त्वरण (विशेष सापेक्षता): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Velocity differential over time, as described in Minkowski spacetime}}
{{Short description|Velocity differential over time, as described in Minkowski spacetime}}
[[विशेष सापेक्षता|'''विशेष सापेक्षता''']] (एसआर) में [[त्वरण]], [[न्यूटोनियन यांत्रिकी]] की तरह, [[समय]] के संबंध में [[वेग]] के व्युत्पन्न द्वारा अनुसरण किया जाता है। [[लोरेंत्ज़ परिवर्तन]] और [[समय फैलाव|समय विस्तार]] के कारण, समय और दूरी की अवधारणाएँ अधिक सम्मिश्र हो जाती हैं, जिससे त्वरण की अधिक सम्मिश्र परिभाषाएँ भी सामने आती हैं। फ्लैट [[मिन्कोवस्की स्पेसटाइम]] के सिद्धांत के रूप में एसआर त्वरण की उपस्थिति में मान्य रहता है, क्योंकि [[सामान्य सापेक्षता]] (जीआर) की आवश्यकता केवल तब होती है जब ऊर्जा-संवेग टेंसर (जो मुख्य रूप से [[अपरिवर्तनीय द्रव्यमान]] द्वारा निर्धारित होता है) के कारण [[घुमावदार स्पेसटाइम]] होता है।, चूँकि पृथ्वी या इसके आसपास के क्षेत्र में स्पेसटाइम वक्रता की मात्रा विशेष रूप से अधिक नहीं है, एसआर अधिकांश व्यावहारिक उद्देश्यों के लिए मान्य है, जैसे कि [[कण त्वरक]] में प्रयोग।<ref>Misner & Thorne & Wheeler (1973), p. 163: "Accelerated motion and accelerated observers can be analyzed using special relativity."</ref>
[[विशेष सापेक्षता|'''विशेष सापेक्षता''']] (एसआर) में [[त्वरण]], [[न्यूटोनियन यांत्रिकी]] की तरह, [[समय]] के संबंध में [[वेग]] के व्युत्पन्न द्वारा अनुसरण किया जाता है। [[लोरेंत्ज़ परिवर्तन]] और [[समय फैलाव|समय विस्तार]] के कारण, समय और दूरी की अवधारणाएँ अधिक सम्मिश्र हो जाती हैं, जिससे त्वरण की अधिक सम्मिश्र परिभाषाएँ भी सामने आती हैं। फ्लैट [[मिन्कोवस्की स्पेसटाइम]] के सिद्धांत के रूप में एसआर त्वरण की उपस्थिति में मान्य रहता है, क्योंकि [[सामान्य सापेक्षता]] (जीआर) की आवश्यकता केवल तब होती है जब ऊर्जा-संवेग टेंसर (जो मुख्य रूप से [[अपरिवर्तनीय द्रव्यमान]] द्वारा निर्धारित होता है) के कारण [[घुमावदार स्पेसटाइम]] होता है।, चूँकि पृथ्वी या इसके आसपास के क्षेत्र में स्पेसटाइम वक्रता की मात्रा विशेष रूप से अधिक नहीं है, एसआर अधिकांश व्यावहारिक उद्देश्यों के लिए मान्य है, जैसे कि [[कण त्वरक]] में प्रयोग।<ref>Misner & Thorne & Wheeler (1973), p. 163: "Accelerated motion and accelerated observers can be analyzed using special relativity."</ref>


कोई तीन स्थानिक आयामों (तीन-त्वरण या समन्वय त्वरण) में सामान्य त्वरण के लिए परिवर्तन सूत्र प्राप्त कर सकता है जैसा कि संदर्भ के बाहरी जड़त्वीय फ्रेम में मापा जाता है, साथ ही कोमोविंग [[ accelerometer |एक्सेलेरोमीटर]] द्वारा मापा गया [[उचित त्वरण]] के विशेष उपस्तिथि के लिए भी उपयोग किया जाता है। अन्य उपयोगी औपचारिकता [[चार-त्वरण]] है, क्योंकि इसके अवयवों को लोरेंत्ज़ परिवर्तन द्वारा विभिन्न जड़त्वीय फ़्रेमों में जोड़ा जा सकता है। इसके अतिरिक्त [[गति के समीकरण]] भी बनाए जा सकते हैं जो त्वरण और बल को जोड़ते हैं। पिंडों के त्वरण के अनेक रूपों और उनकी घुमावदार विश्व रेखाओं के समीकरण [[ अभिन्न |अभिन्न]] द्वारा इन सूत्रों का अनुसरण करते हैं। प्रसिद्ध विशेष उपस्तिथि निरंतर अनुदैर्ध्य उचित त्वरण या एकसमान गोलाकार गति के लिए [[अतिशयोक्तिपूर्ण गति (सापेक्षता)]] हैं। अंततः, विशेष सापेक्षता के संदर्भ में गैर-जड़त्वीय संदर्भ फ्रेम में इन घटनाओं का वर्णन करना भी संभव है, उचित संदर्भ फ्रेम (फ्लैट स्पेसटाइम) देखें। ऐसे फ़्रेमों में, प्रभाव उत्पन्न होते हैं जो सजातीय [[गुरुत्वाकर्षण क्षेत्र]]ों के अनुरूप होते हैं, जिनमें सामान्य सापेक्षता में घुमावदार स्पेसटाइम के वास्तविक, अमानवीय गुरुत्वाकर्षण क्षेत्रों के साथ कुछ औपचारिक समानताएं होती हैं। अतिशयोक्तिपूर्ण गति के उपस्तिथि में कोई रिंडलर निर्देशांक का उपयोग कर सकता है, समान गोलाकार गति के उपस्तिथि में कोई बोर्न निर्देशांक का उपयोग कर सकता है।
कोई तीन स्थानिक आयामों (तीन-त्वरण या समन्वय त्वरण) में सामान्य त्वरण के लिए परिवर्तन सूत्र प्राप्त कर सकता है जैसा कि संदर्भ के बाहरी जड़त्वीय फ्रेम में मापा जाता है, साथ ही कोमोविंग [[ accelerometer |एक्सेलेरोमीटर]] द्वारा मापा गया [[उचित त्वरण]] के विशेष उपस्तिथि के लिए भी उपयोग किया जाता है। अन्य उपयोगी औपचारिकता [[चार-त्वरण]] है, क्योंकि इसके अवयवों को लोरेंत्ज़ परिवर्तन द्वारा विभिन्न जड़त्वीय फ़्रेमों में जोड़ा जा सकता है। इसके अतिरिक्त [[गति के समीकरण]] भी बनाए जा सकते हैं जो त्वरण और बल को जोड़ते हैं। पिंडों के त्वरण के अनेक रूपों और उनकी घुमावदार विश्व रेखाओं के समीकरण [[ अभिन्न |अभिन्न]] द्वारा इन सूत्रों का अनुसरण करते हैं। प्रसिद्ध विशेष उपस्तिथि निरंतर अनुदैर्ध्य उचित त्वरण या एकसमान गोलाकार गति के लिए [[अतिशयोक्तिपूर्ण गति (सापेक्षता)]] हैं। अंततः, विशेष सापेक्षता के संदर्भ में गैर-जड़त्वीय संदर्भ फ्रेम में इन घटनाओं का वर्णन करना भी संभव है, उचित संदर्भ फ्रेम (फ्लैट स्पेसटाइम) देखें। ऐसे फ़्रेमों में, प्रभाव उत्पन्न होते हैं जो सजातीय [[गुरुत्वाकर्षण क्षेत्र]]ों के अनुरूप होते हैं, जिनमें सामान्य सापेक्षता में घुमावदार स्पेसटाइम के वास्तविक, अमानवीय गुरुत्वाकर्षण क्षेत्रों के साथ कुछ औपचारिक समानताएं होती हैं। अतिशयोक्तिपूर्ण गति के उपस्तिथि में कोई रिंडलर निर्देशांक का उपयोग कर सकता है, समान गोलाकार गति के उपस्तिथि में कोई बोर्न निर्देशांक का उपयोग कर सकता है।


ऐतिहासिक विकास के संबंध में, त्वरण वाले सापेक्षतावादी समीकरण पहले से ही सापेक्षता के प्रारंभिक वर्षों में पाए जा सकते हैं, जैसा कि [[मैक्स वॉन लाउ]] (1911, 1921) या [[वोल्फगैंग पाउली]] (1921) द्वारा प्रारंभिक पाठ्यपुस्तकों में संक्षेपित किया गया है।<ref name="laue3">von Laue (1921)</ref> ।<ref name="pauli2">Pauli (1921)</ref> उदाहरण के लिए, गति और त्वरण परिवर्तनों के समीकरण [[हेनरी एंथोनी लोरेंत्ज़]] (1899, 1904) के पत्रों में विकसित किए गए थे।<ref name="lorentz1" group="H" /><ref name="lorentz2" group="H" /> हेनरी पोंकारे (1905),<ref name="poincare1" group="H" /><ref name="poincare2" group="H" /> [[अल्बर्ट आइंस्टीन]] (1905), <ref name="einstein" group="H" /> [[मैक्स प्लैंक]] (1906),<ref name="planck" group="H" /> और चार-त्वरण, उचित त्वरण, अतिशयोक्तिपूर्ण गति, त्वरित संदर्भ फ्रेम, जन्म कठोरता, का विश्लेषण आइंस्टीन (1907) द्वारा किया गया है।<ref name="Einstein2" group="H" /> [[हरमन मिन्कोव्स्की]] (1907, 1908),<ref name="minkowski" group="H" /><ref name="minkowski1" group="H" /> [[मैक्स बोर्न]] (1909),<ref name="born" group="H" /> [[गुस्ताव हर्ग्लोत्ज़]] (1909),<ref name="herglotz1" group="H" /><ref name="herglotz2" group="H" /> [[अर्नोल्ड सोमरफेल्ड]] (1910),<ref name="sommerfeld1" group="H" /><ref name="sommerfeld2" group="H" /> लाउ द्वारा (1911),<ref name="laue1" group="H" /><ref name="laue2" group="H" />[[फ्रेडरिक कोटलर]] (1912, 1914),<ref name="Kottler" group="H" /> या तब इतिहास देखें.
ऐतिहासिक विकास के संबंध में, त्वरण वाले सापेक्षतावादी समीकरण पहले से ही सापेक्षता के प्रारंभिक वर्षों में पाए जा सकते हैं, जैसा कि [[मैक्स वॉन लाउ]] (1911, 1921) या [[वोल्फगैंग पाउली]] (1921) द्वारा प्रारंभिक पाठ्यपुस्तकों में संक्षेपित किया गया है।<ref name="laue3">von Laue (1921)</ref> ।<ref name="pauli2">Pauli (1921)</ref> उदाहरण के लिए, गति और त्वरण परिवर्तनों के समीकरण [[हेनरी एंथोनी लोरेंत्ज़]] (1899, 1904) के पत्रों में विकसित किए गए थे।<ref name="lorentz1" group="H" /><ref name="lorentz2" group="H" /> हेनरी पोंकारे (1905),<ref name="poincare1" group="H" /><ref name="poincare2" group="H" /> [[अल्बर्ट आइंस्टीन]] (1905), <ref name="einstein" group="H" /> [[मैक्स प्लैंक]] (1906),<ref name="planck" group="H" /> और चार-त्वरण, उचित त्वरण, अतिशयोक्तिपूर्ण गति, त्वरित संदर्भ फ्रेम, जन्म कठोरता, का विश्लेषण आइंस्टीन (1907) द्वारा किया गया है।<ref name="Einstein2" group="H" /> [[हरमन मिन्कोव्स्की]] (1907, 1908),<ref name="minkowski" group="H" /><ref name="minkowski1" group="H" /> [[मैक्स बोर्न]] (1909),<ref name="born" group="H" /> [[गुस्ताव हर्ग्लोत्ज़]] (1909),<ref name="herglotz1" group="H" /><ref name="herglotz2" group="H" /> [[अर्नोल्ड सोमरफेल्ड]] (1910),<ref name="sommerfeld1" group="H" /><ref name="sommerfeld2" group="H" /> लाउ द्वारा (1911),<ref name="laue1" group="H" /><ref name="laue2" group="H" />[[फ्रेडरिक कोटलर]] (1912, 1914),<ref name="Kottler" group="H" /> या तब इतिहास देखें.
Line 15: Line 15:
:<math>\mathbf{a}=\mathbf{a}'</math>.
:<math>\mathbf{a}=\mathbf{a}'</math>.


इसके विपरीत एसआर में, <math>\mathbf{r}</math> और <math>t</math> दोनों लोरेंत्ज़ परिवर्तन पर निर्भर करते हैं, इसलिए तीन-त्वरण भी <math>\mathbf{a}</math> और इसके अवयव विभिन्न जड़त्वीय फ़्रेमों में भिन्न होते हैं। जब फ़्रेमों के मध्य  सापेक्ष वेग को [[लोरेंत्ज़ कारक]] के रूप में <math>\gamma_{v}=1/\sqrt{1-v^{2}/c^{2}}</math> के साथ <math>v=v_{x}</math> द्वारा x-दिशा में निर्देशित होता है तब लोरेंत्ज़ परिवर्तन का रूप होता है  
इसके विपरीत एसआर में, <math>\mathbf{r}</math> और <math>t</math> दोनों लोरेंत्ज़ परिवर्तन पर निर्भर करते हैं, इसलिए तीन-त्वरण भी <math>\mathbf{a}</math> और इसके अवयव विभिन्न जड़त्वीय फ़्रेमों में भिन्न होते हैं। जब फ़्रेमों के मध्य  सापेक्ष वेग को [[लोरेंत्ज़ कारक]] के रूप में <math>\gamma_{v}=1/\sqrt{1-v^{2}/c^{2}}</math> के साथ <math>v=v_{x}</math> द्वारा x-दिशा में निर्देशित होता है तब लोरेंत्ज़ परिवर्तन का रूप होता है  


{{NumBlk|:|<math>\begin{array}{c|c}
{{NumBlk|:|<math>\begin{array}{c|c}
Line 30: Line 30:
\end{array}</math>|{{EquationRef|1a}}}}
\end{array}</math>|{{EquationRef|1a}}}}


या परिमाण <math>|\mathbf{v}|=v</math> के इच्छा से वेग <math>\mathbf{v}=\left(v_{x},\ v_{y},\ v_{z}\right)</math> के लिए (गणित) :<ref>Møller (1955), p. 41</ref>
या परिमाण <math>|\mathbf{v}|=v</math> के इच्छा से वेग <math>\mathbf{v}=\left(v_{x},\ v_{y},\ v_{z}\right)</math> के लिए (गणित) :<ref>Møller (1955), p. 41</ref>


{{NumBlk|:|<math>\begin{array}{c|c}
{{NumBlk|:|<math>\begin{array}{c|c}
Line 41: Line 41:
\end{array}</math>|{{EquationRef|1b}}}}
\end{array}</math>|{{EquationRef|1b}}}}


त्रि-त्वरण के परिवर्तन का पता लगाने के लिए,किसी को लोरेंत्ज़ परिवर्तन के स्थानिक निर्देशांक <math>\mathbf{r}</math> और <math>\mathbf{r}'</math> को <math>t</math> और <math>t'</math>, के संबंध में भिन्न करना होगा | जिससे मध्य  में त्रि-वेग (जिसे [[वेग-जोड़ सूत्र]] भी कहा जाता है) का परिवर्तन होता है जहाँ <math>\mathbf{u}</math> और <math>\mathbf{u}'</math> अनुसरण करता है, और अंततः इसके संबंध में और भेदभाव होता है <math>t</math> और <math>t'</math> के मध्य  तीन-त्वरण का परिवर्तन <math>\mathbf{a}</math> और <math>\mathbf{a}'</math> अनुसरण करता है। ({{equationNote|1a}}), से प्रारंभ यह प्रक्रिया वह परिवर्तन देती है जहां त्वरण वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) होते हैं:<ref>Tolman (1917), p. 48</ref><ref>French (1968), p. 148</ref><ref>Zahar (1989), p. 232</ref><ref>Freund (2008), p. 96</ref><ref name="poincare2" group="H" /><ref name="laue1" group="H" />
त्रि-त्वरण के परिवर्तन का पता लगाने के लिए,किसी को लोरेंत्ज़ परिवर्तन के स्थानिक निर्देशांक <math>\mathbf{r}</math> और <math>\mathbf{r}'</math> को <math>t</math> और <math>t'</math>, के संबंध में भिन्न करना होगा | जिससे मध्य  में त्रि-वेग (जिसे [[वेग-जोड़ सूत्र]] भी कहा जाता है) का परिवर्तन होता है जहाँ <math>\mathbf{u}</math> और <math>\mathbf{u}'</math> अनुसरण करता है, और अंततः इसके संबंध में और भेदभाव होता है <math>t</math> और <math>t'</math> के मध्य  तीन-त्वरण का परिवर्तन <math>\mathbf{a}</math> और <math>\mathbf{a}'</math> अनुसरण करता है। ({{equationNote|1a}}), से प्रारंभ यह प्रक्रिया वह परिवर्तन देती है जहां त्वरण वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) होते हैं:<ref>Tolman (1917), p. 48</ref><ref>French (1968), p. 148</ref><ref>Zahar (1989), p. 232</ref><ref>Freund (2008), p. 96</ref><ref name="poincare2" group="H" /><ref name="laue1" group="H" />


{{NumBlk|:|<math>\begin{array}{c|c}
{{NumBlk|:|<math>\begin{array}{c|c}
Line 54: Line 54:
\end{array}</math>|{{EquationRef|1c}}}}
\end{array}</math>|{{EquationRef|1c}}}}


या ({{equationNote|1b}}) से प्रारंभ यह प्रक्रिया वेग और त्वरण की इच्छानुसार दिशाओं के सामान्य उपस्तिथि के लिए परिणाम देती है:<ref>Kopeikin & Efroimsky & Kaplan (2011), p. 141</ref><ref>Rahaman (2014), p. 77</ref>
या ({{equationNote|1b}}) से प्रारंभ यह प्रक्रिया वेग और त्वरण की इच्छानुसार दिशाओं के सामान्य उपस्तिथि के लिए परिणाम देती है:<ref>Kopeikin & Efroimsky & Kaplan (2011), p. 141</ref><ref>Rahaman (2014), p. 77</ref>


{{NumBlk|:|<math>\begin{align}\mathbf{a}' & =\frac{\mathbf{a}}{\gamma_{v}^{2}\left(1-\frac{\mathbf{v\cdot u}}{c^{2}}\right)^{2}}-\frac{\mathbf{(a\cdot v)v}\left(\gamma_{v}-1\right)}{v^{2}\gamma_{v}^{3}\left(1-\frac{\mathbf{v\cdot u}}{c^{2}}\right)^{3}}+\frac{\mathbf{(a\cdot v)u}}{c^{2}\gamma_{v}^{2}\left(1-\frac{\mathbf{v\cdot u}}{c^{2}}\right)^{3}}\\
{{NumBlk|:|<math>\begin{align}\mathbf{a}' & =\frac{\mathbf{a}}{\gamma_{v}^{2}\left(1-\frac{\mathbf{v\cdot u}}{c^{2}}\right)^{2}}-\frac{\mathbf{(a\cdot v)v}\left(\gamma_{v}-1\right)}{v^{2}\gamma_{v}^{3}\left(1-\frac{\mathbf{v\cdot u}}{c^{2}}\right)^{3}}+\frac{\mathbf{(a\cdot v)u}}{c^{2}\gamma_{v}^{2}\left(1-\frac{\mathbf{v\cdot u}}{c^{2}}\right)^{3}}\\
Line 61: Line 61:
</math>|{{EquationRef|1d}}}}
</math>|{{EquationRef|1d}}}}


इसका मतलब है, यदि सापेक्ष वेग <math>\mathbf{v}</math> के साथ दो जड़त्वीय फ्रेम <math>S</math> और <math>S'</math> हैं, तब <math>S</math> में क्षणिक वेग <math>\mathbf{u}</math> के साथ किसी वस्तु का त्वरण <math>\mathbf{a}</math> मापा जाता है, जबकि '<math>S'</math>' में ' उसी वस्तु का त्वरण <math>\mathbf{a}'</math> है और क्षणिक वेग <math>\mathbf{u}'</math> है। वेग जोड़ सूत्रों की तरह, ये त्वरण परिवर्तन भी गारंटी देते हैं कि त्वरित वस्तु की परिणामी गति कभी भी प्रकाश की गति तक पहुंच सकती या उससे अधिक नहीं हो सकती है ।  
इसका मतलब है, यदि सापेक्ष वेग <math>\mathbf{v}</math> के साथ दो जड़त्वीय फ्रेम <math>S</math> और <math>S'</math> हैं, तब <math>S</math> में क्षणिक वेग <math>\mathbf{u}</math> के साथ किसी वस्तु का त्वरण <math>\mathbf{a}</math> मापा जाता है, जबकि '<math>S'</math>' में ' उसी वस्तु का त्वरण <math>\mathbf{a}'</math> है और क्षणिक वेग <math>\mathbf{u}'</math> है। वेग जोड़ सूत्रों की तरह, ये त्वरण परिवर्तन भी गारंटी देते हैं कि त्वरित वस्तु की परिणामी गति कभी भी प्रकाश की गति तक पहुंच सकती या उससे अधिक नहीं हो सकती है ।  


==चार-त्वरण        ==
==चार-त्वरण        ==
Line 67: Line 67:
{{Main|चार-त्वरण }}
{{Main|चार-त्वरण }}


यदि तीन-सदिश के स्थान पर [[चार-वेक्टर|चार-]]सदिश का उपयोग किया जाता है, अर्थात् <math>\mathbf{R}</math> चार-स्थिति के रूप में और <math>\mathbf{U}</math> को चार-वेग के रूप में उपयोग किया जाता है , तब फिर किसी वस्तु का चार-त्वरण <math>\mathbf{A}=\left(A_{t},\ A_{x},\ A_{y},\ A_{z}\right)=\left(A_{t},\ \mathbf{A}_{r}\right)</math> के संबंध में विभेदन करके प्राप्त किया जाता है समन्वय समय के अतिरिक्त [[उचित समय]] <math>\mathbf{\tau}</math> पर :<ref name=pauli>Pauli (1921), p. 627</ref><ref name=freund1>Freund (2008), pp. 267-268</ref><ref>Ashtekar & Petkov (2014), p. 53</ref>     
यदि तीन-सदिश के स्थान पर [[चार-वेक्टर|चार-]]सदिश का उपयोग किया जाता है, अर्थात् <math>\mathbf{R}</math> चार-स्थिति के रूप में और <math>\mathbf{U}</math> को चार-वेग के रूप में उपयोग किया जाता है , तब फिर किसी वस्तु का चार-त्वरण <math>\mathbf{A}=\left(A_{t},\ A_{x},\ A_{y},\ A_{z}\right)=\left(A_{t},\ \mathbf{A}_{r}\right)</math> के संबंध में विभेदन करके प्राप्त किया जाता है समन्वय समय के अतिरिक्त [[उचित समय]] <math>\mathbf{\tau}</math> पर :<ref name=pauli>Pauli (1921), p. 627</ref><ref name=freund1>Freund (2008), pp. 267-268</ref><ref>Ashtekar & Petkov (2014), p. 53</ref>     


{{NumBlk|:|<math>\begin{align}\mathbf{A} & =\frac{d\mathbf{U}}{d\tau}=\frac{d^{2}\mathbf{R}}{d\tau^{2}}=\left(c\frac{d^{2}t}{d\tau^{2}},\ \frac{d^{2}\mathbf{r}}{d\tau^{2}}\right)\\
{{NumBlk|:|<math>\begin{align}\mathbf{A} & =\frac{d\mathbf{U}}{d\tau}=\frac{d^{2}\mathbf{R}}{d\tau^{2}}=\left(c\frac{d^{2}t}{d\tau^{2}},\ \frac{d^{2}\mathbf{r}}{d\tau^{2}}\right)\\
Line 76: Line 76:
जहाँ <math>\mathbf{a}</math> वस्तु का तीन-त्वरण है और <math>\mathbf{u}</math> यह परिमाण का क्षणिक तीन-वेग है <math>|\mathbf{u}|=u</math> संगत लोरेंत्ज़ कारक के साथ <math>\gamma=1/\sqrt{1-u^{2}/c^{2}}</math>. यदि केवल स्थानिक भाग पर विचार किया जाता है, और जब वेग को x-दिशा में निर्देशित किया जाता है <math>u=u_{x}</math> और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है, अभिव्यक्ति कम हो जाती है:<ref>Sexl & Schmidt (1979), p. 198, Solution to example 16.1</ref><ref name="ferraro1">Ferraro (2007), p. 178</ref>                                                                                                                 
जहाँ <math>\mathbf{a}</math> वस्तु का तीन-त्वरण है और <math>\mathbf{u}</math> यह परिमाण का क्षणिक तीन-वेग है <math>|\mathbf{u}|=u</math> संगत लोरेंत्ज़ कारक के साथ <math>\gamma=1/\sqrt{1-u^{2}/c^{2}}</math>. यदि केवल स्थानिक भाग पर विचार किया जाता है, और जब वेग को x-दिशा में निर्देशित किया जाता है <math>u=u_{x}</math> और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है, अभिव्यक्ति कम हो जाती है:<ref>Sexl & Schmidt (1979), p. 198, Solution to example 16.1</ref><ref name="ferraro1">Ferraro (2007), p. 178</ref>                                                                                                                 
:<math>\mathbf{A}_{r}=\mathbf{a}\left(\gamma^{4},\ \gamma^{2},\ \gamma^{2}\right)</math>
:<math>\mathbf{A}_{r}=\mathbf{a}\left(\gamma^{4},\ \gamma^{2},\ \gamma^{2}\right)</math>
पहले चर्चा की गई तीन-त्वरण के विपरीत, चार-त्वरण के लिए नया परिवर्तन प्राप्त करना आवश्यक नहीं है, क्योंकि सभी चार-सदिशों की तरह, <math>\mathbf{A}</math> और <math>\mathbf{A}'</math> के अवयव के सापेक्ष गति <math>v</math> के साथ दो जड़त्वीय फ़्रेमों में होते है ({{equationNote|1a}}, {{equationNote|1b}}) के अनुरूप लोरेंत्ज़ परिवर्तन द्वारा जुड़े हुए हैं. चार-सदिशों की अन्य संपत्ति आंतरिक उत्पाद <math>\mathbf{A}^{2}=-A_{t}^{2}+\mathbf{A}_{r}^{2}</math> या उसका परिमाण <math>|\mathbf{A}|=\sqrt{\mathbf{A}^{2}}</math> की अपरिवर्तनीयता है, जो इस उपस्तिथि में देता है:<ref name="ferraro1" /><ref name="freund1" /><ref name="kopeikin1">Kopeikin & Efroimsky & Kaplan (2011), p. 137</ref>
पहले चर्चा की गई तीन-त्वरण के विपरीत, चार-त्वरण के लिए नया परिवर्तन प्राप्त करना आवश्यक नहीं है, क्योंकि सभी चार-सदिशों की तरह, <math>\mathbf{A}</math> और <math>\mathbf{A}'</math> के अवयव के सापेक्ष गति <math>v</math> के साथ दो जड़त्वीय फ़्रेमों में होते है ({{equationNote|1a}}, {{equationNote|1b}}) के अनुरूप लोरेंत्ज़ परिवर्तन द्वारा जुड़े हुए हैं. चार-सदिशों की अन्य संपत्ति आंतरिक उत्पाद <math>\mathbf{A}^{2}=-A_{t}^{2}+\mathbf{A}_{r}^{2}</math> या उसका परिमाण <math>|\mathbf{A}|=\sqrt{\mathbf{A}^{2}}</math> की अपरिवर्तनीयता है, जो इस उपस्तिथि में देता है:<ref name="ferraro1" /><ref name="freund1" /><ref name="kopeikin1">Kopeikin & Efroimsky & Kaplan (2011), p. 137</ref>


{{NumBlk|:|<math>|\mathbf{A}'|=|\mathbf{A}|=\sqrt{\gamma^{4}\left[\mathbf{a}^{2}+\gamma^{2}\left(\frac{\mathbf{u}\cdot\mathbf{a}}{c}\right)^{2}\right]}</math>.|{{EquationRef|2b}}}}
{{NumBlk|:|<math>|\mathbf{A}'|=|\mathbf{A}|=\sqrt{\gamma^{4}\left[\mathbf{a}^{2}+\gamma^{2}\left(\frac{\mathbf{u}\cdot\mathbf{a}}{c}\right)^{2}\right]}</math>.|{{EquationRef|2b}}}}
Line 84: Line 84:
{{Main|समुचित त्वरण                  }}
{{Main|समुचित त्वरण                  }}


अनंत छोटी अवधियों में सदैव जड़त्वीय फ्रेम होता है, जिसका क्षणिक वेग त्वरित शरीर के समान होता है, और जिसमें लोरेंत्ज़ परिवर्तन होता है। इन फ़्रेमों के संगत वाले तीन-त्वरण <math>\mathbf{a}^{0}=\left(a_{x}^{0},\ a_{y}^{0},\ a_{z}^{0}\right)</math> को सीधे एक्सेलेरोमीटर द्वारा मापा जा सकता है, और इसे उचित त्वरण <ref name="rindler1">Rindler (1977), pp. 49-50</ref><ref name="sommerfeld2" group="H" /> या बाकी त्वरण कहा जाता है.<ref name=laue1>von Laue (1921), pp. 88-89</ref><ref name=herglotz2 group=H /> में <math>\mathbf{a}^{0}</math> का संबंध क्षणिक जड़त्वीय फ़्रेमों में <math>S'</math> और <math>\mathbf{a}</math> बाहरी जड़त्वीय फ्रेम को <math>S</math> में मापा जाता है जो ({{equationNote|1c}}, {{equationNote|1d}}) साथ <math>\mathbf{a}'=\mathbf{a}^{0}</math>, <math>\mathbf{u}'=0</math>, <math>\mathbf{u}=\mathbf{v}</math> और <math>\gamma=\gamma_{v}</math>से अनुसरण करता है. तो ({{equationNote|1c}}) के संदर्भ में , जब वेग <math>u=u_{x}=v=v_{x}</math> x-दिशा में निर्देशित होता है और जब केवल त्वरण के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) वेग पर विचार किया जाता है, तो यह निम्नानुसार है:<ref name=pauli /><ref name=laue1 /><ref name=rindler1 /><ref name=lorentz1 group=H /><ref name=lorentz2 group=H /><ref name=sommerfeld2 group=H /><ref name=herglotz2 group=H />
अनंत छोटी अवधियों में सदैव जड़त्वीय फ्रेम होता है, जिसका क्षणिक वेग त्वरित शरीर के समान होता है, और जिसमें लोरेंत्ज़ परिवर्तन होता है। इन फ़्रेमों के संगत वाले तीन-त्वरण <math>\mathbf{a}^{0}=\left(a_{x}^{0},\ a_{y}^{0},\ a_{z}^{0}\right)</math> को सीधे एक्सेलेरोमीटर द्वारा मापा जा सकता है, और इसे उचित त्वरण <ref name="rindler1">Rindler (1977), pp. 49-50</ref><ref name="sommerfeld2" group="H" /> या बाकी त्वरण कहा जाता है.<ref name=laue1>von Laue (1921), pp. 88-89</ref><ref name=herglotz2 group=H /> में <math>\mathbf{a}^{0}</math> का संबंध क्षणिक जड़त्वीय फ़्रेमों में <math>S'</math> और <math>\mathbf{a}</math> बाहरी जड़त्वीय फ्रेम को <math>S</math> में मापा जाता है जो ({{equationNote|1c}}, {{equationNote|1d}}) साथ <math>\mathbf{a}'=\mathbf{a}^{0}</math>, <math>\mathbf{u}'=0</math>, <math>\mathbf{u}=\mathbf{v}</math> और <math>\gamma=\gamma_{v}</math>से अनुसरण करता है. तो ({{equationNote|1c}}) के संदर्भ में , जब वेग <math>u=u_{x}=v=v_{x}</math> x-दिशा में निर्देशित होता है और जब केवल त्वरण के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) वेग पर विचार किया जाता है, तो यह निम्नानुसार है:<ref name=pauli /><ref name=laue1 /><ref name=rindler1 /><ref name=lorentz1 group=H /><ref name=lorentz2 group=H /><ref name=sommerfeld2 group=H /><ref name=herglotz2 group=H />


{{NumBlk|:|<math>\begin{array}{c|c|cc}
{{NumBlk|:|<math>\begin{array}{c|c|cc}
Line 100: Line 100:
\end{array}</math>|{{EquationRef|3a}}}}
\end{array}</math>|{{EquationRef|3a}}}}


द्वारा सामान्यीकृत ({{equationNote|1d}}) की इच्छानुसार दिशाओं के लिए <math>\mathbf{u}</math> परिमाण का <math>|\mathbf{u}|=u</math>:<ref>Rebhan (1999), p. 775</ref><ref>Nikolić (2000), eq. 10</ref><ref name="kopeikin1" />
द्वारा सामान्यीकृत ({{equationNote|1d}}) की इच्छानुसार दिशाओं के लिए <math>\mathbf{u}</math> परिमाण का <math>|\mathbf{u}|=u</math>:<ref>Rebhan (1999), p. 775</ref><ref>Nikolić (2000), eq. 10</ref><ref name="kopeikin1" />


:<math>\begin{align}\mathbf{a}^{0} & =\gamma^{2}\left[\mathbf{a}+\frac{(\mathbf{a}\cdot\mathbf{u})\mathbf{u}}{u^{2}}\left(\gamma-1\right)\right]\\
:<math>\begin{align}\mathbf{a}^{0} & =\gamma^{2}\left[\mathbf{a}+\frac{(\mathbf{a}\cdot\mathbf{u})\mathbf{u}}{u^{2}}\left(\gamma-1\right)\right]\\
Line 110: Line 110:
{{NumBlk|:|<math>|\mathbf{A}'|=\sqrt{0+\left.\mathbf{a}^{0}\right.^{2}}=|\mathbf{a}^{0}|</math>.|{{EquationRef|3b}}}}
{{NumBlk|:|<math>|\mathbf{A}'|=\sqrt{0+\left.\mathbf{a}^{0}\right.^{2}}=|\mathbf{a}^{0}|</math>.|{{EquationRef|3b}}}}


इस प्रकार चार-त्वरण का परिमाण उचित त्वरण के परिमाण से मेल खाता है। इसे ({{equationNote|2b}}) के साथ मिलाकर मध्य संबंध के निर्धारण के लिए वैकल्पिक विधि <math>S'</math> में <math>\mathbf{a}^{0}</math> और <math>S</math> में <math>\mathbf{a}</math> दिया गया है र्थात्<ref name="freund1" /><ref name="kopeikin1" />  
इस प्रकार चार-त्वरण का परिमाण उचित त्वरण के परिमाण से मेल खाता है। इसे ({{equationNote|2b}}) के साथ मिलाकर मध्य संबंध के निर्धारण के लिए वैकल्पिक विधि <math>S'</math> में <math>\mathbf{a}^{0}</math> और <math>S</math> में <math>\mathbf{a}</math> दिया गया है र्थात्<ref name="freund1" /><ref name="kopeikin1" />  


:<math>|\mathbf{a}^{0}|=|\mathbf{A}|=\sqrt{\gamma^{4}\left[\mathbf{a}^{2}+\gamma^{2}\left(\frac{\mathbf{u}\cdot\mathbf{a}}{c}\right)^{2}\right]}         
:<math>|\mathbf{a}^{0}|=|\mathbf{A}|=\sqrt{\gamma^{4}\left[\mathbf{a}^{2}+\gamma^{2}\left(\frac{\mathbf{u}\cdot\mathbf{a}}{c}\right)^{2}\right]}         
                                                                                                               </math>
                                                                                                               </math>
किस से ({{equationNote|3a}}) फिर से अनुसरण करता है जब वेग <math>u=u_{x}</math> को x-दिशा में निर्देशित किया जाता है और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है।                                                                                                                                                       
किस से ({{equationNote|3a}}) फिर से अनुसरण करता है जब वेग <math>u=u_{x}</math> को x-दिशा में निर्देशित किया जाता है और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है।                                                                                                                                                       


==त्वरण और बल                                                                                                                                              ==
==त्वरण और बल                                                                                                                                              ==
Line 120: Line 120:
{{See|सापेक्षतावादी यांत्रिकी बल|विशेष सापेक्षता में द्रव्यमान }}
{{See|सापेक्षतावादी यांत्रिकी बल|विशेष सापेक्षता में द्रव्यमान }}


स्थिर द्रव्यमान <math>m</math> मानकर , चार-बल <math>\mathbf{F}</math> त्रि-बल <math>\mathbf{f}</math> के कार्य के रूप में चार-त्वरण ({{equationNote|2a}}) से <math>\mathbf{F}=m\mathbf{A}</math> द्वारा संबंधित है, इस प्रकार:<ref name=sexl1 /><ref name=freund2>Freund (2008), p. 276</ref>
स्थिर द्रव्यमान <math>m</math> मानकर , चार-बल <math>\mathbf{F}</math> त्रि-बल <math>\mathbf{f}</math> के कार्य के रूप में चार-त्वरण ({{equationNote|2a}}) से <math>\mathbf{F}=m\mathbf{A}</math> द्वारा संबंधित है, इस प्रकार:<ref name=sexl1 /><ref name=freund2>Freund (2008), p. 276</ref>


{{NumBlk|:|<math>\mathbf{F}=\left(\gamma\frac{\mathbf{f}\cdot\mathbf{u}}{c},\ \gamma\mathbf{f}\right)=m\mathbf{A}=m\left(\gamma^{4}\left(\frac{\mathbf{u}\cdot\mathbf{a}}{c}\right),\ \gamma^{4}\left(\frac{\mathbf{u}\cdot\mathbf{a}}{c^{2}}\right)\mathbf{u}+\gamma^{2}\mathbf{a}\right)</math>|{{equationRef|4a}}}}
{{NumBlk|:|<math>\mathbf{F}=\left(\gamma\frac{\mathbf{f}\cdot\mathbf{u}}{c},\ \gamma\mathbf{f}\right)=m\mathbf{A}=m\left(\gamma^{4}\left(\frac{\mathbf{u}\cdot\mathbf{a}}{c}\right),\ \gamma^{4}\left(\frac{\mathbf{u}\cdot\mathbf{a}}{c^{2}}\right)\mathbf{u}+\gamma^{2}\mathbf{a}\right)</math>|{{equationRef|4a}}}}


वेग की इच्छानुसार दिशाओं के लिए तीन-बल और तीन-त्वरण के मध्य संबंध इस प्रकार है<ref name=moller /><ref name=rindler3>Rindler (1977), pp. 89-90</ref><ref name=sexl1>Sexl & Schmidt (1979), solution of example 16.2, p. 198</ref>
वेग की इच्छानुसार दिशाओं के लिए तीन-बल और तीन-त्वरण के मध्य संबंध इस प्रकार है<ref name=moller /><ref name=rindler3>Rindler (1977), pp. 89-90</ref><ref name=sexl1>Sexl & Schmidt (1979), solution of example 16.2, p. 198</ref>


{{NumBlk|:|<math>\begin{align}\mathbf{f} & =m\gamma^{3}\left(\frac{(\mathbf{a}\cdot\mathbf{u})\mathbf{u}}{c^{2}}\right)+m\gamma\mathbf{a}\\
{{NumBlk|:|<math>\begin{align}\mathbf{f} & =m\gamma^{3}\left(\frac{(\mathbf{a}\cdot\mathbf{u})\mathbf{u}}{c^{2}}\right)+m\gamma\mathbf{a}\\
Line 131: Line 131:
</math>|{{equationRef|4b}}}}
</math>|{{equationRef|4b}}}}


जब वेग को '''<math>u=u_{x}</math>'''द्वारा x-दिशा में निर्देशित किया जाता है और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है<ref name=laue2 /><ref name=rindler3 /><ref name=sexl1 /><ref name=lorentz2 group=H /><ref name=planck group=H />
जब वेग को '''<math>u=u_{x}</math>'''द्वारा x-दिशा में निर्देशित किया जाता है और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है<ref name=laue2 /><ref name=rindler3 /><ref name=sexl1 /><ref name=lorentz2 group=H /><ref name=planck group=H />


{{NumBlk|:|<math>\begin{array}{c|c|cc}
{{NumBlk|:|<math>\begin{array}{c|c|cc}
Line 153: Line 153:
:<math>m_{\perp}=\frac{f_{y}}{a_{y}}=\frac{f_{z}}{a_{z}}=m\gamma                                                                                                                            </math> अनुप्रस्थ द्रव्यमान के रूप में।
:<math>m_{\perp}=\frac{f_{y}}{a_{y}}=\frac{f_{z}}{a_{z}}=m\gamma                                                                                                                            </math> अनुप्रस्थ द्रव्यमान के रूप में।


रिश्ता ({{equationNote|4b}}) तीन-त्वरण और तीन-बल के मध्य गति के समीकरण से भी प्राप्त किया जा सकता है<ref name=tolman2>Tolman (1917), pp. 73-74</ref><ref name=moller>Møller (1955), pp. 74-75</ref><ref name=lorentz2 group=H /><ref name=planck group=H />
रिश्ता ({{equationNote|4b}}) तीन-त्वरण और तीन-बल के मध्य गति के समीकरण से भी प्राप्त किया जा सकता है<ref name=tolman2>Tolman (1917), pp. 73-74</ref><ref name=moller>Møller (1955), pp. 74-75</ref><ref name=lorentz2 group=H /><ref name=planck group=H />


{{NumBlk|:|<math>\mathbf{f}=\frac{d\mathbf{p}}{dt}=\frac{d(m\gamma\mathbf{u})}{dt}=\frac{d(m\gamma)}{dt}\mathbf{u}+m\gamma\frac{d\mathbf{u}}{dt}=m\gamma^{3}\left(\frac{(\mathbf{a}\cdot\mathbf{u})\mathbf{u}}{c^{2}}\right)+m\gamma\mathbf{a}</math>|{{equationRef|4d}}}}
{{NumBlk|:|<math>\mathbf{f}=\frac{d\mathbf{p}}{dt}=\frac{d(m\gamma\mathbf{u})}{dt}=\frac{d(m\gamma)}{dt}\mathbf{u}+m\gamma\frac{d\mathbf{u}}{dt}=m\gamma^{3}\left(\frac{(\mathbf{a}\cdot\mathbf{u})\mathbf{u}}{c^{2}}\right)+m\gamma\mathbf{a}</math>|{{equationRef|4d}}}}


जहाँ <math>\mathbf{p}</math> तीन-गति है. <math>S</math> में <math>\mathbf{f}</math> और <math>S'</math> में <math>\mathbf{f}'</math> के मध्य त्रि-बल का संगत परिवर्तन (जब फ्रेम के मध्य सापेक्ष वेग x-दिशा में <math>v=v_{x}</math> द्वारा निर्देशित होता है और केवल त्वरण के समानांतर (x-दिशा) होता है या वेग के लिए लंबवत (y-, z-दिशा) पर विचार किया जाता है) <math>\mathbf{u}</math>, <math>\mathbf{a}</math>, <math>m\gamma</math>, <math>d(m\gamma)/dt</math> के लिए प्रासंगिक परिवर्तन सूत्रों के प्रतिस्थापन द्वारा अनुसरण किया जाता है , या लोरेंत्ज़ से चार-बल के रूपांतरित घटक, परिणाम के साथ:<ref name=tolman2 /><ref>von Laue (1921), p. 113</ref><ref name=freund2 /><ref name=poincare1 group=H /><ref name=laue1 group=H />
जहाँ <math>\mathbf{p}</math> तीन-गति है. <math>S</math> में <math>\mathbf{f}</math> और <math>S'</math> में <math>\mathbf{f}'</math> के मध्य त्रि-बल का संगत परिवर्तन (जब फ्रेम के मध्य सापेक्ष वेग x-दिशा में <math>v=v_{x}</math> द्वारा निर्देशित होता है और केवल त्वरण के समानांतर (x-दिशा) होता है या वेग के लिए लंबवत (y-, z-दिशा) पर विचार किया जाता है) <math>\mathbf{u}</math>, <math>\mathbf{a}</math>, <math>m\gamma</math>, <math>d(m\gamma)/dt</math> के लिए प्रासंगिक परिवर्तन सूत्रों के प्रतिस्थापन द्वारा अनुसरण किया जाता है , या लोरेंत्ज़ से चार-बल के रूपांतरित घटक, परिणाम के साथ:<ref name=tolman2 /><ref>von Laue (1921), p. 113</ref><ref name=freund2 /><ref name=poincare1 group=H /><ref name=laue1 group=H />


{{NumBlk|:|<math>\begin{array}{c|c}
{{NumBlk|:|<math>\begin{array}{c|c}
Line 170: Line 170:
\end{array}</math>|{{equationRef|4e}}}}
\end{array}</math>|{{equationRef|4e}}}}


या <math>\mathbf{u}</math> की इच्छानुसार दिशाओं के लिए सामान्यीकृत, साथ ही परिमाण <math>|\mathbf{v}|=v</math> के साथ <math>\mathbf{v}</math> :<ref>Møller (1955), p. 73</ref><ref>Kopeikin & Efroimsky & Kaplan (2011), p. 173</ref>
या <math>\mathbf{u}</math> की इच्छानुसार दिशाओं के लिए सामान्यीकृत, साथ ही परिमाण <math>|\mathbf{v}|=v</math> के साथ <math>\mathbf{v}</math> :<ref>Møller (1955), p. 73</ref><ref>Kopeikin & Efroimsky & Kaplan (2011), p. 173</ref>


{{NumBlk|:|<math>\begin{align}\mathbf{f}' & =\frac{\frac{\mathbf{f}}{\gamma_{v}}-\left\{ (\mathbf{f\cdot u})\frac{v^{2}}{c^{2}}-(\mathbf{f\cdot v})\left(1-\frac{1}{\gamma_{v}}\right)\right\} \frac{\mathbf{v}}{v^{2}}}{1-\frac{\mathbf{v\cdot u}}{c^{2}}}\\
{{NumBlk|:|<math>\begin{align}\mathbf{f}' & =\frac{\frac{\mathbf{f}}{\gamma_{v}}-\left\{ (\mathbf{f\cdot u})\frac{v^{2}}{c^{2}}-(\mathbf{f\cdot v})\left(1-\frac{1}{\gamma_{v}}\right)\right\} \frac{\mathbf{v}}{v^{2}}}{1-\frac{\mathbf{v\cdot u}}{c^{2}}}\\
Line 179: Line 179:
==उचित त्वरण और उचित बल                                            ==
==उचित त्वरण और उचित बल                                            ==


गतिशील स्प्रिंग संतुलन द्वारा मापे गए क्षणिक जड़त्वीय फ्रेम में बल <math>\mathbf{f}^{0}</math>को उचित बल कहा जा सकता है।<ref name="shadowitz">Shadowitz (1968), p. 101</ref><ref name="pfeffer">Pfeffer & Nir (2012), p. 115, "In the special case in which the particle is momentarily at rest relative to the observer S, the force he measures will be the ''proper force''".</ref> यह <math>\mathbf{f}'=\mathbf{f}^{0}</math> और <math>\mathbf{u}'=0</math> के साथ -साथ <math>\mathbf{u}=\mathbf{v}                                                                </math> और <math>\gamma=\gamma_{v}</math> को सेट करके ({{equationNote|4e}}, {{equationNote|4f}}) का अनुसरण करता है। इस प्रकार ({{equationNote|4e}}) जहां केवल त्वरण वेग <math>u=u_{x}=v=v_{x}</math> के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) होता है माने जाते है कि इसमें त्वरण पर विचार किया जाता है:<ref name="moller2" /><ref name="shadowitz" /><ref name="pfeffer" />           
गतिशील स्प्रिंग संतुलन द्वारा मापे गए क्षणिक जड़त्वीय फ्रेम में बल <math>\mathbf{f}^{0}</math>को उचित बल कहा जा सकता है।<ref name="shadowitz">Shadowitz (1968), p. 101</ref><ref name="pfeffer">Pfeffer & Nir (2012), p. 115, "In the special case in which the particle is momentarily at rest relative to the observer S, the force he measures will be the ''proper force''".</ref> यह <math>\mathbf{f}'=\mathbf{f}^{0}</math> और <math>\mathbf{u}'=0</math> के साथ -साथ <math>\mathbf{u}=\mathbf{v}                                                                </math> और <math>\gamma=\gamma_{v}</math> को सेट करके ({{equationNote|4e}}, {{equationNote|4f}}) का अनुसरण करता है। इस प्रकार ({{equationNote|4e}}) जहां केवल त्वरण वेग <math>u=u_{x}=v=v_{x}</math> के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) होता है माने जाते है कि इसमें त्वरण पर विचार किया जाता है:<ref name="moller2" /><ref name="shadowitz" /><ref name="pfeffer" />           


{{NumBlk|:|<math>\begin{array}{c|c|cc}
{{NumBlk|:|<math>\begin{array}{c|c|cc}
Line 195: Line 195:
\end{array}</math>|{{EquationRef|5a}}}}
\end{array}</math>|{{EquationRef|5a}}}}


परिमाण <math>|\mathbf{u}|=u</math> का <math>\mathbf{u}</math> की इच्छानुसार दिशाओं के लिए {{equationNote|4f}})द ्वारा सामान्यीकृत    :<ref name="moller2">Møller (1955), p. 74</ref><ref>Rebhan (1999), p. 818</ref>
परिमाण <math>|\mathbf{u}|=u</math> का <math>\mathbf{u}</math> की इच्छानुसार दिशाओं के लिए {{equationNote|4f}})द ्वारा सामान्यीकृत    :<ref name="moller2">Møller (1955), p. 74</ref><ref>Rebhan (1999), p. 818</ref>
:<math>\begin{align}\mathbf{f}^{0} & =\mathbf{f}\gamma-\frac{(\mathbf{f}\cdot\mathbf{u})\mathbf{u}}{u^{2}}(\gamma-1)\\
:<math>\begin{align}\mathbf{f}^{0} & =\mathbf{f}\gamma-\frac{(\mathbf{f}\cdot\mathbf{u})\mathbf{u}}{u^{2}}(\gamma-1)\\
\mathbf{f} & =\frac{\mathbf{f}^{0}}{\gamma}+\frac{(\mathbf{f}^{0}\cdot\mathbf{u})\mathbf{u}}{u^{2}}\left(1-\frac{1}{\gamma}\right)
\mathbf{f} & =\frac{\mathbf{f}^{0}}{\gamma}+\frac{(\mathbf{f}^{0}\cdot\mathbf{u})\mathbf{u}}{u^{2}}\left(1-\frac{1}{\gamma}\right)
Line 207: Line 207:
</math>|{{equationRef|5b}}}}
</math>|{{equationRef|5b}}}}


इसके द्वारा, अनुप्रस्थ द्रव्यमान <math>m_{\perp}</math>की ऐतिहासिक परिभाषाओं में स्पष्ट विरोधाभास है समझाया जा सकता है.<ref name="math">Mathpages (see external links), "Transverse Mass in Einstein's Electrodynamics", eq. 2,3</ref> आइंस्टीन (1905) ने त्रि-त्वरण और उचित बल के मध्य संबंध का वर्णन किया<ref name="einstein" group="H" />
इसके द्वारा, अनुप्रस्थ द्रव्यमान <math>m_{\perp}</math>की ऐतिहासिक परिभाषाओं में स्पष्ट विरोधाभास है समझाया जा सकता है.<ref name="math">Mathpages (see external links), "Transverse Mass in Einstein's Electrodynamics", eq. 2,3</ref> आइंस्टीन (1905) ने त्रि-त्वरण और उचित बल के मध्य संबंध का वर्णन किया<ref name="einstein" group="H" />


:<math>m_{\perp\ \mathrm{Einstein}}=\frac{f_{y}^{0}}{a_{y}}=\frac{f_{z}^{0}}{a_{z}}=m\gamma^{2}                                                                                                                                              </math>,
:<math>m_{\perp\ \mathrm{Einstein}}=\frac{f_{y}^{0}}{a_{y}}=\frac{f_{z}^{0}}{a_{z}}=m\gamma^{2}                                                                                                                                              </math>,
Line 238: Line 238:
जहाँ <math>v=r\Omega_{0}</math> [[स्पर्शरेखीय गति]] है, <math>r</math> कक्षीय त्रिज्या है, <math>\Omega_{0}</math> समन्वय समय के फलन के रूप में [[कोणीय वेग]] है, और <math>\Omega=\gamma\Omega_{0}</math> को उचित कोणीय वेग के रूप में दर्शाया जाता है .
जहाँ <math>v=r\Omega_{0}</math> [[स्पर्शरेखीय गति]] है, <math>r</math> कक्षीय त्रिज्या है, <math>\Omega_{0}</math> समन्वय समय के फलन के रूप में [[कोणीय वेग]] है, और <math>\Omega=\gamma\Omega_{0}</math> को उचित कोणीय वेग के रूप में दर्शाया जाता है .


ट्रिपल वक्रों की [[विभेदक ज्यामिति]] का उपयोग करके घुमावदार विश्व रेखाओं का वर्गीकरण प्राप्त किया जा सकता है, जिसे उचित संदर्भ फ्रेम (फ्लैट स्पेसटाइम) या स्पेसटाइम फ्रेनेट-सेरेट समीकरण|स्पेसटाइम फ्रेनेट-सेरेट सूत्रों द्वारा व्यक्त किया जा सकता है।<ref>Synge (1966)</ref> विशेष रूप से, यह दिखाया जा सकता है कि अतिपरवलयिक गति और एकसमान वृत्तीय गति, स्थिर [[वक्रता]] और वक्र के मरोड़ वाली गति के विशेष उपस्तिथि हैं,<ref>Pauri & Vallisneri (2000), Appendix A</ref> बोर्न कठोरता की स्थिति को संतुष्ट करना।<ref name=herglotz1 group=H /><ref name=Kottler group=H /> किसी पिंड को बोर्न रिजिड भी कहा जाता है यदि त्वरण के समय इसकी अनंत रूप से भिन्न की गई विश्व रेखाओं या बिंदुओं के मध्य समिष्ट समय की दूरी स्थिर रहती है।
ट्रिपल वक्रों की [[विभेदक ज्यामिति]] का उपयोग करके घुमावदार विश्व रेखाओं का वर्गीकरण प्राप्त किया जा सकता है, जिसे उचित संदर्भ फ्रेम (फ्लैट स्पेसटाइम) या स्पेसटाइम फ्रेनेट-सेरेट समीकरण|स्पेसटाइम फ्रेनेट-सेरेट सूत्रों द्वारा व्यक्त किया जा सकता है।<ref>Synge (1966)</ref> विशेष रूप से, यह दिखाया जा सकता है कि अतिपरवलयिक गति और एकसमान वृत्तीय गति, स्थिर [[वक्रता]] और वक्र के मरोड़ वाली गति के विशेष उपस्तिथि हैं,<ref>Pauri & Vallisneri (2000), Appendix A</ref> बोर्न कठोरता की स्थिति को संतुष्ट करना।<ref name=herglotz1 group=H /><ref name=Kottler group=H /> किसी पिंड को बोर्न रिजिड भी कहा जाता है यदि त्वरण के समय इसकी अनंत रूप से भिन्न की गई विश्व रेखाओं या बिंदुओं के मध्य समिष्ट समय की दूरी स्थिर रहती है।


==त्वरित संदर्भ फ़्रेम                                                                  ==
==त्वरित संदर्भ फ़्रेम                                                                  ==
Line 250: Line 250:
अधिक जानकारी के लिए वॉन लाउ देखें,<ref name=laue3 /> पाउली,<ref name=pauli2 /> मिलर,<ref>Miller (1981)</ref> पुराना,<ref>Zahar (1989)</ref> गौरगौलहोन,<ref name=gourgoulhon /> और विशेष सापेक्षता के इतिहास में ऐतिहासिक स्रोत को देखा जाता है ।
अधिक जानकारी के लिए वॉन लाउ देखें,<ref name=laue3 /> पाउली,<ref name=pauli2 /> मिलर,<ref>Miller (1981)</ref> पुराना,<ref>Zahar (1989)</ref> गौरगौलहोन,<ref name=gourgoulhon /> और विशेष सापेक्षता के इतिहास में ऐतिहासिक स्रोत को देखा जाता है ।


;1899{{colon}} : [[हेंड्रिक लोरेंत्ज़]]<ref name="lorentz1" group="H" /> ने कणों की स्थिर करने वाले इलेक्ट्रोस्टैटिक प्रणाली <math>S_{0}</math> ( स्थिर [[लोरेंत्ज़ ईथर सिद्धांत]] में) और उभरते हुए प्रणाली <math>S</math> के मध्य त्वरण, बलों और द्रव्यमान के लिए सही (एक निश्चित कारक \ एप्सिलॉन तक) संबंध प्राप्त किया जाता है। इसमें से अनुवाद जोड़कर, साथ <math>k</math> लोरेंत्ज़ कारक के रूप में दर्शाया जाता है |   
;1899{{colon}} : [[हेंड्रिक लोरेंत्ज़]]<ref name="lorentz1" group="H" /> ने कणों की स्थिर करने वाले इलेक्ट्रोस्टैटिक प्रणाली <math>S_{0}</math> ( स्थिर [[लोरेंत्ज़ ईथर सिद्धांत]] में) और उभरते हुए प्रणाली <math>S</math> के मध्य त्वरण, बलों और द्रव्यमान के लिए सही (एक निश्चित कारक \ एप्सिलॉन तक) संबंध प्राप्त किया जाता है। इसमें से अनुवाद जोड़कर, साथ <math>k</math> लोरेंत्ज़ कारक के रूप में दर्शाया जाता है |   
::<math>\mathbf{f}/\mathbf{f}^{0}</math> के लिए <math>\frac{1}{\epsilon^{2}}</math>, <math>\frac{1}{k\epsilon^{2}}</math>, <math>\frac{1}{k\epsilon^{2}}</math>, ({{equationNote|5a}}) द्वारा ;
::<math>\mathbf{f}/\mathbf{f}^{0}</math> के लिए <math>\frac{1}{\epsilon^{2}}</math>, <math>\frac{1}{k\epsilon^{2}}</math>, <math>\frac{1}{k\epsilon^{2}}</math>, ({{equationNote|5a}}) द्वारा ;
::<math>\mathbf{a}/\mathbf{a}^{0}</math> के लिए <math>\frac{1}{k^{3}\epsilon}</math>, <math>\frac{1}{k^{2}\epsilon}</math>, <math>\frac{1}{k^{2}\epsilon}</math> ({{equationNote|3a}}) द्वारा;
::<math>\mathbf{a}/\mathbf{a}^{0}</math> के लिए <math>\frac{1}{k^{3}\epsilon}</math>, <math>\frac{1}{k^{2}\epsilon}</math>, <math>\frac{1}{k^{2}\epsilon}</math> ({{equationNote|3a}}) द्वारा;
::<math>\mathbf{f}/(m\mathbf{a})</math> के लिए <math>\frac{k^{3}}{\epsilon}</math>, <math>\frac{k}{\epsilon}</math>, <math>\frac{k}{\epsilon}</math> , इस प्रकार ({{equationNote|4c}})अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान को दर्शाया जाता है ;
::<math>\mathbf{f}/(m\mathbf{a})</math> के लिए <math>\frac{k^{3}}{\epsilon}</math>, <math>\frac{k}{\epsilon}</math>, <math>\frac{k}{\epsilon}</math> , इस प्रकार ({{equationNote|4c}})अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान को दर्शाया जाता है ;
:लोरेंत्ज़ ने बताया कि उसके पास <math>\epsilon</math> का मूल्य निर्धारित करने का कोई साधन नहीं है . यदि <math>\epsilon=1</math> को सेट हो गया होता तब , उसके भावों ने बिल्कुल सापेक्षतावादी रूप धारण कर लिया होगा।<br><br>
:लोरेंत्ज़ ने बताया कि उसके पास <math>\epsilon</math> का मूल्य निर्धारित करने का कोई साधन नहीं है . यदि <math>\epsilon=1</math> को सेट हो गया होता तब , उसके भावों ने बिल्कुल सापेक्षतावादी रूप धारण कर लिया होगा।<br><br>
;1904{{colon}}                    : लोरेंत्ज़<ref name=lorentz2 group=H />पिछले संबंधों को अधिक विस्तृत विधियों से प्राप्त किया, अर्थात् प्रणाली <math>\Sigma'</math> और चलती प्रणाली <math>\Sigma</math> में स्थिर करने वाले कणों के गुणों के संबंध में , नए सहायक वेरिएबल <math>l</math> के साथ के तुलना में <math>1/\epsilon</math> 1899 की तुलना में, इस प्रकार:  
;1904{{colon}}                    : लोरेंत्ज़<ref name=lorentz2 group=H />पिछले संबंधों को अधिक विस्तृत विधियों से प्राप्त किया, अर्थात् प्रणाली <math>\Sigma'</math> और चलती प्रणाली <math>\Sigma</math> में स्थिर करने वाले कणों के गुणों के संबंध में , नए सहायक वेरिएबल <math>l</math> के साथ के तुलना में <math>1/\epsilon</math> 1899 की तुलना में, इस प्रकार:  
::<math>\mathfrak{F}(\Sigma)=\left(l^{2},\ \frac{l^{2}}{k},\ \frac{l^{2}}{k}\right)\mathfrak{F}(\Sigma')                                                                          </math> <math>\mathbf{f}</math> के लिए <math>\mathbf{f}^{0}</math> के फलन के रूप में ({{equationNote|5a}}) द्वारा  ;
::<math>\mathfrak{F}(\Sigma)=\left(l^{2},\ \frac{l^{2}}{k},\ \frac{l^{2}}{k}\right)\mathfrak{F}(\Sigma')                                                                          </math> <math>\mathbf{f}</math> के लिए <math>\mathbf{f}^{0}</math> के फलन के रूप में ({{equationNote|5a}}) द्वारा  ;
::<math>m\mathfrak{j}(\Sigma)=\left(l^{2},\ \frac{l^{2}}{k},\ \frac{l^{2}}{k}\right)m\mathfrak{j}(\Sigma')                                                                      </math> <math>m\mathbf{a}</math> के लिए <math>m\mathbf{a}^{0}</math> के फलन के रूप में ({{equationNote|5b}}) द्वारा ;
::<math>m\mathfrak{j}(\Sigma)=\left(l^{2},\ \frac{l^{2}}{k},\ \frac{l^{2}}{k}\right)m\mathfrak{j}(\Sigma')                                                                      </math> <math>m\mathbf{a}</math> के लिए <math>m\mathbf{a}^{0}</math> के फलन के रूप में ({{equationNote|5b}}) द्वारा ;
::<math>\mathfrak{j}(\Sigma)=\left(\frac{l}{k^{3}},\ \frac{l}{k^{2}},\ \frac{l}{k^{2}}\right)\mathfrak{j}(\Sigma')</math> <math>\mathbf{a}</math> के लिए <math>\mathbf{a}^{0}</math> के फलन के रूप में ({{equationNote|3a}}) द्वारा;
::<math>\mathfrak{j}(\Sigma)=\left(\frac{l}{k^{3}},\ \frac{l}{k^{2}},\ \frac{l}{k^{2}}\right)\mathfrak{j}(\Sigma')</math> <math>\mathbf{a}</math> के लिए <math>\mathbf{a}^{0}</math> के फलन के रूप में ({{equationNote|3a}}) द्वारा;
::<math>m(\Sigma)=\left(k^{3}l,\ kl,\ kl\right)m(\Sigma')</math> शेष द्रव्यमान के फलन के रूप में अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान के लिए ({{equationNote|4c}}, {{equationNote|5b}}).
::<math>m(\Sigma)=\left(k^{3}l,\ kl,\ kl\right)m(\Sigma')</math> शेष द्रव्यमान के फलन के रूप में अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान के लिए ({{equationNote|4c}}, {{equationNote|5b}}).
:इस बार, लोरेंत्ज़ यह <math>l=1</math> दिखा सकता है, जिससे उनके सूत्र त्रुटिहीन सापेक्षतावादी रूप धारण कर लेते हैं। तथा जहाँ उन्होंने गति का समीकरण भी बनाया
:इस बार, लोरेंत्ज़ यह <math>l=1</math> दिखा सकता है, जिससे उनके सूत्र त्रुटिहीन सापेक्षतावादी रूप धारण कर लेते हैं। तथा जहाँ उन्होंने गति का समीकरण भी बनाया
Line 269: Line 269:
:<math>\frac{\rho}{\rho^{\prime}}=\frac{k}{l^{3}}(1+\epsilon\xi)</math>,के साथ और <math>k</math> लोरेंत्ज़ कारक के रूप में, <math>\rho</math> चार्ज घनत्व. या आधुनिक संकेतन में: <math>\epsilon=v</math>, <math>\xi=u_{x}</math>, <math>\left(X_{1},\ Y_{1},\ Z_{1}\right)=\mathbf{f}</math>, और <math>\Sigma X_{1}\xi=\mathbf{f}\cdot\mathbf{u}</math>. लोरेंत्ज़ के रूप में, उन्होंने <math>l=1</math> को सेट किया था .
:<math>\frac{\rho}{\rho^{\prime}}=\frac{k}{l^{3}}(1+\epsilon\xi)</math>,के साथ और <math>k</math> लोरेंत्ज़ कारक के रूप में, <math>\rho</math> चार्ज घनत्व. या आधुनिक संकेतन में: <math>\epsilon=v</math>, <math>\xi=u_{x}</math>, <math>\left(X_{1},\ Y_{1},\ Z_{1}\right)=\mathbf{f}</math>, और <math>\Sigma X_{1}\xi=\mathbf{f}\cdot\mathbf{u}</math>. लोरेंत्ज़ के रूप में, उन्होंने <math>l=1</math> को सेट किया था .
:<br>
:<br>
;1905{{colon}}: अल्बर्ट आइंस्टीन<ref name=einstein group=H /> सापेक्षता के अपने विशेष सिद्धांत के आधार पर गति के समीकरण निकाले, जो यांत्रिक ईथर की क्रिया के बिना समान रूप से मान्य जड़त्वीय फ़्रेमों के मध्य संबंध का प्रतिनिधित्व करते हैं। आइंस्टीन ने निष्कर्ष निकाला, कि क्षणिक जड़त्वीय फ़्रेमों में <math>k</math> गति के समीकरण अपना न्यूटोनियन रूप को निरंतरता क्रियान्वित किया हैं:
;1905{{colon}}: अल्बर्ट आइंस्टीन<ref name=einstein group=H /> सापेक्षता के अपने विशेष सिद्धांत के आधार पर गति के समीकरण निकाले, जो यांत्रिक ईथर की क्रिया के बिना समान रूप से मान्य जड़त्वीय फ़्रेमों के मध्य संबंध का प्रतिनिधित्व करते हैं। आइंस्टीन ने निष्कर्ष निकाला, कि क्षणिक जड़त्वीय फ़्रेमों में <math>k</math> गति के समीकरण अपना न्यूटोनियन रूप को निरंतरता क्रियान्वित किया हैं:
::<math>\mu\frac{d^{2}\xi}{d\tau^{2}}=\epsilon X',\quad\mu\frac{d^{2}\eta}{d\tau^{2}}=\epsilon Y',\quad\mu\frac{d^{2}\zeta}{d\tau^{2}}=\epsilon Z'           
::<math>\mu\frac{d^{2}\xi}{d\tau^{2}}=\epsilon X',\quad\mu\frac{d^{2}\eta}{d\tau^{2}}=\epsilon Y',\quad\mu\frac{d^{2}\zeta}{d\tau^{2}}=\epsilon Z'           
                                                                                                                                                                                                 </math>.
                                                                                                                                                                                                 </math>.
:यह <math>\mathbf{f}^{0}=m\mathbf{a}^{0}</math> इससे मेल खाता है , क्योंकि <math>\mu=m</math> और <math>\left(\frac{d^{2}\xi}{d\tau^{2}},\ \frac{d^{2}\eta}{d\tau^{2}},\ \frac{d^{2}\zeta}{d\tau^{2}}\right)=\mathbf{a}^{0}</math> और <math>\left(\epsilon X',\ \epsilon Y',\ \epsilon Z'\right)=\mathbf{f}^{0}</math>. अपेक्षाकृत गतिमान प्रणाली में परिवर्तन <math>K</math> द्वारा उन्होंने उस फ्रेम में देखे गए विद्युत और चुंबकीय अवयवों के लिए समीकरण प्राप्त किए:
:यह <math>\mathbf{f}^{0}=m\mathbf{a}^{0}</math> इससे मेल खाता है , क्योंकि <math>\mu=m</math> और <math>\left(\frac{d^{2}\xi}{d\tau^{2}},\ \frac{d^{2}\eta}{d\tau^{2}},\ \frac{d^{2}\zeta}{d\tau^{2}}\right)=\mathbf{a}^{0}</math> और <math>\left(\epsilon X',\ \epsilon Y',\ \epsilon Z'\right)=\mathbf{f}^{0}</math>. अपेक्षाकृत गतिमान प्रणाली में परिवर्तन <math>K</math> द्वारा उन्होंने उस फ्रेम में देखे गए विद्युत और चुंबकीय अवयवों के लिए समीकरण प्राप्त किए:
::<math>\frac{d^{2}x}{dt^{2}}=\frac{\epsilon}{\mu}\frac{1}{\beta^{3}}X,\quad\frac{d^{2}y}{dt^{2}}=\frac{\epsilon}{\mu}\frac{1}{\beta}\left(Y-\frac{v}{V}N\right),\quad\frac{d^{2}z}{dt^{2}}=\frac{\epsilon}{\mu}\frac{1}{\beta}\left(Z+\frac{v}{V}M\right)                                                          </math>.
::<math>\frac{d^{2}x}{dt^{2}}=\frac{\epsilon}{\mu}\frac{1}{\beta^{3}}X,\quad\frac{d^{2}y}{dt^{2}}=\frac{\epsilon}{\mu}\frac{1}{\beta}\left(Y-\frac{v}{V}N\right),\quad\frac{d^{2}z}{dt^{2}}=\frac{\epsilon}{\mu}\frac{1}{\beta}\left(Z+\frac{v}{V}M\right)                                                          </math>.
:यह ({{equationNote|4c}}) के साथ <math>\mathbf{a}=\frac{\mathbf{f}}{m}\left(\frac{1}{\gamma^{3}},\ \frac{1}{\gamma},\ \frac{1}{\gamma}\right)</math> (से मेल खाता है) , क्योंकि <math>\mu=m</math> और <math>\left(\frac{d^{2}x}{dt^{2}},\ \frac{d^{2}y}{dt^{2}},\ \frac{d^{2}z}{dt^{2}}\right)=\mathbf{a}</math> और <math>\left[\epsilon X,\ \epsilon\left(Y-\frac{v}{V}N\right),\ \epsilon\left(Z+\frac{v}{V}M\right)\right]=\mathbf{f}</math> और <math>\beta=\gamma</math>. नतीजतन, आइंस्टीन ने अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान का निर्धारण किया, तथापि उन्होंने कोमोविंग स्प्रिंग बैलेंस द्वारा मापा जाता है इसे बल <math>\left(\epsilon X',\ \epsilon Y',\ \epsilon Z'\right)=\mathbf{f}^{0}</math> और प्रणाली <math>K</math>में तीन-त्वरण के लिए <math>\mathbf{a}</math> से संबंधित किया जाता है :<ref name=math />:
:यह ({{equationNote|4c}}) के साथ <math>\mathbf{a}=\frac{\mathbf{f}}{m}\left(\frac{1}{\gamma^{3}},\ \frac{1}{\gamma},\ \frac{1}{\gamma}\right)</math> (से मेल खाता है) , क्योंकि <math>\mu=m</math> और <math>\left(\frac{d^{2}x}{dt^{2}},\ \frac{d^{2}y}{dt^{2}},\ \frac{d^{2}z}{dt^{2}}\right)=\mathbf{a}</math> और <math>\left[\epsilon X,\ \epsilon\left(Y-\frac{v}{V}N\right),\ \epsilon\left(Z+\frac{v}{V}M\right)\right]=\mathbf{f}</math> और <math>\beta=\gamma</math>. नतीजतन, आइंस्टीन ने अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान का निर्धारण किया, तथापि उन्होंने कोमोविंग स्प्रिंग बैलेंस द्वारा मापा जाता है इसे बल <math>\left(\epsilon X',\ \epsilon Y',\ \epsilon Z'\right)=\mathbf{f}^{0}</math> और प्रणाली <math>K</math>में तीन-त्वरण के लिए <math>\mathbf{a}</math> से संबंधित किया जाता है :<ref name=math />:
:
:
:<math>\begin{array}{c|c}
:<math>\begin{array}{c|c}
Line 300: Line 300:
::<math>\frac{d}{dt}\left\{ \frac{m\dot{x}}{\sqrt{1-\frac{q^{2}}{c^{2}}}}\right\} =X\ \text{etc.}</math>
::<math>\frac{d}{dt}\left\{ \frac{m\dot{x}}{\sqrt{1-\frac{q^{2}}{c^{2}}}}\right\} =X\ \text{etc.}</math>
:लोरेंत्ज़ (1904) द्वारा दिए गए समीकरणों के अनुरूप समीकरण ({{equationNote|4d}}) के साथ   
:लोरेंत्ज़ (1904) द्वारा दिए गए समीकरणों के अनुरूप समीकरण ({{equationNote|4d}}) के साथ   
::<math>\mathbf{f}=\frac{d\mathbf{p}}{dt}=\frac{d(m\gamma\mathbf{u})}{dt}=m\gamma^{3}\left(\frac{(\mathbf{a}\cdot\mathbf{u})\mathbf{u}}{c^{2}}\right)+m\gamma\mathbf{a}</math>, <math>X=f_{x}</math> और <math>q=v</math> और <math>\dot{x}\ddot{x}+\dot{y}\ddot{y}+\dot{z}\ddot{z}=\mathbf{u}\cdot\mathbf{a}</math>, समीकरण इसके अनुरूप हैं<br>
::<math>\mathbf{f}=\frac{d\mathbf{p}}{dt}=\frac{d(m\gamma\mathbf{u})}{dt}=m\gamma^{3}\left(\frac{(\mathbf{a}\cdot\mathbf{u})\mathbf{u}}{c^{2}}\right)+m\gamma\mathbf{a}</math>, <math>X=f_{x}</math> और <math>q=v</math> और <math>\dot{x}\ddot{x}+\dot{y}\ddot{y}+\dot{z}\ddot{z}=\mathbf{u}\cdot\mathbf{a}</math>, समीकरण इसके अनुरूप हैं<br>
;1907{{colon}}: आइंस्टाइन<ref name=Einstein2 group=H /> एकसमान रूप से त्वरित संदर्भ फ्रेम का विश्लेषण किया और कोटलर-मोलर-रिंडलर निर्देशांक द्वारा दिए गए अनुरूप, समन्वय-निर्भर समय विस्तार और प्रकाश की गति के लिए सूत्र प्राप्त किए। <br><br>
;1907{{colon}}: आइंस्टाइन<ref name=Einstein2 group=H /> एकसमान रूप से त्वरित संदर्भ फ्रेम का विश्लेषण किया और कोटलर-मोलर-रिंडलर निर्देशांक द्वारा दिए गए अनुरूप, समन्वय-निर्भर समय विस्तार और प्रकाश की गति के लिए सूत्र प्राप्त किए। <br><br>
;1907{{colon}}: हरमन मिन्कोव्स्की<ref name=minkowski1 group=H /> चार-बल (जिसे उन्होंने गतिशील बल कहा) और चार त्वरण के मध्य संबंध को परिभाषित किया
;1907{{colon}}: हरमन मिन्कोव्स्की<ref name=minkowski1 group=H /> चार-बल (जिसे उन्होंने गतिशील बल कहा) और चार त्वरण के मध्य संबंध को परिभाषित किया
::<math>m\frac{d}{d\tau}\frac{dx}{d\tau}=R_{x},\quad m\frac{d}{d\tau}\frac{dy}{d\tau}=R_{y},\quad m\frac{d}{d\tau}\frac{dz}{d\tau}=R_{z},\quad  m\frac{d}{d\tau}\frac{dt}{d\tau}=R_{t}                                                                                                                                            </math>
::<math>m\frac{d}{d\tau}\frac{dx}{d\tau}=R_{x},\quad m\frac{d}{d\tau}\frac{dy}{d\tau}=R_{y},\quad m\frac{d}{d\tau}\frac{dz}{d\tau}=R_{z},\quad  m\frac{d}{d\tau}\frac{dt}{d\tau}=R_{t}                                                                                                                                            </math>
:तदनुसार <math>m\mathbf{A}=\mathbf{F}</math>.<br><br>
:तदनुसार <math>m\mathbf{A}=\mathbf{F}</math>.<br><br>
;1908{{colon}}: मिन्कोव्स्की<ref name=minkowski group=H /> उचित समय के संबंध में दूसरे व्युत्पन्न को <math>x,y,z,t</math> त्वरण सदिश (चार-त्वरण) के रूप में दर्शाता है। उन्होंने दिखाया, कि विश्वरेखा का इसका इच्छा से बिंदु <math>P</math> पर परिमाण <math>c^{2}/\varrho</math> है, जहाँ <math>\varrho</math> संगत वक्रता हाइपरबोला (जर्मन: क्रुमुंगशीपरबेल) को केंद्र से <math>P</math> के निर्देशित सदिश का परिमाण है .:
;1908{{colon}}: मिन्कोव्स्की<ref name=minkowski group=H /> उचित समय के संबंध में दूसरे व्युत्पन्न को <math>x,y,z,t</math> त्वरण सदिश (चार-त्वरण) के रूप में दर्शाता है। उन्होंने दिखाया, कि विश्वरेखा का इसका इच्छा से बिंदु <math>P</math> पर परिमाण <math>c^{2}/\varrho</math> है, जहाँ <math>\varrho</math> संगत वक्रता हाइपरबोला (जर्मन: क्रुमुंगशीपरबेल) को केंद्र से <math>P</math> के निर्देशित सदिश का परिमाण है .:
;1909{{colon}}: मैक्स बोर्न<ref name=born group=H /> कठोरता के रूप से अपने अध्ययन के दौरान मिन्कोव्स्की के त्वरण सदिश के निरंतर परिमाण के साथ गति को "हाइपरबोलिक गति" के रूप में दर्शाता है ({{lang-de|हाइपरबेलबेवेगंग          }}), के रूप में दर्शाता है। उन्होंने <math>p=dx/d\tau</math> को सेट किया (जिसे अब [[उचित वेग]] कहा जाता है) और <math>q=-dt/d\tau=\sqrt{1+p^{2}/c^{2}}</math> परिवर्तन समीकरणों के साथ लोरेंत्ज़ कारक के रूप में और <math>\tau</math> उचित समय के रूप में, परिवर्तन समीकरणों के साथ
;1909{{colon}}: मैक्स बोर्न<ref name=born group=H /> कठोरता के रूप से अपने अध्ययन के दौरान मिन्कोव्स्की के त्वरण सदिश के निरंतर परिमाण के साथ गति को "हाइपरबोलिक गति" के रूप में दर्शाता है ({{lang-de|हाइपरबेलबेवेगंग          }}), के रूप में दर्शाता है। उन्होंने <math>p=dx/d\tau</math> को सेट किया (जिसे अब [[उचित वेग]] कहा जाता है) और <math>q=-dt/d\tau=\sqrt{1+p^{2}/c^{2}}</math> परिवर्तन समीकरणों के साथ लोरेंत्ज़ कारक के रूप में और <math>\tau</math> उचित समय के रूप में, परिवर्तन समीकरणों के साथ
::<math>x=-q\xi,\quad y=\eta,\quad z=\zeta,\quad t=\frac{p}{c^{2}}\xi</math>.
::<math>x=-q\xi,\quad y=\eta,\quad z=\zeta,\quad t=\frac{p}{c^{2}}\xi</math>.
:जो कि ({{equationNote|6a}}) के साथ <math>\xi=c^{2}/\alpha</math> और <math>p=c\sinh(\alpha\tau/c)</math> (से मेल खाता है). <math>p</math> बॉर्न को हटाकर हाइपरबोलिक समीकरण <math>x^{2}-c^{2}t^{2}=\xi^{2}</math> निकाला गया, और त्वरण के परिमाण <math>b=c^{2}/\xi</math> को इस प्रकार परिभाषित किया . उन्होंने यह भी देखा कि उनके परिवर्तन का उपयोग हाइपरबोलिकली एक्सेलेरेटेड रेफरेंस प्रणाली ({{lang-de|हाइपरबोलिश बेस्क्लेयुनिगेट्स बेजुगसिस्टम }}). में बदलने के लिए किया जा सकता है |
:जो कि ({{equationNote|6a}}) के साथ <math>\xi=c^{2}/\alpha</math> और <math>p=c\sinh(\alpha\tau/c)</math> (से मेल खाता है). <math>p</math> बॉर्न को हटाकर हाइपरबोलिक समीकरण <math>x^{2}-c^{2}t^{2}=\xi^{2}</math> निकाला गया, और त्वरण के परिमाण <math>b=c^{2}/\xi</math> को इस प्रकार परिभाषित किया . उन्होंने यह भी देखा कि उनके परिवर्तन का उपयोग हाइपरबोलिकली एक्सेलेरेटेड रेफरेंस प्रणाली ({{lang-de|हाइपरबोलिश बेस्क्लेयुनिगेट्स बेजुगसिस्टम }}). में बदलने के लिए किया जा सकता है |
:<br>
:<br>
;1909{{colon}}: गुस्ताव हर्ग्लोट्ज़<ref name=herglotz1 group=H /> एकसमान घूर्णन सहित सम्मिश्र त्वरित गति के सभी संभावित स्तिथियों तक बोर्न की जांच का विस्तार करता है।<br><br>
;1909{{colon}}: गुस्ताव हर्ग्लोट्ज़<ref name=herglotz1 group=H /> एकसमान घूर्णन सहित सम्मिश्र त्वरित गति के सभी संभावित स्तिथियों तक बोर्न की जांच का विस्तार करता है।<br><br>
;1910{{colon}}: अर्नोल्ड सोमरफेल्ड<ref name=sommerfeld1 group=H /> हाइपरबोलिक गति के लिए बॉर्न के सूत्रों को अधिक संक्षिप्त रूप में लाया गया <math>l=ict</math> काल्पनिक समय वेरिएबल के रूप में और <math>\varphi</math> काल्पनिक कोण के रूप में:
;1910{{colon}}: अर्नोल्ड सोमरफेल्ड<ref name=sommerfeld1 group=H /> हाइपरबोलिक गति के लिए बॉर्न के सूत्रों को अधिक संक्षिप्त रूप में लाया गया <math>l=ict</math> काल्पनिक समय वेरिएबल के रूप में और <math>\varphi</math> काल्पनिक कोण के रूप में:
::<math>x=r\cos\varphi,\quad y=y',\quad z=z',\quad l=r\sin\varphi</math><br><br>
::<math>x=r\cos\varphi,\quad y=y',\quad z=z',\quad l=r\sin\varphi</math><br><br>
:उन्होंने नोट किया कि कब <math>r,y,z</math> परिवर्तनशील हैं और <math>\varphi</math> स्थिर है, वे अतिपरवलयिक गति में आवेशित पिंड की विश्व रेखा का वर्णन करते हैं। लेकिन यदि <math>r,y,z</math> स्थिर हैं और <math>\varphi</math> परिवर्तनशील है, तब वह इसके बाकी फ्रेम में परिवर्तन को दर्शाते हैं।
:उन्होंने नोट किया कि कब <math>r,y,z</math> परिवर्तनशील हैं और <math>\varphi</math> स्थिर है, वे अतिपरवलयिक गति में आवेशित पिंड की विश्व रेखा का वर्णन करते हैं। लेकिन यदि <math>r,y,z</math> स्थिर हैं और <math>\varphi</math> परिवर्तनशील है, तब वह इसके बाकी फ्रेम में परिवर्तन को दर्शाते हैं।
;1911{{colon}}: ग्रीष्मकालीन क्षेत्र<ref name=sommerfeld2 group=H /> ने स्पष्ट रूप से <math>\dot{v}=\dot{v}_{0}\left(1-\beta^{2}\right)^{3/2}</math> में मात्रा <math>\dot{v}_{0}</math> के लिए अभिव्यक्ति उचित त्वरण ({{lang-de|ईगेनबेस्क्लेयुनिगंग }}) का स्पष्ट रूप से उपयोग किया गया ({{lang-de|ईगेनबेस्क्लेयुनिगंग }}) जो क्षणिक जड़त्वीय फ्रेम में त्वरण के रूप में ( {{equationNote|3a}} से मेल खाता है),। :<br>
;1911{{colon}}: ग्रीष्मकालीन क्षेत्र<ref name=sommerfeld2 group=H /> ने स्पष्ट रूप से <math>\dot{v}=\dot{v}_{0}\left(1-\beta^{2}\right)^{3/2}</math> में मात्रा <math>\dot{v}_{0}</math> के लिए अभिव्यक्ति उचित त्वरण ({{lang-de|ईगेनबेस्क्लेयुनिगंग }}) का स्पष्ट रूप से उपयोग किया गया ({{lang-de|ईगेनबेस्क्लेयुनिगंग }}) जो क्षणिक जड़त्वीय फ्रेम में त्वरण के रूप में ( {{equationNote|3a}} से मेल खाता है),। :<br>
;1911{{colon}}: हर्ग्लोट्ज़<ref name=herglotz2 group=H /> ने उचित त्वरण के अतिरिक्त स्पष्ट रूप से अभिव्यक्ति विश्राम त्वरण का ({{lang-de|रुह्बेस्क्लेयुनिगुंग }}) उपयोग किया गया । उन्होंने इसे <math>\gamma_{l}^{0}=\beta^{3}\gamma_{l}</math> और <math>\gamma_{t}^{0}=\beta^{2}\gamma_{t}</math> के रूप में लिखा जो ({{equationNote|3a}}) से मेल खाता है , जहाँ <math>\beta</math> लोरेंत्ज़ कारक है और <math>\gamma_{l}^{0}</math> या <math>\gamma_{t}^{0}</math> विश्राम त्वरण के अनुदैर्ध्य और अनुप्रस्थ अवयव हैं।:<br>
;1911{{colon}}: हर्ग्लोट्ज़<ref name=herglotz2 group=H /> ने उचित त्वरण के अतिरिक्त स्पष्ट रूप से अभिव्यक्ति विश्राम त्वरण का ({{lang-de|रुह्बेस्क्लेयुनिगुंग }}) उपयोग किया गया । उन्होंने इसे <math>\gamma_{l}^{0}=\beta^{3}\gamma_{l}</math> और <math>\gamma_{t}^{0}=\beta^{2}\gamma_{t}</math> के रूप में लिखा जो ({{equationNote|3a}}) से मेल खाता है , जहाँ <math>\beta</math> लोरेंत्ज़ कारक है और <math>\gamma_{l}^{0}</math> या <math>\gamma_{t}^{0}</math> विश्राम त्वरण के अनुदैर्ध्य और अनुप्रस्थ अवयव हैं।:<br>
;1911{{colon}}: मैक्स वॉन लाउ<ref name=laue1 group=H /> उनके मोनोग्राफ दास रिलेटिविट्सप्रिनज़िप के पहले संस्करण में वेग जोड़ के विभेदन द्वारा तीन-त्वरण के लिए परिवर्तन को व्युत्पन्न किया गया है।             
;1911{{colon}}: मैक्स वॉन लाउ<ref name=laue1 group=H /> उनके मोनोग्राफ दास रिलेटिविट्सप्रिनज़िप के पहले संस्करण में वेग जोड़ के विभेदन द्वारा तीन-त्वरण के लिए परिवर्तन को व्युत्पन्न किया गया है।             
::<math>\begin{align}\mathfrak{\dot{q}}_{x} & =\left(\frac{c\sqrt{c^{2}-v^{2}}}{c^{2}+v\mathfrak{q}_{x}^{\prime}}\right)^{3}\mathfrak{\dot{q}}_{x}^{\prime}, & \mathfrak{\dot{q}}_{y} & =\left(\frac{c\sqrt{c^{2}-v^{2}}}{c^{2}+v\mathfrak{q}_{x}^{\prime}}\right)^{2}\left(\mathfrak{\dot{q}}_{x}^{\prime}-\frac{v\mathfrak{q}_{y}^{\prime}\mathfrak{\dot{q}}_{x}^{\prime}}{c^{2}+v\mathfrak{q}_{x}^{\prime}}\right),\end{align}                                         
::<math>\begin{align}\mathfrak{\dot{q}}_{x} & =\left(\frac{c\sqrt{c^{2}-v^{2}}}{c^{2}+v\mathfrak{q}_{x}^{\prime}}\right)^{3}\mathfrak{\dot{q}}_{x}^{\prime}, & \mathfrak{\dot{q}}_{y} & =\left(\frac{c\sqrt{c^{2}-v^{2}}}{c^{2}+v\mathfrak{q}_{x}^{\prime}}\right)^{2}\left(\mathfrak{\dot{q}}_{x}^{\prime}-\frac{v\mathfrak{q}_{y}^{\prime}\mathfrak{\dot{q}}_{x}^{\prime}}{c^{2}+v\mathfrak{q}_{x}^{\prime}}\right),\end{align}                                         
Line 335: Line 335:
:उन्होंने त्रि-बल का रूपान्तरण भी लिखा
:उन्होंने त्रि-बल का रूपान्तरण भी लिखा
::<math>\begin{align}\mathfrak{K}_{x} & =\frac{\mathfrak{K}_{x}^{\prime}+\frac{v}{c^{2}}(\mathfrak{q'K'})}{1+\frac{v\mathfrak{q}_{x}^{\prime}}{c^{2}}}, & \mathfrak{K}_{y} & =\mathfrak{K}_{y}^{\prime}\frac{\sqrt{1-\beta^{2}}}{1+\frac{v\mathfrak{q}_{x}^{\prime}}{c^{2}}}, & \mathfrak{K}_{z} & =\mathfrak{K}_{z}^{\prime}\frac{\sqrt{1-\beta^{2}}}{1+\frac{v\mathfrak{q}_{x}^{\prime}}{c^{2}}},\end{align}                     
::<math>\begin{align}\mathfrak{K}_{x} & =\frac{\mathfrak{K}_{x}^{\prime}+\frac{v}{c^{2}}(\mathfrak{q'K'})}{1+\frac{v\mathfrak{q}_{x}^{\prime}}{c^{2}}}, & \mathfrak{K}_{y} & =\mathfrak{K}_{y}^{\prime}\frac{\sqrt{1-\beta^{2}}}{1+\frac{v\mathfrak{q}_{x}^{\prime}}{c^{2}}}, & \mathfrak{K}_{z} & =\mathfrak{K}_{z}^{\prime}\frac{\sqrt{1-\beta^{2}}}{1+\frac{v\mathfrak{q}_{x}^{\prime}}{c^{2}}},\end{align}                     
                                                                                                                                                                                                               </math><br><br>के समान ({{equationNote|4e}}) साथ ही पोंकारे (1905) तक।
                                                                                                                                                                                                               </math><br><br>के समान ({{equationNote|4e}}) साथ ही पोंकारे (1905) तक।
;1912-1914{{colon}}: फ्रेडरिक कोटलर<ref name=Kottler group=H /> मैक्सवेल के समीकरणों का [[सामान्य सहप्रसरण]] प्राप्त किया, और हर्ग्लोट्ज़ (1909) द्वारा दिए गए बोर्न सम्मिश्र गतियों का विश्लेषण करने के लिए चार-आयामी फ्रेनेट-सेरेट सूत्रों का उपयोग किया जाता है । उन्होंने हाइपरबोलिक गति और एकसमान गोलाकार गति के लिए उचित संदर्भ फ्रेम (फ्लैट स्पेसटाइम) भी प्राप्त किया जाता है।<br><br>
;1912-1914{{colon}}: फ्रेडरिक कोटलर<ref name=Kottler group=H /> मैक्सवेल के समीकरणों का [[सामान्य सहप्रसरण]] प्राप्त किया, और हर्ग्लोट्ज़ (1909) द्वारा दिए गए बोर्न सम्मिश्र गतियों का विश्लेषण करने के लिए चार-आयामी फ्रेनेट-सेरेट सूत्रों का उपयोग किया जाता है । उन्होंने हाइपरबोलिक गति और एकसमान गोलाकार गति के लिए उचित संदर्भ फ्रेम (फ्लैट स्पेसटाइम) भी प्राप्त किया जाता है।<br><br>
;1913{{colon}}: लाउ द्वारा<ref name=laue2 group=H /> उनकी पुस्तक के दूसरे संस्करण में मिन्कोव्स्की के त्वरण सदिश द्वारा तीन-त्वरण के परिवर्तन को प्रतिस्थापित किया गया, जिसके लिए उन्होंने चार-त्वरण ({{lang-de|विएररबेस्क्लेयुनिगंग }}) नाम अंकित कराया गया तथा जिसे <math>\dot{Y}=\frac{dY}{d\tau}</math>द्वारा परिभाषित किया गया और <math>Y</math> को चार-वेग के रूप में परिभाषित किया गया । उन्होंने दिखाया, कि चार-त्वरण का परिमाण द्वारा बाकी त्वरण <math>\dot{\mathfrak{q}}^{0}</math> से मेल खाता है  
;1913{{colon}}: लाउ द्वारा<ref name=laue2 group=H /> उनकी पुस्तक के दूसरे संस्करण में मिन्कोव्स्की के त्वरण सदिश द्वारा तीन-त्वरण के परिवर्तन को प्रतिस्थापित किया गया, जिसके लिए उन्होंने चार-त्वरण ({{lang-de|विएररबेस्क्लेयुनिगंग }}) नाम अंकित कराया गया तथा जिसे <math>\dot{Y}=\frac{dY}{d\tau}</math>द्वारा परिभाषित किया गया और <math>Y</math> को चार-वेग के रूप में परिभाषित किया गया । उन्होंने दिखाया, कि चार-त्वरण का परिमाण द्वारा बाकी त्वरण <math>\dot{\mathfrak{q}}^{0}</math> से मेल खाता है  
::<math>|\dot{Y|}=\frac{1}{c}|\dot{\mathfrak{q}}^{0}|</math>,
::<math>|\dot{Y|}=\frac{1}{c}|\dot{\mathfrak{q}}^{0}|</math>,
:जो ({{equationNote|3b}}) (से मेल खाता है). इसके पश्चात , उन्होंने विश्राम त्वरण और हाइपरबोलिक गति और हाइपरबोलिक संदर्भ फ्रेम के परिवर्तन के लिए 1911 में समान सूत्र निकाले गये थे।
:जो ({{equationNote|3b}}) (से मेल खाता है). इसके पश्चात , उन्होंने विश्राम त्वरण और हाइपरबोलिक गति और हाइपरबोलिक संदर्भ फ्रेम के परिवर्तन के लिए 1911 में समान सूत्र निकाले गये थे।


==संदर्भ==
==संदर्भ==

Revision as of 11:50, 2 August 2023

विशेष सापेक्षता (एसआर) में त्वरण, न्यूटोनियन यांत्रिकी की तरह, समय के संबंध में वेग के व्युत्पन्न द्वारा अनुसरण किया जाता है। लोरेंत्ज़ परिवर्तन और समय विस्तार के कारण, समय और दूरी की अवधारणाएँ अधिक सम्मिश्र हो जाती हैं, जिससे त्वरण की अधिक सम्मिश्र परिभाषाएँ भी सामने आती हैं। फ्लैट मिन्कोवस्की स्पेसटाइम के सिद्धांत के रूप में एसआर त्वरण की उपस्थिति में मान्य रहता है, क्योंकि सामान्य सापेक्षता (जीआर) की आवश्यकता केवल तब होती है जब ऊर्जा-संवेग टेंसर (जो मुख्य रूप से अपरिवर्तनीय द्रव्यमान द्वारा निर्धारित होता है) के कारण घुमावदार स्पेसटाइम होता है।, चूँकि पृथ्वी या इसके आसपास के क्षेत्र में स्पेसटाइम वक्रता की मात्रा विशेष रूप से अधिक नहीं है, एसआर अधिकांश व्यावहारिक उद्देश्यों के लिए मान्य है, जैसे कि कण त्वरक में प्रयोग।[1]

कोई तीन स्थानिक आयामों (तीन-त्वरण या समन्वय त्वरण) में सामान्य त्वरण के लिए परिवर्तन सूत्र प्राप्त कर सकता है जैसा कि संदर्भ के बाहरी जड़त्वीय फ्रेम में मापा जाता है, साथ ही कोमोविंग एक्सेलेरोमीटर द्वारा मापा गया उचित त्वरण के विशेष उपस्तिथि के लिए भी उपयोग किया जाता है। अन्य उपयोगी औपचारिकता चार-त्वरण है, क्योंकि इसके अवयवों को लोरेंत्ज़ परिवर्तन द्वारा विभिन्न जड़त्वीय फ़्रेमों में जोड़ा जा सकता है। इसके अतिरिक्त गति के समीकरण भी बनाए जा सकते हैं जो त्वरण और बल को जोड़ते हैं। पिंडों के त्वरण के अनेक रूपों और उनकी घुमावदार विश्व रेखाओं के समीकरण अभिन्न द्वारा इन सूत्रों का अनुसरण करते हैं। प्रसिद्ध विशेष उपस्तिथि निरंतर अनुदैर्ध्य उचित त्वरण या एकसमान गोलाकार गति के लिए अतिशयोक्तिपूर्ण गति (सापेक्षता) हैं। अंततः, विशेष सापेक्षता के संदर्भ में गैर-जड़त्वीय संदर्भ फ्रेम में इन घटनाओं का वर्णन करना भी संभव है, उचित संदर्भ फ्रेम (फ्लैट स्पेसटाइम) देखें। ऐसे फ़्रेमों में, प्रभाव उत्पन्न होते हैं जो सजातीय गुरुत्वाकर्षण क्षेत्रों के अनुरूप होते हैं, जिनमें सामान्य सापेक्षता में घुमावदार स्पेसटाइम के वास्तविक, अमानवीय गुरुत्वाकर्षण क्षेत्रों के साथ कुछ औपचारिक समानताएं होती हैं। अतिशयोक्तिपूर्ण गति के उपस्तिथि में कोई रिंडलर निर्देशांक का उपयोग कर सकता है, समान गोलाकार गति के उपस्तिथि में कोई बोर्न निर्देशांक का उपयोग कर सकता है।

ऐतिहासिक विकास के संबंध में, त्वरण वाले सापेक्षतावादी समीकरण पहले से ही सापेक्षता के प्रारंभिक वर्षों में पाए जा सकते हैं, जैसा कि मैक्स वॉन लाउ (1911, 1921) या वोल्फगैंग पाउली (1921) द्वारा प्रारंभिक पाठ्यपुस्तकों में संक्षेपित किया गया है।[2][3] उदाहरण के लिए, गति और त्वरण परिवर्तनों के समीकरण हेनरी एंथोनी लोरेंत्ज़ (1899, 1904) के पत्रों में विकसित किए गए थे।[H 1][H 2] हेनरी पोंकारे (1905),[H 3][H 4] अल्बर्ट आइंस्टीन (1905), [H 5] मैक्स प्लैंक (1906),[H 6] और चार-त्वरण, उचित त्वरण, अतिशयोक्तिपूर्ण गति, त्वरित संदर्भ फ्रेम, जन्म कठोरता, का विश्लेषण आइंस्टीन (1907) द्वारा किया गया है।[H 7] हरमन मिन्कोव्स्की (1907, 1908),[H 8][H 9] मैक्स बोर्न (1909),[H 10] गुस्ताव हर्ग्लोत्ज़ (1909),[H 11][H 12] अर्नोल्ड सोमरफेल्ड (1910),[H 13][H 14] लाउ द्वारा (1911),[H 15][H 16]फ्रेडरिक कोटलर (1912, 1914),[H 17] या तब इतिहास देखें.

तीन-त्वरण

न्यूटोनियन यांत्रिकी और एसआर दोनों के अनुसार, तीन-त्वरण या समन्वय त्वरण समन्वय समय के संबंध में वेग का पहला व्युत्पन्न है और समन्वय समय के संबंध में स्थान के दूसरे व्युत्पन्न है |

.

चूँकि , विभिन्न जड़त्वीय फ़्रेमों में मापे गए तीन-त्वरणों के मध्य संबंध के संदर्भ में सिद्धांत अपनी भविष्यवाणियों में बहुत भिन्न हैं। न्यूटोनियन यांत्रिकी में, गैलीलियन परिवर्तन के अनुसार समय के द्वारा निरपेक्ष है तथा, इसलिए इससे प्राप्त तीन-त्वरण सभी जड़त्वीय फ़्रेमों में भी समान है:[4]

.

इसके विपरीत एसआर में, और दोनों लोरेंत्ज़ परिवर्तन पर निर्भर करते हैं, इसलिए तीन-त्वरण भी और इसके अवयव विभिन्न जड़त्वीय फ़्रेमों में भिन्न होते हैं। जब फ़्रेमों के मध्य सापेक्ष वेग को लोरेंत्ज़ कारक के रूप में के साथ द्वारा x-दिशा में निर्देशित होता है तब लोरेंत्ज़ परिवर्तन का रूप होता है

 

 

 

 

(1a)

या परिमाण के इच्छा से वेग के लिए (गणित) :[5]

 

 

 

 

(1b)

त्रि-त्वरण के परिवर्तन का पता लगाने के लिए,किसी को लोरेंत्ज़ परिवर्तन के स्थानिक निर्देशांक और को और , के संबंध में भिन्न करना होगा | जिससे मध्य में त्रि-वेग (जिसे वेग-जोड़ सूत्र भी कहा जाता है) का परिवर्तन होता है जहाँ और अनुसरण करता है, और अंततः इसके संबंध में और भेदभाव होता है और के मध्य तीन-त्वरण का परिवर्तन और अनुसरण करता है। (1a), से प्रारंभ यह प्रक्रिया वह परिवर्तन देती है जहां त्वरण वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) होते हैं:[6][7][8][9][H 4][H 15]

 

 

 

 

(1c)

या (1b) से प्रारंभ यह प्रक्रिया वेग और त्वरण की इच्छानुसार दिशाओं के सामान्य उपस्तिथि के लिए परिणाम देती है:[10][11]

 

 

 

 

(1d)

इसका मतलब है, यदि सापेक्ष वेग के साथ दो जड़त्वीय फ्रेम और हैं, तब में क्षणिक वेग के साथ किसी वस्तु का त्वरण मापा जाता है, जबकि '' में ' उसी वस्तु का त्वरण है और क्षणिक वेग है। वेग जोड़ सूत्रों की तरह, ये त्वरण परिवर्तन भी गारंटी देते हैं कि त्वरित वस्तु की परिणामी गति कभी भी प्रकाश की गति तक पहुंच सकती या उससे अधिक नहीं हो सकती है ।

चार-त्वरण

यदि तीन-सदिश के स्थान पर चार-सदिश का उपयोग किया जाता है, अर्थात् चार-स्थिति के रूप में और को चार-वेग के रूप में उपयोग किया जाता है , तब फिर किसी वस्तु का चार-त्वरण के संबंध में विभेदन करके प्राप्त किया जाता है समन्वय समय के अतिरिक्त उचित समय पर :[12][13][14]

 

 

 

 

(2a)

जहाँ वस्तु का तीन-त्वरण है और यह परिमाण का क्षणिक तीन-वेग है संगत लोरेंत्ज़ कारक के साथ . यदि केवल स्थानिक भाग पर विचार किया जाता है, और जब वेग को x-दिशा में निर्देशित किया जाता है और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है, अभिव्यक्ति कम हो जाती है:[15][16]

पहले चर्चा की गई तीन-त्वरण के विपरीत, चार-त्वरण के लिए नया परिवर्तन प्राप्त करना आवश्यक नहीं है, क्योंकि सभी चार-सदिशों की तरह, और के अवयव के सापेक्ष गति के साथ दो जड़त्वीय फ़्रेमों में होते है (1a, 1b) के अनुरूप लोरेंत्ज़ परिवर्तन द्वारा जुड़े हुए हैं. चार-सदिशों की अन्य संपत्ति आंतरिक उत्पाद या उसका परिमाण की अपरिवर्तनीयता है, जो इस उपस्तिथि में देता है:[16][13][17]

.

 

 

 

 

(2b)

उचित त्वरण

अनंत छोटी अवधियों में सदैव जड़त्वीय फ्रेम होता है, जिसका क्षणिक वेग त्वरित शरीर के समान होता है, और जिसमें लोरेंत्ज़ परिवर्तन होता है। इन फ़्रेमों के संगत वाले तीन-त्वरण को सीधे एक्सेलेरोमीटर द्वारा मापा जा सकता है, और इसे उचित त्वरण [18][H 14] या बाकी त्वरण कहा जाता है.[19][H 12] में का संबंध क्षणिक जड़त्वीय फ़्रेमों में और बाहरी जड़त्वीय फ्रेम को में मापा जाता है जो (1c, 1d) साथ , , और से अनुसरण करता है. तो (1c) के संदर्भ में , जब वेग x-दिशा में निर्देशित होता है और जब केवल त्वरण के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) वेग पर विचार किया जाता है, तो यह निम्नानुसार है:[12][19][18][H 1][H 2][H 14][H 12]

 

 

 

 

(3a)

द्वारा सामान्यीकृत (1d) की इच्छानुसार दिशाओं के लिए परिमाण का :[20][21][17]

चार-त्वरण के परिमाण से भी घनिष्ठ संबंध है: चूंकि यह अपरिवर्तनीय है, इसे क्षणिक जड़त्वीय फ्रेम में निर्धारित किया जा सकता है , जिसमें और से यह तक इस प्रकार अनुसरण करता है :[19][12][22][H 16]

.

 

 

 

 

(3b)

इस प्रकार चार-त्वरण का परिमाण उचित त्वरण के परिमाण से मेल खाता है। इसे (2b) के साथ मिलाकर मध्य संबंध के निर्धारण के लिए वैकल्पिक विधि में और में दिया गया है र्थात्[13][17]

किस से (3a) फिर से अनुसरण करता है जब वेग को x-दिशा में निर्देशित किया जाता है और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है।

त्वरण और बल

स्थिर द्रव्यमान मानकर , चार-बल त्रि-बल के कार्य के रूप में चार-त्वरण (2a) से द्वारा संबंधित है, इस प्रकार:[23][24]

 

 

 

 

(4a)

वेग की इच्छानुसार दिशाओं के लिए तीन-बल और तीन-त्वरण के मध्य संबंध इस प्रकार है[25][26][23]

 

 

 

 

(4b)

जब वेग को द्वारा x-दिशा में निर्देशित किया जाता है और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है[27][26][23][H 2][H 6]

 

 

 

 

(4c)

इसलिए, तीन-बल और तीन-त्वरण के अनुपात के रूप में द्रव्यमान की न्यूटोनियन परिभाषा एसआर में नुकसानदेह है, क्योंकि ऐसा द्रव्यमान वेग और दिशा दोनों पर निर्भर करता है। परिणामस्वरूप, पुरानी पाठ्यपुस्तकों में प्रयुक्त निम्नलिखित व्यापक परिभाषाएँ अब उपयोग नहीं की जाती हैं:[27][28][H 2]

अनुदैर्ध्य द्रव्यमान के रूप में,
अनुप्रस्थ द्रव्यमान के रूप में।

रिश्ता (4b) तीन-त्वरण और तीन-बल के मध्य गति के समीकरण से भी प्राप्त किया जा सकता है[29][25][H 2][H 6]

 

 

 

 

(4d)

जहाँ तीन-गति है. में और में के मध्य त्रि-बल का संगत परिवर्तन (जब फ्रेम के मध्य सापेक्ष वेग x-दिशा में द्वारा निर्देशित होता है और केवल त्वरण के समानांतर (x-दिशा) होता है या वेग के लिए लंबवत (y-, z-दिशा) पर विचार किया जाता है) , , , के लिए प्रासंगिक परिवर्तन सूत्रों के प्रतिस्थापन द्वारा अनुसरण किया जाता है , या लोरेंत्ज़ से चार-बल के रूपांतरित घटक, परिणाम के साथ:[29][30][24][H 3][H 15]

 

 

 

 

(4e)

या की इच्छानुसार दिशाओं के लिए सामान्यीकृत, साथ ही परिमाण के साथ  :[31][32]

 

 

 

 

(4f)

उचित त्वरण और उचित बल

गतिशील स्प्रिंग संतुलन द्वारा मापे गए क्षणिक जड़त्वीय फ्रेम में बल को उचित बल कहा जा सकता है।[33][34] यह और के साथ -साथ और को सेट करके (4e, 4f) का अनुसरण करता है। इस प्रकार (4e) जहां केवल त्वरण वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) होता है माने जाते है कि इसमें त्वरण पर विचार किया जाता है:[35][33][34]

 

 

 

 

(5a)

परिमाण का की इच्छानुसार दिशाओं के लिए 4f)द ्वारा सामान्यीकृत  :[35][36]

चूँकि क्षणिक जड़त्व फ़्रेमों में चार-बल और चार-त्वरण होते हैं, समीकरण (4a) न्यूटोनियन संबंध उत्पन्न करता है , इसलिए (3a, 4c, 5a) को संक्षेप में प्रस्तुत किया जा सकता है[37]

 

 

 

 

(5b)

इसके द्वारा, अनुप्रस्थ द्रव्यमान की ऐतिहासिक परिभाषाओं में स्पष्ट विरोधाभास है समझाया जा सकता है.[38] आइंस्टीन (1905) ने त्रि-त्वरण और उचित बल के मध्य संबंध का वर्णन किया[H 5]

,

जबकि लोरेंत्ज़ (1899, 1904) और प्लैंक (1906) ने तीन-त्वरण और तीन-बल के मध्य संबंध का वर्णन किया[H 2]

.

घुमावदार विश्व रेखाएँ

गति के समीकरणों के एकीकरण से क्षणिक जड़त्वीय फ़्रेमों के अनुक्रम के अनुरूप त्वरित पिंडों की घुमावदार विश्व रेखाएं प्राप्त होती हैं (यहां, अभिव्यक्ति घुमावदार मिन्कोव्स्की आरेखों में विश्व रेखाओं के रूप से संबंधित है, जिसे सामान्य सापेक्षता के घुमावदार स्पेसटाइम के साथ भ्रमित नहीं किया जाना चाहिए)। इसके संबंध में, घड़ी अभिधारणा की तथाकथित घड़ी परिकल्पना पर विचार करना होगा:[39][40] चलने वाली घड़ियों का उचित समय त्वरण से स्वतंत्र होता है, अर्थात, इन घड़ियों का समय विस्तार, जैसा कि बाहरी जड़त्वीय फ्रेम में देखा जाता है, केवल उस फ्रेम के संबंध में इसके सापेक्ष वेग पर निर्भर करता है। घुमावदार विश्व रेखाओं के दो सरल उपस्तिथि अब समीकरण के एकीकरण (3a) द्वारा प्रदान किए गए हैं उचित त्वरण के लिए:

a) अतिशयोक्तिपूर्ण गति (सापेक्षता): स्थिर, अनुदैर्ध्य उचित त्वरण द्वारा (3a) विश्व रेखा की ओर ले जाता है[12][18][19][25][41][42][H 10][H 15]

 

 

 

 

(6a)

विश्वरेखा अतिशयोक्तिपूर्ण समीकरण से मेल खाती है, जिससे हाइपरबोलिक गति नाम प्राप्त हुआ है। तथा इन समीकरणों का उपयोग अधिकांशतः जुड़वां विरोधाभास या बेल के समिष्ट यान विरोधाभास के विभिन्न परिदृश्यों की गणना के लिए या निरंतर त्वरण का उपयोग करके समिष्ट यात्रा के संबंध में किया जाता है।

बी) स्थिर, अनुप्रस्थ उचित त्वरण द्वारा (3a) को अभिकेन्द्रीय त्वरण के रूप में देखा जा सकता है,[13] जो समान घूर्णन में किसी पिंड की विश्व रेखा की ओर ले जाता है |[43][44]

 

 

 

 

(6b)

जहाँ स्पर्शरेखीय गति है, कक्षीय त्रिज्या है, समन्वय समय के फलन के रूप में कोणीय वेग है, और को उचित कोणीय वेग के रूप में दर्शाया जाता है .

ट्रिपल वक्रों की विभेदक ज्यामिति का उपयोग करके घुमावदार विश्व रेखाओं का वर्गीकरण प्राप्त किया जा सकता है, जिसे उचित संदर्भ फ्रेम (फ्लैट स्पेसटाइम) या स्पेसटाइम फ्रेनेट-सेरेट समीकरण|स्पेसटाइम फ्रेनेट-सेरेट सूत्रों द्वारा व्यक्त किया जा सकता है।[45] विशेष रूप से, यह दिखाया जा सकता है कि अतिपरवलयिक गति और एकसमान वृत्तीय गति, स्थिर वक्रता और वक्र के मरोड़ वाली गति के विशेष उपस्तिथि हैं,[46] बोर्न कठोरता की स्थिति को संतुष्ट करना।[H 11][H 17] किसी पिंड को बोर्न रिजिड भी कहा जाता है यदि त्वरण के समय इसकी अनंत रूप से भिन्न की गई विश्व रेखाओं या बिंदुओं के मध्य समिष्ट समय की दूरी स्थिर रहती है।

त्वरित संदर्भ फ़्रेम

जड़त्वीय फ़्रेमों के अतिरिक्त , इन त्वरित गतियों और घुमावदार विश्व रेखाओं को त्वरित या वक्रीय निर्देशांक का उपयोग करके भी वर्णित किया जा सकता है। इस तरह से स्थापित उचित संदर्भ फ्रेम फर्मी निर्देशांक से निकटता से संबंधित है।[47][48] उदाहरण के लिए, अतिपरवलयिक रूप से त्वरित संदर्भ फ्रेम के निर्देशांक को कभी-कभी रिंडलर निर्देशांक भी कहा जाता है, या समान रूप से घूमने वाले संदर्भ फ्रेम के निर्देशांक को घूर्णन बेलनाकार निर्देशांक (या कभी-कभी बोर्न निर्देशांक) कहा जाता है। तुल्यता सिद्धांत के संदर्भ में, इन त्वरित फ़्रेमों में उत्पन्न होने वाले प्रभाव सजातीय, काल्पनिक गुरुत्वाकर्षण क्षेत्र में प्रभावों के अनुरूप होते हैं। इस तरह यह देखा जा सकता है, कि एसआर में त्वरित फ़्रेमों का उपयोग महत्वपूर्ण गणितीय संबंध उत्पन्न करता है, जो (आगे विकसित होने पर) सामान्य सापेक्षता में घुमावदार स्पेसटाइम के संदर्भ में वास्तविक, अमानवीय गुरुत्वाकर्षण क्षेत्रों के वर्णन में मौलिक भूमिका निभाते हैं।

इतिहास

अधिक जानकारी के लिए वॉन लाउ देखें,[2] पाउली,[3] मिलर,[49] पुराना,[50] गौरगौलहोन,[48] और विशेष सापेक्षता के इतिहास में ऐतिहासिक स्रोत को देखा जाता है ।

1899:
हेंड्रिक लोरेंत्ज़[H 1] ने कणों की स्थिर करने वाले इलेक्ट्रोस्टैटिक प्रणाली ( स्थिर लोरेंत्ज़ ईथर सिद्धांत में) और उभरते हुए प्रणाली के मध्य त्वरण, बलों और द्रव्यमान के लिए सही (एक निश्चित कारक \ एप्सिलॉन तक) संबंध प्राप्त किया जाता है। इसमें से अनुवाद जोड़कर, साथ लोरेंत्ज़ कारक के रूप में दर्शाया जाता है |
के लिए , , , (5a) द्वारा ;
के लिए , , (3a) द्वारा;
के लिए , , , इस प्रकार (4c)अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान को दर्शाया जाता है ;
लोरेंत्ज़ ने बताया कि उसके पास का मूल्य निर्धारित करने का कोई साधन नहीं है . यदि को सेट हो गया होता तब , उसके भावों ने बिल्कुल सापेक्षतावादी रूप धारण कर लिया होगा।

1904:
लोरेंत्ज़[H 2]पिछले संबंधों को अधिक विस्तृत विधियों से प्राप्त किया, अर्थात् प्रणाली और चलती प्रणाली में स्थिर करने वाले कणों के गुणों के संबंध में , नए सहायक वेरिएबल के साथ के तुलना में 1899 की तुलना में, इस प्रकार:
के लिए के फलन के रूप में (5a) द्वारा  ;
के लिए के फलन के रूप में (5b) द्वारा ;
के लिए के फलन के रूप में (3a) द्वारा;
शेष द्रव्यमान के फलन के रूप में अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान के लिए (4c, 5b).
इस बार, लोरेंत्ज़ यह दिखा सकता है, जिससे उनके सूत्र त्रुटिहीन सापेक्षतावादी रूप धारण कर लेते हैं। तथा जहाँ उन्होंने गति का समीकरण भी बनाया
साथ
जो (4d) साथ से मेल खाता है, , , , , , और विद्युत चुम्बकीय द्रव्यमान के रूप में। इसके अतिरिक्त , उन्होंने तर्क दिया, कि ये सूत्र न केवल विद्युत आवेशित कणों के बलों और द्रव्यमान के लिए, किंतु अन्य प्रक्रियाओं के लिए भी मान्य होने चाहिए ताकि ईथर के माध्यम से पृथ्वी की गति का पता न चल सके।
1905:
हेनरी पोंकारे[H 3] तीन-बल (4e) के परिवर्तन को प्रारंभ किया जाता है | :
,के साथ और लोरेंत्ज़ कारक के रूप में, चार्ज घनत्व. या आधुनिक संकेतन में: , , , और . लोरेंत्ज़ के रूप में, उन्होंने को सेट किया था .

1905:
अल्बर्ट आइंस्टीन[H 5] सापेक्षता के अपने विशेष सिद्धांत के आधार पर गति के समीकरण निकाले, जो यांत्रिक ईथर की क्रिया के बिना समान रूप से मान्य जड़त्वीय फ़्रेमों के मध्य संबंध का प्रतिनिधित्व करते हैं। आइंस्टीन ने निष्कर्ष निकाला, कि क्षणिक जड़त्वीय फ़्रेमों में गति के समीकरण अपना न्यूटोनियन रूप को निरंतरता क्रियान्वित किया हैं:
.
यह इससे मेल खाता है , क्योंकि और और . अपेक्षाकृत गतिमान प्रणाली में परिवर्तन द्वारा उन्होंने उस फ्रेम में देखे गए विद्युत और चुंबकीय अवयवों के लिए समीकरण प्राप्त किए:
.
यह (4c) के साथ (से मेल खाता है) , क्योंकि और और और . नतीजतन, आइंस्टीन ने अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान का निर्धारण किया, तथापि उन्होंने कोमोविंग स्प्रिंग बैलेंस द्वारा मापा जाता है इसे बल और प्रणाली में तीन-त्वरण के लिए से संबंधित किया जाता है :[38]:
यह (5b) के साथ से मेल खाता है |.

1905:
पोंकारे[H 4] तीन-त्वरण के (1c) द्वारा परिवर्तन का परिचय देता है :
जहाँ साथ ही और और .
इसके अतिरिक्त , उन्होंने चार-बलों को इस रूप में प्रस्तुत किया जाता है:
जहाँ और और .

1906:
मैक्स प्लैंक[H 6] गति का समीकरण निकाला
साथ
और
और
लोरेंत्ज़ (1904) द्वारा दिए गए समीकरणों के अनुरूप समीकरण (4d) के साथ
, और और , समीकरण इसके अनुरूप हैं
1907:
आइंस्टाइन[H 7] एकसमान रूप से त्वरित संदर्भ फ्रेम का विश्लेषण किया और कोटलर-मोलर-रिंडलर निर्देशांक द्वारा दिए गए अनुरूप, समन्वय-निर्भर समय विस्तार और प्रकाश की गति के लिए सूत्र प्राप्त किए।

1907:
हरमन मिन्कोव्स्की[H 9] चार-बल (जिसे उन्होंने गतिशील बल कहा) और चार त्वरण के मध्य संबंध को परिभाषित किया
तदनुसार .

1908:
मिन्कोव्स्की[H 8] उचित समय के संबंध में दूसरे व्युत्पन्न को त्वरण सदिश (चार-त्वरण) के रूप में दर्शाता है। उन्होंने दिखाया, कि विश्वरेखा का इसका इच्छा से बिंदु पर परिमाण है, जहाँ संगत वक्रता हाइपरबोला (जर्मन: क्रुमुंगशीपरबेल) को केंद्र से के निर्देशित सदिश का परिमाण है .:
1909:
मैक्स बोर्न[H 10] कठोरता के रूप से अपने अध्ययन के दौरान मिन्कोव्स्की के त्वरण सदिश के निरंतर परिमाण के साथ गति को "हाइपरबोलिक गति" के रूप में दर्शाता है (German: हाइपरबेलबेवेगंग), के रूप में दर्शाता है। उन्होंने को सेट किया (जिसे अब उचित वेग कहा जाता है) और परिवर्तन समीकरणों के साथ लोरेंत्ज़ कारक के रूप में और उचित समय के रूप में, परिवर्तन समीकरणों के साथ
.
जो कि (6a) के साथ और (से मेल खाता है). बॉर्न को हटाकर हाइपरबोलिक समीकरण निकाला गया, और त्वरण के परिमाण को इस प्रकार परिभाषित किया . उन्होंने यह भी देखा कि उनके परिवर्तन का उपयोग हाइपरबोलिकली एक्सेलेरेटेड रेफरेंस प्रणाली (German: हाइपरबोलिश बेस्क्लेयुनिगेट्स बेजुगसिस्टम). में बदलने के लिए किया जा सकता है |

1909:
गुस्ताव हर्ग्लोट्ज़[H 11] एकसमान घूर्णन सहित सम्मिश्र त्वरित गति के सभी संभावित स्तिथियों तक बोर्न की जांच का विस्तार करता है।

1910:
अर्नोल्ड सोमरफेल्ड[H 13] हाइपरबोलिक गति के लिए बॉर्न के सूत्रों को अधिक संक्षिप्त रूप में लाया गया काल्पनिक समय वेरिएबल के रूप में और काल्पनिक कोण के रूप में:


उन्होंने नोट किया कि कब परिवर्तनशील हैं और स्थिर है, वे अतिपरवलयिक गति में आवेशित पिंड की विश्व रेखा का वर्णन करते हैं। लेकिन यदि स्थिर हैं और परिवर्तनशील है, तब वह इसके बाकी फ्रेम में परिवर्तन को दर्शाते हैं।
1911:
ग्रीष्मकालीन क्षेत्र[H 14] ने स्पष्ट रूप से में मात्रा के लिए अभिव्यक्ति उचित त्वरण (German: ईगेनबेस्क्लेयुनिगंग) का स्पष्ट रूप से उपयोग किया गया (German: ईगेनबेस्क्लेयुनिगंग) जो क्षणिक जड़त्वीय फ्रेम में त्वरण के रूप में ( 3a से मेल खाता है),। :
1911:
हर्ग्लोट्ज़[H 12] ने उचित त्वरण के अतिरिक्त स्पष्ट रूप से अभिव्यक्ति विश्राम त्वरण का (German: रुह्बेस्क्लेयुनिगुंग) उपयोग किया गया । उन्होंने इसे और के रूप में लिखा जो (3a) से मेल खाता है , जहाँ लोरेंत्ज़ कारक है और या विश्राम त्वरण के अनुदैर्ध्य और अनुप्रस्थ अवयव हैं।:
1911:
मैक्स वॉन लाउ[H 15] उनके मोनोग्राफ दास रिलेटिविट्सप्रिनज़िप के पहले संस्करण में वेग जोड़ के विभेदन द्वारा तीन-त्वरण के लिए परिवर्तन को व्युत्पन्न किया गया है।
(1c) के साथ-साथ ही पोंकारे (1905/6) तक समान है। इससे उन्होंने विश्राम त्वरण (3a के समान ) का परिवर्तन प्राप्त किया, और अंततः अतिशयोक्तिपूर्ण गति के सूत्र निकले जो (6a) से मेल खाते हैं:
इस प्रकार
,
और काल्पनिक कोण के साथ अतिशयोक्तिपूर्ण संदर्भ प्रणाली में परिवर्तन :
.
उन्होंने त्रि-बल का रूपान्तरण भी लिखा


के समान (4e) साथ ही पोंकारे (1905) तक।
1912-1914:
फ्रेडरिक कोटलर[H 17] मैक्सवेल के समीकरणों का सामान्य सहप्रसरण प्राप्त किया, और हर्ग्लोट्ज़ (1909) द्वारा दिए गए बोर्न सम्मिश्र गतियों का विश्लेषण करने के लिए चार-आयामी फ्रेनेट-सेरेट सूत्रों का उपयोग किया जाता है । उन्होंने हाइपरबोलिक गति और एकसमान गोलाकार गति के लिए उचित संदर्भ फ्रेम (फ्लैट स्पेसटाइम) भी प्राप्त किया जाता है।

1913:
लाउ द्वारा[H 16] उनकी पुस्तक के दूसरे संस्करण में मिन्कोव्स्की के त्वरण सदिश द्वारा तीन-त्वरण के परिवर्तन को प्रतिस्थापित किया गया, जिसके लिए उन्होंने चार-त्वरण (German: विएररबेस्क्लेयुनिगंग) नाम अंकित कराया गया तथा जिसे द्वारा परिभाषित किया गया और को चार-वेग के रूप में परिभाषित किया गया । उन्होंने दिखाया, कि चार-त्वरण का परिमाण द्वारा बाकी त्वरण से मेल खाता है
,
जो (3b) (से मेल खाता है). इसके पश्चात , उन्होंने विश्राम त्वरण और हाइपरबोलिक गति और हाइपरबोलिक संदर्भ फ्रेम के परिवर्तन के लिए 1911 में समान सूत्र निकाले गये थे।

संदर्भ

  1. Misner & Thorne & Wheeler (1973), p. 163: "Accelerated motion and accelerated observers can be analyzed using special relativity."
  2. 2.0 2.1 von Laue (1921)
  3. 3.0 3.1 Pauli (1921)
  4. Sexl & Schmidt (1979), p. 116
  5. Møller (1955), p. 41
  6. Tolman (1917), p. 48
  7. French (1968), p. 148
  8. Zahar (1989), p. 232
  9. Freund (2008), p. 96
  10. Kopeikin & Efroimsky & Kaplan (2011), p. 141
  11. Rahaman (2014), p. 77
  12. 12.0 12.1 12.2 12.3 Pauli (1921), p. 627
  13. 13.0 13.1 13.2 13.3 Freund (2008), pp. 267-268
  14. Ashtekar & Petkov (2014), p. 53
  15. Sexl & Schmidt (1979), p. 198, Solution to example 16.1
  16. 16.0 16.1 Ferraro (2007), p. 178
  17. 17.0 17.1 17.2 Kopeikin & Efroimsky & Kaplan (2011), p. 137
  18. 18.0 18.1 18.2 Rindler (1977), pp. 49-50
  19. 19.0 19.1 19.2 19.3 von Laue (1921), pp. 88-89
  20. Rebhan (1999), p. 775
  21. Nikolić (2000), eq. 10
  22. Rindler (1977), p. 67
  23. 23.0 23.1 23.2 Sexl & Schmidt (1979), solution of example 16.2, p. 198
  24. 24.0 24.1 Freund (2008), p. 276
  25. 25.0 25.1 25.2 Møller (1955), pp. 74-75
  26. 26.0 26.1 Rindler (1977), pp. 89-90
  27. 27.0 27.1 von Laue (1921), p. 210
  28. Pauli (1921), p. 635
  29. 29.0 29.1 Tolman (1917), pp. 73-74
  30. von Laue (1921), p. 113
  31. Møller (1955), p. 73
  32. Kopeikin & Efroimsky & Kaplan (2011), p. 173
  33. 33.0 33.1 Shadowitz (1968), p. 101
  34. 34.0 34.1 Pfeffer & Nir (2012), p. 115, "In the special case in which the particle is momentarily at rest relative to the observer S, the force he measures will be the proper force".
  35. 35.0 35.1 Møller (1955), p. 74
  36. Rebhan (1999), p. 818
  37. see Lorentz's 1904-equations and Einstein's 1905-equations in section on history
  38. 38.0 38.1 Mathpages (see external links), "Transverse Mass in Einstein's Electrodynamics", eq. 2,3
  39. Rindler (1977), p. 43
  40. Koks (2006), section 7.1
  41. Fraundorf (2012), section IV-B
  42. PhysicsFAQ (2016), see external links.
  43. Pauri & Vallisneri (2000), eq. 13
  44. Bini & Lusanna & Mashhoon (2005), eq. 28,29
  45. Synge (1966)
  46. Pauri & Vallisneri (2000), Appendix A
  47. Misner & Thorne & Wheeler (1973), Section 6
  48. 48.0 48.1 Gourgoulhon (2013), entire book
  49. Miller (1981)
  50. Zahar (1989)


ग्रन्थसूची

  • Ashtekar, A.; Petkov, V. (2014). Springer Handbook of Spacetime. Springer. ISBN 978-3642419928.
  • Bini, D.; Lusanna, L.; Mashhoon, B. (2005). "Limitations of radar coordinates". International Journal of Modern Physics D. 14 (8): 1413–1429. arXiv:gr-qc/0409052. Bibcode:2005IJMPD..14.1413B. doi:10.1142/S0218271805006961. S2CID 17909223.
  • Ferraro, R. (2007). Einstein's Space-Time: An Introduction to Special and General Relativity. Spektrum. ISBN 978-0387699462.
  • Fraundorf, P. (2012). "A traveler-centered intro to kinematics". IV-B. arXiv:1206.2877 [physics.pop-ph].
  • French, A.P. (1968). Special Relativity. CRC Press. ISBN 1420074814.
  • Freund, J. (2008). Special Relativity for Beginners: A Textbook for Undergraduates. World Scientific. ISBN 978-9812771599.
  • Gourgoulhon, E. (2013). Special Relativity in General Frames: From Particles to Astrophysics. Springer. ISBN 978-3642372766.
  • von Laue, M. (1921). Die Relativitätstheorie, Band 1 (fourth edition of "Das Relativitätsprinzip" ed.). Vieweg.; First edition 1911, second expanded edition 1913, third expanded edition 1919.
  • Koks, D. (2006). Explorations in Mathematical Physics. Springer. ISBN 0387309438.
  • Kopeikin,S.; Efroimsky, M.; Kaplan, G. (2011). Relativistic Celestial Mechanics of the Solar System. John Wiley & Sons. ISBN 978-3527408566.
  • Miller, Arthur I. (1981). Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911). Reading: Addison–Wesley. ISBN 0-201-04679-2.
  • Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973). Gravitation. Freeman. ISBN 0716703440.
  • Møller, C. (1955) [1952]. The theory of relativity. Oxford Clarendon Press.
  • Nikolić, H. (2000). "Relativistic contraction and related effects in noninertial frames". Physical Review A. 61 (3): 032109. arXiv:gr-qc/9904078. Bibcode:2000PhRvA..61c2109N. doi:10.1103/PhysRevA.61.032109. S2CID 5783649.
  • Pauli, Wolfgang (1921), "Die Relativitätstheorie", Encyclopädie der Mathematischen Wissenschaften, 5 (2): 539–776
In English: Pauli, W. (1981) [1921]. Theory of Relativity. ISBN 0-486-64152-X. {{cite book}}: |journal= ignored (help)


ऐतिहासिक कागजात

<references group=H> [1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17] </संदर्भ>

बाहरी संबंध

  1. 1.0 1.1 1.2 Cite error: Invalid <ref> tag; no text was provided for refs named lorentz1
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Cite error: Invalid <ref> tag; no text was provided for refs named lorentz2
  3. 3.0 3.1 3.2 Cite error: Invalid <ref> tag; no text was provided for refs named poincare1
  4. 4.0 4.1 4.2 Cite error: Invalid <ref> tag; no text was provided for refs named poincare2
  5. 5.0 5.1 5.2 Cite error: Invalid <ref> tag; no text was provided for refs named einstein
  6. 6.0 6.1 6.2 6.3 Cite error: Invalid <ref> tag; no text was provided for refs named planck
  7. 7.0 7.1 Cite error: Invalid <ref> tag; no text was provided for refs named Einstein2
  8. 8.0 8.1 Cite error: Invalid <ref> tag; no text was provided for refs named minkowski
  9. 9.0 9.1 Cite error: Invalid <ref> tag; no text was provided for refs named minkowski1
  10. 10.0 10.1 10.2 Cite error: Invalid <ref> tag; no text was provided for refs named born
  11. 11.0 11.1 11.2 Cite error: Invalid <ref> tag; no text was provided for refs named herglotz1
  12. 12.0 12.1 12.2 12.3 Cite error: Invalid <ref> tag; no text was provided for refs named herglotz2
  13. 13.0 13.1 Cite error: Invalid <ref> tag; no text was provided for refs named sommerfeld1
  14. 14.0 14.1 14.2 14.3 Cite error: Invalid <ref> tag; no text was provided for refs named sommerfeld2
  15. 15.0 15.1 15.2 15.3 15.4 Cite error: Invalid <ref> tag; no text was provided for refs named laue1
  16. 16.0 16.1 16.2 Cite error: Invalid <ref> tag; no text was provided for refs named laue2
  17. 17.0 17.1 17.2 Cite error: Invalid <ref> tag; no text was provided for refs named Kottler
  1. Born, Max (1909). "Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips" [Wikisource translation: The Theory of the Rigid Electron in the Kinematics of the Principle of Relativity]. Annalen der Physik. 335 (11): 1–56. Bibcode:1909AnP...335....1B. doi:10.1002/andp.19093351102.
  2. Einstein, Albert (1905). "Zur Elektrodynamik bewegter Körper". Annalen der Physik. 322 (10): 891–921. Bibcode:1905AnP...322..891E. doi:10.1002/andp.19053221004.; See also: English translation.
  3. Einstein, Albert (1908) [1907], "Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen" (PDF), Jahrbuch der Radioaktivität und Elektronik, 4: 411–462, Bibcode:1908JRE.....4..411E; English translation On the relativity principle and the conclusions drawn from it at Einstein paper project.
  4. Herglotz, G (1910) [1909]. "Über den vom Standpunkt des Relativitätsprinzips aus als starr zu bezeichnenden Körper" [Wikisource translation: On bodies that are to be designated as "rigid" from the standpoint of the relativity principle]. Annalen der Physik. 336 (2): 393–415. Bibcode:1910AnP...336..393H. doi:10.1002/andp.19103360208.
  5. Herglotz, G. (1911). "Über die Mechanik des deformierbaren Körpers vom Standpunkte der Relativitätstheorie". Annalen der Physik. 341 (13): 493–533. Bibcode:1911AnP...341..493H. doi:10.1002/andp.19113411303.
  6. Laue, Max von (1911). Das Relativitätsprinzip. Braunschweig: Vieweg.
  7. Laue, Max von (1913). Das Relativitätsprinzip (2. Ausgabe ed.). Braunschweig: Vieweg.
  8. Lorentz, Hendrik Antoon (1899). "मूविंग सिस्टम में इलेक्ट्रिकल और ऑप्टिकल घटना का सरलीकृत सिद्धांत" . Proceedings of the Royal Netherlands Academy of Arts and Sciences. 1: 427–442. Bibcode:1898KNAB....1..427L.
  9. Lorentz, Hendrik Antoon (1904). "प्रकाश की तुलना में किसी भी छोटे वेग से चलने वाली प्रणाली में विद्युत चुम्बकीय घटनाएँ" . Proceedings of the Royal Netherlands Academy of Arts and Sciences. 6: 809–831. Bibcode:1903KNAB....6..809L.
  10. Kottler, Friedrich (1912). "Über die Raumzeitlinien der Minkowski'schen Welt" [Wikisource translation: On the spacetime lines of a Minkowski world]. Wiener Sitzungsberichte 2a. 121: 1659–1759. hdl:2027/mdp.39015051107277. Kottler, Friedrich (1914a). "Relativitätsprinzip und beschleunigte Bewegung". Annalen der Physik. 349 (13): 701–748. Bibcode:1914AnP...349..701K. doi:10.1002/andp.19143491303. Kottler, Friedrich (1914b). "Fallende Bezugssysteme vom Standpunkte des Relativitätsprinzips". Annalen der Physik. 350 (20): 481–516. Bibcode:1914AnP...350..481K. doi:10.1002/andp.19143502003.
  11. Minkowski, Hermann (1908) [1907], "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern"  [Wikisource translation: The Fundamental Equations for Electromagnetic Processes in Moving Bodies], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 53–111
  12. Minkowski, Hermann (1909) [1908]. "Raum und Zeit. Vortrag, gehalten auf der 80. Naturforscher-Versammlung zu Köln am 21. September 1908"  [Wikisource translation: Space and Time]. Jahresbericht der Deutschen Mathematiker-Vereinigung. Leipzig.
  13. Planck, Max (1906). "Das Prinzip der Relativität und die Grundgleichungen der Mechanik" [Wikisource translation: The Principle of Relativity and the Fundamental Equations of Mechanics]. Verhandlungen Deutsche Physikalische Gesellschaft. 8: 136–141.
  14. Poincaré, Henri (1905). "Sur la dynamique de l'électron"  [Wikisource translation: On the Dynamics of the Electron]. Comptes rendus hebdomadaires des séances de l'Académie des sciences. 140: 1504–1508.
  15. Poincaré, Henri (1906) [1905]. "Sur la dynamique de l'électron"  [Wikisource translation: On the Dynamics of the Electron]. Rendiconti del Circolo Matematico di Palermo. 21: 129–176. Bibcode:1906RCMP...21..129P. doi:10.1007/BF03013466. hdl:2027/uiug.30112063899089. S2CID 120211823.
  16. Sommerfeld, Arnold (1910). "Zur Relativitätstheorie II: Vierdimensionale Vektoranalysis" [Wikisource translation: On the Theory of Relativity II: Four-dimensional Vector Analysis]. Annalen der Physik. 338 (14): 649–689. Bibcode:1910AnP...338..649S. doi:10.1002/andp.19103381402.
  17. Sommerfeld, Arnold (1911). "Über die Struktur der gamma-Strahlen". Sitzungsberichte der Mathematematisch-physikalischen Klasse der K. B. Akademie der Wissenschaften zu München (1): 1–60.