सजातीय विविधता: Difference between revisions

From Vigyanwiki
Line 84: Line 84:


==एफ़ाइन  विविधताओं के उत्पाद==
==एफ़ाइन  विविधताओं के उत्पाद==
एफ़ाइन विविधताओं के उत्पाद को समरूपता {{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;{{=}}&nbsp;'''A'''<sup>''n''+''m''</sup>}} का उपयोग करके परिभाषित किया जा सकता है, फिर उत्पाद को इस आधुनिक एफ़ाइन स्थान में एम्बेड किया जा सकता है। मान लीजिए {{math|'''A'''<sup>''n''</sup>}} और {{math|'''A'''<sup>''m''</sup>}}  के निर्देशांक वलय  {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}} और {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} हैं, जिससे कि उनके गुणनफल  {{math|'''A'''<sup>''n''+''m''</sup>}} में निर्देशांक वलय है {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>,&nbsp;''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}}. मान लीजिए {{math|''V''&nbsp;{{=}}&nbsp;''V''(&nbsp;''f''<sub>1</sub>,...,&nbsp;''f''<sub>''N''</sub>)}} {{math|'''A'''<sup>''n''</sup>}}का  बीजगणितीय उपसमुच्चय हो  और {{math|''W''&nbsp;{{=}}&nbsp;''V''(&nbsp;''g''<sub>1</sub>,...,&nbsp;''g''<sub>''M''</sub>)}}{{math|'''A'''<sup>''m''</sup>}} का  बीजगणितीय उपसमुच्चय है। फिर प्रत्येक {{math|''f''<sub>''i''</sub>}}  {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}} में  बहुपद है,और प्रत्येक {{math|''g''<sub>''j''</sub>}}  {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} में है। {{mvar|''V''}} और {{mvar|''W''}} के गुणनफल को {{math|'''A'''<sup>''n''+''m''</sup>}} में बीजीय समुच्चय {{math|''V''&nbsp;×&nbsp;''W''&nbsp;{{=}}&nbsp;''V''(&nbsp;''f''<sub>1</sub>,...,&nbsp;''f''<sub>''N''</sub>,&nbsp;''g''<sub>1</sub>,...,&nbsp;''g''<sub>''M''</sub>)}} के रूप में परिभाषित किया गया है। उत्पाद अलघुकरणीय है यदि प्रत्येक {{mvar|''V''}}, {{mvar|''W''}} अलघुकरणीय है।<ref>This is because, over an algebraically closed field, the tensor product of integral domains is an integral domain; see [[integral domain#Properties]].</ref>
एफ़ाइन विविधताओं के उत्पाद को समरूपता {{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;{{=}}&nbsp;'''A'''<sup>''n''+''m''</sup>}} का उपयोग करके परिभाषित किया जा सकता है, फिर उत्पाद को इस आधुनिक एफ़ाइन स्थान में एम्बेड किया जा सकता है। मान लीजिए {{math|'''A'''<sup>''n''</sup>}} और {{math|'''A'''<sup>''m''</sup>}}  के निर्देशांक वलय  {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}} और {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} हैं, जिससे कि उनके गुणनफल  {{math|'''A'''<sup>''n''+''m''</sup>}} में निर्देशांक वलय है {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>,&nbsp;''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}}. मान लीजिए {{math|''V''&nbsp;{{=}}&nbsp;''V''(&nbsp;''f''<sub>1</sub>,...,&nbsp;''f''<sub>''N''</sub>)}} {{math|'''A'''<sup>''n''</sup>}}का  बीजगणितीय उपसमुच्चय हो  और {{math|''W''&nbsp;{{=}}&nbsp;''V''(&nbsp;''g''<sub>1</sub>,...,&nbsp;''g''<sub>''M''</sub>)}}{{math|'''A'''<sup>''m''</sup>}} का  बीजगणितीय उपसमुच्चय है। फिर प्रत्येक {{math|''f''<sub>''i''</sub>}}  {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}} में  बहुपद है,और प्रत्येक {{math|''g''<sub>''j''</sub>}}  {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} में है। {{mvar|''V''}} और {{mvar|''W''}} के गुणनफल को {{math|'''A'''<sup>''n''+''m''</sup>}} में बीजीय समुच्चय {{math|''V''&nbsp;×&nbsp;''W''&nbsp;{{=}}&nbsp;''V''(&nbsp;''f''<sub>1</sub>,...,&nbsp;''f''<sub>''N''</sub>,&nbsp;''g''<sub>1</sub>,...,&nbsp;''g''<sub>''M''</sub>)}} के रूप में परिभाषित किया गया है। उत्पाद अलघुकरणीय है यदि प्रत्येक {{mvar|''V''}}, {{mvar|''W''}} अलघुकरणीय है।<ref>This is because, over an algebraically closed field, the tensor product of integral domains is an integral domain; see [[integral domain#Properties]].</ref>


जरिस्की टोपोलॉजी ऑन {{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;}} जरिस्की टोपोलॉजी दो स्थानों पर ज़ारिस्की टोपोलॉजी का [[उत्पाद टोपोलॉजी]] नहीं है। यथार्थतः, उत्पाद टोपोलॉजी मूल खुले सेट के उत्पादों द्वारा उत्पन्न होती है {{math|''U''<sub>''f''</sub>&nbsp;{{=}}&nbsp;'''A'''<sup>''n''</sup>&nbsp;−&nbsp;''V''(&nbsp;''f''&nbsp;)}} और {{math|''T''<sub>''g''</sub>&nbsp;{{=}}&nbsp;'''A'''<sup>''m''</sup>&nbsp;−&nbsp;''V''(&nbsp;''g''&nbsp;).}} इसलिए, बहुपद जो अंदर हैं {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>,&nbsp;''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} लेकिन बहुपद के उत्पाद के रूप में प्राप्त नहीं किया जा सकता है {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}} में बहुपद के साथ {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} उन बीजगणितीय सेटों को परिभाषित करेगा जो ज़रिस्की टोपोलॉजी में हैं {{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;,}} लेकिन उत्पाद टोपोलॉजी में नहीं।
{{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;}}पर जरिस्की टोपोलॉजी दो स्थानों पर ज़ारिस्की टोपोलॉजी का [[उत्पाद टोपोलॉजी]] नहीं है। यथार्थतः, उत्पाद टोपोलॉजी मूल खुले सेट के उत्पादों द्वारा उत्पन्न होती है {{math|''U''<sub>''f''</sub>&nbsp;{{=}}&nbsp;'''A'''<sup>''n''</sup>&nbsp;−&nbsp;''V''(&nbsp;''f''&nbsp;)}} और {{math|''T''<sub>''g''</sub>&nbsp;{{=}}&nbsp;'''A'''<sup>''m''</sup>&nbsp;−&nbsp;''V''(&nbsp;''g''&nbsp;)}} इसलिए, बहुपद जो {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>,&nbsp;''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} में हैं लेकिन {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}} में बहुपद के उत्पाद के रूप में प्राप्त नहीं किया जा सकता है जिसमें बहुपद के साथ {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} उन बीजगणितीय सेटों को परिभाषित करेगा जो ज़रिस्की टोपोलॉजी में {{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;}}हैं लेकिन उत्पाद टोपोलॉजी में नहीं हैं।


== सजातीय  विविधताओं की रूपात्मकता ==
== सजातीय  विविधताओं की रूपात्मकता ==
Line 93: Line 93:
एफ़िन विविधताओं का  रूपवाद, या नियमित मानचित्र, एफ़िन  विविधताओं के बीच  कार्य है जो प्रत्येक समन्वय में बहुपद है: अधिक सटीक रूप से, एफ़िन  विविधताओं के लिए {{math|''V'' ⊆ ''k''<sup>''n''</sup>}} और {{math|''W'' ⊆ ''k''<sup>''m''</sup>}},  रूपवाद से {{math| ''V''}} को {{math| ''W''}}  नक्शा है {{math | ''φ'' : ''V'' → ''W''}} फॉर्म का {{math | ''φ''(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>) {{=}} (''f''<sub>1</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>), ..., ''f''<sub>''m''</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)),}} कहाँ {{math | ''f''<sub>''i''</sub> ∈ ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>]}} प्रत्येक के लिए {{math | ''i'' {{=}} 1, ..., ''m''.}} ये एफ़ाइन  विविधताओं की [[श्रेणी (गणित)]] में आकारिकी हैं।
एफ़िन विविधताओं का  रूपवाद, या नियमित मानचित्र, एफ़िन  विविधताओं के बीच  कार्य है जो प्रत्येक समन्वय में बहुपद है: अधिक सटीक रूप से, एफ़िन  विविधताओं के लिए {{math|''V'' ⊆ ''k''<sup>''n''</sup>}} और {{math|''W'' ⊆ ''k''<sup>''m''</sup>}},  रूपवाद से {{math| ''V''}} को {{math| ''W''}}  नक्शा है {{math | ''φ'' : ''V'' → ''W''}} फॉर्म का {{math | ''φ''(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>) {{=}} (''f''<sub>1</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>), ..., ''f''<sub>''m''</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)),}} कहाँ {{math | ''f''<sub>''i''</sub> ∈ ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>]}} प्रत्येक के लिए {{math | ''i'' {{=}} 1, ..., ''m''.}} ये एफ़ाइन  विविधताओं की [[श्रेणी (गणित)]] में आकारिकी हैं।


बीजगणितीय रूप से बंद क्षेत्र पर एफ़ाइन  विविधताओं के आकारिकी के बीच -से- पत्राचार होता है {{math|''k'',}} औरएफ़ाइन  विविधताओं के समन्वय के छल्ले के समरूपता {{math|''k''}} विपरीत दिशा में जा रहा है। इस वजह से, इस तथ्य के साथ कि वहाँएफ़ाइन  विविधताओं के बीच -से- पत्राचार है {{math|''k''}} और उनके निर्देशांक के छल्ले,एफ़ाइन  विविधताओं की श्रेणी {{math|''k''}}एफ़ाइन  विविधताओं के समन्वय के छल्ले की श्रेणी के लिए [[दोहरी (श्रेणी सिद्धांत)]] है {{math|''k''.}}एफ़ाइन  विविधताओं के समन्वय के छल्ले की श्रेणी {{math|''k''}} ठीक-ठीक जनित, निलपोटेंट-मुक्त बीजगणित की श्रेणी है {{math|''k''.}}
बीजगणितीय रूप से बंद क्षेत्र पर एफ़ाइन  विविधताओं के आकारिकी के बीच -से- पत्राचार होता है {{math|''k'',}} औरएफ़ाइन  विविधताओं के समन्वय के छल्ले के समरूपता {{math|''k''}} विपरीत दिशा में जा रहा है। इस वजह से, इस तथ्य के साथ कि वहाँएफ़ाइन  विविधताओं के बीच -से- पत्राचार है {{math|''k''}} और उनके निर्देशांक के छल्ले,एफ़ाइन  विविधताओं की श्रेणी {{math|''k''}} एफ़ाइन  विविधताओं के समन्वय के छल्ले की श्रेणी के लिए [[दोहरी (श्रेणी सिद्धांत)]] है {{math|''k''.}}एफ़ाइन  विविधताओं के समन्वय के छल्ले की श्रेणी {{math|''k''}} ठीक-ठीक जनित, निलपोटेंट-मुक्त बीजगणित की श्रेणी है {{math|''k''.}}


अधिक सटीक, प्रत्येक रूपवाद के लिए {{math | ''φ'' : ''V'' → ''W''}}एफ़ाइन  विविधताओं में,  समरूपता है {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} निर्देशांक वलयों के बीच (विपरीत दिशा में जा रहा है), और इस प्रकारके प्रत्येक समरूपता के लिए, समन्वय वलयों से जुड़ी  विविधताओं का  रूपवाद है। इसे स्पष्ट रूप से दिखाया जा सकता है: let {{math|''V'' ⊆ ''k''<sup>''n''</sup>}} और {{math|''W'' ⊆ ''k''<sup>''m''</sup>}} कोआर्डिनेट रिंगएक्सके साथ एफिन  विविधता ें बनें {{math| ''k''[''V''] {{=}} ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>] / ''I''}} और {{math| ''k''[''W''] {{=}} ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J''}} क्रमश। मान लीजिए {{math | ''φ'' : ''V'' → ''W''}} रूपवाद हो। दरअसल, बहुपद के छल्ले के बीच  समरूपता {{math | ''θ'' : ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J'' → ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>] / ''I''}} अंगूठी के माध्यम से अद्वितीय कारक {{math | ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>],}} और  समरूपता {{math | ''ψ'' : ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J'' → ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>]}} की छवियों द्वारा विशिष्ट रूप से निर्धारित किया जाता है {{math | ''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>.}} इसलिए, प्रत्येक समरूपता {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} प्रत्येक के लिए विशिष्ट रूप से छवि के विकल्प से मेल खाता है {{math | ''Y''<sub>''i''</sub>}}. फिर कोई रूपवाद दिया {{math | ''φ'' {{=}} (''f''<sub>1</sub>, ..., ''f''<sub>''m''</sub>)}} से {{math | ''V''}} को {{math | ''W'',}}  समरूपता का निर्माण किया जा सकता है {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} जो भेजता है {{math | ''Y''<sub>''i''</sub>}} को <math>\overline{f_i},</math> कहाँ <math>\overline{f_i}</math> का तुल्यता वर्ग है {{math | ''f''<sub>''i''</sub>}} में {{math | ''k''[''V''].}}
अधिक सटीक, प्रत्येक रूपवाद के लिए {{math | ''φ'' : ''V'' → ''W''}}एफ़ाइन  विविधताओं में,  समरूपता है {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} निर्देशांक वलयों के बीच (विपरीत दिशा में जा रहा है), और इस प्रकारके प्रत्येक समरूपता के लिए, समन्वय वलयों से जुड़ी  विविधताओं का  रूपवाद है। इसे स्पष्ट रूप से दिखाया जा सकता है: let {{math|''V'' ⊆ ''k''<sup>''n''</sup>}} और {{math|''W'' ⊆ ''k''<sup>''m''</sup>}} कोआर्डिनेट रिंगएक्सके साथ एफिन  विविधता ें बनें {{math| ''k''[''V''] {{=}} ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>] / ''I''}} और {{math| ''k''[''W''] {{=}} ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J''}} क्रमश। मान लीजिए {{math | ''φ'' : ''V'' → ''W''}} रूपवाद हो। दरअसल, बहुपद के छल्ले के बीच  समरूपता {{math | ''θ'' : ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J'' → ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>] / ''I''}} अंगूठी के माध्यम से अद्वितीय कारक {{math | ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>],}} और  समरूपता {{math | ''ψ'' : ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J'' → ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>]}} की छवियों द्वारा विशिष्ट रूप से निर्धारित किया जाता है {{math | ''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>.}} इसलिए, प्रत्येक समरूपता {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} प्रत्येक के लिए विशिष्ट रूप से छवि के विकल्प से मेल खाता है {{math | ''Y''<sub>''i''</sub>}}. फिर कोई रूपवाद दिया {{math | ''φ'' {{=}} (''f''<sub>1</sub>, ..., ''f''<sub>''m''</sub>)}} से {{math | ''V''}} को {{math | ''W'',}}  समरूपता का निर्माण किया जा सकता है {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} जो भेजता है {{math | ''Y''<sub>''i''</sub>}} को <math>\overline{f_i},</math> कहाँ <math>\overline{f_i}</math> का तुल्यता वर्ग है {{math | ''f''<sub>''i''</sub>}} में {{math | ''k''[''V''].}}

Revision as of 14:57, 9 April 2023

द्वारा दिया गया घन समतल वक्र

बीजगणितीय ज्यामिति में, बीजगणितीय रूप से बंद क्षेत्र k पर एफ़ाइन विविधता, या एफ़ाइन बीजगणितीय विविधता, k में गुणांक वाले n चर के बहुपदों के कुछ परिमित परिवार के एफ़ाइन अंतरिक्ष kn में शून्य-बिंदु है जो प्रमुख आदर्श उत्पन्न करता है। यदि अभाज्य गुणज उत्पन्न करने की स्थिति को हटा दिया जाता है, तो ऐसे समुच्चय को बीजगणितीय समुच्चय ( एफ़ाइन) कहा जाता है। एफ़ाइन विविधता की जरिस्की टोपोलॉजी की उप-विविधता को अर्ध-एफ़ाइन विविधता कहा जाता है।

कुछ ग्रंथों को प्रमुख आदर्श की आवश्यकता नहीं होती है, और प्रधान आदर्श द्वारा परिभाषित बीजगणितीय विविधता को इरिड्यूसिबल कहते हैं। यह लेख आवश्यक रूप से प्रमुख आदर्शों के शून्य-लोकी को संदर्भित नहीं करता है जैसे कि बीजीय बीजगणितीय सेट है

कुछ संदर्भों में, बीजगणितीय रूप से बंद क्षेत्र K (युक्त k) से k को अलग करना उपयोगी होता है जिसमें गुणांक माना जाता है, जिस पर शून्य-लोकस माना जाता है (अर्थात् एफ़ाइन विविधता के बिंदु Knमें हैं) . इस स्तिथि में, विविधता को k पर परिभाषित कहा जाता है , और k से संबंधित विविधता को बिंदु k तर्कसंगत कहा जाता है। सामान्य स्थिति में जहाँ k वास्तविक संख्याओं का क्षेत्र है, k- तर्कसंगत बिंदु को वास्तविक बिंदु कहते हैं।[1] जब क्षेत्र k निर्दिष्ट नहीं होता है, तब परिमेय बिंदु वह बिंदु है जो परिमेय संख्याओं पर परिमेय होता है। उदाहरण के लिए, फ़र्मेट की अंतिम प्रमेय का प्रमाणित है कि xn + yn − 1 = 0 द्वारा परिभाषित एफ़ाइन बीजगणितीय विविधता (यह वक्र है) में दो से अधिक पूर्णांक के n लिए कोई परिमेय बिंदु नहीं है।

परिचय

एफ़ाइन बीजगणितीय सेट k में गुणांक वाले बहुपद समीकरणों की प्रणाली के बीजगणितीय रूप से बंद क्षेत्र k में समाधान का सेट है। यदि में गुणांक वाले बहुपद है, वे एफ़ाइन बीजगणितीय सेट को परिभाषित करते हैं

एफ़ाइन (बीजीय) विविधता एफ़ाइन बीजगणितीय सेट है जो दो उचित एफ़ाइन बीजगणितीय उपसमुच्चय का मिलन नहीं है। इस प्रकार के सजातीय बीजगणितीय सेट को अधिकतर अलघुकरणीय कहा जाता है।

यदि X सजातीय बीजगणितीय समुच्चय है, और I उन सभी बहुपदों की गुणजावली है जिन X पर शून्य है , फिर भागफल वलय को X का ऑर्डिनेट रिंग कहा जाता है निर्देशांक वलय R के तत्वों को विविधता पर नियमित कार्य या बहुपद कार्य भी कहा जाता है। वे विविधता पर नियमित कार्यों की अंगूठी बनाते हैं,विविधता की अंगूठी; दूसरे शब्दों में (संरचना शीफ देखें), यह एक्स के संरचना बंड़ल के वैश्विक खंड का अंतरिक्ष है।

विविधता का आयाम प्रत्येक विविधता से जुड़ा पूर्णांक है, और यहां तक ​​​​कि प्रत्येक बीजगणितीय सेट के लिए, जिसका महत्व बड़ी संख्या में इसकी समकक्ष परिभाषाओं पर निर्भर करता है (बीजगणितीय विविधता का आयाम देखें)।

उदाहरण

  • एफ़ाइन विविधता में X (जो कि कुछ बहुपद f के लिए X - { f = 0 } है) में हाइपरसफेस का पूरक एफ़िन है। इसके परिभाषित समीकरणों को X के परिभाषित आदर्श f द्वारा संतृप्ति करके प्राप्त किया जाता है। समन्वय अंगूठी इस प्रकार स्थानीयकरण है।
  • विशेष रूप से, (एफ़ाइन रेखा जिसके मूल को हटा दिया गया है) एफ़ाइन है।
  • वहीं दूसरी ओर, (ऐफिन प्लेन जिसकी उत्पत्ति हटा दी गई है) सजातीय विविधता नहीं है; सी एफ हार्टोगएक्सका विस्तार प्रमेय।
  • एफ़िन अंतरिक्ष में कोडिमेंशन वन की उप- विविधताओं वास्तव में हाइपरसर्फएक्स हैं, जो कि बहुपद द्वारा परिभाषित विविधताओं हैं।
  • इरेड्यूसिबल एफाइन विविधता का सामान्यीकरण एफाइन है; सामान्यीकरण का समन्वय वलय विविधता के समन्वय वलय का अभिन्न समापन है। (इसी तरह, प्रक्षेपी विविधता का सामान्यीकरण प्रक्षेपी विविधता है।)

तर्कसंगत बिंदु

वक्र के वास्तविक बिंदुओं का आरेखण y2 = x3 − x2 − 16x.
एफ़िन विविधता के लिए  बीजगणितीय रूप से बंद क्षेत्र  K पर, और k का उपक्षेत्र K, V  का k-तार्किक बिंदु है  यानी V का बिंदु जिसके निर्देशांक k के तत्व हैं। एफ़िन विविधता V  के k- तर्कसंगत बिंदुओं का संग्रह अधिकतर निरूपित किया जाता है  अधिकतर, यदि आधार क्षेत्र सम्मिश्र संख्याएँ  C हैं, वे बिंदु जो R-तर्कसंगत हैं (जहां R वास्तविक संख्या है) विविधता के वास्तविक बिंदु कहलाते हैं, और Q-तर्कसंगतबिंदु(Q परिमेय संख्याएँ) अधिकतर परिमेय बिंदु कहलाते हैं।

उदाहरण के लिए, (1, 0) विविधता का Q-तर्कसंगत और R- तर्कसंगत बिंदु क्योंकि यह V में है और इसके सभी निर्देशांक पूर्णांक हैं। बिंदु (2/2, 2/2) V का वास्तविक बिंदु है जो कि Q-तर्कसंगत नहीं है ,और V का बिन्दु है जो कि R-तर्कसंगत नहीं है। इस विविधता को वृत्त कहा जाता है, क्योंकि इसका R-तर्कसंगत बिंदुओं का समुच्चय इकाई वृत्त है। इसमें अपरिमित रूप से अनेक Q-तर्कसंगत बिंदु हैं

जहाँ t परिमेय संख्या है।

वृत्त डिग्री दो के बीजगणितीय वक्र का उदाहरण है जिसमें कोई Q-तर्कसंगत बिंदु नहीं है। यह इस तथ्य से निकाला जा सकता है, मॉड्यूलर 4, दो वर्गों का योग 3 नहीं हो सकता है।

यह सिद्ध किया जा सकता है कि Q तर्कसंगत बिंदु के साथ डिग्री दो का बीजगणितीय वक्र के अपरिमित रूप से कई अन्य Q तर्कसंगतबिंदुहोते हैं; ऐसा प्रत्येक बिंदु वक्र का दूसरा प्रतिच्छेदन बिंदु है और परिमेय बिंदु से गुजरने वाली परिमेय ढलान वाली रेखा है।

जटिल विविधता का कोई R-तर्कसंगत बिंदु नहीं हैं, लेकिन कई जटिल बिंदु हैं।

यदि V जटिल संख्या C पर परिभाषित C2 में एफ़ाइन विविधता हैं V के R-तर्कसंगत बिंदु को कागज के टुकड़े पर या रेखांकन सॉफ्टवेयर द्वारा खींचा जा सकता है। दाईं ओर का आंकड़ा R-तर्कसंगत बिंदु दर्शाता है


वचन बिंदु और स्पर्शरेखा स्थान

मान लीजिए V बहुपदों द्वारा परिभाषित सजातीय विविधता हो और का बिंदु हो .

a पर V का जैकबियन मैट्रिक्स JV(a) आंशिक डेरिवेटिव का मैट्रिक्स है

बिंदु a नियमित है यदि JV(a) की रैंक V बीजगणितीय विविधता के आयाम के बराबर है ,और अन्यथा एकवचन है ।

यदि a नियमित है, V पर a पर स्पर्शरेखा स्थान एफिन उपस्थान है रैखिक समीकरणों द्वारा परिभाषित[2]

यदि बिंदु एकवचन है, तो इन समीकरणों द्वारा परिभाषित एफ़िन उप-स्थान को कुछ लेखकों द्वारा स्पर्शरेखा स्थान भी कहा जाता है, जबकि अन्य लेखकों का कहना है कि एकवचन बिंदु पर कोई स्पर्शरेखा स्थान नहीं है।[3]

अधिक आंतरिक परिभाषा, जो निर्देशांक का उपयोग नहीं करती है, ज़रिस्की टेंगेंट स्पेस द्वारा दी गई है।

जारिस्की टोपोलॉजी

kn के संबध बीजगणितीय सेट knपर एक टोपोलॉजी के बंद सेट बनाते हैं, जिसे 'ज़ारिस्की टोपोलॉजी' कहा जाता है। यह इस तथ्य से अनुसरण करता है कि और (वास्तव में, एफ़ाइन बीजगणितीय सेटों का गणनीय प्रतिच्छेदन एफ़ाइन बीजगणितीय सेट है)।

ज़ारिस्की टोपोलॉजी को बुनियादी खुले सेटों के माध्यम से भी वर्णित किया जा सकता है, जहाँ ज़ारिस्की-खुले सेट फॉर्म के सेटों के गणनीय संघ हैं के लिए ये बुनियादी खुले सेट बंद सेटkn में पूरक हैं बहुपद का शून्य लोकी। यदि k नोथेरियन वलय है (उदाहरण के लिए, यदि k क्षेत्र या प्रमुख आदर्श डोमेन है), तो k का प्रत्येक आदर्श अंतिम रूप से उत्पन्न होता है, इसलिए प्रत्येक खुला सेट बुनियादी खुले सेटों का परिमित संघ है।

यदि V, kn संबधित उप-संस्कृति है, V पर ज़ारिस्की टोपोलॉजी केवल kn पर ज़ारिस्की टोपोलॉजी से विरासत में मिली सब अंतरिक्ष टोपोलॉजी है।.

ज्यामिति-बीजगणित पत्राचार

सजातीय विविधता की ज्यामितीय संरचना इसके समन्वय वलय की बीजगणितीय संरचना से गहरे तरीके से जुड़ी हुई है। I और J को k [V] के आदर्श होने दें, जो एफ़ाइन विविधता V का समन्वय वलय है। I (V) को सभी बहुपदों का समुच्चय होने दें जो वी पर लुप्त हो जाता है, और जाने दो आदर्श I के मूलांक को दर्शाता है, बहुपद f का सेट जिसके लिए f की कुछ शक्ति I में है। आधार क्षेत्र को बीजगणितीय रूप से बंद करने का कारण यह है कि एफ़ाइन विविधताओं स्वचालित रूप से हिल्बर्ट के नलस्टेलेंसैट्ज को संतुष्ट करती हैं: आदर्श के लिए जे में जहाँ k बीजगणितीय रूप से बंद क्षेत्र है,

k[V] के कट्टरपंथी आदर्श (आदर्श जो अपने स्वयं के कट्टरपंथी हैं) V के बीजगणितीय उपसमुच्चय के अनुरूप हैं। वास्तव में, कट्टरपंथी आदर्शों I और J के लिए, यदि इसलिए V(I)=V(J) यदि I=J इसके अलावा, फलन बीजगणितीय सेट W को ग्रहण करता है और I(W) लौटाता है, सभी कार्यों का सेट जो W के सभी बिंदुओं पर भी गायब हो जाता है, फ़ंक्शन का व्युत्क्रम होता है, जो बीजगणितीय सेट को कट्टरपंथी आदर्श के लिए निर्दिष्ट करता है, नलस्टेलेंसैट द्वारा। इसलिए एफ़ाइन बीजगणितीय सेट और कट्टरपंथी आदर्शों के बीच पत्राचार आपत्ति है। एफ़ाइन बीजगणितीय सेट का समन्वय अंगूठी कम हो जाती है (शून्य से मुक्त) ,अंगूठी R में आदर्श I के रूप में कट्टरपंथी है यदि भागफल अंगूठी R/I कम हो जाता है।

समन्वयित वलय के प्रधान आदर्श एफ़िन उप- विविधताओं के अनुरूप होते हैं। सजातीय बीजीय समुच्चय V(I) को दो अन्य बीजगणितीय समुच्चयों के मिलन के रूप में लिखा जा सकता है यदि I=JK उचित आदर्शों के लिए J और K I ). यह स्तिथि है यदि मैं प्रधान नहीं हूं। एफ़ाइन उपप्रकार ठीक वे हैं जिनकी समन्वय रिंग अभिन्न डोमेन है। ऐसा इसलिए है क्योंकि आदर्श प्रधान है यदि आदर्श द्वारा रिंग का भागफल अभिन्न डोमेन है।

k[V] के अधिकतम आदर्श V के बिंदुओं के अनुरूप हैं। यदि I और J कट्टरपंथी आदर्श हैं, तो यदि जैसा कि अधिकतम आदर्श कट्टरपंथी हैं, अधिकतम आदर्श न्यूनतम बीजगणितीय सेट (जिनमें कोई उचित बीजगणितीय उपसमुच्चय नहीं होते है) के अनुरूप हैं, जो V में बिंदु हैं। यदि V समन्वय वलय के साथ परिशोधित विविधता है यह पत्राचार मानचित्र के माध्यम से स्पष्ट हो जाता है कहाँ बहुपद के भागफल बीजगणित R में छवि को दर्शाता है बीजगणितीय उपसमुच्चय बिंदु है यदि उपसमुच्चय का समन्वय वलय क्षेत्र है, क्योंकि अधिकतम आदर्श द्वारा वलय का भागफल क्षेत्र है।

निम्न तालिका इस पत्राचार को सारांशित करती है, सजातीय विविधता के बीजगणितीय उपसमुच्चय और संबंधित समन्वय अंगूठी के आदर्शों के लिए:

Type of algebraic set Type of ideal Type of coordinate ring
एफ़ाइन algebraic subset radical ideal reduced ring
एफ़ाइन subvariety prime ideal integral domain
point maximal ideal field


एफ़ाइन विविधताओं के उत्पाद

एफ़ाइन विविधताओं के उत्पाद को समरूपता An × Am = An+m का उपयोग करके परिभाषित किया जा सकता है, फिर उत्पाद को इस आधुनिक एफ़ाइन स्थान में एम्बेड किया जा सकता है। मान लीजिए An और Am के निर्देशांक वलय k[x1,..., xn] और k[y1,..., ym] हैं, जिससे कि उनके गुणनफल An+m में निर्देशांक वलय है k[x1,..., xny1,..., ym]. मान लीजिए V = Vf1,..., fN) Anका बीजगणितीय उपसमुच्चय हो और W = Vg1,..., gM)Am का बीजगणितीय उपसमुच्चय है। फिर प्रत्येक fi k[x1,..., xn] में बहुपद है,और प्रत्येक gj k[y1,..., ym] में है। V और W के गुणनफल को An+m में बीजीय समुच्चय V × W = Vf1,..., fNg1,..., gM) के रूप में परिभाषित किया गया है। उत्पाद अलघुकरणीय है यदि प्रत्येक V, W अलघुकरणीय है।[4]

An × Am पर जरिस्की टोपोलॉजी दो स्थानों पर ज़ारिस्की टोपोलॉजी का उत्पाद टोपोलॉजी नहीं है। यथार्थतः, उत्पाद टोपोलॉजी मूल खुले सेट के उत्पादों द्वारा उत्पन्न होती है Uf = An − Vf ) और Tg = Am − Vg )। इसलिए, बहुपद जो k[x1,..., xny1,..., ym] में हैं लेकिन k[x1,..., xn] में बहुपद के उत्पाद के रूप में प्राप्त नहीं किया जा सकता है जिसमें बहुपद के साथ k[y1,..., ym] उन बीजगणितीय सेटों को परिभाषित करेगा जो ज़रिस्की टोपोलॉजी में An × Am हैं लेकिन उत्पाद टोपोलॉजी में नहीं हैं।

सजातीय विविधताओं की रूपात्मकता

एफ़िन विविधताओं का रूपवाद, या नियमित मानचित्र, एफ़िन विविधताओं के बीच कार्य है जो प्रत्येक समन्वय में बहुपद है: अधिक सटीक रूप से, एफ़िन विविधताओं के लिए Vkn और Wkm, रूपवाद से V को W नक्शा है φ : VW फॉर्म का φ(a1, ..., an) = (f1(a1, ..., an), ..., fm(a1, ..., an)), कहाँ fik[X1, ..., Xn] प्रत्येक के लिए i = 1, ..., m. ये एफ़ाइन विविधताओं की श्रेणी (गणित) में आकारिकी हैं।

बीजगणितीय रूप से बंद क्षेत्र पर एफ़ाइन विविधताओं के आकारिकी के बीच -से- पत्राचार होता है k, औरएफ़ाइन विविधताओं के समन्वय के छल्ले के समरूपता k विपरीत दिशा में जा रहा है। इस वजह से, इस तथ्य के साथ कि वहाँएफ़ाइन विविधताओं के बीच -से- पत्राचार है k और उनके निर्देशांक के छल्ले,एफ़ाइन विविधताओं की श्रेणी k एफ़ाइन विविधताओं के समन्वय के छल्ले की श्रेणी के लिए दोहरी (श्रेणी सिद्धांत) है k.एफ़ाइन विविधताओं के समन्वय के छल्ले की श्रेणी k ठीक-ठीक जनित, निलपोटेंट-मुक्त बीजगणित की श्रेणी है k.

अधिक सटीक, प्रत्येक रूपवाद के लिए φ : VWएफ़ाइन विविधताओं में, समरूपता है φ# : k[W] → k[V] निर्देशांक वलयों के बीच (विपरीत दिशा में जा रहा है), और इस प्रकारके प्रत्येक समरूपता के लिए, समन्वय वलयों से जुड़ी विविधताओं का रूपवाद है। इसे स्पष्ट रूप से दिखाया जा सकता है: let Vkn और Wkm कोआर्डिनेट रिंगएक्सके साथ एफिन विविधता ें बनें k[V] = k[X1, ..., Xn] / I और k[W] = k[Y1, ..., Ym] / J क्रमश। मान लीजिए φ : VW रूपवाद हो। दरअसल, बहुपद के छल्ले के बीच समरूपता θ : k[Y1, ..., Ym] / Jk[X1, ..., Xn] / I अंगूठी के माध्यम से अद्वितीय कारक k[X1, ..., Xn], और समरूपता ψ : k[Y1, ..., Ym] / Jk[X1, ..., Xn] की छवियों द्वारा विशिष्ट रूप से निर्धारित किया जाता है Y1, ..., Ym. इसलिए, प्रत्येक समरूपता φ# : k[W] → k[V] प्रत्येक के लिए विशिष्ट रूप से छवि के विकल्प से मेल खाता है Yi. फिर कोई रूपवाद दिया φ = (f1, ..., fm) से V को W, समरूपता का निर्माण किया जा सकता है φ# : k[W] → k[V] जो भेजता है Yi को कहाँ का तुल्यता वर्ग है fi में k[V].

इसी तरह, समन्वय के छल्ले के प्रत्येक समरूपता के लिए, विपरीत दिशा में चक्करदार विविधताओं का रूपवाद बनाया जा सकता है। उपरोक्त पैराग्राफ को प्रतिबिंबित करना, समरूपता φ# : k[W] → k[V] भेजता है Yi बहुपद के लिए में k[V]. यह विविधताओं के आकारिकी से मेल खाता है φ : VW द्वारा परिभाषित φ(a1, ... , an) = (f1(a1, ..., an), ..., fm(a1, ..., an)).

संरचना शीफ ​​

नीचे वर्णित संरचना शीफ ​​से सुसज्जित, सजातीय विविधता स्थानीय रूप से चक्राकार स्थान है।

कोऑर्डिनेट रिंग A के साथ एफ़ाइन वैरायटी X दी गई है, जो k-अलजेब्रस का शीफ ​​है देकर परिभाषित किया गया है यू पर नियमित कार्यों की अंगूठी बनें।

माना D(f) = { x | ए में प्रत्येक एफ के लिए एफ (्स) ≠ 0}। वे एकएक्सके टोपोलॉजी के लिए आधार बनाते हैं और इसलिए खुले सेट डी (एफ) पर इसके मूल्यों से निर्धारित होता है। (यह भी देखें: मॉड्यूल का शीफ#मॉड्यूल से जुड़ा शीफ।)

मुख्य तथ्य, जो आवश्यक रूप से हिल्बर्ट शून्य प्रमेय पर निर्भर करता है, निम्नलिखित है:

Claim —  for any f in A.

सबूत:[5] समावेश ⊃ स्पष्ट है। इसके विपरीत के लिए, जी को बाएं हाथ की ओर होने दें और है, जो आदर्श है। यदि एक्सडी (एफ) में है, तो चूंकि जी एक्सके पास नियमित है, एक्सके कुछ खुले संबंध पड़ोस डी (एच) हैं जैसे कि ; वह है, एचm g, A में है और इसलिए x, V(J) में नहीं है। दूसरे शब्दों में, और इस प्रकार हिल्बर्ट नलस्टेलेंसैट्ज का अर्थ है कि एफ जे के रेडिकल में है; अर्थात।, . प्रमाणित, सबसे पहले, यह दर्शाता है कि X तब से स्थानीय रूप से रिंग किया हुआ स्थान है

कहाँ . दूसरे, प्रमाणित का तात्पर्य है पुलिया है; वास्तव में, यह कहता है कि यदि कोई फ़ंक्शन डी (एफ) पर नियमित (बिंदुवार) है, तो यह डी (एफ) की समन्वय अंगूठी में होना चाहिए; यानी, रेगुलर-नेस को साथ पैच किया जा सकता है।

इस तरह, स्थानीय रूप से चक्राकार स्थान है।


आत्मीयता पर सेरे का प्रमेय

आत्मीयता पर सेरे का प्रमेय सजातीय विविधता का को होमोलॉजिकल लक्षण वर्णन देती है; यह कहता है कि बीजगणितीय विविधता एफ़ाइन है यदि किसी के लिए भी और एकएक्सपर कोई भी अर्ध-सुसंगत शीफ एफ। (cf. कार्टन की प्रमेय बी।) यह प्रक्षेपी स्तिथि के विपरीत, जिसमें लाइन बंडलों के कोहोलॉजी समूह होते हैं , के विपरीत, गैर-अस्तित्व में एफ़ाइन विविधता का कोहोलॉजिकल अध्ययन करता है।केंद्रीय हित के .

एफ़ाइन बीजगणितीय समूह

बीजगणितीय रूप से बंद क्षेत्र पर k पर एफ़िन विविधता G को एफ़ाइन बीजगणितीय समूह कहा जाता है यदि इसमें:

  • गुणन μG × G → G, जो नियमित रूपवाद है जो सहयोगीता स्वयंसिद्ध का अनुसरण करता है-अर्थात्, जैसे कि μ(μ(fg), h) = μ(fμ(gh)) के लिए G में सभी बिंदु f, g और h है ;
  • पहचान तत्व e ऐसा है कि G के लिए μ(eg) = μ(ge) = g है;
  • व्युत्क्रम रूपवाद, नियमित आक्षेप ιG → G ऐसा है कि μ(ι(g), g) = μ(gι(g)) = e G में प्रत्येक g के लिए है;

साथ में, ये विविधता पर समूह (संरचना) को परिभाषित करते हैं। उपरोक्त रूपवाद अधिकतर साधारण समूह संकेतन का उपयोग करते हुए लिखा जाता है: μ(fg) को f + g, fg, या fg के रूप में लिखा जा सकता है; व्युत्क्रम ι(g) को g या g−1 के रूप में लिखा जा सकता है गुणात्मक संकेतन का उपयोग करके, साहचर्य, पहचान और व्युत्क्रम कानूनों को फिर से लिखा जा सकता है: f(gh) = (fg)h, ge = eg = g और gg−1 = g−1g = e.

एफ़िन बीजगणितीय समूह का सबसे प्रमुख उदाहरण GLn(k) है, डिग्री n का सामान्य रैखिक समूह है। यह सदिश स्थान kn के रैखिक परिवर्तनों का समूह है; यदि kn का आधार (रैखिक बीजगणित) का नियत है, यह k में प्रविष्टियों के साथ n×n व्युत्क्रमणीय आव्यूहों के समूह के समतुल्य है। यह दिखाया जा सकता है कि कोई भी बीजगणितीय समूह GLn(k) केउपसमूह के लिए आइसोमोर्फिक है। इस कारण से, एफ़ाइन बीजगणितीय समूहों को अधिकतर रैखिक बीजगणितीय समूह कहा जाता है।

एफ़िन बीजगणितीय समूह परिमित सरल समूहों के वर्गीकरण में महत्वपूर्ण भूमिका निभाते हैं, क्योंकि असत्य प्रकार के समूह एफ़िन बीजगणितीय समूह के Fq तर्कसंगत बिंदुओं के सभी सेट हैं , जहां Fq परिमित क्षेत्र है।

सामान्यीकरण

  • यदि लेखक को बीजगणितीय रूप से बंद होने के लिए एफ़ाइन विविधता के आधार क्षेत्र की आवश्यकता होती है (जैसा कि यह लेख करता है), गैर-बीजगणितीय रूप से बंद क्षेत्रों पर इरेड्यूसिबल एफ़ाइन बीजगणितीय सेट एफ़ाइन विविधता का सामान्यीकरण है। इस सामान्यीकरण में विशेष रूप से वास्तविक संख्याओं पर एफ़िन विविधताओं को समिलित किया गया है।
  • बीजगणितीय विविधताओं के लिए स्थानीय विविधता स्थानीय चार्ट की भूमिका निभाती है; कहने का तात्पर्य यह है कि सामान्य बीजगणितीय विविधताओं जैसे कि प्रोजेक्टिव विविधता ग्लूइंग एफाइन विविधताओं द्वारा प्राप्त किया जाता है। रेखीय संरचनाएं जो विविधताओं से जुड़ी होती हैं, वे भी (तुच्छ रूप से) एफ़िन विविधता होती हैं; उदाहरण के लिए, स्पर्शरेखा रिक्त स्थान, बीजगणितीय वेक्टर बंडलों के तंतु।
  • एफ़ाइन विविधता एफ़ाइन योजना की विशेष स्थिति, है, स्थानीय रूप से रिंग वाली जगह जो कम्यूटेटिव रिंग (श्रेणियों की समानता तक) के स्पेक्ट्रम के लिए आइसोमोर्फिक है। प्रत्येक एफ़ाइन विविधता से जुड़ी एफ़ाइन योजना होती है: यदि V(I) kn में समन्वयित रिंग R = k[x1, ..., xn] / I, के साथ एफ़ाइन विविधता है, V(I) से संबंधित योजना है Spec(R), R.के प्रमुख आदर्शों का सेट। एफ़िन योजना में शास्त्रीय बिंदु होते हैं जो विविधता के बिंदुओं के अनुरूप होते हैं (और इसलिए विविधता के समन्वय रिंग के अधिकतम आदर्श), और प्रत्येक बंद उप- विविधता के लिए बिंदु भी विविधता के (ये बिंदु समन्वय वलय के अभाज्य, गैर-अधिकतम आदर्शों के अनुरूप हैं) । यह प्रत्येक बंद उप- विविधता को खुला बिंदु निर्दिष्ट करके, जो उप- विविधता में घना है, संबधित विविधता के "जेनेरिक बिंदु" की अधिक अच्छी प्रकारसे परिभाषित धारणा बनाता है। अधिक सामान्यतः, एफ़िन योजना एफ़िन विविधता है यदि यह बीजगणितीय रूप से बंद क्षेत्र k पर कम, इर्रेड्यूसबल और परिमित प्रकार की है।

टिप्पणियाँ

  1. Reid (1988)
  2. Milne (2017), Ch. 5
  3. Reid (1988), p. 94.
  4. This is because, over an algebraically closed field, the tensor product of integral domains is an integral domain; see integral domain#Properties.
  5. Mumford 1999, Ch. I, § 4. Proposition 1.


यह भी देखें

संदर्भ

The original article was written as a partial human translation of the corresponding French article.

  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
  • Fulton, William (1969). Algebraic Curves (PDF). Addison-Wesley. ISBN 0-201-510103.
  • Milne, J.S. (2017). "Algebraic Geometry" (PDF). www.jmilne.org. Retrieved 16 July 2021.
  • Milne, Lectures on Étale cohomology
  • Mumford, David (1999). The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians. Lecture Notes in Mathematics. Vol. 1358 (2nd ed.). Springer-Verlag. doi:10.1007/b62130. ISBN 354063293X.
  • Reid, Miles (1988). Undergraduate Algebraic Geometry. Cambridge University Press. ISBN 0-521-35662-8.