घातीय स्थिरता: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Continuous-time linear system with only negative real parts}} {{Differential equations}} नियंत्रण सिद्धांत में,...")
 
m (5 revisions imported from alpha:घातीय_स्थिरता)
 
(4 intermediate revisions by 2 users not shown)
Line 3: Line 3:
{{Differential equations}}
{{Differential equations}}


[[नियंत्रण सिद्धांत]] में, एक सतत [[एलटीआई प्रणाली सिद्धांत]] | रैखिक समय-अपरिवर्तनीय प्रणाली (एलटीआई) तेजी से स्थिर होती है यदि सिस्टम में सख्ती से नकारात्मक के साथ स्वदेशी मान (यानी, इनपुट-टू-आउटपुट सिस्टम के [[ध्रुव (जटिल विश्लेषण)]] हैं) वास्तविक भाग. (अर्थात, जटिल तल के बाएँ आधे भाग में)<ref>David N. Cheban (2004), ''Global Attractors Of Non-autonomous Dissipative Dynamical Systems''. p.&nbsp;47</ref> एक असतत-समय इनपुट-टू-आउटपुट एलटीआई प्रणाली तेजी से स्थिर होती है यदि और केवल तभी जब इसके स्थानांतरण फ़ंक्शन के ध्रुव जटिल विमान की उत्पत्ति पर केंद्रित इकाई सर्कल के भीतर सख्ती से स्थित हों। जो प्रणालियाँ एलटीआई नहीं हैं वे घातीय रूप से स्थिर हैं यदि उनका अभिसरण [[घातीय क्षय]] द्वारा सीमित कार्य है।
[[नियंत्रण सिद्धांत]] में, सतत [[एलटीआई प्रणाली सिद्धांत|रैखिक अपरिवर्तनीय प्रणाली सिद्धांत]] (एलटीआई) तीव्रता से स्थिर होती है यदि सिस्टम में कठोरता से ऋणात्मकता वास्तविक भागों के साथ आइगेनवैल्यू (अर्थात, इनपुट-टू-आउटपुट सिस्टम के [[ध्रुव (जटिल विश्लेषण)]] हैं) (अर्थात, जटिल तल के बाएँ अर्ध भाग में) है।<ref>David N. Cheban (2004), ''Global Attractors Of Non-autonomous Dissipative Dynamical Systems''. p.&nbsp;47</ref> असतत-समय इनपुट-टू-आउटपुट एलटीआई प्रणाली तीव्रता से स्थिर होती है यदि केवल तभी जब इसके स्थानांतरण आवेग के ध्रुव जटिल तल की उत्पत्ति पर केंद्रित इकाई घेरा के अन्दर कठोरता से स्थित हों। जो सिस्टम एलटीआई नहीं हैं वे तीव्रता से स्थिर होते हैं यदि उनका अभिसरण [[घातीय क्षय]] से घिरा होता है। '''घातीय स्थिरता''' [[स्पर्शोन्मुख स्थिरता]] का रूप है, जो अधिक सामान्य गतिशील प्रणालियों के लिए मान्य है।
घातीय स्थिरता [[स्पर्शोन्मुख स्थिरता]] का एक रूप है, जो अधिक सामान्य गतिशील प्रणालियों के लिए मान्य है।


==व्यावहारिक परिणाम==
==व्यावहारिक परिणाम==


एक घातीय रूप से स्थिर एलटीआई प्रणाली वह है जो सीमित इनपुट या गैर-शून्य प्रारंभिक स्थिति दिए जाने पर नष्ट नहीं होगी (यानी, एक असीमित आउटपुट देगी)। इसके अलावा, यदि सिस्टम को एक निश्चित, परिमित इनपुट (यानी, एक [[हेविसाइड स्टेप फ़ंक्शन]]) दिया जाता है, तो आउटपुट में कोई भी परिणामी दोलन एक [[घातीय वृद्धि]] पर क्षय हो जाएगा, और आउटपुट एक नए अंतिम, स्थिर-अवस्था मूल्य की ओर स्पर्शोन्मुख हो जाएगा। . यदि सिस्टम को इनपुट के रूप में [[डिराक डेल्टा फ़ंक्शन]] दिया जाता है, तो प्रेरित दोलन समाप्त हो जाएंगे और सिस्टम अपने पिछले मूल्य पर वापस आ जाएगा। यदि दोलन समाप्त नहीं होते हैं, या आवेग लागू होने पर सिस्टम अपने मूल आउटपुट पर वापस नहीं लौटता है, तो सिस्टम में [[सीमांत स्थिरता]] होती है।
घातीय रूप से स्थिर एलटीआई प्रणाली वह है जो सीमित इनपुट या अशून्य प्रारंभिक स्थिति दिए जाने पर नष्ट नहीं होगी (अर्थात, असीमित आउटपुट देगी)। इसके अतिरिक्त, यदि सिस्टम को निश्चित, परिमित इनपुट (अर्थात, [[हेविसाइड स्टेप फ़ंक्शन|हेविसाइड स्टेप आवेग]]) दिया जाता है, तो आउटपुट में कोई भी परिणामी दोलन [[घातीय वृद्धि|घातांकीय वृद्धि]] पर क्षय हो जाएगा, और आउटपुट नए अंतिम, स्थिर-अवस्था मान की ओर स्पर्शोन्मुख हो जाएगा। यदि सिस्टम को इनपुट के रूप में [[डिराक डेल्टा फ़ंक्शन|डायराक डेल्टा आवेग]] दिया जाता है, तो प्रेरित दोलन समाप्त हो जाएंगे और सिस्टम अपने पिछले मान पर वापस आ जाएगा। यदि दोलन समाप्त नहीं होते हैं, या आवेग प्रारम्भ होने पर सिस्टम अपने मूल आउटपुट पर वापस नहीं आता है, तो सिस्टम में [[सीमांत स्थिरता]] होती है।


==घातांकीय रूप से स्थिर एलटीआई सिस्टम का उदाहरण==
==घातांकीय रूप से स्थिर एलटीआई सिस्टम का उदाहरण==


[[Image:AsymptoticStabilityImpulseScilab.png|thumb|320px|दो घातीय रूप से स्थिर प्रणालियों की आवेग प्रतिक्रियाएँ]]दाईं ओर का ग्राफ़ दो समान प्रणालियों की [[आवेग प्रतिक्रिया]] को दर्शाता है। हरा वक्र आवेग प्रतिक्रिया के साथ सिस्टम की प्रतिक्रिया है <math>y(t) = e^{-\frac{t}{5}}</math>, जबकि नीला रंग सिस्टम का प्रतिनिधित्व करता है <math>y(t) = e^{-\frac{t}{5}}\sin(t)</math>. हालाँकि एक प्रतिक्रिया दोलनशील है, दोनों समय के साथ 0 के मूल मान पर लौट आते हैं।
[[Image:AsymptoticStabilityImpulseScilab.png|thumb|320px|दो घातीय रूप से स्थिर प्रणालियों की आवेग प्रतिक्रियाएँ]]दाईं ओर का ग्राफ़ दो समान प्रणालियों की [[आवेग प्रतिक्रिया]] को दर्शाता है। हरा रंग वक्र आवेग प्रतिक्रिया के साथ सिस्टम की प्रतिक्रिया <math>y(t) = e^{-\frac{t}{5}}</math> है , जबकि नीला रंग सिस्टम का प्रतिनिधित्व <math>y(t) = e^{-\frac{t}{5}}\sin(t)</math> करता है चूँकि प्रतिक्रिया दोलनशील है, दोनों समय के साथ 0 के मूल मान पर वापस आ जाते हैं।


===वास्तविक दुनिया का उदाहरण===
===रियल वर्ल्ड का उदाहरण===


एक करछुल में संगमरमर डालने की कल्पना करें। यह अपने आप करछुल के सबसे निचले बिंदु पर स्थापित हो जाएगा और, जब तक परेशान न हो, वहीं रहेगा। अब गेंद को धक्का देने की कल्पना करें, जो कि डिराक डिराक डेल्टा फ़ंक्शन का एक अनुमान है। संगमरमर आगे-पीछे लुढ़केगा लेकिन अंततः करछुल के तल में पुनः स्थापित हो जाएगा। समय के साथ संगमरमर की क्षैतिज स्थिति को चित्रित करने से ऊपर की छवि में नीले वक्र की तरह धीरे-धीरे कम होने वाला साइनसॉइड मिलेगा।
लेडल में मार्बल डालने की कल्पना करें। यह स्वयं लेडल के सबसे निचले बिंदु पर स्थापित हो जाएगा और जब तक परेशान न हो, वहीं रहेगा। अब गेंद को पुश करने की कल्पना करें, जो कि डायराक डेल्टा आवेग का अनुमान है। मार्बल आगे-पीछे क्षैतिज स्थिति में जायेंगा किन्तु अंततः लेडल के तल में पुनः स्थापित हो जाएगा। समय के साथ मार्बल की क्षैतिज स्थिति को चित्रित करने से ऊपर की छवि में नीले वक्र के जैसे धीरे-धीरे कम होने वाला साइनसॉइड प्राप्त होगा।


इस मामले में स्टेप इनपुट के लिए मार्बल को करछुल के नीचे से दूर सहारा देने की आवश्यकता होती है, ताकि वह वापस न लुढ़क सके। यह उसी स्थिति में रहेगा और अपने वजन के बराबर इस निरंतर बल के तहत करछुल के नीचे से दूर नहीं जाएगा, जैसा कि तब होता जब सिस्टम केवल मामूली रूप से स्थिर या पूरी तरह से अस्थिर होता।
इस स्थिति में स्टेप इनपुट के लिए मार्बल को लेडल के नीचे से दूर सहारा देने की आवश्यकता होती है, जिससे वह वापस क्षैतिज स्थिति में जा सके। यह उसी स्थिति में रहेगा और अपने भार के समान इस निरंतर बल के अंतर्गत लेडल के नीचे से दूर नहीं जाएगा, जैसा कि तब होता जब सिस्टम केवल सीमांत रूप से स्थिर या पूर्ण रूप से अस्थिर होता है।


यह ध्यान रखना महत्वपूर्ण है कि इस उदाहरण में सिस्टम सभी इनपुट के लिए स्थिर नहीं है। मार्बल को एक बड़ा धक्का दीजिए और वह करछुल से छूटकर गिर जाएगा और फर्श पर पहुंचकर ही रुकेगा। इसलिए, कुछ प्रणालियों के लिए, यह कहना उचित है कि एक प्रणाली इनपुट की एक निश्चित सीमा पर तेजी से स्थिर होती है।
यह ध्यान रखना महत्वपूर्ण है कि इस उदाहरण में सिस्टम सभी इनपुट के लिए स्थिर नहीं है। मार्बल को तीव्रता से पुश करिए और वह लेडल से छूटकर गिर जाएगा और फर्श पर पहुंचकर ही रुकेगा। इसलिए, कुछ प्रणालियों के लिए, यह कहना उचित है कि प्रणाली इनपुट की निश्चित सीमा पर तीव्रता से स्थिर होती है।


==यह भी देखें==
==यह भी देखें==
* सीमांत स्थिरता
* सीमांत स्थिरता
* नियंत्रण सिद्धांत
* नियंत्रण सिद्धांत
* [[राज्य स्थान (नियंत्रण)]]
* [[राज्य स्थान (नियंत्रण)|स्टेट स्थान (नियंत्रण)]]


==संदर्भ==
==संदर्भ==
Line 33: Line 32:
==बाहरी संबंध==
==बाहरी संबंध==
* [https://web.archive.org/web/20041220212435/http://www.princeton.edu/~ap/stability.pdf Parameter estimation and asymptotic stability instochastic filtering], Anastasia Papavasiliou∗September 28, 2004
* [https://web.archive.org/web/20041220212435/http://www.princeton.edu/~ap/stability.pdf Parameter estimation and asymptotic stability instochastic filtering], Anastasia Papavasiliou∗September 28, 2004
{{Differential equations topics}}
[[Category: गतिशील प्रणालियाँ]] [[Category: स्थिरता सिद्धांत]]  
[[Category: गतिशील प्रणालियाँ]] [[Category: स्थिरता सिद्धांत]]  


Line 43: Line 40:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 11/08/2023]]
[[Category:Created On 11/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 22:27, 10 October 2023

नियंत्रण सिद्धांत में, सतत रैखिक अपरिवर्तनीय प्रणाली सिद्धांत (एलटीआई) तीव्रता से स्थिर होती है यदि सिस्टम में कठोरता से ऋणात्मकता वास्तविक भागों के साथ आइगेनवैल्यू (अर्थात, इनपुट-टू-आउटपुट सिस्टम के ध्रुव (जटिल विश्लेषण) हैं) (अर्थात, जटिल तल के बाएँ अर्ध भाग में) है।[1] असतत-समय इनपुट-टू-आउटपुट एलटीआई प्रणाली तीव्रता से स्थिर होती है यदि केवल तभी जब इसके स्थानांतरण आवेग के ध्रुव जटिल तल की उत्पत्ति पर केंद्रित इकाई घेरा के अन्दर कठोरता से स्थित हों। जो सिस्टम एलटीआई नहीं हैं वे तीव्रता से स्थिर होते हैं यदि उनका अभिसरण घातीय क्षय से घिरा होता है। घातीय स्थिरता स्पर्शोन्मुख स्थिरता का रूप है, जो अधिक सामान्य गतिशील प्रणालियों के लिए मान्य है।

व्यावहारिक परिणाम

घातीय रूप से स्थिर एलटीआई प्रणाली वह है जो सीमित इनपुट या अशून्य प्रारंभिक स्थिति दिए जाने पर नष्ट नहीं होगी (अर्थात, असीमित आउटपुट देगी)। इसके अतिरिक्त, यदि सिस्टम को निश्चित, परिमित इनपुट (अर्थात, हेविसाइड स्टेप आवेग) दिया जाता है, तो आउटपुट में कोई भी परिणामी दोलन घातांकीय वृद्धि पर क्षय हो जाएगा, और आउटपुट नए अंतिम, स्थिर-अवस्था मान की ओर स्पर्शोन्मुख हो जाएगा। यदि सिस्टम को इनपुट के रूप में डायराक डेल्टा आवेग दिया जाता है, तो प्रेरित दोलन समाप्त हो जाएंगे और सिस्टम अपने पिछले मान पर वापस आ जाएगा। यदि दोलन समाप्त नहीं होते हैं, या आवेग प्रारम्भ होने पर सिस्टम अपने मूल आउटपुट पर वापस नहीं आता है, तो सिस्टम में सीमांत स्थिरता होती है।

घातांकीय रूप से स्थिर एलटीआई सिस्टम का उदाहरण

दो घातीय रूप से स्थिर प्रणालियों की आवेग प्रतिक्रियाएँ

दाईं ओर का ग्राफ़ दो समान प्रणालियों की आवेग प्रतिक्रिया को दर्शाता है। हरा रंग वक्र आवेग प्रतिक्रिया के साथ सिस्टम की प्रतिक्रिया है , जबकि नीला रंग सिस्टम का प्रतिनिधित्व करता है चूँकि प्रतिक्रिया दोलनशील है, दोनों समय के साथ 0 के मूल मान पर वापस आ जाते हैं।

रियल वर्ल्ड का उदाहरण

लेडल में मार्बल डालने की कल्पना करें। यह स्वयं लेडल के सबसे निचले बिंदु पर स्थापित हो जाएगा और जब तक परेशान न हो, वहीं रहेगा। अब गेंद को पुश करने की कल्पना करें, जो कि डायराक डेल्टा आवेग का अनुमान है। मार्बल आगे-पीछे क्षैतिज स्थिति में जायेंगा किन्तु अंततः लेडल के तल में पुनः स्थापित हो जाएगा। समय के साथ मार्बल की क्षैतिज स्थिति को चित्रित करने से ऊपर की छवि में नीले वक्र के जैसे धीरे-धीरे कम होने वाला साइनसॉइड प्राप्त होगा।

इस स्थिति में स्टेप इनपुट के लिए मार्बल को लेडल के नीचे से दूर सहारा देने की आवश्यकता होती है, जिससे वह वापस क्षैतिज स्थिति में न जा सके। यह उसी स्थिति में रहेगा और अपने भार के समान इस निरंतर बल के अंतर्गत लेडल के नीचे से दूर नहीं जाएगा, जैसा कि तब होता जब सिस्टम केवल सीमांत रूप से स्थिर या पूर्ण रूप से अस्थिर होता है।

यह ध्यान रखना महत्वपूर्ण है कि इस उदाहरण में सिस्टम सभी इनपुट के लिए स्थिर नहीं है। मार्बल को तीव्रता से पुश करिए और वह लेडल से छूटकर गिर जाएगा और फर्श पर पहुंचकर ही रुकेगा। इसलिए, कुछ प्रणालियों के लिए, यह कहना उचित है कि प्रणाली इनपुट की निश्चित सीमा पर तीव्रता से स्थिर होती है।

यह भी देखें

संदर्भ

  1. David N. Cheban (2004), Global Attractors Of Non-autonomous Dissipative Dynamical Systems. p. 47


बाहरी संबंध