श्रेणी (गणित): Difference between revisions

From Vigyanwiki
(text)
(text)
Line 4: Line 4:
[[File:Category_SVG.svg|thumbकील | यह एक श्रेणी है जिसमें वस्तुओं ए, बी, सी का संग्रह होता है और एफ, जी, {{nowrap|g ∘ f}}, और लूप आइडेंटिटी एरो हैं। इस श्रेणी को आमतौर पर बोल्डफेस 3 द्वारा दर्शाया जाता है।]]
[[File:Category_SVG.svg|thumbकील | यह एक श्रेणी है जिसमें वस्तुओं ए, बी, सी का संग्रह होता है और एफ, जी, {{nowrap|g ∘ f}}, और लूप आइडेंटिटी एरो हैं। इस श्रेणी को आमतौर पर बोल्डफेस 3 द्वारा दर्शाया जाता है।]]


गणित में, श्रेणी (कभी-कभी इसे[[ ठोस श्रेणी | ठोस श्रेणी]] से अलग करने के लिए सार श्रेणी कहा जाता है) "वस्तुओं" का एक संग्रह होता है जो "एरो (तीर)" से जुड़ा होता है। श्रेणी में दो बुनियादी गुण होते हैं:  सहचारिता रूप से एरो की रचना करने की क्षमता और प्रत्येक वस्तु के लिए एक तत्समक एरो का अस्तित्व होते हैं। सरल उदाहरण [[ सेट की श्रेणी |समुच्चयों की श्रेणी]] है, जिनके वस्तु समुच्चय हैं और जिनके एरो कार्य हैं।
गणित में, श्रेणी (कभी-कभी इसे[[ ठोस श्रेणी | ठोस श्रेणी]] से अलग करने के लिए सार श्रेणी कहा जाता है) "वस्तुओं" का एक संग्रह होता है जो "एरो (तीर)" से जुड़ा होता है। श्रेणी में दो बुनियादी गुण होते हैं:  सहचारिता रूप से एरो की रचना करने की क्षमता और प्रत्येक वस्तु के लिए पहचान एरो का अस्तित्व होते हैं। सरल उदाहरण [[ सेट की श्रेणी |समुच्चयों की श्रेणी]] है, जिनके वस्तु समुच्चय हैं और जिनके एरो कार्य हैं।


''[[ श्रेणी सिद्धांत |श्रेणी सिद्धांत]]''  गणित की एक शाखा है जो सभी गणित को श्रेणियों के संदर्भ में सामान्य बनाने का प्रयास करता है, जो उनकी वस्तुओं और एरो का प्रतिनिधित्व नहीं करता है। आधुनिक गणित की लगभग हर शाखा को श्रेणियों के संदर्भ में वर्णित किया जा सकता है, और ऐसा करने से अक्सर गणित के विभिन्न क्षेत्रों के बीच गहरी अंतर्दृष्टि और समानताएं प्रकट होती हैं। जैसे, श्रेणी सिद्धांत गणित के लिए सिद्धांत और अन्य प्रस्तावित स्वयं सिद्ध नींव स्थापित करने के लिए वैकल्पिक आधार प्रदान करता है। सामान्यतः, वस्तुएं और एरो किसी भी प्रकार की अमूर्त संस्थाएं हो सकती हैं, और श्रेणी की धारणा गणितीय संस्थाओं और उनके संबंधों का वर्णन करने के लिए एक मौलिक और अमूर्त तरीका प्रदान करती है।
''[[ श्रेणी सिद्धांत |श्रेणी सिद्धांत]]''  गणित की एक शाखा है जो सभी गणित को श्रेणियों के संदर्भ में सामान्य बनाने का प्रयास करता है, जो उनकी वस्तुओं और एरो का प्रतिनिधित्व नहीं करता है। आधुनिक गणित की लगभग हर शाखा को श्रेणियों के संदर्भ में वर्णित किया जा सकता है, और ऐसा करने से अक्सर गणित के विभिन्न क्षेत्रों के बीच गहरी अंतर्दृष्टि और समानताएं प्रकट होती हैं। जैसे, श्रेणी सिद्धांत गणित के लिए सिद्धांत और अन्य प्रस्तावित स्वयं सिद्ध नींव स्थापित करने के लिए वैकल्पिक आधार प्रदान करता है। सामान्यतः, वस्तुएं और एरो किसी भी प्रकार की अमूर्त संस्थाएं हो सकती हैं, और श्रेणी की धारणा गणितीय संस्थाओं और उनके संबंधों का वर्णन करने के लिए एक मौलिक और अमूर्त तरीका प्रदान करती है।
Line 12: Line 12:
दो श्रेणियां समान हैं यदि उनके पास वस्तुओं का एक ही संग्रह है, एरो का एक ही संग्रह है, और एरो के किसी भी जोड़े को बनाने की एक ही सहयोगी विधि है। श्रेणी सिद्धांत के प्रयोजनों के लिए दो अलग-अलग श्रेणियों को [[ श्रेणियों की समानता |"समतुल्य"]] माना जा सकता है, भले ही उनकी संरचना बिल्कुल समान न हो।
दो श्रेणियां समान हैं यदि उनके पास वस्तुओं का एक ही संग्रह है, एरो का एक ही संग्रह है, और एरो के किसी भी जोड़े को बनाने की एक ही सहयोगी विधि है। श्रेणी सिद्धांत के प्रयोजनों के लिए दो अलग-अलग श्रेणियों को [[ श्रेणियों की समानता |"समतुल्य"]] माना जा सकता है, भले ही उनकी संरचना बिल्कुल समान न हो।


सुप्रसिद्ध श्रेणियों को छोटे बड़े शब्द या संक्षिप्त रूप में बोल्ड या इटैलिक में दर्शाया जाता है: उदाहरणों में समुच्चय, समुच्चय की श्रेणी और समुच्चय फलन सम्मिलित  हैं, वलय, वलय की श्रेणी और वलय समरूपता, और शीर्ष,[[ टोपोलॉजिकल स्पेस की श्रेणी |  सांस्थितिक समष्टि]] और निरंतर मानचित्रों की श्रेणी। पिछली सभी श्रेणियों में तत्समक एरो के रूप में तत्समक मानचित्र और एरो पर सहयोगी संचालन के रूप में संरचना है।
सुप्रसिद्ध श्रेणियों को छोटे बड़े शब्द या संक्षिप्त रूप में बोल्ड या इटैलिक में दर्शाया जाता है: उदाहरणों में समुच्चय, समुच्चय की श्रेणी और समुच्चय फलन, वलय, वलय की श्रेणी और वलय समरूपता, और शीर्ष,[[ टोपोलॉजिकल स्पेस की श्रेणी |  सांस्थितिक समष्टि]] और निरंतर मानचित्रों की श्रेणी सम्मिलित हैं। पिछली सभी श्रेणियों में पहचान एरो के रूप में पहचान मानचित्र और एरो पर सहयोगी संचालन के रूप में संरचना है।


श्रेणी सिद्धांत पर उत्कृष्ट और अभी भी बहुत अधिक उपयोग किया जाने वाला पाठ सॉन्डर्स मैक लेन द्वारा कार्यशील गणितज्ञ के लिए श्रेणियाँ है। अन्य संदर्भ नीचे दिए गए संदर्भों में दिए गए हैं। इस लेख की मूल परिभाषाएं इनमें से किसी भी पुस्तक के पहले कुछ अध्यायों में निहित हैं।
श्रेणी सिद्धांत पर उत्कृष्ट और अभी भी बहुत अधिक उपयोग किया जाने वाला पाठ सॉन्डर्स मैक लेन द्वारा कार्यशील गणितज्ञ के लिए श्रेणियाँ है। अन्य संदर्भ नीचे दिए गए संदर्भों में दिए गए हैं। इस लेख की मूल परिभाषाएं इनमें से किसी भी पुस्तक के पहले कुछ अध्यायों में निहित हैं।
Line 29: Line 29:
ऐसा है कि निम्नलिखित स्वयंसिद्ध धारण करते हैं:
ऐसा है कि निम्नलिखित स्वयंसिद्ध धारण करते हैं:
* (सहचारिता) यदि f : a → b, g : b → c और h : c → d तो h ∘ (g ∘ f) = (h ∘ g) ∘ f, और
* (सहचारिता) यदि f : a → b, g : b → c और h : c → d तो h ∘ (g ∘ f) = (h ∘ g) ∘ f, और
* ([[ पहचान (गणित) |तत्समक (गणित)]] ) प्रत्येक वस्तु x के लिए, आकृति मौजूद है 1<sub>''x''</sub> : ''x'' → ''x'' (कुछ लेखक ''id<sub>x</sub>'' लिखते हैं) x के लिए तत्समक आकृतिवाद कहलाता है, जैसे कि प्रत्येक आकारिकी f : a → x को संतुष्ट करता है1<sub>''x''</sub> ∘ ''f'' = ''f'', और प्रत्येक रूपवाद g : x → b, को संतुष्ट करता है ''g'' ∘ 1<sub>''x''</sub> = ''g''
* ([[ पहचान (गणित) |पहचान (गणित)]] ) प्रत्येक वस्तु x के लिए, आकृति मौजूद है 1<sub>''x''</sub> : ''x'' → ''x'' (कुछ लेखक ''id<sub>x</sub>'' लिखते हैं) x के लिए पहचान आकृतिवाद कहलाता है, जैसे कि प्रत्येक आकारिकी f : a → x को संतुष्ट करता है1<sub>''x''</sub> ∘ ''f'' = ''f'', और प्रत्येक रूपवाद g : x → b, को संतुष्ट करता है ''g'' ∘ 1<sub>''x''</sub> = ''g''


हम f: a → b लिखते हैं, और हम कहते हैं कि f, a से b तक एक आकारिकी है। हम hom(a, b) (या hom<sub>''C''</sub>(''a'', ''b'') जब भ्रम हो सकता है कि किस श्रेणी के hom(''a'', ''b'') को संदर्भित करता है) सभी रूपों के 'होम-वर्ग' को a से b तक दर्शाता है।<ref>Some authors write Mor(''a'', ''b'') or simply ''C''(''a'', ''b'') instead.</ref> इन स्वयंसिद्धों से, कोई यह साबित कर सकता है कि प्रत्येक वस्तु के लिए बिल्कुल एक तत्समक रूपवाद है। कुछ लेखक परिभाषा की थोड़ी भिन्नता का उपयोग करते हैं जिसमें प्रत्येक वस्तु को संबंधित तत्समक रूपवाद के साथ तत्समका जाता है।
हम f: a → b लिखते हैं, और हम कहते हैं कि f, a से b तक एक आकारिकी है। हम hom(a, b) (या hom<sub>''C''</sub>(''a'', ''b'') जब भ्रम हो सकता है कि किस श्रेणी के hom(''a'', ''b'') को संदर्भित करता है) सभी रूपों के 'होम-वर्ग' को a से b तक दर्शाता है।<ref>Some authors write Mor(''a'', ''b'') or simply ''C''(''a'', ''b'') instead.</ref> इन स्वयंसिद्धों से, कोई यह साबित कर सकता है कि प्रत्येक वस्तु के लिए बिल्कुल पहचान रूपवाद है। कुछ लेखक परिभाषा की थोड़ी भिन्नता का उपयोग करते हैं जिसमें प्रत्येक वस्तु को संबंधित पहचान रूपवाद के साथ पहचाना जाता है।


==छोटी और बड़ी श्रेणियां==
==छोटी और बड़ी श्रेणियां==
Line 40: Line 40:
सभी समुच्चयों का वर्ग (वस्तुओं के रूप में) उनके बीच के सभी कार्यों के साथ (आकृति के रूप में), जहां मोर्फिसंस की संरचना सामान्य कार्य संरचना है, बड़ी श्रेणी, समुच्चय बनाती है। यह गणित में सबसे बुनियादी और सबसे अधिक इस्तेमाल की जाने वाली श्रेणी है। [[ संबंधों की श्रेणी |रिले श्रेणी]] में सभी समुच्चय (वस्तुओं के रूप में) उनके बीच द्विआधारी संबंधों के साथ होते हैं (रूपों के रूप में)। कार्यों के बजाय [[ संबंध (गणित) |संबंध (गणित)]] से सार निकालने से [[ रूपक (श्रेणी सिद्धांत) |रूपक (श्रेणी सिद्धांत)]], श्रेणियों का एक विशेष वर्ग प्राप्त होता है।
सभी समुच्चयों का वर्ग (वस्तुओं के रूप में) उनके बीच के सभी कार्यों के साथ (आकृति के रूप में), जहां मोर्फिसंस की संरचना सामान्य कार्य संरचना है, बड़ी श्रेणी, समुच्चय बनाती है। यह गणित में सबसे बुनियादी और सबसे अधिक इस्तेमाल की जाने वाली श्रेणी है। [[ संबंधों की श्रेणी |रिले श्रेणी]] में सभी समुच्चय (वस्तुओं के रूप में) उनके बीच द्विआधारी संबंधों के साथ होते हैं (रूपों के रूप में)। कार्यों के बजाय [[ संबंध (गणित) |संबंध (गणित)]] से सार निकालने से [[ रूपक (श्रेणी सिद्धांत) |रूपक (श्रेणी सिद्धांत)]], श्रेणियों का एक विशेष वर्ग प्राप्त होता है।


किसी भी वर्ग को एक ऐसी श्रेणी के रूप में देखा जा सकता है जिसका केवल रूपवाद ही तत्समक रूप है। ऐसी श्रेणियों को [[ असतत श्रेणी |असतत श्रेणी]] कहा जाता है। किसी दिए गए समुच्चय I के लिए, I पर असतत श्रेणी वह छोटी श्रेणी है जिसमें I के तत्व वस्तुओं के रूप में होते हैं और केवल तत्समक आकारिकी रूपवाद के रूप में होती है। असतत श्रेणियां सबसे सरल प्रकार की श्रेणी हैं।
किसी भी वर्ग को एक ऐसी श्रेणी के रूप में देखा जा सकता है जिसका केवल रूपवाद ही पहचान रूप है। ऐसी श्रेणियों को [[ असतत श्रेणी |असतत श्रेणी]] कहा जाता है। किसी दिए गए समुच्चय I के लिए, I पर असतत श्रेणी वह छोटी श्रेणी है जिसमें I के तत्व वस्तुओं के रूप में होते हैं और केवल पहचान आकारिकी रूपवाद के रूप में होती है। असतत श्रेणियां सबसे सरल प्रकार की श्रेणी हैं।


कोई भी पूर्व-आदेशित समुच्चय (''P'', ≤) छोटी श्रेणी बनाता है, जहाँ वस्तुएँ P के सदस्य हैं, मोर्फिसंस x ≤ y होने पर x से y की ओर इशारा करते हुए एरो हैं। इसके अलावा, यदि ≤ प्रतिसममितीय है, तो किन्हीं दो वस्तुओं के बीच अधिकतम रूपवाद हो सकता है। तत्समक मॉर्फिज्म के अस्तित्व और मॉर्फिज्म की कंपोजिबिलिटी की गारंटी प्रतिक्रियात्मकता और अग्रिम आदेश की [[ सकर्मक संबंध |संक्रामिता]] द्वारा दी जाती है। उस तर्क से, किसी भी [[ आंशिक रूप से आदेशित सेट |आंशिक रूप से आदेशित समुच्चय]] और किसी भी समकक्ष संबंध को एक छोटी श्रेणी के रूप में देखा जा सकता है। [[ कुल आदेश |आदेशित समुच्चय]] के रूप में देखे जाने पर किसी भी क्रम संख्या को एक श्रेणी के रूप में देखा जा सकता है।
कोई भी पूर्व-आदेशित समुच्चय (''P'', ≤) छोटी श्रेणी बनाता है, जहाँ वस्तुएँ P के सदस्य हैं, मोर्फिसंस x ≤ y होने पर x से y की ओर इशारा करते हुए एरो हैं। इसके अलावा, यदि ≤ प्रतिसममितीय है, तो किन्हीं दो वस्तुओं के बीच अधिकतम रूपवाद हो सकता है। पहचान मॉर्फिज्म के अस्तित्व और मॉर्फिज्म की कंपोजिबिलिटी की गारंटी प्रतिक्रियात्मकता और अग्रिम आदेश की [[ सकर्मक संबंध |संक्रामिता]] द्वारा दी जाती है। उस तर्क से, किसी भी [[ आंशिक रूप से आदेशित सेट |आंशिक रूप से आदेशित समुच्चय]] और किसी भी समकक्ष संबंध को एक छोटी श्रेणी के रूप में देखा जा सकता है। [[ कुल आदेश |आदेशित समुच्चय]] के रूप में देखे जाने पर किसी भी क्रम संख्या को एक श्रेणी के रूप में देखा जा सकता है।


कोई भी मोनोइड (एकल सहयोगी द्विआधारी संक्रिया और [[ पहचान तत्व |तत्समक तत्व]] के साथ कोई बीजगणितीय संरचना) एक वस्तु x के साथ एक छोटी श्रेणी बनाती है। (यहाँ, x कोई निश्चित समुच्चय है।) x से x तक के मोर्फिसंस ठीक मोनोइड के तत्व हैं, x की तत्समक मॉर्फिज्म मोनोइड की तत्समक है, और मोर्फिसंस की श्रेणीबद्ध संरचना मोनोइड संचालन द्वारा दी गई है। मोनोइड्स के बारे में कई परिभाषाएँ और प्रमेय श्रेणियों के लिए सामान्यीकृत किए जा सकते हैं।
कोई भी मोनोइड (एकल सहयोगी द्विआधारी संक्रिया और [[ पहचान तत्व |पहचान तत्व]] के साथ कोई बीजगणितीय संरचना) एक वस्तु x के साथ एक छोटी श्रेणी बनाती है। (यहाँ, x कोई निश्चित समुच्चय है।) x से x तक के मोर्फिसंस ठीक मोनोइड के तत्व हैं, x की पहचान मॉर्फिज्म मोनोइड की पहचान है, और मोर्फिसंस की श्रेणीबद्ध संरचना मोनोइड संचालन द्वारा दी गई है। मोनोइड्स के बारे में कई परिभाषाएँ और प्रमेय श्रेणियों के लिए सामान्यीकृत किए जा सकते हैं।


इस तरह किसी भी [[ समूह (गणित) |समूह (गणित)]] को एक ऐसी श्रेणी के रूप में देखा जा सकता है जिसमें एक ही वस्तु होती है जिसमें प्रत्येक रूपवाद उलटा होता है, यानी, प्रत्येक रूपवाद के लिए एक आकृतिवाद होता है जो संरचना के तहत एफ के विपरीत बाएं और दाएं दोनों होता है। रूपवाद का उल्टा अर्थ समरूपता कहलाता है।
इस तरह किसी भी [[ समूह (गणित) |समूह (गणित)]] को एक ऐसी श्रेणी के रूप में देखा जा सकता है जिसमें एक ही वस्तु होती है जिसमें प्रत्येक रूपवाद उलटा होता है, यानी, प्रत्येक रूपवाद के लिए एक आकृतिवाद होता है जो संरचना के तहत एफ के विपरीत बाएं और दाएं दोनों होता है। रूपवाद का उल्टा अर्थ समरूपता कहलाता है।

Revision as of 12:48, 25 November 2022

यह एक श्रेणी है जिसमें वस्तुओं ए, बी, सी का संग्रह होता है और एफ, जी, g ∘ f, और लूप आइडेंटिटी एरो हैं। इस श्रेणी को आमतौर पर बोल्डफेस 3 द्वारा दर्शाया जाता है।

गणित में, श्रेणी (कभी-कभी इसे ठोस श्रेणी से अलग करने के लिए सार श्रेणी कहा जाता है) "वस्तुओं" का एक संग्रह होता है जो "एरो (तीर)" से जुड़ा होता है। श्रेणी में दो बुनियादी गुण होते हैं: सहचारिता रूप से एरो की रचना करने की क्षमता और प्रत्येक वस्तु के लिए पहचान एरो का अस्तित्व होते हैं। सरल उदाहरण समुच्चयों की श्रेणी है, जिनके वस्तु समुच्चय हैं और जिनके एरो कार्य हैं।

श्रेणी सिद्धांत गणित की एक शाखा है जो सभी गणित को श्रेणियों के संदर्भ में सामान्य बनाने का प्रयास करता है, जो उनकी वस्तुओं और एरो का प्रतिनिधित्व नहीं करता है। आधुनिक गणित की लगभग हर शाखा को श्रेणियों के संदर्भ में वर्णित किया जा सकता है, और ऐसा करने से अक्सर गणित के विभिन्न क्षेत्रों के बीच गहरी अंतर्दृष्टि और समानताएं प्रकट होती हैं। जैसे, श्रेणी सिद्धांत गणित के लिए सिद्धांत और अन्य प्रस्तावित स्वयं सिद्ध नींव स्थापित करने के लिए वैकल्पिक आधार प्रदान करता है। सामान्यतः, वस्तुएं और एरो किसी भी प्रकार की अमूर्त संस्थाएं हो सकती हैं, और श्रेणी की धारणा गणितीय संस्थाओं और उनके संबंधों का वर्णन करने के लिए एक मौलिक और अमूर्त तरीका प्रदान करती है।

गणित को औपचारिक बनाने के अलावा, संगणक विज्ञान में कई अन्य प्रणालियों को औपचारिक रूप देने के लिए श्रेणी सिद्धांत का भी उपयोग किया जाता है, जैसे प्रोग्रामिंग भाषाओं के शब्दार्थ

दो श्रेणियां समान हैं यदि उनके पास वस्तुओं का एक ही संग्रह है, एरो का एक ही संग्रह है, और एरो के किसी भी जोड़े को बनाने की एक ही सहयोगी विधि है। श्रेणी सिद्धांत के प्रयोजनों के लिए दो अलग-अलग श्रेणियों को "समतुल्य" माना जा सकता है, भले ही उनकी संरचना बिल्कुल समान न हो।

सुप्रसिद्ध श्रेणियों को छोटे बड़े शब्द या संक्षिप्त रूप में बोल्ड या इटैलिक में दर्शाया जाता है: उदाहरणों में समुच्चय, समुच्चय की श्रेणी और समुच्चय फलन, वलय, वलय की श्रेणी और वलय समरूपता, और शीर्ष, सांस्थितिक समष्टि और निरंतर मानचित्रों की श्रेणी सम्मिलित हैं। पिछली सभी श्रेणियों में पहचान एरो के रूप में पहचान मानचित्र और एरो पर सहयोगी संचालन के रूप में संरचना है।

श्रेणी सिद्धांत पर उत्कृष्ट और अभी भी बहुत अधिक उपयोग किया जाने वाला पाठ सॉन्डर्स मैक लेन द्वारा कार्यशील गणितज्ञ के लिए श्रेणियाँ है। अन्य संदर्भ नीचे दिए गए संदर्भों में दिए गए हैं। इस लेख की मूल परिभाषाएं इनमें से किसी भी पुस्तक के पहले कुछ अध्यायों में निहित हैं।

Group-like structures
Totalityα Associativity Identity Inverse Commutativity
Semigroupoid Unneeded Required Unneeded Unneeded Unneeded
Small category Unneeded Required Required Unneeded Unneeded
Groupoid Unneeded Required Required Required Unneeded
Magma Required Unneeded Unneeded Unneeded Unneeded
Quasigroup Required Unneeded Unneeded Required Unneeded
Unital magma Required Unneeded Required Unneeded Unneeded
Semigroup Required Required Unneeded Unneeded Unneeded
Loop Required Unneeded Required Required Unneeded
Monoid Required Required Required Unneeded Unneeded
Group Required Required Required Required Unneeded
Commutative monoid Required Required Required Unneeded Required
Abelian group Required Required Required Required Required
The closure axiom, used by many sources and defined differently, is equivalent.

किसी भी मोनॉयड को एक विशेष प्रकार की श्रेणी के रूप में समझा जा सकता है (एक एकल वस्तु के साथ जिसका स्व-रूपवाद मोनॉयड के तत्वों द्वारा दर्शाया जाता है), और इसलिए कोई भी अग्रिम आदेश कर सकता है।

परिभाषा

श्रेणी की कई समान परिभाषाएँ हैं।[1] सामान्यतः इस्तेमाल की जाने वाली परिभाषा इस प्रकार है। श्रेणी 'C' के होते हैं

  • गणितीय वस्तुओं का वर्ग (समुच्चय सिद्धांत) Ob(C),
  • मोर्फिसंस (आकारिकी), या एरो, या वस्तुओं के बीच नक्शे का वर्ग hom(C),
  • प्रांत, या स्रोत वस्तु वर्ग फलन ,
  • कोडोमैन, या लक्ष्य वस्तु वर्ग फलन ,
  • हर तीन वस्तुओं a, b और c के लिए, द्विआधारी संक्रिया hom(a,b) × hom(b, c) → hom(a, c) को आकारिकी की रचना कहा जाता है, f : a → b और g : b → c का संघटन g ∘ f या gf के रूप में लिखा जाता है। (कुछ लेखक आरेखीय क्रम का उपयोग करते हैं f;g or fg लिखते हैं)।

नोट: यहाँ hom(a, b) hom(c) में मोर्फिसंस f के उपवर्ग को दर्शाता है जैसे कि तथा . इस तरह के आकारिकी को अक्सर f : a → b के रूप में लिखा जाता है।

ऐसा है कि निम्नलिखित स्वयंसिद्ध धारण करते हैं:

  • (सहचारिता) यदि f : a → b, g : b → c और h : c → d तो h ∘ (g ∘ f) = (h ∘ g) ∘ f, और
  • (पहचान (गणित) ) प्रत्येक वस्तु x के लिए, आकृति मौजूद है 1x : xx (कुछ लेखक idx लिखते हैं) x के लिए पहचान आकृतिवाद कहलाता है, जैसे कि प्रत्येक आकारिकी f : a → x को संतुष्ट करता है1xf = f, और प्रत्येक रूपवाद g : x → b, को संतुष्ट करता है g ∘ 1x = g

हम f: a → b लिखते हैं, और हम कहते हैं कि f, a से b तक एक आकारिकी है। हम hom(a, b) (या homC(a, b) जब भ्रम हो सकता है कि किस श्रेणी के hom(a, b) को संदर्भित करता है) सभी रूपों के 'होम-वर्ग' को a से b तक दर्शाता है।[2] इन स्वयंसिद्धों से, कोई यह साबित कर सकता है कि प्रत्येक वस्तु के लिए बिल्कुल पहचान रूपवाद है। कुछ लेखक परिभाषा की थोड़ी भिन्नता का उपयोग करते हैं जिसमें प्रत्येक वस्तु को संबंधित पहचान रूपवाद के साथ पहचाना जाता है।

छोटी और बड़ी श्रेणियां

श्रेणी C को छोटा कहा जाता है यदि दोनों ob(C) और hom(C) वास्तव में समुच्चय हैं और उचित वर्ग नहीं हैं, और अन्यथा बड़े हैं। स्थानीय रूप से छोटी श्रेणी एक ऐसी श्रेणी है, जिसमें सभी वस्तुओं a और b के लिए, hom-वर्ग hom(a, b) समुच्चय है, जिसे होमसेट कहा जाता है। गणित में कई महत्वपूर्ण श्रेणियां (जैसे समुच्चय की श्रेणी), हालांकि छोटी नहीं हैं, कम से कम स्थानीय रूप से छोटी हैं। चूंकि, छोटी श्रेणियों में, वस्तुएं एक समुच्चय बनाती हैं, एक छोटी श्रेणी को एक मोनोइड के समान बीजगणितीय संरचना के रूप में देखा जा सकता है, लेकिन क्लोजर (गणित) गुणों की आवश्यकता के बिना। दूसरी ओर बड़ी श्रेणियों का उपयोग बीजीय संरचनाओं की "संरचनाएं" बनाने के लिए किया जा सकता है।

उदाहरण

सभी समुच्चयों का वर्ग (वस्तुओं के रूप में) उनके बीच के सभी कार्यों के साथ (आकृति के रूप में), जहां मोर्फिसंस की संरचना सामान्य कार्य संरचना है, बड़ी श्रेणी, समुच्चय बनाती है। यह गणित में सबसे बुनियादी और सबसे अधिक इस्तेमाल की जाने वाली श्रेणी है। रिले श्रेणी में सभी समुच्चय (वस्तुओं के रूप में) उनके बीच द्विआधारी संबंधों के साथ होते हैं (रूपों के रूप में)। कार्यों के बजाय संबंध (गणित) से सार निकालने से रूपक (श्रेणी सिद्धांत), श्रेणियों का एक विशेष वर्ग प्राप्त होता है।

किसी भी वर्ग को एक ऐसी श्रेणी के रूप में देखा जा सकता है जिसका केवल रूपवाद ही पहचान रूप है। ऐसी श्रेणियों को असतत श्रेणी कहा जाता है। किसी दिए गए समुच्चय I के लिए, I पर असतत श्रेणी वह छोटी श्रेणी है जिसमें I के तत्व वस्तुओं के रूप में होते हैं और केवल पहचान आकारिकी रूपवाद के रूप में होती है। असतत श्रेणियां सबसे सरल प्रकार की श्रेणी हैं।

कोई भी पूर्व-आदेशित समुच्चय (P, ≤) छोटी श्रेणी बनाता है, जहाँ वस्तुएँ P के सदस्य हैं, मोर्फिसंस x ≤ y होने पर x से y की ओर इशारा करते हुए एरो हैं। इसके अलावा, यदि ≤ प्रतिसममितीय है, तो किन्हीं दो वस्तुओं के बीच अधिकतम रूपवाद हो सकता है। पहचान मॉर्फिज्म के अस्तित्व और मॉर्फिज्म की कंपोजिबिलिटी की गारंटी प्रतिक्रियात्मकता और अग्रिम आदेश की संक्रामिता द्वारा दी जाती है। उस तर्क से, किसी भी आंशिक रूप से आदेशित समुच्चय और किसी भी समकक्ष संबंध को एक छोटी श्रेणी के रूप में देखा जा सकता है। आदेशित समुच्चय के रूप में देखे जाने पर किसी भी क्रम संख्या को एक श्रेणी के रूप में देखा जा सकता है।

कोई भी मोनोइड (एकल सहयोगी द्विआधारी संक्रिया और पहचान तत्व के साथ कोई बीजगणितीय संरचना) एक वस्तु x के साथ एक छोटी श्रेणी बनाती है। (यहाँ, x कोई निश्चित समुच्चय है।) x से x तक के मोर्फिसंस ठीक मोनोइड के तत्व हैं, x की पहचान मॉर्फिज्म मोनोइड की पहचान है, और मोर्फिसंस की श्रेणीबद्ध संरचना मोनोइड संचालन द्वारा दी गई है। मोनोइड्स के बारे में कई परिभाषाएँ और प्रमेय श्रेणियों के लिए सामान्यीकृत किए जा सकते हैं।

इस तरह किसी भी समूह (गणित) को एक ऐसी श्रेणी के रूप में देखा जा सकता है जिसमें एक ही वस्तु होती है जिसमें प्रत्येक रूपवाद उलटा होता है, यानी, प्रत्येक रूपवाद के लिए एक आकृतिवाद होता है जो संरचना के तहत एफ के विपरीत बाएं और दाएं दोनों होता है। रूपवाद का उल्टा अर्थ समरूपता कहलाता है।

ग्रुपॉइड एक श्रेणी है जिसमें प्रत्येक रूपवाद एक समरूपता है। ग्रुपॉइड समूहों, समूह क्रिया (गणित) और तुल्यता संबंधों के सामान्यीकरण हैं। दरअसल, श्रेणी की दृष्टि से ग्रुपॉइड और ग्रुप के बीच एकमात्र अंतर यह है कि ग्रुपॉइड में एक से अधिक वस्तु हो सकते हैं लेकिन ग्रुप में केवल एक ही होना चाहिए। सांस्थितिक समष्टि X पर विचार करें और X के आधार बिंदु को ठीक करें, फिर सांस्थितिक समष्टि X और आधार बिंदु , का मूलभूत समूह है, और एक समुच्चय के रूप में इसमें समूह की संरचना होती है, यदि फिर आधार बिंदु को X के सभी बिंदुओं पर चलने दें, और सभी का मिलन करें ,तो हमें जो समुच्चय मिलता है उसमें केवल ग्रुपॉइड की संरचना होती है (जिसे X का मौलिक समूह कहा जाता है): दो प्रस्पंद (समरूपता के तुल्यता संबंध के तहत) हो सकता है कि उनका आधार बिंदु समान न हो इसलिए वे एक दूसरे से गुणा नहीं कर सकते। श्रेणी की भाषा में, इसका मतलब है कि यहां दो आकारिकी में एक ही स्रोत वस्तु (या लक्ष्य वस्तु नहीं हो सकती है, क्योंकि इस मामले में किसी भी रूपवाद के लिए स्रोत वस्तु और लक्ष्य वस्तु समान हैं: आधार बिंदु) इसलिए वे एक दूसरे के साथ रचना नहीं कर सकते।

निर्देशित ग्राफ।

कोई भी निर्देशित ग्राफ जनरेटिंग समुच्चय छोटी श्रेणी समुच्चय करता है: वस्तु ग्राफ़ (लेखाचित्र) के शिराबिन्दु (ग्राफ़ सिद्धांत) हैं, और मोर्फिसंस ग्राफ़ में पथ हैं ( प्रस्पंद (ग्राफ़ सिद्धांत) के साथ संवर्धित) जहाँ मोर्फिसंस संरचना पथों का संयोजन है। ऐसी श्रेणी को ग्राफ द्वारा उत्पन्न मुक्त श्रेणी कहा जाता है।

मॉर्फिज्म के रूप में एकदिष्ट फलन वाले सभी अग्रिम आदेश किए गए समुच्चयों का वर्ग एक श्रेणी, ऑर्ड बनाता है। यह एक ठोस श्रेणी है, यानी समुच्चय पर किसी प्रकार की संरचना जोड़कर प्राप्त की गई श्रेणी, और यह आवश्यक है कि मोर्फिसंस ऐसे कार्य हैं जो इस अतिरिक्त संरचना का सम्मान करते हैं।

समूह समरूपता के साथ सभी समूहों का वर्ग आकारिकी के रूप में और संरचना संचालन के रूप में कार्य संरचना एक बड़ी श्रेणी 'बनाती है, जीआरपी। ऑर्ड की तरह, जीआरपी एक ठोस श्रेणी है। श्रेणीएबी, जिसमें सभी एबेलियन समूह और उनके समूह समरूपता सम्मिलित हैं, जीआरपी की एक पूर्ण उपश्रेणी है, और एक एबेलियन श्रेणी का प्रतिमान है। ठोस श्रेणियों के अन्य उदाहरण निम्न तालिका द्वारा दिए गए हैं।

श्रेणी वस्तुएँ मोर्फिसंस
जीआरपी समूह समूह समरूपता
Mag मैग्मा मैग्मा समरूपता
Manp सहज मैनिफोल्ड्स P-बार लगातार अलग-अलग नक्शे
Met मीट्रिक समष्टि लघु मानचित्र
R-Mod R-मॉड्यूल, जहाँ R एक वलय है R-मॉड्यूल समरूपता
Mon मोनोइड मोनोइड समरूपता
Ring वलय वलय समरूपता
Set समुच्चय फलन
Top सांस्थितिक समष्टि सतत फलन
Uni एकसमान समष्टि एकसमान सांतत्य
VectK K . क्षेत्र के ऊपर सदिश स्थान K-रैखिक मानचित्र

उनके बीच बंडल नक्शा वाले फाइबर बंडल एक ठोस श्रेणी बनाते हैं।

छोटी श्रेणियों की श्रेणी श्रेणी में सभी छोटी श्रेणियां होती हैं, उनके बीच के प्रकार्यक मॉर्फिज्म के रूप में होते हैं।

नई श्रेणियों का निर्माण

दोहरी श्रेणी

किसी भी श्रेणी C को एक अलग तरीके से एक नई श्रेणी के रूप में माना जा सकता है: वस्तुएं मूल श्रेणी में समान हैं लेकिन एरो मूल श्रेणी के विपरीत हैं। इसे विपरीत श्रेणी कहा जाता है और इसे Cop से निरूपित किया जाता है।

उत्पाद श्रेणियां

यदि C और D श्रेणियां हैं, तो कोई उत्पाद श्रेणी C × D बना सकता है: वस्तु जोड़े हैं जिसमें C से एक वस्तु और D से एक वस्तु सम्मिलित है, और मोर्फिज्म भी जोड़े हैं, जिसमें C में एक मोर्फिज्म और D में एक सम्मिलित है। ऐसी जोड़ियों की रचना एन टुपल की जा सकती है।

आकारिकी के प्रकार

एक आकारिकी f : a → b कहलाती है

  • एकरूपता (या मोनिक) अगर यह वाम-रद्द करने योग्य है, यानी fg1 = fg2मतलब g1 = g2सभी रूपों के लिए g1, g2 : xa
  • अधिरूपता (या महाकाव्य) अगर यह सही-रद्द करने योग्य है, यानी g1f = g2f का अर्थ है g1 = g2सभी रूपों के लिए g1, g2 : bx
  • द्विरूपता यदि यह एक एकरूपता और अधिरूपता दोनों है।
  • प्रतिगमन (श्रेणी सिद्धांत) यदि इसका एक सही उलटा है, अर्थात यदि कोई रूपवाद मौजूद है g : b → a fg = 1b के साथ.
  • खंड (श्रेणी सिद्धांत) यदि इसमें एक वाम प्रतिलोम है, अर्थात यदि कोई रूपवाद मौजूद है g : b → a gf = 1a के साथ.
  • समरूपता यदि इसका व्युत्क्रम है, अर्थात यदि कोई रूपवाद मौजूद है g : b → a fg = 1bऔर gf = 1a के साथ.
  • अंतःरूपता अगर a = b। a के अंतःरूपता के वर्ग को निरूपित end(a) है।
  • स्वसमाकृतिकता अगर f अंतःरूपता और समरूपता दोनों है। a के स्वसमाकृतिकता के वर्ग को aut(a) निरूपित किया जाता है।

प्रत्येक प्रत्यावर्तन अधिरूपता है। प्रत्येक खंड एकरूपता है। निम्नलिखित तीन बयान समकक्ष हैं:

  • f एकरूपता और एक प्रत्यावर्तन है,
  • एफ एक अधिरूपता और एक खंड है,
  • f एक तुल्याकारिता है।

मोर्फिसंस (जैसे fg = h) के बीच संबंधों को सबसे आसानी से क्रमविनिमेय आरेख के साथ प्रदर्शित किया जा सकता है, जहाँ वस्तुओं को बिंदुओं के रूप में और मोर्फिसंस को एरो के रूप में दर्शाया जाता है।

श्रेणियों के प्रकार

  • कई श्रेणियों में, उदाहरण एबेलियन समूहों की श्रेणी Ab या VectK, होमसेट hom(a, b) केवल समुच्चय नहीं हैं बल्कि वास्तव में एबेलियन समूह हैं, और मॉर्फिज्म की संरचना इन समूह संरचनाओं के साथ संगत है, यानी द्विरेखीय रूप है। ऐसी श्रेणी को पूर्वगामी श्रेणी कहा जाता है। यदि, इसके अलावा, श्रेणी में सभी परिमित उत्पाद (श्रेणी सिद्धांत) और सह-उत्पाद हैं, तो इसे योगात्मक श्रेणी कहा जाता है। यदि सभी मोर्फिसंस में कर्नेल (श्रेणी सिद्धांत) और ककरनेल होता है, और सभी अधिरूपता ककरनेल होते हैं और सभी एकरूपता कर्नेल होते हैं, तो हम अबेलियन श्रेणी की बात करते हैं। एबेलियन श्रेणी का एक विशिष्ट उदाहरण एबेलियन समूहों की श्रेणी है।
  • श्रेणी पूर्ण कहलाती है यदि उसमें सभी छोटी सीमाएँ (श्रेणी सिद्धांत) मौजूद हों। समुच्चय, एबेलियन समूह और सांस्थितिक समष्टि की श्रेणियां पूरी हो गई हैं।
  • श्रेणी को कार्तीय बंद श्रेणी कहा जाता है यदि उसके पास परिमित प्रत्यक्ष उत्पाद हैं और परिमित उत्पाद पर परिभाषित एक रूपवाद को हमेशा कारकों में से एक पर परिभाषित एक रूपवाद द्वारा दर्शाया जा सकता है। उदाहरणों में सम्मिलित हैं 'समुच्चय की श्रेणी' और 'सीपीओ', स्कॉट निरंतरता स्कॉट-निरंतर कार्यों के साथ पूर्ण आंशिक आदेशों की श्रेणी।
  • टोपोस एक निश्चित प्रकार की कार्टेशियन बंद श्रेणी है जिसमें सभी गणित तैयार किए जा सकते हैं (जैसे शास्त्रीय रूप से सभी गणित समुच्चय की श्रेणी में तैयार किए जाते हैं)। एक तार्किक सिद्धांत का प्रतिनिधित्व करने के लिए एक टोपोस का भी उपयोग किया जा सकता है।

यह भी देखें

टिप्पणियाँ

  1. Barr & Wells 2005, Chapter 1
  2. Some authors write Mor(a, b) or simply C(a, b) instead.


संदर्भ

  • Adámek, Jiří; Herrlich, Horst; Strecker, George E. (1990), Abstract and Concrete Categories (PDF), Wiley, ISBN 0-471-60922-6 (now free on-line edition, GNU FDL).
  • Asperti, Andrea; Longo, Giuseppe (1991), Categories, Types and Structures, MIT Press, ISBN 0-262-01125-5.
  • Awodey, Steve (2006), Category theory, Oxford logic guides, vol. 49, Oxford University Press, ISBN 978-0-19-856861-2.
  • Barr, Michael; Wells, Charles (2005), Toposes, Triples and Theories, Reprints in Theory and Applications of Categories, vol. 12 (revised ed.), MR 2178101.
  • Borceux, Francis (1994), "Handbook of Categorical Algebra", Encyclopedia of Mathematics and its Applications, vol. 50–52, Cambridge: Cambridge University Press, ISBN 0-521-06119-9.
  • "Category", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Herrlich, Horst; Strecker, George E. (2007), Category Theory, Heldermann Verlag, ISBN 978-3-88538-001-6.
  • Jacobson, Nathan (2009), Basic algebra (2nd ed.), Dover, ISBN 978-0-486-47187-7.
  • Lawvere, William; Schanuel, Steve (1997), Conceptual Mathematics: A First Introduction to Categories, Cambridge University Press, ISBN 0-521-47249-0.
  • Mac Lane, Saunders (1998), Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5 (2nd ed.), Springer-Verlag, ISBN 0-387-98403-8.
  • Marquis, Jean-Pierre (2006), "Category Theory", in Zalta, Edward N. (ed.), Stanford Encyclopedia of Philosophy.
  • Sica, Giandomenico (2006), What is category theory?, Advanced studies in mathematics and logic, vol. 3, Polimetrica, ISBN 978-88-7699-031-1.
  • category at the nLab