रेखा खंड: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 88: Line 88:
{{PlanetMath attribution|id=5783|title=Line segment}}
{{PlanetMath attribution|id=5783|title=Line segment}}
{{Authority control}}
{{Authority control}}
[[Category: प्राथमिक ज्यामिति]]
[[Category:रैखिक बीजगणित]]


 
[[Category:AC with 0 elements]]
[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with short description]]
[[Category:Created On 10/11/2022]]
[[Category:Created On 10/11/2022]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Short description with empty Wikidata description]]
[[Category:Wikipedia articles incorporating text from PlanetMath|रेखा खंड]]
[[Category:प्राथमिक ज्यामिति]]
[[Category:रैखिक बीजगणित]]

Latest revision as of 10:57, 22 November 2022

एक बंद रेखा खंड की ज्यामितीय परिभाषा: सभी बिंदुओं का प्रतिच्छेदन (यूक्लिडियन ज्यामिति) A के दाईं ओर या B के बाईं ओर या सभी बिंदुओं के साथ

फ़ाइल: फोटोथेक डीएफ टीजी 0003359 ज्यामिति ^ निर्माण ^ मार्ग ^ Messinstrument.jpg|thumb|ऐतिहासिक छवि - एक रेखा खंड बनाएं (1699)

ज्यामिति में, रेखा खंड, रेखा (गणित) का एक अंश होता है जो दो अलग-अलग अंत बिंदु (ज्यामिति) से घिरा होता है, और उस रेखा पर प्रत्येक बिंदु होता है जो इसके अंत बिंदुओं के बीच होता है। एक रेखाखंड की लंबाई उसके अंतिम बिंदुओं के बीच यूक्लिडियन दूरी द्वारा दी जाती है। एक बंद रेखा खंड में दोनों समापन बिंदु सम्मिलित होते हैं, जबकि एक खुली रेखा खंड में दोनों समापन बिंदु सम्मिलित नहीं होते हैं; आधे-खुले रेखा खंड में ठीक एक अंतिम बिंदु सम्मिलित होता है। ज्यामिति में, एक रेखा खंड को प्रायः दो समापन बिंदुओं के लिए प्रतीकों के ऊपर एक रेखा का उपयोग करके दर्शाया जाता है (जैसे- ).[1] रेखाखंडों के उदाहरणों में त्रिभुज या वर्ग की भुजाएँ सम्मिलित हैं। आम तौर पर, जब दोनों खंड के अंत बिंदु बहुभुज या बहुतल के शिखर होते हैं, तो रेखा खंड या तो एक किनारा होता है (उस बहुभुज या पॉलीहेड्रॉन का) यदि वे आसन्न कोने हैं या विकर्ण होते हैं। जब दोनों अंत बिंदु एक वक्र (जैसे एक वृत्त) पर स्थित होते हैं, तो एक रेखा खंड को एक जीवा (ज्यामिति) (उस वक्र का) कहा जाता है।

वास्तविक या जटिल सदिश स्थानों में

यदि V एक सदिश समष्टि या , और L, V का एक उपसमुच्चय है, तो L एक 'रेखाखंड' है, यदि L को इस प्रकार परिचालित किया जा सकता है:

कुछ सदिश के लिए . किस स्थिति में, सदिश u और u + v L के अंतिम बिंदु कहलाते हैं।

कभी-कभी, किसी को खुले और बंद रेखा खंडों के बीच अंतर करने की आवश्यकता होती है। इस मामले में, उत्तल के रूप में एक 'क्लोज्ड लाइन सेगमेंट' को परिभाषित किया जाएगा, और एक 'खुले रेखा खंड' को एक सबसेट L के रूप में परिभाषित किया जाएगा जिसे पैरामीट्रिज किया जा सकता है

कुछ सदिश के लिए .

समान रूप से, एक रेखा खंड दो बिंदुओं का उत्तल पतवार है। इस प्रकार, रेखा खंड को खंड के दो अंत बिंदुओं के उत्तल संयोजन के रूप में व्यक्त किया जा सकता है।

ज्यामिति में, कोई बिंदु B को दो अन्य बिंदुओं A और C के बीच होने के रूप में परिभाषित कर सकता है, यदि दूरी BC में AB जोड़ी गई दूरी AC के बराबर है। इस प्रकार से , अंतिम बिंदुओं वाला रेखा खंड A = (ax, ay) तथा C = (cx, cy) अंक का निम्नलिखित संग्रह है:

गुण

  • रेखा खंड एक जुड़ा सेट, गैर-खाली सेट (गणित) है।
  • यदि वी एक टोपोलॉजिकल वेक्टर स्पेस है, तो एक बंद रेखा खंड V में एक बंद सेट है। हालांकि, एक खुले रेखा खंड V में एक खुला उपसमुच्चय है यदि V एक-आयामी अंतरिक्ष है।
  • आम तौर पर ऊपर से अधिक, एक रेखा खंड की अवधारणा को एक क्रमबद्ध ज्यामिति में परिभाषित किया जा सकता है।
  • रेखा खंडों की एक जोड़ी निम्नलिखित में से कोई एक हो सकती है: प्रतिच्छेदन (ज्यामिति), समानांतर (ज्यामिति), तिरछी रेखाएं, या इनमें से कोई नहीं। आखिरी संभावना यह है कि रेखा खंड रेखाओं से भिन्न होते हैं: यदि दो गैर-समानांतर रेखाएं एक ही यूक्लिडियन विमान में हैं तो उन्हें एक-दूसरे को पार करना होगा, लेकिन यह खंडों के लिए सही नहीं होना चाहिए।

प्रमाणों में

ज्यामिति के एक स्वयंसिद्ध उपचार में, बीच की धारणा को या तो एक निश्चित संख्या में स्वयंसिद्धों को संतुष्ट करने के लिए माना जाता है, या रेखा के एक आइसोमेट्री के रूप में परिभाषित किया जाता है (एक समन्वय प्रणाली के रूप में उपयोग किया जाता है)।

अनुभाग अन्य सिद्धांतों में एक महत्वपूर्ण भूमिका निभाते हैं। उदाहरण के लिए, उत्तल समुच्चय में, समुच्चय के किन्हीं दो बिंदुओं को मिलाने वाला अनुभाग समुच्चय में समाहित होता है। यह महत्वपूर्ण है क्योंकि यह उत्तल समुच्चयों के कुछ विश्लेषणों को एक रेखाखंड के विश्लेषण में बदल देता है। खंड जोड़ अभिधारणा का उपयोग सर्वांगसम अनुभाग या समान लंबाई वाले अनुभाग को जोड़ने के लिए किया जा सकता है, और इसके परिणामस्वरूप अनुभाग को सर्वांगसम बनाने के लिए अन्य अनुभाग को दूसरे कथन में प्रतिस्थापित किया जा सकता है।

पतित दीर्घवृत्त के रूप में

रेखा अनुभाग को दीर्घवृत्त के पतित मामले के रूप में देखा जा सकता है, जिसमें अर्ध-लघु अक्ष फोकस (ज्यामिति) शून्य हो जाता है, नाभियां समापन बिंदुओं पर जाती हैं, और उत्केन्द्रता एक हो जाती है। दीर्घवृत्त की एक मानक परिभाषा उन बिंदुओं का समूह है जिसके लिए एक बिंदु की दो फ़ोकस (ज्यामिति) की दूरी का योग एक स्थिरांक है; यदि यह स्थिरांक नाभियों के बीच की दूरी के बराबर है, तो रेखा अनुभाग परिणाम है। इस दीर्घवृत्त की एक पूर्ण कक्षा रेखा अनुभाग को दो बार पार करती है। एक पतित कक्षा के रूप में, यह एक रेडियल अण्डाकार प्रक्षेपवक्र है।

अन्य ज्यामितीय आकृतियों में

बहुभुज और बहुफलक के किनारों और विकर्णों के रूप में प्रकट होने के अलावा, रेखा खंड अन्य ज्यामितीय आकृतियों के सापेक्ष कई अन्य स्थानों में भी दिखाई देते हैं।

त्रिकोण

त्रिभुज में कुछ बहुत बार माने जाने वाले खंड तीन ऊंचाई (ज्यामिति) (प्रत्येक लंबवत रूप से एक पक्ष या इसके विस्तारित पक्ष को विपरीत शीर्ष (ज्यामिति) से जोड़ते हैं), तीन माध्यिका (ज्यामिति) (प्रत्येक पक्ष के मध्य बिंदु को जोड़ते हैं) विपरीत शीर्ष), पक्षों के लंबवत द्विभाजक (एक पक्ष के मध्य बिंदु को दूसरी तरफ से लंबवत रूप से जोड़ना), और कोण द्विभाजक (प्रत्येक एक शीर्ष को विपरीत दिशा से जोड़ते हैं)। प्रत्येक मामले में, इन खंडों की लंबाई को दूसरों से संबंधित (विभिन्न प्रकार के खंडों पर लेखों में चर्चा की गई), साथ ही त्रिकोण असमानताओं की सूची में विभिन्न समानताएं (गणित) हैं।

त्रिभुज में रुचि के अन्य खंडों में वे सम्मिलित हैं जो विभिन्न त्रिभुज केंद्रों को एक-दूसरे से जोड़ते हैं, विशेष रूप से अंतःकेंद्र में, परिकेंटर, नौ सूत्री केंद्र, केन्द्रक और ऑर्थोसेंटर

चतुर्भुज

एक चतुर्भुज की भुजाओं और विकर्णों के अलावा, कुछ महत्वपूर्ण खंड दो द्विमाध्यिकाएं (विपरीत भुजाओं के मध्यबिंदुओं को जोड़ने वाले) और चार परिमाप (प्रत्येक लम्बवत् एक भुजा को विपरीत भुजा के मध्यबिंदु से जोड़ने वाले) होते हैं।

वृत्त और दीर्घवृत्त

किसी वृत्त या दीर्घवृत्त पर दो बिंदुओं को जोड़ने वाला कोई भी सरल रेखा खंड जीवा (ज्यामिति) कहलाता है। वृत्त की कोई भी जीवा जिसमें अब जीवा नहीं है, व्यास कहलाती है, और वृत्त के केंद्र (ज्यामिति) (व्यास का मध्यबिंदु) को वृत्त के एक बिंदु से जोड़ने वाले किसी भी खंड को त्रिज्या कहा जाता है।

दीर्घवृत्त में, सबसे लंबी जीवा, जो कि सबसे लंबा व्यास है, को प्रमुख अक्ष कहा जाता है, और प्रमुख अक्ष के मध्य बिंदु (दीर्घवृत्त का केंद्र) से प्रमुख अक्ष के किसी भी अंत बिंदु तक के खंड को अर्ध प्रमुख कहा जाता है। इसी तरह, दीर्घवृत्त के सबसे छोटे व्यास को लघु अक्ष कहा जाता है, और इसके मध्य बिंदु (दीर्घवृत्त का केंद्र) से इसके किसी भी अंतिम बिंदु तक के खंड को अर्ध-लघु अक्ष कहा जाता है। दीर्घवृत्त की जीवाएँ जो दीर्घ अक्ष के लंबवत होती हैं और इसके फोकस (ज्यामिति) में से एक से गुजरती हैं, दीर्घवृत्त का पार्श्व रेक्टा कहलाती हैं। इंटरफोकल सेगमेंट दो फोकी को जोड़ता है।

निर्देशित रेखा खंड

जब किसी रेखाखंड को एक अभिविन्यास (दिशा) दिया जाता है तो इसे एक निर्देशित रेखा खंड कहा जाता है। यह एक अनुवाद (ज्यामिति) या विस्थापन (ज्यामिति) (शायद बल के कारण) का सुझाव देता है। परिमाण और दिशा संभावित परिवर्तन के संकेत हैं। निर्देशित रेखा खंड को अर्ध-अनंत रूप से विस्तारित करने से एक किरण उत्पन्न होती है और दोनों दिशाओं में असीम रूप से एक निर्देशित रेखा उत्पन्न होती है। यूक्लिडियन वेक्टर की अवधारणा के माध्यम से इस सुझाव को गणितीय भौतिकी में समाहित कर लिया गया है।[2][3] सभी निर्देशित रेखा खंडों का संग्रह आमतौर पर समान लंबाई और अभिविन्यास वाले किसी भी जोड़े को समकक्ष बनाकर कम किया जाता है।[4] एक तुल्यता संबंध का यह अनुप्रयोग 1835 में निर्देशित रेखा खंडों के दायां बेलावाइटिस के समीकरण (ज्यामिति) की अवधारणा की शुरूआत से है।

सामान्यीकरण

उपरोक्त सीधी रेखा खंडों के अनुरूप, कोई भी चाप (ज्यामिति) को वक्र के खंडों के रूप में परिभाषित कर सकता है।

एक गेंद (गणित), 1-D अंतरिक्ष में एक रेखा खंड है।

रेखा खंडों के प्रकार

  • तार (ज्यामिति)
  • व्यास
  • त्रिज्या

यह भी देखें

टिप्पणियाँ

  1. "रेखा खंड परिभाषा - गणित खुला संदर्भ". www.mathopenref.com. Retrieved 2020-09-01.
  2. Harry F. Davis & Arthur David Snider (1988) Introduction to Vector Analysis, 5th edition, page 1, Wm. C. Brown Publishers ISBN 0-697-06814-5
  3. Matiur Rahman & Isaac Mulolani (2001) Applied Vector Analysis, pages 9 & 10, CRC Press ISBN 0-8493-1088-1
  4. Eutiquio C. Young (1978) Vector and Tensor Analysis, pages 2 & 3, Marcel Dekker ISBN 0-8247-6671-7

संदर्भ

  • David Hilbert The Foundations of Geometry. The Open Court Publishing Company 1950, p. 4

बाहरी संबंध

This article incorporates material from Line segment on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.