अनुवादात्मक समरूपता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 12: Line 12:
== ज्यामिति ==
== ज्यामिति ==
{{Lie groups}}
{{Lie groups}}
ट्रांसलेशनल इनवेरिएंस का तात्पर्य है कि, कम से कम एक दिशा में, वस्तु अनंत है: किसी भी दिए गए बिंदु p के लिए, रूपांतरण समरूपता के कारण समान गुणों वाले बिंदुओं का समूह अनंत असतत समूह {{math|1={'''p''' + ''n'''''a''' {{!}} ''n'' ∈ '''Z'''} = '''p''' + '''Z''' '''a'''}}. मौलिक डोमेन हैं उदा. किसी भी हाइपरप्लेन H के लिए {{math|'''H''' + [0, 1] '''a'''}} जिसके लिए a की एक स्वतंत्र दिशा है। यह 1डी में एक रेखा खंड है, 2डी में एक अनंत स्ट्रिप है, और 3डी में एक स्लैब है, जैसे कि एक पक्ष से प्रारंभ होने वाला सदिश दूसरी पक्ष समाप्त होता है। ध्यान दें कि स्ट्रिप और स्लैब को सदिश के लंबवत होने की आवश्यकता नहीं है, इसलिए वह सदिश की लंबाई से संकरी या पतली हो सकती हैं।
रूपांतरण अपरिवर्तनीयता का तात्पर्य है कि, कम से कम एक दिशा में, वस्तु अनंत है: किसी भी दिए गए बिंदु p के लिए, रूपांतरण समरूपता के कारण समान गुणों वाले बिंदुओं का समूह अनंत असतत समूह {{math|1={'''p''' + ''n'''''a''' {{!}} ''n'' ∈ '''Z'''} = '''p''' + '''Z''' '''a'''}}. मौलिक डोमेन हैं उदाहरण. किसी भी हाइपरप्लेन H के लिए {{math|'''H''' + [0, 1] '''a'''}} जिसके लिए a की एक स्वतंत्र दिशा है। यह 1डी में एक रेखा खंड है, 2डी में एक अनंत स्ट्रिप है, और 3डी में एक स्लैब है, जैसे कि एक पक्ष से प्रारंभ होने वाला सदिश दूसरी पक्ष समाप्त होता है। ध्यान दें कि स्ट्रिप और स्लैब को सदिश के लंबवत होने की आवश्यकता नहीं है, इसलिए वह सदिश की लंबाई से संकरी या पतली हो सकती हैं।


इस प्रकार 1 से अधिक आयाम वाले स्थानों में, एकाधिक रूपांतरणात्मक समरूपता हो सकती है। इस प्रकार ''k'' स्वतंत्र रूपांतरण सदिश के प्रत्येक समूह के लिए, समरूपता समूह Z<sup>k</sup> के साथ समरूपी है.
इस प्रकार 1 से अधिक आयाम वाले स्थानों में, एकाधिक रूपांतरणात्मक समरूपता हो सकती है। इस प्रकार ''k'' स्वतंत्र रूपांतरण सदिश के प्रत्येक समूह के लिए, समरूपता समूह Z<sup>k</sup> के साथ समरूपी है.
Line 24: Line 24:
उदाहरण के लिए, उन पर एक असममित क्रम के साथ समान आयताकार टाइलों के साथ एक टाइलिंग पर विचार करें, सभी पंक्तियों में समान रूप से उन्मुख होते हैं, प्रत्येक पंक्ति के लिए एक अंश का परिवर्तन होता है, टाइल का अर्ध भाग सदैव समान नहीं होता है, तो हमारे निकट केवल रूपांतरण समरूपता वॉलपेपर समूह ''p'' 1 होता है (यही कथन बिना किसी परिवर्तन के प्रयुक्त होता)। इस प्रकार टाइल पर क्रम के दो घूर्णी समरूपता के साथ हमारे निकट ''p''2 है (टाइल पर एक क्रम की अधिक समरूपता टाइल्स की व्यवस्था के कारण इसे नहीं परिवर्तित करती है)। एक टाइल के भाग और दूसरे के भाग वाले समांतर चतुर्भुज की तुलना में आयत को मौलिक डोमेन (या उनमें से दो का समूह) के रूप में विचार करने के लिए एक अधिक सुविधाजनक इकाई है।
उदाहरण के लिए, उन पर एक असममित क्रम के साथ समान आयताकार टाइलों के साथ एक टाइलिंग पर विचार करें, सभी पंक्तियों में समान रूप से उन्मुख होते हैं, प्रत्येक पंक्ति के लिए एक अंश का परिवर्तन होता है, टाइल का अर्ध भाग सदैव समान नहीं होता है, तो हमारे निकट केवल रूपांतरण समरूपता वॉलपेपर समूह ''p'' 1 होता है (यही कथन बिना किसी परिवर्तन के प्रयुक्त होता)। इस प्रकार टाइल पर क्रम के दो घूर्णी समरूपता के साथ हमारे निकट ''p''2 है (टाइल पर एक क्रम की अधिक समरूपता टाइल्स की व्यवस्था के कारण इसे नहीं परिवर्तित करती है)। एक टाइल के भाग और दूसरे के भाग वाले समांतर चतुर्भुज की तुलना में आयत को मौलिक डोमेन (या उनमें से दो का समूह) के रूप में विचार करने के लिए एक अधिक सुविधाजनक इकाई है।


2डी में किसी भी लंबाई के सदिश के लिए एक दिशा में रूपांतरणात्मक समरूपता हो सकती है। एक पंक्ति, एक ही दिशा में नहीं, पूर्ण वस्तु को पूर्ण तरह से परिभाषित करती है। इसी प्रकार, 3डी में किसी भी लंबाई के सदिश के लिए एक या दो दिशाओं में रूपांतरणात्मक समरूपता हो सकती है। समतल ([[क्रॉस-सेक्शन (ज्यामिति)]] या क्रॉस-सेक्शन) या रेखा, क्रमशः, पूर्ण वस्तु को पूर्ण तरह से परिभाषित करती है।
इस प्रकार 2डी में किसी भी लंबाई के सदिश के लिए एक दिशा में रूपांतरणात्मक समरूपता हो सकती है। एक पंक्ति, एक ही दिशा में नहीं, पूर्ण वस्तु को पूर्ण तरह से परिभाषित करती है। इसी प्रकार, 3डी में किसी भी लंबाई के सदिश के लिए एक या दो दिशाओं में रूपांतरणात्मक समरूपता हो सकती है। समतल ([[क्रॉस-सेक्शन (ज्यामिति)]] या क्रॉस-सेक्शन) या रेखा, क्रमशः, पूर्ण वस्तु को पूर्ण तरह से परिभाषित करती है।


== उदाहरण ==
== उदाहरण ==

Revision as of 07:45, 30 September 2023

रूपांतरणात्मक अपरिवर्तनीय कार्यों के लिए यह है . लेबेस्ग्यू माप ऐसे फलन के लिए एक उदाहरण है।

ज्यामिति में, रूपांतरण (ज्यामिति) एक ज्यामितीय आकृति को बिना घुमाए एक स्थान से दूसरे स्थान पर ले जाना है। एक परिवर्तन किसी वस्तु को परिवर्तित कर देता है। a: Ta(p) = p + a.

भौतिकी और गणित में, निरंतर रूपांतरणात्मक समरूपता किसी भी रूपांतरण के अनुसार समीकरणों की प्रणाली का अपरिवर्तनीय (गणित) है। इस प्रकार असतत गणित रूपांतरण के अंतर्गत असतत रूपांतरणात्मक समरूपता अपरिवर्तनीय है।

समान रूप से, फलन पर एक संचालक A को रूपांतरण संचालक के संबंध में रूपांतरणात्मक रूप से अपरिवर्तनीय कहा जाता है यदि तर्क फलन का रूपांतरण करने पर A प्रयुक्त करने के पश्चात परिणाम नहीं परिवर्तित होता है। अधिक स्पष्ट रूप से इसे अवश्य ही धारण करना चाहिए।

स्थानिक रूपांतरण के अनुसार भौतिकी के नियम रूपांतरणात्मक रूप से अपरिवर्तनीय हैं यदि वह अंतरिक्ष में विभिन्न बिंदुओं को भिन्न नहीं करते हैं। नोएथर के प्रमेय के अनुसार, किसी भौतिक प्रणाली की अंतरिक्ष रूपांतरणात्मक समरूपता गति के संरक्षण के समान है।

इस प्रकार किसी वस्तु की रूपांतरणात्मक समरूपता का अर्थ है कि कोई विशेष रूपांतरण वस्तु को नहीं परिवर्तित होता है। किसी दिए गए वस्तु के लिए, जिन रूपांतरणों पर यह प्रयुक्त होता है, वह एक वस्तु का समरूपता समूह बनाते हैं, या, यदि वस्तु में अधिक एक प्रकार की समरूपता है, तो समरूपता समूह का उपसमूह बनता है।

ज्यामिति

रूपांतरण अपरिवर्तनीयता का तात्पर्य है कि, कम से कम एक दिशा में, वस्तु अनंत है: किसी भी दिए गए बिंदु p के लिए, रूपांतरण समरूपता के कारण समान गुणों वाले बिंदुओं का समूह अनंत असतत समूह {p + na | nZ} = p + Z a. मौलिक डोमेन हैं उदाहरण. किसी भी हाइपरप्लेन H के लिए H + [0, 1] a जिसके लिए a की एक स्वतंत्र दिशा है। यह 1डी में एक रेखा खंड है, 2डी में एक अनंत स्ट्रिप है, और 3डी में एक स्लैब है, जैसे कि एक पक्ष से प्रारंभ होने वाला सदिश दूसरी पक्ष समाप्त होता है। ध्यान दें कि स्ट्रिप और स्लैब को सदिश के लंबवत होने की आवश्यकता नहीं है, इसलिए वह सदिश की लंबाई से संकरी या पतली हो सकती हैं।

इस प्रकार 1 से अधिक आयाम वाले स्थानों में, एकाधिक रूपांतरणात्मक समरूपता हो सकती है। इस प्रकार k स्वतंत्र रूपांतरण सदिश के प्रत्येक समूह के लिए, समरूपता समूह Zk के साथ समरूपी है.

विशेष रूप से, बहुलता आयाम के समान हो सकती है। इसका तात्पर्य यह है कि वस्तु सभी दिशाओं में अनंत है। इस स्थिति में, सभी रूपांतरणों का समूह एक लैटिस (समूह) बनाता है। रूपांतरण सदिश के विभिन्न अर्धर एक ही लैटिस उत्पन्न करते हैं यदि और केवल यदि एक को पूर्णांक गुणांक के आव्यूह द्वारा दूसरे में परिवर्तित कर दिया जाता है, जिसमें निर्धारक का पूर्ण मान 1 है। K समूह द्वारा गठित आव्यूह के निर्धारक का पूर्ण मान रूपांतरण सदिश एन-आयामी समानांतर चतुर्भुज का हाइपरवॉल्यूम है जो समूह सबटेंड करता है (जिसे लैटिस का कोवॉल्यूम भी कहा जाता है)। यह समांतर चतुर्भुज समरूपता का मूलभूत क्षेत्र है: इस पर या इसमें कोई भी क्रम संभव है, और यह संपूर्ण वस्तु को परिभाषित करता है। लैटिस (समूह) भी देखें।

जैसे 2डी में, a और b के अतिरिक्त हम a और ab आदि भी ले सकते हैं। सामान्यतः 2डी में, हम पूर्णांक p, q, r, और s के लिए pa + qb और ra + sb ले सकते हैं जैसे कि psqr 1 या −1 है. यह सुनिश्चित करता है कि a और b स्वयं अन्य दो सदिशो के पूर्णांक रैखिक संयोजन हैं। यदि नहीं, तो अन्य जोड़ी के साथ सभी रूपांतरण संभव नहीं हैं। प्रत्येक जोड़ी a, b एक समांतर चतुर्भुज को परिभाषित करती है, सभी का क्षेत्रफल समान है, क्रॉस प्रोडक्ट का परिमाण एक समांतर चतुर्भुज पूर्ण वस्तु को पूर्ण तरह से परिभाषित करता है। आगे समरूपता के बिना, यह समांतर चतुर्भुज एक मौलिक डोमेन है। इस प्रकार सदिश a और b को सम्मिश्र संख्याओं द्वारा दर्शाया जा सकता है। इस प्रकार दो दिए गए लैटिस बिंदुओं के लिए, लैटिस आकार उत्पन्न करने के लिए तीसरे बिंदु के विकल्पों की तुल्यता मॉड्यूलर समूह द्वारा दर्शायी जाती है, लैटिस (समूह) देखें।

वैकल्पिक रूप से, उदाहरण. आयत संपूर्ण वस्तु को परिभाषित कर सकता है, तथापि रूपांतरण सदिश लंबवत न हों, यदि इसकी दो भुजाएं रूपांतरण सदिश के समानांतर हैं, जबकि दूसरा रूपांतरण सदिश आयत के एक पक्ष से प्रारंभ होकर विपरीत दिशा में समाप्त होता है।

उदाहरण के लिए, उन पर एक असममित क्रम के साथ समान आयताकार टाइलों के साथ एक टाइलिंग पर विचार करें, सभी पंक्तियों में समान रूप से उन्मुख होते हैं, प्रत्येक पंक्ति के लिए एक अंश का परिवर्तन होता है, टाइल का अर्ध भाग सदैव समान नहीं होता है, तो हमारे निकट केवल रूपांतरण समरूपता वॉलपेपर समूह p 1 होता है (यही कथन बिना किसी परिवर्तन के प्रयुक्त होता)। इस प्रकार टाइल पर क्रम के दो घूर्णी समरूपता के साथ हमारे निकट p2 है (टाइल पर एक क्रम की अधिक समरूपता टाइल्स की व्यवस्था के कारण इसे नहीं परिवर्तित करती है)। एक टाइल के भाग और दूसरे के भाग वाले समांतर चतुर्भुज की तुलना में आयत को मौलिक डोमेन (या उनमें से दो का समूह) के रूप में विचार करने के लिए एक अधिक सुविधाजनक इकाई है।

इस प्रकार 2डी में किसी भी लंबाई के सदिश के लिए एक दिशा में रूपांतरणात्मक समरूपता हो सकती है। एक पंक्ति, एक ही दिशा में नहीं, पूर्ण वस्तु को पूर्ण तरह से परिभाषित करती है। इसी प्रकार, 3डी में किसी भी लंबाई के सदिश के लिए एक या दो दिशाओं में रूपांतरणात्मक समरूपता हो सकती है। समतल (क्रॉस-सेक्शन (ज्यामिति) या क्रॉस-सेक्शन) या रेखा, क्रमशः, पूर्ण वस्तु को पूर्ण तरह से परिभाषित करती है।

उदाहरण

रूपांतरण के अनुसार वास्तविक संख्याओं पर कम-से-संबंध अपरिवर्तनीय है।

फ़्रीज़ पैटर्न में सभी रूपांतरणात्मक समरूपताएं और कभी-कभी अन्य प्रकार होते हैं।

  • निरपेक्ष मूल्यों की पश्चात की गणना के साथ फूरियर रूपांतरण एक रूपांतरण-अपरिवर्तनीय संचालक है।
  • बहुपद फलन से बहुपद घात तक मानचित्रण एक रूपांतरण-अपरिवर्तनीय प्रकार्य है।
  • लेबेस्ग माप एक पूर्ण माप रूपांतरण-अपरिवर्तनीय माप (गणित) है।

यह भी देखें

संदर्भ

  • Stenger, Victor J. (2000) and MahouShiroUSA (2007). Timeless Reality. Prometheus Books. Especially chpt. 12. Nontechnical.