800767}}</ref> और [[कैंसर]] की प्रगति सम्मिलित है।<ref name=":0">{{Cite journal|last1=Böttger|first1=Katrin|last2=Hatzikirou|first2=Haralambos|last3=Voss-Böhme|first3=Anja|last4=Cavalcanti-Adam|first4=Elisabetta Ada|last5=Herrero|first5=Miguel A.|last6=Deutsch|first6=Andreas|date=2015-09-03|editor-last=Alber|editor-first=Mark S|title=ट्यूमर की शुरुआत और दृढ़ता के लिए एक उभरता हुआ एली प्रभाव महत्वपूर्ण है|journal=PLOS Computational Biology|language=en|volume=11|issue=9|pages=e1004366|doi=10.1371/journal.pcbi.1004366|issn=1553-7358|pmc=4559422|pmid=26335202|bibcode=2015PLSCB..11E4366B }}</ref>
 
 
== मॉडल परिभाषा ==
== मॉडल परिभाषा ==
जैसा कि सभी सेलुलर ऑटोमेटन मॉडल हैं, एक BIO-LGCA मॉडल को एक जाली द्वारा परिभाषित किया गया है <math>\mathcal{L}</math>, एक राज्य स्थान <math>\mathcal{E}</math>, पड़ोस <math>\mathcal{N}</math>, और एक नियम <math>\mathcal{R}</math>.<ref name=":1">{{Citation|title=Mathematical Modeling of Biological Pattern Formation|url=http://dx.doi.org/10.1007/0-8176-4415-6_3|work=Cellular Automaton Modeling of Biological Pattern Formation|series=Modeling and Simulation in Science, Engineering and Technology|year=2005|pages=45–56|place=Boston, MA|publisher=Birkhäuser Boston|doi=10.1007/0-8176-4415-6_3|isbn=978-0-8176-4281-5|access-date=2021-05-25}}</ref>
जैसा कि सभी कोशिकीय ऑटोमेटन मॉडल हैं, एक BIO-LGCA मॉडल को एक जालक <math>\mathcal{L}</math>, एक अवस्था समष्टि <math>\mathcal{E}</math>, एक निकटवर्ती <math>\mathcal{N}</math> और एक नियम <math>\mathcal{R}</math> द्वारा परिभाषित किया गया है।<ref name=":1">{{Citation|title=Mathematical Modeling of Biological Pattern Formation|url=http://dx.doi.org/10.1007/0-8176-4415-6_3|work=Cellular Automaton Modeling of Biological Pattern Formation|series=Modeling and Simulation in Science, Engineering and Technology|year=2005|pages=45–56|place=Boston, MA|publisher=Birkhäuser Boston|doi=10.1007/0-8176-4415-6_3|isbn=978-0-8176-4281-5|access-date=2021-05-25}}</ref>
* जाली (<math>\mathcal{L}</math>) सभी संभावित कण स्थितियों के सेट को परिभाषित करता है। कण केवल कुछ निश्चित स्थानों पर कब्जा करने के लिए प्रतिबंधित हैं, जो आमतौर पर अंतरिक्ष के नियमित और आवधिक [[चौकोर]] के परिणामस्वरूप होते हैं। गणितीय रूप से, <math>\mathcal{L}\subset\mathbb{R}^d</math> का एक पृथक उपसमुच्चय है <math>d</math>-आयामी स्थान.
* जालक (<math>\mathcal{L}</math>) सभी संभावित कण स्थितियों के समूह को परिभाषित करता है। कण मात्र कुछ निश्चित स्थानों पर अधिकृत करने के लिए प्रतिबंधित हैं, जो सामान्यतः समष्टि के नियमित और आवधिक [[चौकोर]] के परिणामस्वरूप होते हैं। अतः गणितीय रूप से, <math>\mathcal{L}\subset\mathbb{R}^d</math>, <math>d</math>-आयामी समष्टि का एक अलग उपसमुच्चय है।
* राज्य स्थान (<math>\mathcal{E}</math>) प्रत्येक जाली स्थल के भीतर कणों की संभावित अवस्थाओं का वर्णन करता है <math>\mathbf{r}\in\mathcal{L}</math>. बीआईओ-एलजीसीए में, क्लासिक सेलुलर ऑटोमेटन मॉडल के विपरीत, अलग-अलग वेग वाले कई कण एक ही जाली साइट पर कब्जा कर सकते हैं, जहां आम तौर पर केवल एक ही कोशिका प्रत्येक जाली नोड में एक साथ रह सकती है। यह राज्य स्थान को क्लासिक सेलुलर ऑटोमेटन मॉडल (नीचे देखें) की तुलना में थोड़ा अधिक जटिल बनाता है।
* अवस्था समष्टि (<math>\mathcal{E}</math>) प्रत्येक जालक स्थल <math>\mathbf{r}\in\mathcal{L}</math> के भीतर कणों की संभावित अवस्थाओं का वर्णन करता है. जैव-एलजीसीए में, उत्कृष्ट कोशिकीय ऑटोमेटन मॉडल के विपरीत, अलग-अलग वेग वाले कई कण एक ही जालक स्थल पर अधिकृत कर सकते हैं, जहां सामान्यतः मात्र एक ही कोशिका प्रत्येक जालक नोड में एक साथ रह सकती है। अलग यह अवस्था समष्टि को उत्कृष्ट कोशिकीय ऑटोमेटन मॉडल (नीचे देखें) की तुलना में अल्प अधिक जटिल बनाता है।
* पड़ोस (<math>\mathcal{N}</math>) जाली साइटों के सबसेट को इंगित करता है जो जाली में किसी दिए गए साइट की गतिशीलता को निर्धारित करता है। कण केवल अपने पड़ोस के अन्य कणों के साथ परस्पर क्रिया करते हैं। परिमित जालक की सीमा पर जालक स्थलों के पड़ोस के लिए सीमा की स्थिति का चयन किया जाना चाहिए। पड़ोस और सीमा की स्थितियों को नियमित सेलुलर ऑटोमेटा के लिए समान रूप से परिभाषित किया गया है (सेलुलर ऑटोमेटन#अवलोकन देखें)।
* निकटवर्ती (<math>\mathcal{N}</math>) जालक स्थलों के उपसमूह को इंगित करता है जो जालक में किसी दिए गए स्थल की गतिशीलता को निर्धारित करता है। अतः कण मात्र अपने निकटवर्ती के अन्य कणों के साथ अन्तः क्रिया करते हैं। परिमित जालक की सीमा पर जालक स्थलों के निकटवर्ती के लिए सीमा की स्थिति का चयन किया जाना चाहिए। निकटवर्ती और सीमा की स्थितियों को नियमित कोशिकीय ऑटोमेटा के लिए समान रूप से परिभाषित किया गया है (कोशिकीय ऑटोमेटन देखें)।
* नियम (<math>\mathcal{R}</math>) यह तय करता है कि कण समय के साथ कैसे चलते हैं, बढ़ते हैं या मर जाते हैं। प्रत्येक सेलुलर ऑटोमेटन की तरह, BIO-LGCA अलग-अलग समय चरणों में विकसित होता है। सिस्टम की गतिशीलता का अनुकरण करने के लिए, नियम को प्रत्येक समय चरण पर प्रत्येक जाली साइट पर समकालिक रूप से लागू किया जाता है। नियम अनुप्रयोग एक जाली साइट की मूल स्थिति को एक नई स्थिति में बदल देता है। नियम अद्यतन की जाने वाली जाली साइट के इंटरेक्शन पड़ोस में जाली साइटों की स्थिति पर निर्भर करता है। बीआईओ-एलजीसीए में, नियम को दो चरणों में विभाजित किया गया है, एक संभाव्य इंटरैक्शन चरण जिसके बाद एक नियतात्मक परिवहन चरण होता है। इंटरेक्शन चरण पुनर्अभिविन्यास, जन्म और मृत्यु प्रक्रियाओं का अनुकरण करता है, और विशेष रूप से मॉडलिंग प्रक्रिया के लिए परिभाषित किया गया है। परिवहन चरण कणों को उनके वेग की दिशा में पड़ोसी जाली नोड्स में स्थानांतरित करता है। विवरण के लिए नीचे देखें.
* नियम (<math>\mathcal{R}</math>) यह निर्धारित करता है कि कण समय के साथ कैसे चलते हैं, बढ़ते हैं या समाप्त हो जाते हैं। प्रत्येक कोशिकीय ऑटोमेटन के जैसे, जैव-एलजीसीए अलग-अलग समय चरणों में विकसित होता है। अलग प्रणाली की गतिशीलता का अनुकरण करने के लिए, नियम को प्रत्येक समय चरण पर प्रत्येक जालक स्थल पर समकालिक रूप से लागू किया जाता है। नियम अनुप्रयोग जालक स्थल की मूल स्थिति को नवीन स्थिति में परिवर्तित कर देता है। नियम अद्यतन की जाने वाली जालक स्थल के अन्तः क्रिया निकटवर्ती में जालक स्थलों की स्थिति पर निर्भर करता है। अतः जैव-एलजीसीए में, नियम को दो चरणों में विभाजित किया गया है, संभाव्य अन्तः क्रिया चरण जिसके पश्चात नियतात्मक परिवहन चरण होता है। अन्तः क्रिया चरण पुनर्अभिविन्यास, जन्म और मृत्यु प्रक्रियाओं का अनुकरण करता है, और विशेष रूप से मॉडलिंग प्रक्रिया के लिए परिभाषित किया गया है। परिवहन चरण कणों को उनके वेग की दिशा में निकटवर्ती जालक नोड में स्थानांतरित करता है। विवरण के लिए नीचे देखें।


=== स्थान बताएं ===
=== अवस्था समष्टि ===
[[File:Hexnode.png|thumb|छह वेग चैनलों (2डी हेक्सागोनल जाली के अनुरूप) और एक आराम चैनल के साथ एक बीआईओ-एलजीसीए जाली साइट की उपसंरचना। इस मामले में <math>b=6</math>, <math>a=1</math>, और वहन क्षमता <math>K=7</math>. चैनल 2, 3, 6 और 7 पर कब्जा है, इस प्रकार जाली विन्यास है <math>\mathbf{s}=(0,1,1,0,0,1,1)</math>, और कणों की संख्या है <math>n\left(\mathbf{s}\right)=\sum_{i=1}^Ks_i=4</math>.]]कण वेगों को स्पष्ट रूप से मॉडलिंग करने के लिए, जाली साइटों को एक विशिष्ट उपसंरचना माना जाता है। प्रत्येक जाली साइट <math>\mathbf{r}\in\mathcal{L}</math> वेग चैनल नामक वैक्टर के माध्यम से अपने पड़ोसी जाली स्थलों से जुड़ा हुआ है, <math>\mathbf{c}_i</math>, <math>i\in\{1,2,\ldots,b\}</math>, जहां वेग चैनलों की संख्या <math>b</math> निकटतम पड़ोसियों की संख्या के बराबर है, और इस प्रकार जाली ज्यामिति पर निर्भर करता है (<math>b=2</math> एक आयामी जाली के लिए, <math>b=6</math> द्वि-आयामी हेक्सागोनल जाली के लिए, और इसी तरह)। दो आयामों में, वेग चैनलों को इस प्रकार परिभाषित किया गया है <math>\mathbf{c}_i=\left(\cos\frac{2\pi i}{b},\sin\frac{2\pi i}{b}\right)</math>. इसके अतिरिक्त, एक मनमाना संख्या <math>a</math> तथाकथित विश्राम चैनलों को इस प्रकार परिभाषित किया जा सकता है <math>\mathbf{c}_i=(0,0)</math>, <math>i\in\{b+1,b+2,\ldots,b+a\}</math>. एक चैनल को व्यस्त कहा जाता है यदि जाली स्थल में वेग चैनल के बराबर वेग वाला एक कण होता है। चैनल पर कब्ज़ा <math>\mathbf{c}_i</math> व्यवसाय संख्या द्वारा दर्शाया गया है <math>s_i</math>. आमतौर पर, कणों को [[पाउली अपवर्जन सिद्धांत]] का पालन करना माना जाता है, जैसे कि एक से अधिक कण एक जाली स्थल पर एक ही वेग चैनल पर एक साथ कब्जा नहीं कर सकते हैं। इस मामले में, व्यवसाय संख्याएँ बूलियन चर हैं, अर्थात। <math>s_i\in\mathcal{S}=\{0,1\}</math>, और इस प्रकार, प्रत्येक साइट की अधिकतम [[वहन क्षमता]] होती है <math>K=a+b</math>. चूंकि सभी चैनल व्यवसाय संख्याओं का संग्रह प्रत्येक जाली साइट में कणों की संख्या और उनके वेग को परिभाषित करता है, इसलिए वेक्टर <math>\mathbf{s}=\left(s_1,s_2,\ldots,s_{K}\right)</math> एक जाली स्थल की स्थिति का वर्णन करता है, और राज्य स्थान इसके द्वारा दिया जाता है <math>\mathcal{E}=\mathcal{S}^K</math>.
[[File:Hexnode.png|thumb|छह वेग चैनलों (2डी षट्कोणीय जालक के अनुरूप) और स्थिर चैनल के साथ जैव-एलजीसीए जालक स्थल की उपसंरचना। इस स्थिति में <math>b=6</math>, <math>a=1</math>, और वहन क्षमता <math>K=7</math>चैनल 2, 3, 6 और 7 व्याप्त हैं, इस प्रकार जालक विन्यास <math>\mathbf{s}=(0,1,1,0,0,1,1)</math> है, और कणों की संख्या <math>n\left(\mathbf{s}\right)=\sum_{i=1}^Ks_i=4</math> है।]]इस प्रकार से कण वेगों को स्पष्ट रूप से मॉडलिंग करने के लिए, जालक स्थलों को विशिष्ट उपसंरचना माना जाता है। प्रत्येक जालक स्थल <math>\mathbf{r}\in\mathcal{L}</math> वेग चैनल <math>\mathbf{c}_i</math>, <math>i\in\{1,2,\ldots,b\}</math> नामक सदिश के माध्यम से अपने निकटवर्ती जालक स्थलों से जुड़ा होता है, जहां वेग चैनलों की संख्या <math>b</math> निकटतम निकटवर्ती संख्या के बराबर है, और इस प्रकार जालक ज्यामिति पर निर्भर करती है (एक आयामी जालक के लिए <math>b=2</math>, द्वि-आयामी षट्कोणीय जालक के लिए <math>b=6</math>, और इसी प्रकार)। अतः दो आयामों में, वेग चैनलों को <math>\mathbf{c}_i=\left(\cos\frac{2\pi i}{b},\sin\frac{2\pi i}{b}\right)</math> के रूप में परिभाषित किया गया है। इसके अतिरिक्त, तथाकथित "शेष चैनलों" की एक यादृच्छिक संख्या <math>a</math> को परिभाषित किया जा सकता है, जैसे कि <math>\mathbf{c}_i=(0,0)</math>, <math>i\in\{b+1,b+2,\ldots,b+a\}</math>चैनल को व्यस्त कहा जाता है यदि जालक स्थल में वेग चैनल के बराबर वेग वाला कण होता है। चैनल <math>\mathbf{c}_i</math> का अधिकृत अधिष्ठान संख्या <math>s_i</math> द्वारा दर्शाया गया है। सामान्यतः, कणों को [[पाउली अपवर्जन सिद्धांत]] का पालन करना माना जाता है, जैसे कि से अधिक कण जालक स्थल पर ही वेग चैनल पर साथ अधिकृत नहीं कर सकते हैं। अतः इस स्थिति में, अधिष्ठान संख्याएं बूलियन चर हैं, अर्थात <math>s_i\in\mathcal{S}=\{0,1\}</math>, और इस प्रकार, प्रत्येक साइट की अधिकतम [[वहन क्षमता]] <math>K=a+b</math> होती है। चूंकि सभी चैनल अधिष्ठान संख्याओं का संग्रह प्रत्येक जालक स्थल में कणों की संख्या और उनके वेग को परिभाषित करता है, इसलिए सदिश <math>\mathbf{s}=\left(s_1,s_2,\ldots,s_{K}\right)</math> जालक स्थल की स्थिति का वर्णन करता है, और अवस्था समष्टि <math>\mathcal{E}=\mathcal{S}^K</math> के द्वारा दिया जाता है।


=== नियम और मॉडल गतिशीलता ===
=== नियम और मॉडल गतिशीलता ===
मॉडल की गतिशीलता को अनुकरण करने के लिए जाली में प्रत्येक साइट की स्थिति को अलग-अलग समय चरणों में समकालिक रूप से अद्यतन किया जाता है। नियम को दो चरणों में बांटा गया है. संभाव्य अंतःक्रिया चरण कण अंतःक्रिया का अनुकरण करता है, जबकि नियतात्मक परिवहन चरण कण गति का अनुकरण करता है।
इस प्रकार से मॉडल की गतिशीलता को अनुकरण करने के लिए जालक में प्रत्येक स्थल की स्थिति को अलग-अलग समय चरणों में समकालिक रूप से अद्यतन किया जाता है। अतः नियम को दो चरणों में बांटा गया है। संभाव्य अंतःक्रिया चरण कण अंतःक्रिया का अनुकरण करता है, जबकि नियतात्मक परिवहन चरण कण गति का अनुकरण करता है।


==== इंटरेक्शन चरण ====
==== अन्तः क्रिया चरण ====
विशिष्ट अनुप्रयोग के आधार पर, इंटरेक्शन चरण प्रतिक्रिया और/या पुनर्अभिविन्यास ऑपरेटरों से बना हो सकता है।
इस प्रकार से विशिष्ट अनुप्रयोग के आधार पर, अन्तः क्रिया चरण प्रतिक्रिया और/या पुनर्अभिविन्यास संक्रियकों से बना हो सकता है।


प्रतिक्रिया संचालिका <math>\mathcal{A}</math> एक नोड की स्थिति को प्रतिस्थापित करता है <math> \mathbf{s}</math> एक नये राज्य के साथ <math>\mathbf{s}^{\mathcal{A}}</math> [[मार्कोव श्रृंखला]] का अनुसरण करते हुए <math>P\left(\left. \mathbf{s}\rightarrow \mathbf{s}^{\mathcal{A}}\right| \mathbf{s}_{\mathcal{N}} \right)</math>, जो पड़ोसी जाली स्थलों की स्थिति पर निर्भर करता है <math>\mathbf{s}_{\mathcal{N}}</math>प्रतिक्रियाशील प्रक्रिया पर पड़ोसी कणों के प्रभाव का अनुकरण करने के लिए। प्रतिक्रिया ऑपरेटर कण संख्या को संरक्षित नहीं करता है, इस प्रकार व्यक्तियों के जन्म और मृत्यु का अनुकरण करने की अनुमति देता है। प्रतिक्रिया संचालक की संक्रमण संभाव्यता को आमतौर पर घटनात्मक टिप्पणियों के रूप में तदर्थ रूप में परिभाषित किया जाता है।
अतः प्रतिक्रिया संचालिका <math>\mathcal{A}</math> नोड की स्थिति <math> \mathbf{s}</math> को प्रतिस्थापित करता है नवीन अवस्था <math>\mathbf{s}^{\mathcal{A}}</math> के साथ [[मार्कोव श्रृंखला]] <math>P\left(\left. \mathbf{s}\rightarrow \mathbf{s}^{\mathcal{A}}\right| \mathbf{s}_{\mathcal{N}} \right)</math> का अनुसरण करते हुए है, जो प्रतिक्रियाशील प्रक्रिया पर निकटवर्ती कणों के प्रभाव का अनुकरण करने के लिए, निकटवर्ती जालक स्थल <math>\mathbf{s}_{\mathcal{N}}</math> की स्थिति पर निर्भर करता है। प्रतिक्रिया संक्रियक कण संख्या को संरक्षित नहीं करता है, इस प्रकार व्यक्तियों के जन्म और मृत्यु का अनुकरण करने की अनुमति देता है। इस प्रकार से प्रतिक्रिया संक्रियक की संक्रमण संभाव्यता को सामान्यतः घटनात्मक टिप्पणियों के रूप में तदर्थ रूप में परिभाषित किया जाता है।


पुनर्अभिविन्यास संचालक <math>\mathcal{O}</math> एक राज्य को भी प्रतिस्थापित करता है <math>\mathbf{s}</math> एक नये राज्य के साथ <math>\mathbf{s}^{\mathcal{O}}</math> संभाव्यता के साथ <math>P\left(\left. \mathbf{s}\rightarrow \mathbf{s}^{\mathcal{O}}\right| \mathbf{s}_{\mathcal{N}} \right)</math>. हालाँकि, यह ऑपरेटर कण संख्या को संरक्षित करता है और इसलिए केवल मॉडल वेग चैनलों के बीच कणों को पुनर्वितरित करके कण वेग में परिवर्तन करता है। इस ऑपरेटर के लिए संक्रमण संभावना सांख्यिकीय अवलोकनों (अधिकतम कैलिबर के सिद्धांत का उपयोग करके) या ज्ञात एकल-कण गतिशीलता (फोककर-प्लैंक समीकरण द्वारा दिए गए विवेकाधीन, स्थिर-राज्य कोणीय संभाव्यता वितरण का उपयोग करके) से निर्धारित की जा सकती है। पुनर्अभिविन्यास गतिशीलता का वर्णन करने वाले [[लैंग्विन समीकरण]] से संबंधित समीकरण),<ref>{{Cite journal|last1=Nava-Sedeño|first1=J. M.|last2=Hatzikirou|first2=H.|last3=Peruani|first3=F.|last4=Deutsch|first4=A.|date=2017-02-27|title=एकल और सामूहिक सेल प्रवासन के लिए भौतिक लैंग्विन समीकरण मॉडल से सेलुलर ऑटोमेटन नियम निकालना|url=http://dx.doi.org/10.1007/s00285-017-1106-9|journal=Journal of Mathematical Biology|volume=75|issue=5|pages=1075–1100|doi=10.1007/s00285-017-1106-9|pmid=28243720|s2cid=32456636|issn=0303-6812}}</ref><ref>{{Cite journal|last1=Nava-Sedeño|first1=J. M.|last2=Hatzikirou|first2=H.|last3=Klages|first3=R.|last4=Deutsch|first4=A.|date=2017-12-05|title=Cellular automaton models for time-correlated random walks: derivation and analysis|url=http://dx.doi.org/10.1038/s41598-017-17317-x|journal=Scientific Reports|volume=7|issue=1|page=16952|doi=10.1038/s41598-017-17317-x|pmid=29209065|pmc=5717221|arxiv=1802.04201 |bibcode=2017NatSR...716952N |issn=2045-2322}}</ref> और आम तौर पर रूप ले लेता है <math display="block">P\left(\left. \mathbf{s}\rightarrow \mathbf{s}^{\mathcal{O}}\right| \mathbf{s}_{\mathcal{N}} \right)
अतः पुनर्अभिविन्यास संक्रियक <math>\mathcal{O}</math> भी संभाव्यता <math>P\left(\left. \mathbf{s}\rightarrow \mathbf{s}^{\mathcal{O}}\right| \mathbf{s}_{\mathcal{N}} \right)</math> के साथ एक अवस्था <math>\mathbf{s}</math> को नवीन अवस्था <math>\mathbf{s}^{\mathcal{O}}</math> से प्रतिस्थापित करता है। यद्यपि, यह संक्रियक कण संख्या को संरक्षित करता है और इसलिए मात्र मॉडल वेग चैनलों के बीच कणों को पुनर्वितरित करके कण वेग में परिवर्तन करता है। इस संक्रियक के लिए संक्रमण की संभावना सांख्यिकीय अवलोकनों (अधिकतम कैलिबर के सिद्धांत का उपयोग करके) या ज्ञात एकल-कण गतिशीलता (पुनर्अभिविन्यास गतिशीलता का वर्णन करने वाले [[लैंग्विन समीकरण]] से संबंधित समीकरण फोककर-प्लैंक समीकरण द्वारा दिए गए विवेकाधीन, स्थिर-अवस्था कोणीय संभाव्यता वितरण का उपयोग करके) निर्धारित की जा सकती है,<ref>{{Cite journal|last1=Nava-Sedeño|first1=J. M.|last2=Hatzikirou|first2=H.|last3=Peruani|first3=F.|last4=Deutsch|first4=A.|date=2017-02-27|title=एकल और सामूहिक सेल प्रवासन के लिए भौतिक लैंग्विन समीकरण मॉडल से सेलुलर ऑटोमेटन नियम निकालना|url=http://dx.doi.org/10.1007/s00285-017-1106-9|journal=Journal of Mathematical Biology|volume=75|issue=5|pages=1075–1100|doi=10.1007/s00285-017-1106-9|pmid=28243720|s2cid=32456636|issn=0303-6812}}</ref><ref>{{Cite journal|last1=Nava-Sedeño|first1=J. M.|last2=Hatzikirou|first2=H.|last3=Klages|first3=R.|last4=Deutsch|first4=A.|date=2017-12-05|title=Cellular automaton models for time-correlated random walks: derivation and analysis|url=http://dx.doi.org/10.1038/s41598-017-17317-x|journal=Scientific Reports|volume=7|issue=1|page=16952|doi=10.1038/s41598-017-17317-x|pmid=29209065|pmc=5717221|arxiv=1802.04201 |bibcode=2017NatSR...716952N |issn=2045-2322}}</ref> और सामान्यतः रूप <math display="block">P\left(\left. \mathbf{s}\rightarrow \mathbf{s}^{\mathcal{O}}\right| \mathbf{s}_{\mathcal{N}} \right)
=\frac{1}{Z}e^{-\beta H\left(\mathbf{s}_{\mathcal{N}}\right)}
=\frac{1}{Z}e^{-\beta H\left(\mathbf{s}_{\mathcal{N}}\right)}
\delta_{n\left(\mathbf{s}\right),n\left(\mathbf{s}^{\mathcal{O}}\right)}</math> कहाँ <math>Z</math> एक सामान्यीकरण स्थिरांक है (जिसे [[विभाजन फलन (गणित)]] के रूप में भी जाना जाता है), <math>H\left(\mathbf{s}_{\mathcal{N}}\right)</math> एक ऊर्जा जैसा कार्य है जिसे कण अपनी गति की दिशा बदलते समय संभवतः न्यूनतम कर देंगे, <math>\beta</math> कण पुनर्अभिविन्यास की यादृच्छिकता के विपरीत आनुपातिक एक स्वतंत्र पैरामीटर है (थर्मोडायनामिक्स में [[थर्मोडायनामिक बीटा]] के अनुरूप), और <math>\delta_{n\left(\mathbf{s}\right),n\left(\mathbf{s}^{\mathcal{O}}\right)}</math> एक [[क्रोनकर डेल्टा]] है जो उस कण संख्या को पहले सुनिश्चित करता है <math>n\left(\mathbf{s}\right)</math> और पुनर्अभिविन्यास के बाद <math>n\left(\mathbf{s}^{\mathcal{O}}\right)</math> अपरिवर्तित है.
\delta_{n\left(\mathbf{s}\right),n\left(\mathbf{s}^{\mathcal{O}}\right)}</math> लेता है, जहां <math>Z</math> सामान्यीकरण स्थिरांक है (जिसे [[विभाजन फलन (गणित)]] के रूप में भी जाना जाता है), <math>H\left(\mathbf{s}_{\mathcal{N}}\right)</math> ऊर्जा जैसा फलन है जिसे कण अपनी गति की दिशा परिवर्तित करते ते समय संभवतः न्यूनतम कर देंगे, <math>\beta</math> कण पुनर्अभिविन्यास की यादृच्छिकता के विपरीत आनुपातिक स्वतंत्र पैरामीटर है (ऊष्मागतिकी में [[थर्मोडायनामिक बीटा|ऊष्मागतिक बीटा]] के अनुरूप), और <math>\delta_{n\left(\mathbf{s}\right),n\left(\mathbf{s}^{\mathcal{O}}\right)}</math> [[क्रोनकर डेल्टा]] है जो उस कण संख्या <math>n\left(\mathbf{s}\right)</math> को पहले सुनिश्चित करता है, और पुनर्अभिविन्यास <math>n\left(\mathbf{s}^{\mathcal{O}}\right)</math> के बाद अपरिवर्तित है।


प्रतिक्रिया और पुनर्अभिविन्यास ऑपरेटर को लागू करने वाला राज्य परिणामी रूप <math>\mathbf{s}^{\mathcal{O}\circ\mathcal{A}}</math> इसे पोस्ट-इंटरैक्शन कॉन्फ़िगरेशन के रूप में जाना जाता है और इसे इसके द्वारा दर्शाया जाता है <math>\mathbf{s}^{\mathcal{I}}:=\mathbf{s}^{\mathcal{O}\circ\mathcal{A}}</math>.
प्रतिक्रिया और पुनर्अभिविन्यास संक्रियक को लागू करने वाला अवस्था परिणामी रूप <math>\mathbf{s}^{\mathcal{O}\circ\mathcal{A}}</math> से पश्च-अन्तः क्रिया विन्यास के रूप में जाना जाता है और इसे <math>\mathbf{s}^{\mathcal{I}}:=\mathbf{s}^{\mathcal{O}\circ\mathcal{A}}</math> द्वारा दर्शाया जाता है।
[[File:Hexdynamics.png|center|thumb|888x888px|BIO-LGCA मॉडल की गतिशीलता। हर बार चरण में, इंटरैक्शन चरण के दौरान सभी जाली साइटों में एक साथ प्रतिक्रिया और/या पुनर्संरचना ऑपरेटरों द्वारा व्यवसाय संख्याओं को स्टोकेस्टिक रूप से बदल दिया जाता है। इसके बाद, परिवहन चरण के दौरान, कणों को निश्चित रूप से उनके वेग चैनल की दिशा में पड़ोसी नोड पर समान वेग चैनल पर ले जाया जाता है। स्केच में रंगों का उपयोग व्यक्तिगत नोड्स के कणों की गतिशीलता को ट्रैक करने के लिए किया जाता है। यह स्केच एक कण-संरक्षण नियम (कोई प्रतिक्रिया ऑपरेटर नहीं) मानता है।]]
[[File:Hexdynamics.png|center|thumb|888x888px|जैव-एलजीसीए मॉडल की गतिशीलता। प्रत्येक समय चरण में, अन्तः क्रिया चरण के समय सभी जालक स्थलों में साथ प्रतिक्रिया और/या पुनर्संरचना संक्रियकों द्वारा अधिष्ठान संख्याओं को प्रसंभात्य रूप से परिवर्तित कर दिया जाता है। इसके बाद, परिवहन चरण के समय, कणों को निश्चित रूप से उनके वेग चैनल की दिशा में निकटवर्ती नोड पर समान वेग चैनल पर ले जाया जाता है। रेखा-चित्र में वर्णों का उपयोग व्यक्तिगत नोड के कणों की गतिशीलता को ट्रैक करने के लिए किया जाता है। यह रेखा-चित्र कण-संरक्षण नियम (कोई प्रतिक्रिया संक्रियक नहीं) मानता है।]]


==== परिवहन चरण ====
==== परिवहन चरण ====
इंटरेक्शन चरण के बाद, नियतात्मक परिवहन चरण को सभी जाली साइटों पर समकालिक रूप से लागू किया जाता है। परिवहन चरण जीवित जीवों के [[सक्रिय पदार्थ]]|स्व-प्रणोदन के कारण एजेंटों की गति को उनके वेग के अनुसार अनुकरण करता है।
इस प्रकार से अन्तः क्रिया चरण के पश्चात, नियतात्मक परिवहन चरण को सभी जालक स्थलों पर समकालिक रूप से लागू किया जाता है। अतः परिवहन चरण जीवित जीवों के [[सक्रिय पदार्थ]] के कारण घटकों की गति को उनके वेग के अनुसार अनुकरण करता है।
 
इस चरण के दौरान, पोस्ट-इंटरैक्शन राज्यों की व्यवसाय संख्या को वेग चैनल की दिशा में पड़ोसी जाली साइट के एक ही चैनल के नए व्यवसाय राज्यों के रूप में परिभाषित किया जाएगा, यानी। <math>s_i(\mathbf{r}+\mathbf{c}_i)=s_i^{\mathcal{I}}(\mathbf{r})</math>.
 
एक नया समय कदम तब शुरू होता है जब बातचीत और परिवहन चरण दोनों घटित हो जाते हैं। इसलिए, BIO-LGCA की गतिशीलता को स्टोकेस्टिक [[पुनरावृत्ति संबंध]] | परिमित-अंतर माइक्रोडायनामिक समीकरण के रूप में संक्षेपित किया जा सकता है <math display="block">s_i(\mathbf{r}+\mathbf{c}_i,k+1)=s_i^{\mathcal{I}}(\mathbf{r},k)</math>


इस चरण के समय, पश्च-अन्तः क्रिया अवस्थाों की अधिष्ठान संख्या को वेग चैनल की दिशा में निकटवर्ती जालक स्थल के एक ही चैनल के नवीन अधिष्ठान अवस्थाों के रूप में परिभाषित किया जाएगा, अर्थात <math>s_i(\mathbf{r}+\mathbf{c}_i)=s_i^{\mathcal{I}}(\mathbf{r})</math>।


== उदाहरण इंटरैक्शन डायनेमिक्स ==
इस प्रकार से एक नवीन समय चरण तब प्रारंभ होता है जब अन्तः क्रिया और परिवहन चरण दोनों घटित हो जाते हैं। अतः इसलिए, जैव-एलजीसीए की गतिशीलता को प्रसंभात्य [[पुनरावृत्ति संबंध]] सूक्ष्मगतिकी समीकरण <math display="block">s_i(\mathbf{r}+\mathbf{c}_i,k+1)=s_i^{\mathcal{I}}(\mathbf{r},k)</math>के रूप में संक्षेपित किया जा सकता है।  
[[File:PalignLGCA.webm|thumb|ध्रुवीय झुंड का एक हेक्सागोनल BIO-LGCA मॉडल। इस मॉडल में, कोशिकाएं पड़ोस की गति के समानांतर होने के लिए अपने वेग को अधिमानतः बदलती हैं। रंग चक्र का अनुसरण करते हुए, जाली स्थलों को उनके अभिविन्यास के अनुसार रंगीन किया जाता है। खाली साइटें सफेद होती हैं. आवधिक सीमा शर्तों का उपयोग किया गया।]]प्रतिक्रिया और/या पुनर्अभिविन्यास ऑपरेटर के लिए संक्रमण संभावना को मॉडल किए गए सिस्टम को उचित रूप से अनुकरण करने के लिए परिभाषित किया जाना चाहिए। कुछ प्राथमिक इंटरैक्शन और संबंधित संक्रमण संभावनाएं नीचे सूचीबद्ध हैं।
== उदाहरण अन्तः क्रिया गतिकी ==
इस प्रकार से प्रतिक्रिया और/या पुनर्अभिविन्यास संक्रियक के लिए संक्रमण संभावना को मॉडल किए गए प्रणाली को उचित रूप से अनुकरण करने के लिए परिभाषित किया जाना चाहिए। अतः कुछ प्राथमिक अन्तः क्रिया और संबंधित संक्रमण संभावनाएं निम्न सूचीबद्ध हैं।


=== यादृच्छिक चलना ===
=== यादृच्छिक चाल ===
किसी बाहरी या आंतरिक उत्तेजना के अभाव में, कोशिकाएँ बिना किसी दिशात्मक प्राथमिकता के बेतरतीब ढंग से घूम सकती हैं। इस मामले में, पुनर्अभिविन्यास ऑपरेटर को एक संक्रमण संभावना के माध्यम से परिभाषित किया जा सकता है<math display="block">P\left(\left.\mathbf{s}\rightarrow\mathbf{s}^{\mathcal{O}}\right|\mathbf{s}_{\mathcal{N}}\right)
किसी बाह्य या आंतरिक उत्तेजना के अभाव में, कोशिकाएँ बिना किसी दिशात्मक प्राथमिकता के यादृच्छिक रूप से घूम सकती हैं। अतः इस स्थिति में, पुनर्अभिविन्यास संक्रियक को संक्रमण संभावना<math display="block">P\left(\left.\mathbf{s}\rightarrow\mathbf{s}^{\mathcal{O}}\right|\mathbf{s}_{\mathcal{N}}\right)
=\frac{\delta_{n(\mathbf{s}),n\left(\mathbf{s}^{\mathcal{O}}\right)}}{Z}</math>
=\frac{\delta_{n(\mathbf{s}),n\left(\mathbf{s}^{\mathcal{O}}\right)}}{Z}</math>के माध्यम से परिभाषित किया जा सकता है, जहां <math>Z=\sum_{\mathbf{s}^{\mathcal{O}}}\delta_{n\left(\mathbf{s}\right),n\left(\mathbf{s}^{\mathcal{O}}\right)}</math>। इस प्रकार से ऐसी संक्रमण संभावना किसी भी पश्च-पुनर्अभिविन्यास विन्यास <math>\mathbf{s}^\mathcal{O}</math> को पूर्व-पुनर्अभिविन्यास विन्यास <math>\mathbf{s}</math> के समान कणों के साथ समान रूप से चयन करने की अनुमति देती है।
[[File:BIOLGCAbarkley.webm|thumb|382x382px|एक्साइटेबल मीडिया का एक हेक्सागोनल BIO-LGCA मॉडल। इस मॉडल में, प्रतिक्रिया ऑपरेटर वेग चैनलों के भीतर कणों के तेजी से प्रजनन और बाकी चैनलों के भीतर कणों की धीमी मृत्यु का पक्ष लेता है। विश्राम चैनलों में कण वेग चैनलों में कणों के प्रजनन को रोकते हैं। पुनर्अभिविन्यास ऑपरेटर पाठ में रैंडम वॉक ऑपरेटर है। जाली वाले स्थान चमकीले रंग के होते हैं, जितने अधिक गतिशील कण मौजूद होते हैं। आराम करते हुए कण नहीं दिखाए गए हैं। आवधिक सीमा शर्तों का उपयोग किया गया।]]कहाँ <math>Z=\sum_{\mathbf{s}^{\mathcal{O}}}\delta_{n\left(\mathbf{s}\right),n\left(\mathbf{s}^{\mathcal{O}}\right)}</math>. ऐसी संक्रमण संभावना किसी भी पोस्ट-पुनर्अभिविन्यास कॉन्फ़िगरेशन की अनुमति देती है <math>\mathbf{s}^\mathcal{O}</math> पूर्व-पुनर्अभिविन्यास विन्यास के समान कणों की संख्या के साथ <math>\mathbf{s}</math>, चुना जाना चाहिए असतत समान वितरण।


===सरल जन्म एवं मृत्यु प्रक्रिया ===
===सरल जन्म एवं मृत्यु प्रक्रिया ===
यदि जीव अन्य व्यक्तियों से स्वतंत्र रूप से प्रजनन करते हैं और मर जाते हैं (सीमित वहन क्षमता को छोड़कर), तो एक साधारण जन्म/मृत्यु प्रक्रिया का अनुकरण किया जा सकता है<ref name=":0" />द्वारा दी गई संक्रमण संभावना के साथ<math display="block">P\left(\left.\mathbf{s}\rightarrow\mathbf{s}^\mathcal{A}\right|\mathbf{s}_{\mathcal{N}}\right)=
यदि जीव अन्य व्यक्तियों से स्वतंत्र रूप से प्रजनन करते हैं और समाप्त हो जाते हैं (सीमित वहन क्षमता को छोड़कर), तो एक साधारण जन्म/मृत्यु प्रक्रिया को<ref name=":0" /><math display="block">P\left(\left.\mathbf{s}\rightarrow\mathbf{s}^\mathcal{A}\right|\mathbf{s}_{\mathcal{N}}\right)=
\left[r_b\delta_{n\left(\mathbf{s}^{\mathcal{A}}\right),n\left(\mathbf{s}\right)+1}
\left[r_b\delta_{n\left(\mathbf{s}^{\mathcal{A}}\right),n\left(\mathbf{s}\right)+1}
+r_d\delta_{n\left(\mathbf{s}^{\mathcal{A}}\right),n\left(\mathbf{s}\right) - 1}\right]
+r_d\delta_{n\left(\mathbf{s}^{\mathcal{A}}\right),n\left(\mathbf{s}\right) - 1}\right]
\Theta\left[n\left(\mathbf{s}^{\mathcal{A}}\right)\right]
\Theta\left[n\left(\mathbf{s}^{\mathcal{A}}\right)\right]
\Theta\left[n\left( K-\mathbf{s}^{\mathcal{A}}\right)\right]</math> कहाँ <math>r_b,r_d\in[0,1]</math>, <math>r_b+r_d\leq 1</math> क्रमशः जन्म और मृत्यु की संभावनाएँ निरंतर हैं, <math>\delta_{i,j}</math> क्रोनेकर डेल्टा है जो यह सुनिश्चित करता है कि हर कदम पर केवल एक जन्म/मृत्यु की घटना घटित हो, और <math>\Theta(x)</math> [[हेविसाइड स्टेप फ़ंक्शन]] है, जो यह सुनिश्चित करता है कि कण संख्या सकारात्मक हैं और वहन क्षमता से बंधी हैं <math>K</math>.
\Theta\left[n\left( K-\mathbf{s}^{\mathcal{A}}\right)\right]</math> द्वारा दी गई संक्रमण संभावना के साथ अनुकरण किया जा सकता है, जहां <math>r_b,r_d\in[0,1]</math>, <math>r_b+r_d\leq 1</math> क्रमशः जन्म और मृत्यु की निरंतर संभावनाएँ हैं, <math>\delta_{i,j}</math> क्रोनेकर डेल्टा है जो यह सुनिश्चित करता है कि प्रत्येक चरण पर मात्र जन्म/मृत्यु की की घटना होती है, और<math>\Theta(x)</math> [[हेविसाइड स्टेप फ़ंक्शन|हेविसाइड स्टेप फलन]] है, जो यह सुनिश्चित करता है कि कण संख्या धनात्मक हैं और वहन क्षमता <math>K</math> से बंधी हैं।
[[File:AdhLGCA.webm|thumb|चिपकने वाली परस्पर क्रिया करने वाली कोशिकाओं का एक वर्गाकार BIO-LGCA मॉडल। कोशिकाएँ कोशिका घनत्व प्रवणता की दिशा में अधिमानतः चलती हैं। कोशिका घनत्व में वृद्धि के साथ जालीदार स्थान गहरे नीले रंग से रंगे जाते हैं। खाली नोड्स को सफेद रंग में रंगा जाता है। आवधिक सीमा शर्तों का उपयोग किया जाता है।]]
=== आसंजक अन्तः क्रिया ===
 
अतः कोशिकाएं कोशिका की सतह पर [[कैडेरिन]] अणुओं द्वारा दूसरे से चिपक सकती हैं। कैडरिन अन्तः क्रिया कोशिकाओं को समुच्चय बनाने की अनुमति देता है। इस प्रकार से आसंजक जैवाणु के माध्यम से कोशिका समुच्चय का निर्माण<ref>{{Cite journal|last=Bussemaker|first=Harmen J.|date=1996-02-01|title=Analysis of a pattern-forming lattice-gas automaton: Mean-field theory and beyond|url=http://dx.doi.org/10.1103/physreve.53.1644|journal=Physical Review E|volume=53|issue=2|pages=1644–1661|doi=10.1103/physreve.53.1644|pmid=9964425|bibcode=1996PhRvE..53.1644B |issn=1063-651X}}</ref> पुनर्अभिविन्यास संक्रियक<math display="block">P\left(\left.\mathbf{s}\rightarrow\mathbf{s}^{\mathcal{O}}\right|\mathbf{s}_{\mathcal{N}}\right)
=== चिपकने वाली बातचीत ===
=\frac{1}{Z}\exp\left[\beta\mathbf{G}\left(\mathbf{s}_{\mathcal{N}}\right)\cdot\mathbf{J}\left(\mathbf{s}^{\mathcal{O}}\right)\right]</math>के रूप में परिभाषित संक्रमण संभावनाओं के साथ किया जा सकता है, जहां <math>\mathbf{G}\left(\mathbf{s}_{\mathcal{N}}\right)</math> अधिकतम कोशिका घनत्व की दिशा में इंगित करने वाला सदिश है, जिसे <math>\mathbf{G}\left(\mathbf{s}_{\mathcal{N}}\right)=
कोशिकाएं कोशिका की सतह पर [[कैडेरिन]] अणुओं द्वारा एक दूसरे से चिपक सकती हैं। कैडरिन इंटरैक्शन कोशिकाओं को समुच्चय बनाने की अनुमति देता है। चिपकने वाले बायोमोलेक्युलस के माध्यम से सेल समुच्चय के गठन का मॉडल तैयार किया जा सकता है<ref>{{Cite journal|last=Bussemaker|first=Harmen J.|date=1996-02-01|title=Analysis of a pattern-forming lattice-gas automaton: Mean-field theory and beyond|url=http://dx.doi.org/10.1103/physreve.53.1644|journal=Physical Review E|volume=53|issue=2|pages=1644–1661|doi=10.1103/physreve.53.1644|pmid=9964425|bibcode=1996PhRvE..53.1644B |issn=1063-651X}}</ref> एक पुनर्अभिविन्यास ऑपरेटर द्वारा संक्रमण संभावनाओं के साथ परिभाषित किया गया है<math display="block">P\left(\left.\mathbf{s}\rightarrow\mathbf{s}^{\mathcal{O}}\right|\mathbf{s}_{\mathcal{N}}\right)
\sum_{\mathbf{r}'\in\mathcal{N}}\left(\mathbf{r}'-\mathbf{r}\right)n\left(\mathbf{s}_{\mathcal{N}}^{\mathbf{r}'}\right)</math> के रूप में परिभाषित किया गया है, जहां <math>\mathbf{s}_{\mathcal{N}}^{\mathbf{r}'}</math> निकटवर्ती <math>\mathcal{N}</math> के भीतर जालक स्थल <math>\mathbf{r}'</math> का विन्यास है, और <math>\mathbf{J}\left(\mathbf{s}^{\mathcal{O}}\right)</math> पश्च-पुनरभिविन्यास विन्यास की गति है, जिसे <math>\mathbf{J}\left(\mathbf{s}^{\mathcal{O}}\right)=\sum_{j=1}^bs_j^{\mathcal{O}}\mathbf{c}_j</math> के रूप में परिभाषित किया गया है। अतः यह संक्रमण संभावना कोशिका घनत्व प्रवणता की ओर बढ़ने वाली कोशिकाओं के साथ पश्च-पुनरभिविन्यास विन्यास का पक्ष लेती है।
=\frac{1}{Z}\exp\left[\beta\mathbf{G}\left(\mathbf{s}_{\mathcal{N}}\right)\cdot\mathbf{J}\left(\mathbf{s}^{\mathcal{O}}\right)\right]</math>
[[File:ChemoLGCA.webm|thumb|कोशिकाओं का एक वर्गाकार BIO-LGCA मॉडल जो अप्रत्यक्ष रूप से [[कीमोटैक्सिस]] से संपर्क करता है। इस मॉडल में, कोशिकाएँ एक निश्चित जैविक अर्ध-जीवन | अर्ध-जीवन के साथ एक विसरित रसायन-आकर्षक का उत्पादन करती हैं। कोशिकाएं अधिमानतः कीमोआकर्षक प्रवणता की दिशा में चलती हैं। जालीदार स्थानों को कोशिका घनत्व में वृद्धि के साथ गहरे नीले रंग के साथ और केमोआट्रैक्टेंट एकाग्रता में वृद्धि के साथ गहरे पीले रंग के रंग के साथ जोड़ा जाता है। खाली जाली वाले स्थान सफेद रंग के होते हैं। आवधिक सीमा शर्तों का उपयोग किया गया।]]कहाँ <math>\mathbf{G}\left(\mathbf{s}_{\mathcal{N}}\right)</math> अधिकतम सेल घनत्व की दिशा में इंगित करने वाला एक वेक्टर है, जिसे इस प्रकार परिभाषित किया गया है <math>\mathbf{G}\left(\mathbf{s}_{\mathcal{N}}\right)=
\sum_{\mathbf{r}'\in\mathcal{N}}\left(\mathbf{r}'-\mathbf{r}\right)n\left(\mathbf{s}_{\mathcal{N}}^{\mathbf{r}'}\right)</math>, कहाँ <math>\mathbf{s}_{\mathcal{N}}^{\mathbf{r}'}</math>जाली स्थल का विन्यास है <math>\mathbf{r}'</math> पड़ोस के भीतर <math>\mathcal{N}</math>, और <math>\mathbf{J}\left(\mathbf{s}^{\mathcal{O}}\right)</math> पोस्ट-रीओरिएंटेशन कॉन्फ़िगरेशन की गति है, जिसे इस प्रकार परिभाषित किया गया है <math>\mathbf{J}\left(\mathbf{s}^{\mathcal{O}}\right)=\sum_{j=1}^bs_j^{\mathcal{O}}\mathbf{c}_j</math>. यह संक्रमण संभावना सेल घनत्व ढाल की ओर बढ़ने वाली कोशिकाओं के साथ पोस्ट-रीओरिएंटेशन कॉन्फ़िगरेशन का पक्ष लेती है।


== गणितीय विश्लेषण ==
== गणितीय विश्लेषण ==
चूंकि सभी एजेंटों के बीच उच्च-क्रम [[सहसंबंध और निर्भरता]] के कारण स्टोकेस्टिक एजेंट-आधारित मॉडल का सटीक उपचार जल्दी ही असंभव हो जाता है,<ref>{{Cite journal|last1=Ovaskainen|first1=Otso|last2=Somervuo|first2=Panu|last3=Finkelshtein|first3=Dmitri|date=2020-10-28|title=एजेंट-आधारित मॉडल से उभरने वाले स्थानिक-लौकिक सहसंबंधों की भविष्यवाणी के लिए एक सामान्य गणितीय विधि|journal=Journal of the Royal Society Interface|volume=17|issue=171|pages=20200655|doi=10.1098/rsif.2020.0655|pmc=7653394|pmid=33109018}}</ref> बीआईओ-एलजीसीए मॉडल का विश्लेषण करने की सामान्य विधि इसे जनसंख्या की [[अपेक्षित मूल्य]] गतिशीलता का वर्णन करने वाले अनुमानित, नियतात्मक पुनरावृत्ति संबंध (एफडीई) में डालना है, फिर इस अनुमानित मॉडल का गणितीय विश्लेषण करना और परिणामों की तुलना मूल से करना है बायो-एलजीसीए मॉडल।
चूंकि सभी घटकों के बीच उच्च-क्रम [[सहसंबंध और निर्भरता]] के कारण प्रसंभात्य घटक-आधारित मॉडल का यथार्थ उपचार शीघ्र ही असंभव हो जाता है,<ref>{{Cite journal|last1=Ovaskainen|first1=Otso|last2=Somervuo|first2=Panu|last3=Finkelshtein|first3=Dmitri|date=2020-10-28|title=एजेंट-आधारित मॉडल से उभरने वाले स्थानिक-लौकिक सहसंबंधों की भविष्यवाणी के लिए एक सामान्य गणितीय विधि|journal=Journal of the Royal Society Interface|volume=17|issue=171|pages=20200655|doi=10.1098/rsif.2020.0655|pmc=7653394|pmid=33109018}}</ref> जैव-एलजीसीए मॉडल का विश्लेषण करने की सामान्य विधि इसे जनसंख्या की [[अपेक्षित मूल्य|अपेक्षित मान]] गतिशीलता का वर्णन करने वाले अनुमानित, नियतात्मक पुनरावृत्ति संबंध (एफडीई) में डालना है, फिर इस अनुमानित मॉडल का गणितीय विश्लेषण करना और परिणामों की तुलना मूल जैव-एलजीसीए मॉडल से करना है।


सबसे पहले, माइक्रोडायनामिकल समीकरण का अपेक्षित मूल्य <math>s_m(\mathbf{r}+\mathbf{c}_m,k+1)=s_m^{\mathcal{I}}(\mathbf{r},k)</math> प्राप्त होना<math display="block">f_m\left(\mathbf{r}+\mathbf{c}_m,k+1\right)=
सर्वप्रथम, सूक्ष्मगतिकी समीकरण <math>s_m(\mathbf{r}+\mathbf{c}_m,k+1)=s_m^{\mathcal{I}}(\mathbf{r},k)</math> का अपेक्षित मान<math display="block">f_m\left(\mathbf{r}+\mathbf{c}_m,k+1\right)=
\left\langle s_m^{\mathcal{I}}\left(\mathbf{r},k\right)\right\rangle</math> कहाँ <math>\langle\cdot\rangle</math> अपेक्षित मूल्य को दर्शाता है, और <math>f_m\left(\mathbf{r},k\right):=\left\langle s_m\left(\mathbf{r},k\right)\right\rangle</math> का अपेक्षित मूल्य है <math>m</math>-वें चैनल पर जाली स्थल का व्यवसाय क्रमांक <math>\mathbf{r}</math> समय कदम पर <math>k</math>. हालाँकि, दाईं ओर शब्द, <math>\left\langle s_m^{\mathcal{I}}\left(\mathbf{r},k\right)\right\rangle</math> दोनों जाली स्थल की व्यवसाय संख्या पर अत्यधिक अरैखिक है <math>\mathbf{r}</math> और अंतःक्रिया पड़ोस के भीतर जाली स्थल <math>\mathcal{N}</math>, संक्रमण संभावना के रूप के कारण <math>P\left(\left.\mathbf{s}\rightarrow\mathbf{s}^{\mathcal{I}}\right|\mathbf{s}_{\mathcal{N}}\right)</math> और वेग चैनलों के भीतर कण प्लेसमेंट के आँकड़े (उदाहरण के लिए, चैनल व्यवसायों पर लगाए गए बहिष्करण सिद्धांत से उत्पन्न)। इस गैर-रैखिकता के परिणामस्वरूप इसमें शामिल सभी चैनल व्यवसायों के बीच उच्च-क्रम सहसंबंध और क्षण होंगे। इसके बजाय, आमतौर पर एक माध्य-क्षेत्र सन्निकटन मान लिया जाता है, जिसमें सभी सहसंबंधों और उच्च क्रम के क्षणों की उपेक्षा की जाती है, जैसे कि प्रत्यक्ष कण-कण इंटरैक्शन को संबंधित अपेक्षित मूल्यों के साथ इंटरैक्शन द्वारा प्रतिस्थापित किया जाता है। दूसरे शब्दों में, यदि <math>X_1,X_2,\ldots,X_n</math> यादृच्छिक चर हैं, और <math>F:\mathbb{R}^n\mapsto\mathbb{R}</math> तो फिर, यह एक फ़ंक्शन है<math>\left\langle F\left(X_1,X_2,\ldots,X_n\right)\right\rangle\approx
\left\langle s_m^{\mathcal{I}}\left(\mathbf{r},k\right)\right\rangle</math> प्राप्त किया जाता है, जहां <math>\langle\cdot\rangle</math> अपेक्षित मान को दर्शाता है, और <math>f_m\left(\mathbf{r},k\right):=\left\langle s_m\left(\mathbf{r},k\right)\right\rangle</math> समय चरण <math>k</math> पर <math>\mathbf{r}</math> पर जालक स्थल के <math>m</math>-वें चैनल अधिष्ठान संख्या का अपेक्षित मान है। यद्यपि, दाईं ओर का पद, <math>\left\langle s_m^{\mathcal{I}}\left(\mathbf{r},k\right)\right\rangle</math> दोनों जालक स्थल के <math>\mathbf{r}</math> अधिष्ठान संख्याओं पर अत्यधिक अरैखिक है, और अंतःक्रिया निकटवर्ती <math>\mathcal{N}</math> के भीतर जालक स्थल, संक्रमण संभावना <math>P\left(\left.\mathbf{s}\rightarrow\mathbf{s}^{\mathcal{I}}\right|\mathbf{s}_{\mathcal{N}}\right)</math> के रूप और वेग चैनलों के भीतर कण स्थानन के आंकड़ों के कारण हैं (उदाहरण के लिए, चैनल अधिष्ठानों पर लगाए गए बहिष्करण सिद्धांत से उत्पन्न)। इस गैर-रैखिकता के परिणामस्वरूप इसमें सम्मिलित सभी चैनल अधिष्ठानों के बीच उच्च-क्रम सहसंबंध और क्षण होंगे। अतः इसके अतिरिक्त, सामान्यतः माध्य-क्षेत्र सन्निकटन मान लिया जाता है, जिसमें सभी सहसंबंधों और उच्च क्रम के क्षणों की उपेक्षा की जाती है, जैसे कि प्रत्यक्ष कण-कण अन्तः क्रिया को संबंधित अपेक्षित मानों के साथ अन्तः क्रिया द्वारा प्रतिस्थापित किया जाता है। दूसरे पदों में, यदि <math>X_1,X_2,\ldots,X_n</math> यादृच्छिक चर हैं, और <math>F:\mathbb{R}^n\mapsto\mathbb{R}</math> एक फलन है, तो इस सन्निकटन के अंतर्गत<math>\left\langle F\left(X_1,X_2,\ldots,X_n\right)\right\rangle\approx
F\left(\left\langle X_1\right\rangle,\left\langle X_2\right\rangle,\ldots,\left\langle X_n\right\rangle\right)</math> इस सन्निकटन के तहत. इस प्रकार, हम समीकरण को सरल बना सकते हैं<math display="block">f_m\left(\mathbf{r}+\mathbf{c}_m,k+1\right)=
F\left(\left\langle X_1\right\rangle,\left\langle X_2\right\rangle,\ldots,\left\langle X_n\right\rangle\right)</math>इस प्रकार, हम समीकरण को <math display="block">f_m\left(\mathbf{r}+\mathbf{c}_m,k+1\right)=
\mathcal{C}\left(\mathbf{f}\left(\mathbf{r},k\right),\mathbf{f}_{\mathcal{N}}\left(\mathbf{r},k\right)\right)</math> कहाँ <math>\mathcal{C}\left(\mathbf{f}\left(\mathbf{r},k\right),\mathbf{f}_{\mathcal{N}}\left(\mathbf{r},k\right)\right)</math> अपेक्षित जाली साइट कॉन्फ़िगरेशन का एक अरेखीय कार्य है <math>\mathbf{f}\left(\mathbf{r},k\right)</math> और अपेक्षित पड़ोस विन्यास <math>\mathbf{f}_{\mathcal{N}}\left(\mathbf{r},k\right)</math> संक्रमण संभावनाओं और इन-नोड कण सांख्यिकी पर निर्भर।
\mathcal{C}\left(\mathbf{f}\left(\mathbf{r},k\right),\mathbf{f}_{\mathcal{N}}\left(\mathbf{r},k\right)\right)</math> तक सरल बना सकते हैं, जहां <math>\mathcal{C}\left(\mathbf{f}\left(\mathbf{r},k\right),\mathbf{f}_{\mathcal{N}}\left(\mathbf{r},k\right)\right)</math> अपेक्षित जालक स्थल विन्यास <math>\mathbf{f}\left(\mathbf{r},k\right)</math> का अरेखीय फलन है और अपेक्षित निकटवर्ती विन्यास <math>\mathbf{f}_{\mathcal{N}}\left(\mathbf{r},k\right)</math> संक्रमण संभावनाओं और इन-नोड कण आंकड़ों पर निर्भर है।


इस अरेखीय FDE से, कोई कई सजातीय [[संतुलन बिंदु]], या स्थिरांक की पहचान कर सकता है <math>\bar{f}_m</math> स्वतंत्र <math>\mathbf{r}</math> और <math>k</math> जो एफडीई के समाधान हैं। इन स्थिर अवस्थाओं की स्थिरता स्थितियों और मॉडल की पैटर्न निर्माण क्षमता का अध्ययन करने के लिए, एक [[रैखिक स्थिरता]] का प्रदर्शन किया जा सकता है। ऐसा करने के लिए, अरेखीय FDE को इस प्रकार रैखिकीकृत किया जाता है<math display="block">f_m\left(\mathbf{r}+\mathbf{c}_m,k+1\right)=
इस अरेखीय FDE से, कोई कई सजातीय [[संतुलन बिंदु]], या <math>\mathbf{r}</math> और <math>k</math> से स्वतंत्र स्थिरांक <math>\bar{f}_m</math> की पहचान कर सकता है जो FDE के हल हैं। अतः इन स्थिर अवस्थाओं की स्थिरता स्थितियों और मॉडल के रूप निर्माण क्षमता का अध्ययन करने के लिए, [[रैखिक स्थिरता]] का प्रदर्शन किया जा सकता है। इस प्रकार से ऐसा करने के लिए, अरेखीय FDE को<math display="block">f_m\left(\mathbf{r}+\mathbf{c}_m,k+1\right)=
\sum_{j=1}^K\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r},k\right)}\right|_{\mathrm{ss}}f_j\left(\mathbf{r},k\right)+
\sum_{j=1}^K\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r},k\right)}\right|_{\mathrm{ss}}f_j\left(\mathbf{r},k\right)+
\sum_{j=1}^K\sum_{p=1}^K\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r}+\mathbf{c}_p,k\right)}\right|_{\mathrm{ss}}f_j\left(\mathbf{r}+\mathbf{c}_p,k\right)</math> कहाँ <math>\mathrm{ss}</math> सजातीय स्थिर अवस्था को दर्शाता है <math>f_m\left(\mathbf{r},k\right)=\bar{f}_m,m\in\{1,\ldots,K\}</math>, और एक [[वॉन न्यूमैन पड़ोस]] मान लिया गया था। इसे केवल अस्थायी वृद्धि के साथ अधिक परिचित परिमित अंतर समीकरण में डालने के लिए, समीकरण के दोनों तरफ एक अलग फूरियर रूपांतरण लागू किया जा सकता है। असतत फूरियर ट्रांसफ़ॉर्म#शिफ्ट प्रमेय को लागू करने और बाईं ओर अस्थायी वृद्धि के साथ शब्द को अलग करने के बाद, व्यक्ति को जाली-बोल्ट्ज़मैन समीकरण प्राप्त होता है<ref name=":1" /><math display="block">\hat{f}_m\left(\mathbf{q},k+1\right)=e^{-\frac{2 \pi i}{L}\mathbf{q}\cdot\mathbf{c}_m}
\sum_{j=1}^K\sum_{p=1}^K\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r}+\mathbf{c}_p,k\right)}\right|_{\mathrm{ss}}f_j\left(\mathbf{r}+\mathbf{c}_p,k\right)</math> के रूप में रेखीयकृत किया जाता है, जहां <math>\mathrm{ss}</math> सजातीय स्थिर अवस्था <math>f_m\left(\mathbf{r},k\right)=\bar{f}_m,m\in\{1,\ldots,K\}</math> को दर्शाता है, और [[वॉन न्यूमैन पड़ोस|वॉन न्यूमैन]] निकटवर्ती मान लिया गया था। अतः इसे मात्र अस्थायी वृद्धि के साथ अधिक परिचित परिमित अंतर समीकरण में सन्निविष्ट करने के लिए, समीकरण के दोनों ओर अलग फूरियर रूपांतरण लागू किया जा सकता है। इस प्रकार से असतत फूरियर परिवर्तन या परिवर्तन प्रमेय को लागू करने और बाईं ओर अस्थायी वृद्धि के साथ पद को अलग करने के बाद, व्यक्ति को जालक-बोल्ट्ज़मैन समीकरण<ref name=":1" /><math display="block">\hat{f}_m\left(\mathbf{q},k+1\right)=e^{-\frac{2 \pi i}{L}\mathbf{q}\cdot\mathbf{c}_m}
\left\{\sum_{j=1}^K\left[\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r},k\right)}\right|_{\mathrm{ss}}+\sum_{p=1}^K\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r}+\mathbf{c}_p,k\right)}\right|_{\mathrm{ss}}e^{\frac{2\pi i}{L}\mathbf{q}\cdot\mathbf{c}_p}\right]\hat{f}_j\left(\mathbf{q},k\right)\right\}</math> कहाँ <math>i=\sqrt{-1}</math> [[काल्पनिक इकाई]] है, <math>L</math> एक आयाम के साथ जाली का आकार है, <math>\mathbf{q}\in\{1,2,\ldots,L\}^d</math> फूरियर [[वेवनंबर]] है, और <math>\hat{\cdot}=\mathcal{F}\{\cdot\}</math> असतत फूरियर रूपांतरण को दर्शाता है। मैट्रिक्स नोटेशन में, इस समीकरण को सरल बनाया गया है <math>\hat{\mathbf{f}}\left(\mathbf{q},k+1\right)=\Gamma\hat{\mathbf{f}}\left(\mathbf{q},k\right)</math>, जहां मैट्रिक्स <math>\Gamma</math> बोल्ट्ज़मैन प्रचारक कहा जाता है और इसे इस प्रकार परिभाषित किया गया है<math display="block">\Gamma_{m,j}=e^{-\frac{2\pi i}{L}\mathbf{q}\cdot\mathbf{c}_m}
\left\{\sum_{j=1}^K\left[\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r},k\right)}\right|_{\mathrm{ss}}+\sum_{p=1}^K\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r}+\mathbf{c}_p,k\right)}\right|_{\mathrm{ss}}e^{\frac{2\pi i}{L}\mathbf{q}\cdot\mathbf{c}_p}\right]\hat{f}_j\left(\mathbf{q},k\right)\right\}</math> प्राप्त होता है, जहां <math>i=\sqrt{-1}</math> [[काल्पनिक इकाई]] है, <math>L</math> आयाम के साथ जालक का आकार है, <math>\mathbf{q}\in\{1,2,\ldots,L\}^d</math> फूरियर [[वेवनंबर]] है, और <math>\hat{\cdot}=\mathcal{F}\{\cdot\}</math> असतत फूरियर रूपांतरण को दर्शाता है। अतः आधात्री संकेतन में, <math>\hat{\mathbf{f}}\left(\mathbf{q},k+1\right)=\Gamma\hat{\mathbf{f}}\left(\mathbf{q},k\right)</math> समीकरण को सरल बनाया गया है, जहां आधात्री <math>\Gamma</math> बोल्ट्ज़मैन प्रचारक कहा जाता है और इसे<math display="block">\Gamma_{m,j}=e^{-\frac{2\pi i}{L}\mathbf{q}\cdot\mathbf{c}_m}
\left[\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r},k\right)}\right|_{\mathrm{ss}}+\sum_{p=1}^K\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r}+\mathbf{c}_p,k\right)}\right|_{\mathrm{ss}}e^{\frac{2\pi i}{L}\mathbf{q}\cdot \mathbf{c}_p}\right].</math> [[आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स]] <math>\lambda\left(\mathbf{q}\right)</math> बोल्ट्ज़मैन प्रचारक स्थिर अवस्था की स्थिरता गुणों को निर्देशित करते हैं:<ref name=":1" />
\left[\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r},k\right)}\right|_{\mathrm{ss}}+\sum_{p=1}^K\left.\frac{\partial\mathcal{C}}{\partial f_j\left(\mathbf{r}+\mathbf{c}_p,k\right)}\right|_{\mathrm{ss}}e^{\frac{2\pi i}{L}\mathbf{q}\cdot \mathbf{c}_p}\right]</math> के रूप में परिभाषित किया गया है। 
 
इस प्रकार से [[आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स|आइगेनमान एवं आइगेनसदिश]] <math>\lambda\left(\mathbf{q}\right)</math> बोल्ट्ज़मैन प्रचारक स्थिर अवस्था की स्थिरता गुणों को निर्देशित करते हैं:<ref name=":1" />


* अगर <math>\left|\lambda\left(\mathbf{q}\right)\right|>1</math>, कहाँ <math>|\cdot|</math> जटिल संख्या#ध्रुवीय जटिल तल को दर्शाता है, फिर तरंग संख्या के साथ गड़बड़ी <math>\mathbf{q}</math> समय के साथ बढ़ें. अगर <math>\left|\lambda\left(\mathbf{q}_{\mathrm{max}}\right)\right|>1</math>, और <math>\left|\lambda\left(\mathbf{q}_{\mathrm{max}}\right)\right|\geq\left|\lambda\left(\mathbf{q}\right)\right|\forall\mathbf{q}\in\{1,2,\ldots,L\}^d</math>, फिर तरंग संख्या के साथ गड़बड़ी <math>\mathbf{q}_{\mathrm{max}}</math> हावी हो जाएगा और स्पष्ट [[तरंग दैर्ध्य]] वाले पैटर्न देखे जाएंगे। अन्यथा, स्थिर स्थिति स्थिर है और कोई भी गड़बड़ी क्षय हो जाएगी।
* यदि <math>\left|\lambda\left(\mathbf{q}\right)\right|>1</math>, जहां <math>|\cdot|</math> मापांक को दर्शाता है, तो तरंग संख्या <math>\mathbf{q}</math> के साथ क्षोभ समय के साथ बढ़ती है। यदि <math>\left|\lambda\left(\mathbf{q}_{\mathrm{max}}\right)\right|>1</math>, और <math>\left|\lambda\left(\mathbf{q}_{\mathrm{max}}\right)\right|\geq\left|\lambda\left(\mathbf{q}\right)\right|\forall\mathbf{q}\in\{1,2,\ldots,L\}^d</math> है, तो तरंग संख्या <math>\mathbf{q}_{\mathrm{max}}</math> के साथ क्षोभ प्रभावी हो जाएगी और स्पष्ट [[तरंग दैर्ध्य]] के साथ रूप देखे जाएंगे।अन्यथा, स्थिर स्थिति स्थिर है और कोई भी क्षोभ क्षय हो जाएगी।
* अगर <math>\mathrm{arg}\left[\lambda\left(q\right)\right]\neq 0</math>, कहाँ <math>\mathrm{arg}(\cdot)</math> सम्मिश्र संख्या#ध्रुवीय सम्मिश्र तल को दर्शाता है, तब विक्षोभ का परिवहन होता है और गैर-स्थिर जनसंख्या व्यवहार देखा जाता है। अन्यथा, जनसंख्या स्थूल स्तर पर स्थिर दिखाई देगी।
* यदि <math>\mathrm{arg}\left[\lambda\left(q\right)\right]\neq 0</math>, जहां <math>\mathrm{arg}(\cdot)</math> तर्क को दर्शाता है, तो क्षोभ स्थानांतरित हो जाती है और गैर-स्थिर जनसंख्या व्यवहार देखा जाता है। अन्यथा, जनसंख्या स्थूल स्तर पर स्थिर दिखाई देगी।


== अनुप्रयोग ==
== अनुप्रयोग ==
जैविक घटनाओं के अध्ययन के लिए बीआईओ-एलजीसीए के निर्माण में मुख्य रूप से इंटरेक्शन ऑपरेटर के लिए उचित संक्रमण संभावनाओं को परिभाषित करना शामिल है, हालांकि राज्य स्थान की सटीक परिभाषा (उदाहरण के लिए कई सेलुलर [[फेनोटाइप]] पर विचार करने के लिए), सीमा की स्थिति (सीमित परिस्थितियों में मॉडलिंग घटना के लिए) , पड़ोस (मात्रात्मक रूप से प्रयोगात्मक इंटरैक्शन रेंज से मेल खाने के लिए), और वहन क्षमता (दिए गए सेल आकार के लिए भीड़ प्रभाव का अनुकरण करने के लिए) विशिष्ट अनुप्रयोगों के लिए महत्वपूर्ण हो सकते हैं। जबकि पुनर्अभिविन्यास ऑपरेटर का वितरण उपरोक्त सांख्यिकीय और बायोफिजिकल तरीकों के माध्यम से प्राप्त किया जा सकता है, उदाहरण के लिए, प्रतिक्रिया ऑपरेटरों के वितरण का अनुमान इन विट्रो प्रयोगों के आंकड़ों से लगाया जा सकता है।<ref>{{Cite journal|last1=Dirkse|first1=Anne|last2=Golebiewska|first2=Anna|last3=Buder|first3=Thomas|last4=Nazarov|first4=Petr V.|last5=Muller|first5=Arnaud|last6=Poovathingal|first6=Suresh|last7=Brons|first7=Nicolaas H. C.|last8=Leite|first8=Sonia|last9=Sauvageot|first9=Nicolas|last10=Sarkisjan|first10=Dzjemma|last11=Seyfrid|first11=Mathieu|date=2019-04-16|title=ग्लियोब्लास्टोमा में स्टेम सेल से जुड़ी विविधता सूक्ष्म वातावरण द्वारा आकारित आंतरिक ट्यूमर प्लास्टिसिटी के परिणामस्वरूप होती है|journal=Nature Communications|language=en|volume=10|issue=1|pages=1787|doi=10.1038/s41467-019-09853-z|issn=2041-1723|pmc=6467886|pmid=30992437|bibcode=2019NatCo..10.1787D }}</ref>
इस प्रकार से जैविक घटनाओं के अध्ययन के लिए जैव-एलजीसीए के निर्माण में मुख्य रूप से अन्तः क्रिया संक्रियक के लिए उचित संक्रमण संभावनाओं को परिभाषित करना सम्मिलित है, यद्यपि अवस्था समष्टि की यथार्थ परिभाषा (उदाहरण के लिए कई कोशिकीय [[फेनोटाइप|समलक्षणी]] पर विचार करने के लिए), सीमा की स्थिति (सीमित परिस्थितियों में मॉडलिंग घटना के लिए), निकटवर्ती (मात्रात्मक रूप से प्रयोगात्मक अन्तः क्रिया श्रेणी से मेल खाने के लिए), और वहन क्षमता (दिए गए कोशिका आकार के लिए भीड़ प्रभाव का अनुकरण करने के लिए) विशिष्ट अनुप्रयोगों के लिए महत्वपूर्ण हो सकते हैं। जबकि पुनर्अभिविन्यास संक्रियक का वितरण उपरोक्त सांख्यिकीय और जैवभौतिक विधियों के माध्यम से प्राप्त किया जा सकता है, अतः उदाहरण के लिए, प्रतिक्रिया संक्रियकों के वितरण का अनुमान इन विट्रो प्रयोगों के आंकड़ों से लगाया जा सकता है।<ref>{{Cite journal|last1=Dirkse|first1=Anne|last2=Golebiewska|first2=Anna|last3=Buder|first3=Thomas|last4=Nazarov|first4=Petr V.|last5=Muller|first5=Arnaud|last6=Poovathingal|first6=Suresh|last7=Brons|first7=Nicolaas H. C.|last8=Leite|first8=Sonia|last9=Sauvageot|first9=Nicolas|last10=Sarkisjan|first10=Dzjemma|last11=Seyfrid|first11=Mathieu|date=2019-04-16|title=ग्लियोब्लास्टोमा में स्टेम सेल से जुड़ी विविधता सूक्ष्म वातावरण द्वारा आकारित आंतरिक ट्यूमर प्लास्टिसिटी के परिणामस्वरूप होती है|journal=Nature Communications|language=en|volume=10|issue=1|pages=1787|doi=10.1038/s41467-019-09853-z|issn=2041-1723|pmc=6467886|pmid=30992437|bibcode=2019NatCo..10.1787D }}</ref>
BIO-LGCA मॉडल का उपयोग कई सेलुलर, बायोफिजिकल और चिकित्सा घटनाओं का अध्ययन करने के लिए किया गया है। कुछ उदाहरणों में शामिल हैं:
 
जैव-एलजीसीए मॉडल का उपयोग कई कोशिकीय, जैवभौतिक और चिकित्सा घटनाओं का अध्ययन करने के लिए किया गया है। इस प्रकार से कुछ निम्नलिखित उदाहरणों में सम्मिलित हैं:


* [[ एंजियोजिनेसिस ]]:<ref>{{Cite journal|last1=Mente|first1=Carsten|last2=Prade|first2=Ina|last3=Brusch|first3=Lutz|last4=Breier|first4=Georg|last5=Deutsch|first5=Andreas|date=2010-10-01|title=जैविक जाली-गैस सेलुलर ऑटोमेटन मॉडल के लिए एक नवीन ग्रेडिएंट-आधारित अनुकूलन विधि के साथ पैरामीटर अनुमान|url=http://link.springer.com/10.1007/s00285-010-0366-4|journal=Journal of Mathematical Biology|language=en|volume=63|issue=1|pages=173–200|doi=10.1007/s00285-010-0366-4|pmid=20886214|s2cid=12404555|issn=0303-6812}}</ref> एंजियोजेनेसिस के दौरान शामिल प्रक्रियाओं और उनके वजन को निर्धारित करने के लिए एंडोथेलियल कोशिकाओं और बीआईओ-एलजीसीए सिमुलेशन वेधशालाओं के साथ एक इन विट्रो प्रयोग की तुलना की गई। उन्होंने पाया कि आसंजन, संरेखण, संपर्क मार्गदर्शन और [[ कोशिकी साँचा ]] रीमॉडलिंग सभी एंजियोजेनेसिस में शामिल हैं, जबकि लंबी दूरी की बातचीत प्रक्रिया के लिए महत्वपूर्ण नहीं है।
* [[ एंजियोजिनेसिस | एंजियोजिनेसिस]] :<ref>{{Cite journal|last1=Mente|first1=Carsten|last2=Prade|first2=Ina|last3=Brusch|first3=Lutz|last4=Breier|first4=Georg|last5=Deutsch|first5=Andreas|date=2010-10-01|title=जैविक जाली-गैस सेलुलर ऑटोमेटन मॉडल के लिए एक नवीन ग्रेडिएंट-आधारित अनुकूलन विधि के साथ पैरामीटर अनुमान|url=http://link.springer.com/10.1007/s00285-010-0366-4|journal=Journal of Mathematical Biology|language=en|volume=63|issue=1|pages=173–200|doi=10.1007/s00285-010-0366-4|pmid=20886214|s2cid=12404555|issn=0303-6812}}</ref> एंजियोजेनेसिस के समय सम्मिलित प्रक्रियाओं और उनके भार को निर्धारित करने के लिए अंतःकला कोशिकाओं और जैव-एलजीसीए अनुरूपण वेधशालाओं के साथ इन विट्रो प्रयोग की तुलना की गई। उन्होंने पाया कि आसंजन, संरेखण, संपर्क मार्गदर्शन और [[ कोशिकी साँचा |कोशिकाबाह्य आधात्री]] पुनःमॉडलिंग सभी वाहिनी जनन में सम्मिलित हैं, जबकि लंबी दूरी की अन्तः क्रिया प्रक्रिया के लिए महत्वपूर्ण नहीं है।
* सक्रिय तरल पदार्थ:<ref>{{Cite journal|last1=Bussemaker|first1=Harmen J.|last2=Deutsch|first2=Andreas|last3=Geigant|first3=Edith|date=1997-06-30|title=सामूहिक गति के लिए सेलुलर ऑटोमेटन मॉडल में एक गतिशील चरण संक्रमण का माध्य-क्षेत्र विश्लेषण|url=https://link.aps.org/doi/10.1103/PhysRevLett.78.5018|journal=Physical Review Letters|language=en|volume=78|issue=26|pages=5018–5021|doi=10.1103/PhysRevLett.78.5018|arxiv=physics/9706008|bibcode=1997PhRvL..78.5018B |s2cid=45979152|issn=0031-9007}}</ref> ध्रुवीय संरेखण इंटरैक्शन के माध्यम से बातचीत करने वाले कणों की आबादी के स्थूल भौतिक गुणों की जांच BIO-LGCA मॉडल का उपयोग करके की गई थी। यह पाया गया कि प्रारंभिक कण घनत्व और अंतःक्रिया शक्ति बढ़ने से दूसरे क्रम के चरण में एक सजातीय, अव्यवस्थित अवस्था से एक क्रमबद्ध, प्रतिरूपित, गतिमान अवस्था में संक्रमण होता है।
* सक्रिय तरल पदार्थ:<ref>{{Cite journal|last1=Bussemaker|first1=Harmen J.|last2=Deutsch|first2=Andreas|last3=Geigant|first3=Edith|date=1997-06-30|title=सामूहिक गति के लिए सेलुलर ऑटोमेटन मॉडल में एक गतिशील चरण संक्रमण का माध्य-क्षेत्र विश्लेषण|url=https://link.aps.org/doi/10.1103/PhysRevLett.78.5018|journal=Physical Review Letters|language=en|volume=78|issue=26|pages=5018–5021|doi=10.1103/PhysRevLett.78.5018|arxiv=physics/9706008|bibcode=1997PhRvL..78.5018B |s2cid=45979152|issn=0031-9007}}</ref> ध्रुवीय संरेखण अन्तः क्रिया के माध्यम से अन्तः क्रिया करने वाले कणों की संख्या के स्थूल भौतिक गुणों की जांच जैव-एलजीसीए मॉडल का उपयोग करके की गई थी। यह पाया गया कि प्रारंभिक कण घनत्व और अंतःक्रिया शक्ति बढ़ने से दूसरे क्रम के चरण में सजातीय, अव्यवस्थित अवस्था से क्रमबद्ध, प्रतिरूपित, गतिमान अवस्था में संक्रमण होता है।
* [[महामारी विज्ञान]]:<ref name=":2">{{Cite journal|last1=Fuks|first1=Henryk|last2=Lawniczak|first2=Anna T.|date=2001|title=महामारी के स्थानिक प्रसार के लिए व्यक्तिगत-आधारित जाली मॉडल|journal=Discrete Dynamics in Nature and Society|volume=6|issue=3|pages=191–200|language=en|doi=10.1155/s1026022601000206|doi-access=free}}</ref> एक स्थानिक एसआईआर मॉडल बीआईओ-एलजीसीए मॉडल का उपयोग विभिन्न टीकाकरण रणनीतियों के प्रभाव और एक गैर-स्थानिक मॉडल के साथ एक स्थानिक महामारी का अनुमान लगाने के प्रभाव का अध्ययन करने के लिए किया गया था। उन्होंने पाया कि बाधा-प्रकार की टीकाकरण रणनीतियाँ स्थानिक रूप से समान टीकाकरण रणनीतियों की तुलना में बहुत अधिक प्रभावी हैं। इसके अलावा, उन्होंने पाया कि गैर-स्थानिक मॉडल संक्रमण की दर को बहुत अधिक आंकते हैं।
* [[महामारी विज्ञान]]:<ref name=":2">{{Cite journal|last1=Fuks|first1=Henryk|last2=Lawniczak|first2=Anna T.|date=2001|title=महामारी के स्थानिक प्रसार के लिए व्यक्तिगत-आधारित जाली मॉडल|journal=Discrete Dynamics in Nature and Society|volume=6|issue=3|pages=191–200|language=en|doi=10.1155/s1026022601000206|doi-access=free}}</ref> स्थानिक एसआईआर मॉडल जैव-एलजीसीए मॉडल का उपयोग विभिन्न टीकाकरण रणनीतियों के प्रभाव और गैर-स्थानिक मॉडल के साथ स्थानिक महामारी का अनुमान लगाने के प्रभाव का अध्ययन करने के लिए किया गया था। उन्होंने पाया कि बाधा-प्रकार की टीकाकरण कार्यनीतियाँ स्थानिक रूप से समान टीकाकरण रणनीतियों की तुलना में बहुत अधिक प्रभावी हैं। इसके अतिरिक्त, उन्होंने पाया कि गैर-स्थानिक मॉडल संक्रमण की दर को बहुत अधिक समझते हैं।
* सेल [[जैमिंग (भौतिकी)]]:<ref>{{Cite journal|last1=Ilina|first1=Olga|last2=Gritsenko|first2=Pavlo G.|last3=Syga|first3=Simon|last4=Lippoldt|first4=Jürgen|last5=La Porta|first5=Caterina A. M.|last6=Chepizhko|first6=Oleksandr|last7=Grosser|first7=Steffen|last8=Vullings|first8=Manon|last9=Bakker|first9=Gert-Jan|last10=Starruß|first10=Jörn|last11=Bult|first11=Peter|date=2020-08-24|title=Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion|journal=Nature Cell Biology|language=en|volume=22|issue=9|pages=1103–1115|doi=10.1038/s41556-020-0552-6|issn=1476-4679|pmc=7502685|pmid=32839548}}</ref> स्तन कैंसर में [[ रूप-परिवर्तन ]] व्यवहार का अध्ययन करने के लिए इन विट्रो और बायो-एलजीसीए मॉडल का उपयोग किया गया था। बीआईओ-एलजीसीए मॉडल से पता चला कि मेटास्टेसिस अलग-अलग व्यवहार प्रदर्शित कर सकता है, जैसे कि यादृच्छिक गैस जैसा, जाम ठोस जैसा, और सहसंबद्ध तरल पदार्थ जैसी स्थिति, जो कोशिकाओं के बीच चिपकने के स्तर, ईसीएम घनत्व और सेल-ईसीएम इंटरैक्शन पर निर्भर करता है।
* कोशिका [[जैमिंग (भौतिकी)]]:<ref>{{Cite journal|last1=Ilina|first1=Olga|last2=Gritsenko|first2=Pavlo G.|last3=Syga|first3=Simon|last4=Lippoldt|first4=Jürgen|last5=La Porta|first5=Caterina A. M.|last6=Chepizhko|first6=Oleksandr|last7=Grosser|first7=Steffen|last8=Vullings|first8=Manon|last9=Bakker|first9=Gert-Jan|last10=Starruß|first10=Jörn|last11=Bult|first11=Peter|date=2020-08-24|title=Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion|journal=Nature Cell Biology|language=en|volume=22|issue=9|pages=1103–1115|doi=10.1038/s41556-020-0552-6|issn=1476-4679|pmc=7502685|pmid=32839548}}</ref> स्तन कैंसर में [[ रूप-परिवर्तन |रूप-परिवर्तन]] व्यवहार का अध्ययन करने के लिए इन विट्रो और जैव-एलजीसीए मॉडल का उपयोग किया गया था। जैव-एलजीसीए मॉडल से ज्ञात हुआ कि विक्षेपी अलग-अलग व्यवहार प्रदर्शित कर सकता है, जैसे कि यादृच्छिक गैस जैसा, जाम ठोस जैसा, और सहसंबद्ध तरल पदार्थ जैसी स्थिति, जो कोशिकाओं के बीच चिपकने के स्तर, ईसीएम घनत्व और कोशिका-ईसीएम अन्तः क्रिया पर निर्भर करता है।


== संदर्भ ==
== संदर्भ ==
Line 87: Line 82:
{{reflist}}
{{reflist}}


 
== बाह्य संबंध ==
== बाहरी संबंध ==
* [https://imc.zih.tu-dresden.de//biolgca/ जैव-एलजीसीए Simulator] - वैयक्तिकृत पैरामीटर मानों के साथ प्राथमिक अन्तःक्रिया वाला एक ऑनलाइन सिम्युलेटर।
* [https://imc.zih.tu-dresden.de//biolgca/ Bio-LGCA Simulator] - An online simulator with elementary interactions with personalizable parameter values.
* [https://github.com/sisyga/BIO-LGCA जैव-एलजीसीए Python Package] - BIO-LGCA मॉडल सिमुलेशन लागू करने के लिए एक विवृत स्रोत पायथन पैकेज।
* [https://github.com/sisyga/BIO-LGCA BIO-LGCA Python Package] - An open source Python package for implementing BIO-LGCA model simulations.
[[Category: सांख्यिकीय यांत्रिकी]] [[Category: जाली मॉडल]] [[Category: स्टोकेस्टिक मॉडल]] [[Category: जटिल गतिशीलता]]  
[[Category: सांख्यिकीय यांत्रिकी]] [[Category: जाली मॉडल]] [[Category: स्टोकेस्टिक मॉडल]] [[Category: जटिल गतिशीलता]]  


Line 97: Line 91:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 28/11/2023]]
[[Category:Created On 28/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 10:57, 11 December 2023

कम्प्यूटेशनल जीवविज्ञान और गणितीय और सैद्धांतिक जीवविज्ञान में, जैविक जालक-गैस कोशिकीय ऑटोमेटन (जैव-एलजीसीए) जैविक घटकों को स्थानांतरित करने और अन्तः क्रिया करने के लिए एक अलग मॉडल है,[1] जो कोशिकीय ऑटोमेटन (मशीनी मानव) का एक प्रकार है। जैव-एलजीसीए द्रव गतिशीलता में उपयोग किए जाने वाले जालक गैस ऑटोमेटन (एलजीसीए) मॉडल पर आधारित है। जैव-एलजीसीए मॉडल कोशिकाओं और अन्य गतिशील जैविक घटकों को अलग जालक पर चलने वाले बिंदु कणों के रूप में वर्णित करता है, जिससे निकट के कणों के साथ अन्तः क्रिया होती है। अतः उत्कृष्ट कोशिकीय ऑटोमेटन मॉडल के विपरीत, जैव-एलजीसीए में कणों को उनकी स्थिति और वेग से परिभाषित किया जाता है। यह मुख्य रूप से घनत्व के अतिरिक्त गति में परिवर्तन के माध्यम से सक्रिय तरल पदार्थों और सामूहिक प्रवासन का मॉडल और विश्लेषण करने की अनुमति देता है। जैव-एलजीसीए अनुप्रयोगों में कैंसर का अन्तःक्षेप[2] और कैंसर की प्रगति सम्मिलित है।[3]

मॉडल परिभाषा

जैसा कि सभी कोशिकीय ऑटोमेटन मॉडल हैं, एक BIO-LGCA मॉडल को एक जालक , एक अवस्था समष्टि , एक निकटवर्ती और एक नियम द्वारा परिभाषित किया गया है।[4]

  • जालक () सभी संभावित कण स्थितियों के समूह को परिभाषित करता है। कण मात्र कुछ निश्चित स्थानों पर अधिकृत करने के लिए प्रतिबंधित हैं, जो सामान्यतः समष्टि के नियमित और आवधिक चौकोर के परिणामस्वरूप होते हैं। अतः गणितीय रूप से, , -आयामी समष्टि का एक अलग उपसमुच्चय है।
  • अवस्था समष्टि () प्रत्येक जालक स्थल के भीतर कणों की संभावित अवस्थाओं का वर्णन करता है. जैव-एलजीसीए में, उत्कृष्ट कोशिकीय ऑटोमेटन मॉडल के विपरीत, अलग-अलग वेग वाले कई कण एक ही जालक स्थल पर अधिकृत कर सकते हैं, जहां सामान्यतः मात्र एक ही कोशिका प्रत्येक जालक नोड में एक साथ रह सकती है। अलग यह अवस्था समष्टि को उत्कृष्ट कोशिकीय ऑटोमेटन मॉडल (नीचे देखें) की तुलना में अल्प अधिक जटिल बनाता है।
  • निकटवर्ती () जालक स्थलों के उपसमूह को इंगित करता है जो जालक में किसी दिए गए स्थल की गतिशीलता को निर्धारित करता है। अतः कण मात्र अपने निकटवर्ती के अन्य कणों के साथ अन्तः क्रिया करते हैं। परिमित जालक की सीमा पर जालक स्थलों के निकटवर्ती के लिए सीमा की स्थिति का चयन किया जाना चाहिए। निकटवर्ती और सीमा की स्थितियों को नियमित कोशिकीय ऑटोमेटा के लिए समान रूप से परिभाषित किया गया है (कोशिकीय ऑटोमेटन देखें)।
  • नियम () यह निर्धारित करता है कि कण समय के साथ कैसे चलते हैं, बढ़ते हैं या समाप्त हो जाते हैं। प्रत्येक कोशिकीय ऑटोमेटन के जैसे, जैव-एलजीसीए अलग-अलग समय चरणों में विकसित होता है। अलग प्रणाली की गतिशीलता का अनुकरण करने के लिए, नियम को प्रत्येक समय चरण पर प्रत्येक जालक स्थल पर समकालिक रूप से लागू किया जाता है। नियम अनुप्रयोग जालक स्थल की मूल स्थिति को नवीन स्थिति में परिवर्तित कर देता है। नियम अद्यतन की जाने वाली जालक स्थल के अन्तः क्रिया निकटवर्ती में जालक स्थलों की स्थिति पर निर्भर करता है। अतः जैव-एलजीसीए में, नियम को दो चरणों में विभाजित किया गया है, संभाव्य अन्तः क्रिया चरण जिसके पश्चात नियतात्मक परिवहन चरण होता है। अन्तः क्रिया चरण पुनर्अभिविन्यास, जन्म और मृत्यु प्रक्रियाओं का अनुकरण करता है, और विशेष रूप से मॉडलिंग प्रक्रिया के लिए परिभाषित किया गया है। परिवहन चरण कणों को उनके वेग की दिशा में निकटवर्ती जालक नोड में स्थानांतरित करता है। विवरण के लिए नीचे देखें।

अवस्था समष्टि

छह वेग चैनलों (2डी षट्कोणीय जालक के अनुरूप) और स्थिर चैनल के साथ जैव-एलजीसीए जालक स्थल की उपसंरचना। इस स्थिति में , , और वहन क्षमता । चैनल 2, 3, 6 और 7 व्याप्त हैं, इस प्रकार जालक विन्यास है, और कणों की संख्या है।

इस प्रकार से कण वेगों को स्पष्ट रूप से मॉडलिंग करने के लिए, जालक स्थलों को विशिष्ट उपसंरचना माना जाता है। प्रत्येक जालक स्थल वेग चैनल , नामक सदिश के माध्यम से अपने निकटवर्ती जालक स्थलों से जुड़ा होता है, जहां वेग चैनलों की संख्या निकटतम निकटवर्ती संख्या के बराबर है, और इस प्रकार जालक ज्यामिति पर निर्भर करती है (एक आयामी जालक के लिए , द्वि-आयामी षट्कोणीय जालक के लिए , और इसी प्रकार)। अतः दो आयामों में, वेग चैनलों को के रूप में परिभाषित किया गया है। इसके अतिरिक्त, तथाकथित "शेष चैनलों" की एक यादृच्छिक संख्या को परिभाषित किया जा सकता है, जैसे कि , । चैनल को व्यस्त कहा जाता है यदि जालक स्थल में वेग चैनल के बराबर वेग वाला कण होता है। चैनल का अधिकृत अधिष्ठान संख्या द्वारा दर्शाया गया है। सामान्यतः, कणों को पाउली अपवर्जन सिद्धांत का पालन करना माना जाता है, जैसे कि से अधिक कण जालक स्थल पर ही वेग चैनल पर साथ अधिकृत नहीं कर सकते हैं। अतः इस स्थिति में, अधिष्ठान संख्याएं बूलियन चर हैं, अर्थात , और इस प्रकार, प्रत्येक साइट की अधिकतम वहन क्षमता होती है। चूंकि सभी चैनल अधिष्ठान संख्याओं का संग्रह प्रत्येक जालक स्थल में कणों की संख्या और उनके वेग को परिभाषित करता है, इसलिए सदिश जालक स्थल की स्थिति का वर्णन करता है, और अवस्था समष्टि के द्वारा दिया जाता है।

नियम और मॉडल गतिशीलता

इस प्रकार से मॉडल की गतिशीलता को अनुकरण करने के लिए जालक में प्रत्येक स्थल की स्थिति को अलग-अलग समय चरणों में समकालिक रूप से अद्यतन किया जाता है। अतः नियम को दो चरणों में बांटा गया है। संभाव्य अंतःक्रिया चरण कण अंतःक्रिया का अनुकरण करता है, जबकि नियतात्मक परिवहन चरण कण गति का अनुकरण करता है।

अन्तः क्रिया चरण

इस प्रकार से विशिष्ट अनुप्रयोग के आधार पर, अन्तः क्रिया चरण प्रतिक्रिया और/या पुनर्अभिविन्यास संक्रियकों से बना हो सकता है।

अतः प्रतिक्रिया संचालिका नोड की स्थिति को प्रतिस्थापित करता है नवीन अवस्था के साथ मार्कोव श्रृंखला का अनुसरण करते हुए है, जो प्रतिक्रियाशील प्रक्रिया पर निकटवर्ती कणों के प्रभाव का अनुकरण करने के लिए, निकटवर्ती जालक स्थल की स्थिति पर निर्भर करता है। प्रतिक्रिया संक्रियक कण संख्या को संरक्षित नहीं करता है, इस प्रकार व्यक्तियों के जन्म और मृत्यु का अनुकरण करने की अनुमति देता है। इस प्रकार से प्रतिक्रिया संक्रियक की संक्रमण संभाव्यता को सामान्यतः घटनात्मक टिप्पणियों के रूप में तदर्थ रूप में परिभाषित किया जाता है।

अतः पुनर्अभिविन्यास संक्रियक भी संभाव्यता के साथ एक अवस्था को नवीन अवस्था से प्रतिस्थापित करता है। यद्यपि, यह संक्रियक कण संख्या को संरक्षित करता है और इसलिए मात्र मॉडल वेग चैनलों के बीच कणों को पुनर्वितरित करके कण वेग में परिवर्तन करता है। इस संक्रियक के लिए संक्रमण की संभावना सांख्यिकीय अवलोकनों (अधिकतम कैलिबर के सिद्धांत का उपयोग करके) या ज्ञात एकल-कण गतिशीलता (पुनर्अभिविन्यास गतिशीलता का वर्णन करने वाले लैंग्विन समीकरण से संबंधित समीकरण फोककर-प्लैंक समीकरण द्वारा दिए गए विवेकाधीन, स्थिर-अवस्था कोणीय संभाव्यता वितरण का उपयोग करके) निर्धारित की जा सकती है,[5][6] और सामान्यतः रूप

लेता है, जहां सामान्यीकरण स्थिरांक है (जिसे विभाजन फलन (गणित) के रूप में भी जाना जाता है), ऊर्जा जैसा फलन है जिसे कण अपनी गति की दिशा परिवर्तित करते ते समय संभवतः न्यूनतम कर देंगे, कण पुनर्अभिविन्यास की यादृच्छिकता के विपरीत आनुपातिक स्वतंत्र पैरामीटर है (ऊष्मागतिकी में ऊष्मागतिक बीटा के अनुरूप), और क्रोनकर डेल्टा है जो उस कण संख्या को पहले सुनिश्चित करता है, और पुनर्अभिविन्यास के बाद अपरिवर्तित है।

प्रतिक्रिया और पुनर्अभिविन्यास संक्रियक को लागू करने वाला अवस्था परिणामी रूप से पश्च-अन्तः क्रिया विन्यास के रूप में जाना जाता है और इसे द्वारा दर्शाया जाता है।

जैव-एलजीसीए मॉडल की गतिशीलता। प्रत्येक समय चरण में, अन्तः क्रिया चरण के समय सभी जालक स्थलों में साथ प्रतिक्रिया और/या पुनर्संरचना संक्रियकों द्वारा अधिष्ठान संख्याओं को प्रसंभात्य रूप से परिवर्तित कर दिया जाता है। इसके बाद, परिवहन चरण के समय, कणों को निश्चित रूप से उनके वेग चैनल की दिशा में निकटवर्ती नोड पर समान वेग चैनल पर ले जाया जाता है। रेखा-चित्र में वर्णों का उपयोग व्यक्तिगत नोड के कणों की गतिशीलता को ट्रैक करने के लिए किया जाता है। यह रेखा-चित्र कण-संरक्षण नियम (कोई प्रतिक्रिया संक्रियक नहीं) मानता है।

परिवहन चरण

इस प्रकार से अन्तः क्रिया चरण के पश्चात, नियतात्मक परिवहन चरण को सभी जालक स्थलों पर समकालिक रूप से लागू किया जाता है। अतः परिवहन चरण जीवित जीवों के सक्रिय पदार्थ के कारण घटकों की गति को उनके वेग के अनुसार अनुकरण करता है।

इस चरण के समय, पश्च-अन्तः क्रिया अवस्थाों की अधिष्ठान संख्या को वेग चैनल की दिशा में निकटवर्ती जालक स्थल के एक ही चैनल के नवीन अधिष्ठान अवस्थाों के रूप में परिभाषित किया जाएगा, अर्थात

इस प्रकार से एक नवीन समय चरण तब प्रारंभ होता है जब अन्तः क्रिया और परिवहन चरण दोनों घटित हो जाते हैं। अतः इसलिए, जैव-एलजीसीए की गतिशीलता को प्रसंभात्य पुनरावृत्ति संबंध सूक्ष्मगतिकी समीकरण

के रूप में संक्षेपित किया जा सकता है।

उदाहरण अन्तः क्रिया गतिकी

इस प्रकार से प्रतिक्रिया और/या पुनर्अभिविन्यास संक्रियक के लिए संक्रमण संभावना को मॉडल किए गए प्रणाली को उचित रूप से अनुकरण करने के लिए परिभाषित किया जाना चाहिए। अतः कुछ प्राथमिक अन्तः क्रिया और संबंधित संक्रमण संभावनाएं निम्न सूचीबद्ध हैं।

यादृच्छिक चाल

किसी बाह्य या आंतरिक उत्तेजना के अभाव में, कोशिकाएँ बिना किसी दिशात्मक प्राथमिकता के यादृच्छिक रूप से घूम सकती हैं। अतः इस स्थिति में, पुनर्अभिविन्यास संक्रियक को संक्रमण संभावना

के माध्यम से परिभाषित किया जा सकता है, जहां । इस प्रकार से ऐसी संक्रमण संभावना किसी भी पश्च-पुनर्अभिविन्यास विन्यास को पूर्व-पुनर्अभिविन्यास विन्यास के समान कणों के साथ समान रूप से चयन करने की अनुमति देती है।

सरल जन्म एवं मृत्यु प्रक्रिया

यदि जीव अन्य व्यक्तियों से स्वतंत्र रूप से प्रजनन करते हैं और समाप्त हो जाते हैं (सीमित वहन क्षमता को छोड़कर), तो एक साधारण जन्म/मृत्यु प्रक्रिया को[3]

द्वारा दी गई संक्रमण संभावना के साथ अनुकरण किया जा सकता है, जहां , क्रमशः जन्म और मृत्यु की निरंतर संभावनाएँ हैं, क्रोनेकर डेल्टा है जो यह सुनिश्चित करता है कि प्रत्येक चरण पर मात्र जन्म/मृत्यु की की घटना होती है, और हेविसाइड स्टेप फलन है, जो यह सुनिश्चित करता है कि कण संख्या धनात्मक हैं और वहन क्षमता से बंधी हैं।

आसंजक अन्तः क्रिया

अतः कोशिकाएं कोशिका की सतह पर कैडेरिन अणुओं द्वारा दूसरे से चिपक सकती हैं। कैडरिन अन्तः क्रिया कोशिकाओं को समुच्चय बनाने की अनुमति देता है। इस प्रकार से आसंजक जैवाणु के माध्यम से कोशिका समुच्चय का निर्माण[7] पुनर्अभिविन्यास संक्रियक

के रूप में परिभाषित संक्रमण संभावनाओं के साथ किया जा सकता है, जहां अधिकतम कोशिका घनत्व की दिशा में इंगित करने वाला सदिश है, जिसे के रूप में परिभाषित किया गया है, जहां निकटवर्ती के भीतर जालक स्थल का विन्यास है, और पश्च-पुनरभिविन्यास विन्यास की गति है, जिसे के रूप में परिभाषित किया गया है। अतः यह संक्रमण संभावना कोशिका घनत्व प्रवणता की ओर बढ़ने वाली कोशिकाओं के साथ पश्च-पुनरभिविन्यास विन्यास का पक्ष लेती है।

गणितीय विश्लेषण

चूंकि सभी घटकों के बीच उच्च-क्रम सहसंबंध और निर्भरता के कारण प्रसंभात्य घटक-आधारित मॉडल का यथार्थ उपचार शीघ्र ही असंभव हो जाता है,[8] जैव-एलजीसीए मॉडल का विश्लेषण करने की सामान्य विधि इसे जनसंख्या की अपेक्षित मान गतिशीलता का वर्णन करने वाले अनुमानित, नियतात्मक पुनरावृत्ति संबंध (एफडीई) में डालना है, फिर इस अनुमानित मॉडल का गणितीय विश्लेषण करना और परिणामों की तुलना मूल जैव-एलजीसीए मॉडल से करना है।

सर्वप्रथम, सूक्ष्मगतिकी समीकरण का अपेक्षित मान

प्राप्त किया जाता है, जहां अपेक्षित मान को दर्शाता है, और समय चरण पर पर जालक स्थल के -वें चैनल अधिष्ठान संख्या का अपेक्षित मान है। यद्यपि, दाईं ओर का पद, दोनों जालक स्थल के अधिष्ठान संख्याओं पर अत्यधिक अरैखिक है, और अंतःक्रिया निकटवर्ती के भीतर जालक स्थल, संक्रमण संभावना के रूप और वेग चैनलों के भीतर कण स्थानन के आंकड़ों के कारण हैं (उदाहरण के लिए, चैनल अधिष्ठानों पर लगाए गए बहिष्करण सिद्धांत से उत्पन्न)। इस गैर-रैखिकता के परिणामस्वरूप इसमें सम्मिलित सभी चैनल अधिष्ठानों के बीच उच्च-क्रम सहसंबंध और क्षण होंगे। अतः इसके अतिरिक्त, सामान्यतः माध्य-क्षेत्र सन्निकटन मान लिया जाता है, जिसमें सभी सहसंबंधों और उच्च क्रम के क्षणों की उपेक्षा की जाती है, जैसे कि प्रत्यक्ष कण-कण अन्तः क्रिया को संबंधित अपेक्षित मानों के साथ अन्तः क्रिया द्वारा प्रतिस्थापित किया जाता है। दूसरे पदों में, यदि यादृच्छिक चर हैं, और एक फलन है, तो इस सन्निकटन के अंतर्गत। इस प्रकार, हम समीकरण को
तक सरल बना सकते हैं, जहां अपेक्षित जालक स्थल विन्यास का अरेखीय फलन है और अपेक्षित निकटवर्ती विन्यास संक्रमण संभावनाओं और इन-नोड कण आंकड़ों पर निर्भर है।

इस अरेखीय FDE से, कोई कई सजातीय संतुलन बिंदु, या और से स्वतंत्र स्थिरांक की पहचान कर सकता है जो FDE के हल हैं। अतः इन स्थिर अवस्थाओं की स्थिरता स्थितियों और मॉडल के रूप निर्माण क्षमता का अध्ययन करने के लिए, रैखिक स्थिरता का प्रदर्शन किया जा सकता है। इस प्रकार से ऐसा करने के लिए, अरेखीय FDE को

के रूप में रेखीयकृत किया जाता है, जहां सजातीय स्थिर अवस्था को दर्शाता है, और वॉन न्यूमैन निकटवर्ती मान लिया गया था। अतः इसे मात्र अस्थायी वृद्धि के साथ अधिक परिचित परिमित अंतर समीकरण में सन्निविष्ट करने के लिए, समीकरण के दोनों ओर अलग फूरियर रूपांतरण लागू किया जा सकता है। इस प्रकार से असतत फूरियर परिवर्तन या परिवर्तन प्रमेय को लागू करने और बाईं ओर अस्थायी वृद्धि के साथ पद को अलग करने के बाद, व्यक्ति को जालक-बोल्ट्ज़मैन समीकरण[4]
प्राप्त होता है, जहां काल्पनिक इकाई है, आयाम के साथ जालक का आकार है, फूरियर वेवनंबर है, और असतत फूरियर रूपांतरण को दर्शाता है। अतः आधात्री संकेतन में, समीकरण को सरल बनाया गया है, जहां आधात्री बोल्ट्ज़मैन प्रचारक कहा जाता है और इसे
के रूप में परिभाषित किया गया है।

इस प्रकार से आइगेनमान एवं आइगेनसदिश बोल्ट्ज़मैन प्रचारक स्थिर अवस्था की स्थिरता गुणों को निर्देशित करते हैं:[4]

  • यदि , जहां मापांक को दर्शाता है, तो तरंग संख्या के साथ क्षोभ समय के साथ बढ़ती है। यदि , और है, तो तरंग संख्या के साथ क्षोभ प्रभावी हो जाएगी और स्पष्ट तरंग दैर्ध्य के साथ रूप देखे जाएंगे।अन्यथा, स्थिर स्थिति स्थिर है और कोई भी क्षोभ क्षय हो जाएगी।
  • यदि , जहां तर्क को दर्शाता है, तो क्षोभ स्थानांतरित हो जाती है और गैर-स्थिर जनसंख्या व्यवहार देखा जाता है। अन्यथा, जनसंख्या स्थूल स्तर पर स्थिर दिखाई देगी।

अनुप्रयोग

इस प्रकार से जैविक घटनाओं के अध्ययन के लिए जैव-एलजीसीए के निर्माण में मुख्य रूप से अन्तः क्रिया संक्रियक के लिए उचित संक्रमण संभावनाओं को परिभाषित करना सम्मिलित है, यद्यपि अवस्था समष्टि की यथार्थ परिभाषा (उदाहरण के लिए कई कोशिकीय समलक्षणी पर विचार करने के लिए), सीमा की स्थिति (सीमित परिस्थितियों में मॉडलिंग घटना के लिए), निकटवर्ती (मात्रात्मक रूप से प्रयोगात्मक अन्तः क्रिया श्रेणी से मेल खाने के लिए), और वहन क्षमता (दिए गए कोशिका आकार के लिए भीड़ प्रभाव का अनुकरण करने के लिए) विशिष्ट अनुप्रयोगों के लिए महत्वपूर्ण हो सकते हैं। जबकि पुनर्अभिविन्यास संक्रियक का वितरण उपरोक्त सांख्यिकीय और जैवभौतिक विधियों के माध्यम से प्राप्त किया जा सकता है, अतः उदाहरण के लिए, प्रतिक्रिया संक्रियकों के वितरण का अनुमान इन विट्रो प्रयोगों के आंकड़ों से लगाया जा सकता है।[9]

जैव-एलजीसीए मॉडल का उपयोग कई कोशिकीय, जैवभौतिक और चिकित्सा घटनाओं का अध्ययन करने के लिए किया गया है। इस प्रकार से कुछ निम्नलिखित उदाहरणों में सम्मिलित हैं:

  • एंजियोजिनेसिस :[10] एंजियोजेनेसिस के समय सम्मिलित प्रक्रियाओं और उनके भार को निर्धारित करने के लिए अंतःकला कोशिकाओं और जैव-एलजीसीए अनुरूपण वेधशालाओं के साथ इन विट्रो प्रयोग की तुलना की गई। उन्होंने पाया कि आसंजन, संरेखण, संपर्क मार्गदर्शन और कोशिकाबाह्य आधात्री पुनःमॉडलिंग सभी वाहिनी जनन में सम्मिलित हैं, जबकि लंबी दूरी की अन्तः क्रिया प्रक्रिया के लिए महत्वपूर्ण नहीं है।
  • सक्रिय तरल पदार्थ:[11] ध्रुवीय संरेखण अन्तः क्रिया के माध्यम से अन्तः क्रिया करने वाले कणों की संख्या के स्थूल भौतिक गुणों की जांच जैव-एलजीसीए मॉडल का उपयोग करके की गई थी। यह पाया गया कि प्रारंभिक कण घनत्व और अंतःक्रिया शक्ति बढ़ने से दूसरे क्रम के चरण में सजातीय, अव्यवस्थित अवस्था से क्रमबद्ध, प्रतिरूपित, गतिमान अवस्था में संक्रमण होता है।
  • महामारी विज्ञान:[12] स्थानिक एसआईआर मॉडल जैव-एलजीसीए मॉडल का उपयोग विभिन्न टीकाकरण रणनीतियों के प्रभाव और गैर-स्थानिक मॉडल के साथ स्थानिक महामारी का अनुमान लगाने के प्रभाव का अध्ययन करने के लिए किया गया था। उन्होंने पाया कि बाधा-प्रकार की टीकाकरण कार्यनीतियाँ स्थानिक रूप से समान टीकाकरण रणनीतियों की तुलना में बहुत अधिक प्रभावी हैं। इसके अतिरिक्त, उन्होंने पाया कि गैर-स्थानिक मॉडल संक्रमण की दर को बहुत अधिक समझते हैं।
  • कोशिका जैमिंग (भौतिकी):[13] स्तन कैंसर में रूप-परिवर्तन व्यवहार का अध्ययन करने के लिए इन विट्रो और जैव-एलजीसीए मॉडल का उपयोग किया गया था। जैव-एलजीसीए मॉडल से ज्ञात हुआ कि विक्षेपी अलग-अलग व्यवहार प्रदर्शित कर सकता है, जैसे कि यादृच्छिक गैस जैसा, जाम ठोस जैसा, और सहसंबद्ध तरल पदार्थ जैसी स्थिति, जो कोशिकाओं के बीच चिपकने के स्तर, ईसीएम घनत्व और कोशिका-ईसीएम अन्तः क्रिया पर निर्भर करता है।

संदर्भ

  1. Deutsch, Andreas; Nava-Sedeño, Josué Manik; Syga, Simon; Hatzikirou, Haralampos (2021-06-15). "BIO-LGCA: A cellular automaton modelling class for analysing collective cell migration". PLOS Computational Biology (in English). 17 (6): e1009066. Bibcode:2021PLSCB..17E9066D. doi:10.1371/journal.pcbi.1009066. ISSN 1553-7358. PMC 8232544. PMID 34129639.
  2. Reher, David; Klink, Barbara; Deutsch, Andreas; Voss-Böhme, Anja (2017-08-11). "Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model". Biology Direct. 12 (1): 18. doi:10.1186/s13062-017-0188-z. ISSN 1745-6150. PMC 5553611. PMID 28800767.
  3. 3.0 3.1 Böttger, Katrin; Hatzikirou, Haralambos; Voss-Böhme, Anja; Cavalcanti-Adam, Elisabetta Ada; Herrero, Miguel A.; Deutsch, Andreas (2015-09-03). Alber, Mark S (ed.). "ट्यूमर की शुरुआत और दृढ़ता के लिए एक उभरता हुआ एली प्रभाव महत्वपूर्ण है". PLOS Computational Biology (in English). 11 (9): e1004366. Bibcode:2015PLSCB..11E4366B. doi:10.1371/journal.pcbi.1004366. ISSN 1553-7358. PMC 4559422. PMID 26335202.
  4. 4.0 4.1 4.2 "Mathematical Modeling of Biological Pattern Formation", Cellular Automaton Modeling of Biological Pattern Formation, Modeling and Simulation in Science, Engineering and Technology, Boston, MA: Birkhäuser Boston, pp. 45–56, 2005, doi:10.1007/0-8176-4415-6_3, ISBN 978-0-8176-4281-5, retrieved 2021-05-25
  5. Nava-Sedeño, J. M.; Hatzikirou, H.; Peruani, F.; Deutsch, A. (2017-02-27). "एकल और सामूहिक सेल प्रवासन के लिए भौतिक लैंग्विन समीकरण मॉडल से सेलुलर ऑटोमेटन नियम निकालना". Journal of Mathematical Biology. 75 (5): 1075–1100. doi:10.1007/s00285-017-1106-9. ISSN 0303-6812. PMID 28243720. S2CID 32456636.
  6. Nava-Sedeño, J. M.; Hatzikirou, H.; Klages, R.; Deutsch, A. (2017-12-05). "Cellular automaton models for time-correlated random walks: derivation and analysis". Scientific Reports. 7 (1): 16952. arXiv:1802.04201. Bibcode:2017NatSR...716952N. doi:10.1038/s41598-017-17317-x. ISSN 2045-2322. PMC 5717221. PMID 29209065.
  7. Bussemaker, Harmen J. (1996-02-01). "Analysis of a pattern-forming lattice-gas automaton: Mean-field theory and beyond". Physical Review E. 53 (2): 1644–1661. Bibcode:1996PhRvE..53.1644B. doi:10.1103/physreve.53.1644. ISSN 1063-651X. PMID 9964425.
  8. Ovaskainen, Otso; Somervuo, Panu; Finkelshtein, Dmitri (2020-10-28). "एजेंट-आधारित मॉडल से उभरने वाले स्थानिक-लौकिक सहसंबंधों की भविष्यवाणी के लिए एक सामान्य गणितीय विधि". Journal of the Royal Society Interface. 17 (171): 20200655. doi:10.1098/rsif.2020.0655. PMC 7653394. PMID 33109018.
  9. Dirkse, Anne; Golebiewska, Anna; Buder, Thomas; Nazarov, Petr V.; Muller, Arnaud; Poovathingal, Suresh; Brons, Nicolaas H. C.; Leite, Sonia; Sauvageot, Nicolas; Sarkisjan, Dzjemma; Seyfrid, Mathieu (2019-04-16). "ग्लियोब्लास्टोमा में स्टेम सेल से जुड़ी विविधता सूक्ष्म वातावरण द्वारा आकारित आंतरिक ट्यूमर प्लास्टिसिटी के परिणामस्वरूप होती है". Nature Communications (in English). 10 (1): 1787. Bibcode:2019NatCo..10.1787D. doi:10.1038/s41467-019-09853-z. ISSN 2041-1723. PMC 6467886. PMID 30992437.
  10. Mente, Carsten; Prade, Ina; Brusch, Lutz; Breier, Georg; Deutsch, Andreas (2010-10-01). "जैविक जाली-गैस सेलुलर ऑटोमेटन मॉडल के लिए एक नवीन ग्रेडिएंट-आधारित अनुकूलन विधि के साथ पैरामीटर अनुमान". Journal of Mathematical Biology (in English). 63 (1): 173–200. doi:10.1007/s00285-010-0366-4. ISSN 0303-6812. PMID 20886214. S2CID 12404555.
  11. Bussemaker, Harmen J.; Deutsch, Andreas; Geigant, Edith (1997-06-30). "सामूहिक गति के लिए सेलुलर ऑटोमेटन मॉडल में एक गतिशील चरण संक्रमण का माध्य-क्षेत्र विश्लेषण". Physical Review Letters (in English). 78 (26): 5018–5021. arXiv:physics/9706008. Bibcode:1997PhRvL..78.5018B. doi:10.1103/PhysRevLett.78.5018. ISSN 0031-9007. S2CID 45979152.
  12. Fuks, Henryk; Lawniczak, Anna T. (2001). "महामारी के स्थानिक प्रसार के लिए व्यक्तिगत-आधारित जाली मॉडल". Discrete Dynamics in Nature and Society (in English). 6 (3): 191–200. doi:10.1155/s1026022601000206.
  13. Ilina, Olga; Gritsenko, Pavlo G.; Syga, Simon; Lippoldt, Jürgen; La Porta, Caterina A. M.; Chepizhko, Oleksandr; Grosser, Steffen; Vullings, Manon; Bakker, Gert-Jan; Starruß, Jörn; Bult, Peter (2020-08-24). "Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion". Nature Cell Biology (in English). 22 (9): 1103–1115. doi:10.1038/s41556-020-0552-6. ISSN 1476-4679. PMC 7502685. PMID 32839548.

बाह्य संबंध

  • जैव-एलजीसीए Simulator - वैयक्तिकृत पैरामीटर मानों के साथ प्राथमिक अन्तःक्रिया वाला एक ऑनलाइन सिम्युलेटर।
  • जैव-एलजीसीए Python Package - BIO-LGCA मॉडल सिमुलेशन लागू करने के लिए एक विवृत स्रोत पायथन पैकेज।