डायोड: Difference between revisions

From Vigyanwiki
 
(2 intermediate revisions by 2 users not shown)
Line 346: Line 346:
* [https://web.archive.org/web/20090429130720/http://www.ee.byu.edu/cleanroom/schottky_animation.phtml शॉटकी Diode Flash Tutorial Animation]
* [https://web.archive.org/web/20090429130720/http://www.ee.byu.edu/cleanroom/schottky_animation.phtml शॉटकी Diode Flash Tutorial Animation]


{{Electronic component}}
[[Category:Articles with hatnote templates targeting a nonexistent page]]
{{Authority control}}
[[Category:Articles with short description]]
]
[[Category:CS1 errors]]
 
[[Category:CS1 français-language sources (fr)]]
]
[[Category:CS1 maint]]
 
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Vigyan Ready]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Commons category link is locally defined]]
[[Category:Exclude in print]]
[[Category:Infobox templates|electronic component]]
[[Category:Interwiki category linking templates]]
[[Category:Interwiki link templates]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Wikimedia Commons templates]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 11:46, 14 September 2023

डायोड
Diode-closeup.jpg
सिलिकॉन डायोड का क्लोज-अप दृश्य। एनोड दाईं ओर है; कैथोड बाईं ओर है (जहां इसे एक काली पट्टी से चिह्नित किया गया है)। दो लीडों के बीच एक वर्गाकार सिलिकॉन क्रिस्टल देखा जा सकता है। मैं, जॉन मौशमर, ने यह तस्वीर 2 अगस्त 2006 को ली थी।
प्रकारPassive
Pin configuration Anode and cathode
Electronic symbol
Diode symbol.svg
विभिन्न अर्धचालक डायोड।नीचे: एक पुल संशोधक ।अधिकांश डायोड में, एक सफेद या काला चित्रितपट्टी कैथोड की पहचान करता है जिसमें डायोड का संचालन होने पर इलेक्ट्रॉनों का प्रवाह होगा।इलेक्ट्रॉन प्रवाह पारंपरिक धारा प्रवाह का विपरीत है।[1][2][3]
एक निर्वात नली डायोड की संरचना।फिलामेंट स्वयं कैथोड हो सकता है, या अधिक सामान्यतः (जैसा कि यहां दिखाया गया है) एक अलग धातु नलिका को गर्म करने के लिए उपयोग किया जाता है जो कैथोड के रूप में कार्य करता है।

एक डायोड एक द्वि-सीमावर्ती ( इलेक्ट्रॉनिक्स ) घटक है जो मुख्य रूप से एक दिशा (असममित चालन) में विद्युत प्रवाह करता है; डायोड एक निर्वात नली या तापयानी निर्वात नली है जिसमें दो इलेक्ट्रोड होते है, गर्म कैथोड और प्लेट होती है, जिसमें इलेक्ट्रॉन कैथोड से प्लेट तक केवल एक दिशा में प्रवाहित हो सकते हैं। इसमें एक दिशा में कम (आदर्श रूप से शून्य) प्रतिरोध होता है, और दूसरे में उच्च (आदर्श रूप से अनंत) प्रतिरोध होता है।

एक अर्धचालक डायोड, जो आज सबसे अधिक उपयोग किया जाने वाला प्रकार है, दो विद्युत टर्मिनलों से जुड़े पी-एन जंक्शन के साथ अर्धचालक सामग्री का एक क्रिस्टलीय टुकड़ा है।[4] अर्धचालक डायोड पहले अर्धचालक इलेक्ट्रॉनिक उपकरण थे। एक क्रिस्टलीय खनिज और एक धातु के बीच संपर्क भर में असममित विद्युत चालन की खोज इसे 1874 में जर्मन भौतिक विज्ञानी फर्डिनेंड ब्रौन ने बनाया था। आज, अधिकांश डायोड सिलिकॉन से बने होते हैं, लेकिन अन्य अर्धचालक सामग्री जैसे गैलियम आर्सेनाइड और जर्मेनियम का भी उपयोग किया जाता है।[5]

कई उपयोगों में, एसी पावर को डीसी में बदलने के लिए रेक्टीफायर्स में डायोड पाए जाते हैं, रेडियो रिसीवर में डिमॉड्यूलेशन, और तापमान सेंसर के रूप में भी उपयोग किया जा सकता है। डायोड का एक सामान्य प्रकार एक प्रकाश उत्सर्जक डायोड है, जिसका उपयोग इलेक्ट्रॉनिक उपकरणों पर विद्युत प्रकाश व्यवस्था और स्थिति संकेतक के रूप में किया जाता है। लॉजिक गेट बनाने के लिए डायोड को अन्य घटकों के साथ जोड़ा जा सकता है।

कई उपयोगों में, डायोड को संशोधक(संशोधक) में डी सी ( DC ) में ए सी (A C) ऊर्जा को परिवर्तित करने के लिए, रेडियो रिसीवर में विमॉडुलन में पाया जाता है, और यहां तक कि तापमान संवेदित्र (सेंसर) के रूप में भी उपयोग किया जा सकता है। डायोड का एक सामान्य संस्करण एक प्रकाश उत्सर्जक डायोड है, जिसका उपयोग इलेक्ट्रॉनिक उपकरणों पर इलेक्ट्रिक बिजली और स्थिति संकेतक के रूप में किया जाता है। लॉजिक गेट बनाने के लिए डायोड को अन्य घटकों के साथ जोड़ा जा सकता है।

मुख्य कार्य

डायोड का सबसे आम कार्य विद्युत प्रवाह को एक दिशा में पारित करने की अनुमति देना है (जिसे डायोड की आगे की दिशा कहा जाता है), इसे विपरीत दिशा (रिवर्स दिशा) में अवरुद्ध करते हुए। जैसे, डायोड को चेक वाल्व के इलेक्ट्रॉनिक संस्करण के रूप में देखा जा सकता है। इस यूनिडायरेक्शनल व्यवहार को संशोधन (रेक्टिफिकेशन) कहा जाता है और इसका उपयोग प्रत्यावर्ती धारा (एसी) को दिष्ट धारा (डीसी) में बदलने के लिए किया जाता है। संशोधक के रूप में, रेडियो रिसीवर में रेडियो सिग्नल से मॉड्यूलेशन निकालने जैसे कार्यों के लिए डायोड का उपयोग किया जा सकता है।

चूंकि, डायोड में इस सरल ऑन-ऑफ क्रिया की तुलना में अधिक जटिल व्यवहार हो सकता है, उनके अरेखीय धारा-वोल्टेज विशेषताओं के कारण।[6] उदाहरण के लिए, एक डायोड का अग्र-दिशा वोल्टेज ड्रॉप धारा के साथ थोड़ा ही भिन्न होता है, और यह अधिक तापमान का कार्य है; इस प्रभाव का उपयोग तापमान संवेदक या वोल्टेज संदर्भ के रूप में किया जा सकता है। और विपरीत दिशा में बहने वाली धारा के लिए इसका उच्च प्रतिरोध अचानक कम प्रतिरोध में गिर जाता है जब डायोड में रिवर्स वोल्टेज ब्रेकडाउन विश्लेषण वोल्टेज नामक मान तक पहुंच जाता है। बिजली का संचालन करने में सक्षम होने से पहले, आगे की दिशा में अर्धचालक डायोड को थ्रेशोल्ड वोल्टेज या कट-इन वोल्टेज को पार करने की आवश्यकता होती है।

अर्धचालक डायोड की धारा-वोल्टेज विशेषता को अर्धचालक सामग्री और निर्माण के दौरान सामग्री में डाली गई डोपिंग अपमिश्रित ( अर्धचालक ) अशुद्धियों का चयन करके तैयार किया जा सकता है।[6] इन तकनीकों का उपयोग विशेष-उद्देश्य वाले डायोड बनाने के लिए किया जाता है जो कई अलग-अलग कार्य करते हैं।[6] उदाहरण के लिए, डायोड का उपयोग वोल्टेज ( ज़ेनर डायोड) को नियंत्रित करने के लिए, परिपथ को उच्च वोल्टेज उछाल (अवालांचे डायोड) से बचाने के लिए, इलेक्ट्रॉनिक रूप से रेडियो और टीवी रिसीवर (वैरेक्टर डायोड) को ट्यून करने के लिए, रेडियो-फ्रीक्वेंसी दोलन ( टनल डायोड, गन डायोड, इम्पैट डायोड ) उत्पन्न करने के लिए किया जाता है। , IMPATT डायोड), और प्रकाश (प्रकाश उत्सर्जक डायोड ) का उत्पादन करने के लिए। सुरंग, गन और आईएमपीएटीटी डायोड ऋणात्मक प्रतिरोध प्रदर्शित करते हैं, जो सूक्ष्म तरंग और स्विचिंग परिपथ में उपयोगी है।

डायोड, वैक्यूम और अर्धचालक दोनों, शॉट-शोर जनरेटर के रूप में उपयोग किए जा सकते हैं।

इतिहास

तापायनी ( निर्वात- नलिका ) डायोड और सॉलिड-स्टेट (अर्धचालक) डायोड अलग-अलग विकसित किए गए थे, लगभग एक ही समय में, 1900 के दशक की शुरुआत में, रेडियो रिसीवर संसूचक ( रेडियो ) के रूप में।[7] 1950 के दशक तक, रेडियो में वैक्यूम डायोड का अधिक बार उपयोग किया जाता था क्योंकि प्रारंभिक बिंदु-संपर्क अर्धचालक डायोड कम स्थिर थे। इसके अतिरिक्त, अधिकांश प्राप्त करने वाले सेटों में प्रवर्धन के लिए वैक्यूम ट्यूब थे जिसमें आसानी से ट्यूब में सम्मलित थर्मिओनिक डायोड हो सकते हैं (उदाहरण के लिए 12SQ7 युग्म डायोड ट्रायोड ), और वैक्यूम-ट्यूब रेक्टीफायर और गैस से भरे रेक्टीफायर अर्धचालक डायोड की तुलना में कुछ उच्च वोल्टेज/उच्च धारा सुधार कार्यों को बेहतर तरीके से संभालने में सक्षम थे। (जैसे विद्युत अपघरनी नियम संशोधक) जो उस समय उपलब्ध थे।

1873 में, फ्रेडरिक गुथरी ने देखा कि एक इलेक्ट्रोस्कोप के करीब लाए गए एक ग्राउंडेड, सफेद-गर्म धातु की गेंद एक धनात्मक चार्ज इलेक्ट्रोस्कोप का निर्वहन करेगी, लेकिन ऋणात्मक रूप से आवेशित इलेक्ट्रोस्कोप नहीं।[8][9] 1880 में, थॉमस एडिसन ने एक बल्ब में गर्म और बिना गरम तत्वों के बीच एकदिशीय धारा देखी, जिसे बाद में एडिसन प्रभाव कहा गया, और डी सी वोल्टमीटर में उपयोग के लिए घटना के आवेदन पर एक पेटेंट प्रदान किया गया।[10][11] लगभग 20 साल बाद, जॉन एम्ब्रोस फ्लेमिंग ( मार्कोनी कंपनी के वैज्ञानिक सलाहकार और एडिसन के पूर्व कर्मचारी) ने महसूस किया कि एडिसन प्रभाव को संसूचक ( रेडियो ) के रूप में उपयोग किया जा सकता है। फ्लेमिंग ने 16 नवंबर 1904[12] को ब्रिटेन में पहले सच्चे थर्मिओनिक डायोड, फ्लेमिंग वाल्व का पेटेंट कराया (इसके बाद नवंबर 1905 में U.S. Patent 803,684)। वैक्यूम ट्यूब युग के दौरान, लगभग सभी इलेक्ट्रॉनिक्स में वाल्व डायोड का उपयोग किया जाता था जैसे रेडियो, टीवी, साउंड सिस्टम और इंस्ट्रूमेंटेशन। 1940 के दशक के उत्तरार्ध में विद्युत अपघरनी नियम संशोधक तकनीक और फिर 1960 के दशक के दौरान अर्धचालक डायोड के कारण उन्होंने धीरे-धीरे बाजार हिस्सेदारी खो दी। आज भी वे कुछ उच्च शक्ति अनुप्रयोगों में उपयोग किए जाते हैं जहां क्षणिक वोल्टेज और उनकी मजबूती का सामना करने की उनकी क्षमता उन्हें अर्धचालक उपकरणों और संगीत वाद्ययंत्र और ऑडियोफाइल अनुप्रयोगों पर लाभ देती है।

1874 में, जर्मन वैज्ञानिक कार्ल फर्डिनेंड ब्रौन ने धातु और खनिज के बीच संपर्क में "एकतरफा चालन" की खोज की।[13][14] भारतीय वैज्ञानिक जगदीश चंद्र बोस 1894 में रेडियो तरंगों का पता लगाने के लिए क्रिस्टल का उपयोग करने वाले पहले व्यक्ति थे।[15] क्रिस्टल डिटेक्टर को ग्रीनलीफ़ व्हिटियर पिकार्ड द्वारा वायरलेस टेलीग्राफी के लिए एक व्यावहारिक उपकरण के रूप में विकसित किया गया था। जिन्होंने 1903 में एक सिलिकॉन क्रिस्टल डिटेक्टर का आविष्कार किया और 20 नवंबर 1906 को इसके लिए एक पेटेंट प्राप्त किया।[16] अन्य प्रयोगकर्ताओं ने डिटेक्टरों के रूप में कई अन्य खनिजों की कोशिश की। अर्धचालक सिद्धांत इन शुरुआती रेक्टीफायर के डेवलपर्स के लिए अज्ञात थे। 1930 के दशक के दौरान भौतिकी की समझ उन्नत हुई और 1930 के दशक के मध्य में बेल टेलीफोन प्रयोगशालाओं के शोधकर्ताओं ने माइक्रोवेव प्रौद्योगिकी में अनुप्रयोग के लिए क्रिस्टल डिटेक्टर की क्षमता को पहचाना।[17] बेल लैब्स, वेस्टर्न इलेक्ट्रिक, एमआईटी, पर्ड्यू और यूके में शोधकर्ताओं ने द्वितीय विश्व युद्ध के दौरान राडार में उपयोग के लिए गहन रूप से बिंदु संपर्क डायोड (क्रिस्टल संशोधक या क्रिस्टल डायोड) विकसित किए।[17] द्वितीय विश्व युद्ध के बाद, एटी एंड टी ने इन्हें अपने माइक्रोवेव टावरों में उपयोग किया जो संयुक्त राज्य अमेरिका को पार कर गया, और कई रडार सेट 21 वीं सदी में भी उनका उपयोग करते हैं। 1946 में, सिल्वेनिया ने 1N34 क्रिस्टल डायोड का प्रस्ताव शुरू किया।[17][18][19] 1950 के दशक की शुरुआत में जंक्शन डायोड विकसित किए गए थे।

2022 में, बाहरी चुंबकीय क्षेत्र के बिना पहला सुपरकंडक्टिंग डायोड प्रभाव महसूस किया गया था।

व्युत्पत्ति

उनके आविष्कार के समय, विषम चालन उपकरणों को संशोधक के रूप में जाना जाता था। 1919 में, जिस वर्ष टेट्रोड का आविष्कार किया गया था, विलियम हेनरी एक्लेस ने डायोड शब्द को ग्रीक मूल di (δί से), जिसका अर्थ है 'दो', और ode (οδός से), जिसका अर्थ 'पथ' है, से गढ़ा। डायोड शब्द, चूंकि, साथ ही ट्रायोड, टेट्रोड, पेंटोड, हेक्सोड, मल्टीप्लेक्स टेलीग्राफी के संदर्भ में पहले से ही उपयोग में थे।[20]

चूंकि सभी डायोड सुधार करते हैं, शब्द संशोधक साधारणतयः छोटे सिग्नल परिपथ के लिए बनाए गए डायोड से अलग करने के लिए बिजली की आपूर्ति के लिए उपयोग किए जाने वाले डायोड पर लागू होता है।

निर्वात नली डायोड

थर्मिओनिक डायोड
2-50A 2 (2).JPG
एक उच्च शक्ति वाले वैक्यूम डायोड का उपयोग रेडियो उपकरण में रेक्टिफायर के रूप में किया जाता है।
प्रकारThermionic
Pin configuration Plate and Cathode, heater (if indirectly heated)
Electronic symbol
Vacuum diode.svg
अप्रत्यक्ष रूप से गर्म किए गए वैक्यूम ट्यूब डायोड का प्रतीक। ऊपर से नीचे तक, तत्वों के नाम हैं: प्लेट, कैथोड, और हीटर

एक तापयानी डायोड एक तापयानी वाल्व है। तापयानी-वाल्व उपकरण जिसमें मुद्रित, खाली कांच या धातु के लिफाफे से मिलकर दो इलेक्ट्रोड एक गर्म कैथोड और एक प्लेट इलेक्ट्रोड होते हैं। कैथोड को या तो अप्रत्यक्ष रूप से या सीधे गर्म किया जाता है। यदि अप्रत्यक्ष हीटिंग को नियोजित किया जाता है, तो एक हीटर लिफाफे में इसे सम्मलित करते है।

संचालन में, कैथोड को लाल गर्मी तक चारों ओर 800–1,000 °C (1,470–1,830 °F) गर्म किया जाता है। यह गर्म कैथोड टंगस्टन तार से बना होता है और एक बाहरी वोल्टेज स्रोत के माध्यम से पारित एक धारा द्वारा गर्म किया जाता है। एक अप्रत्यक्ष रूप से गर्म कैथोड को पास के तापक से अवरक्त विकिरण द्वारा गर्म किया जाता है जो निक्रोम तार से बनता है और बाहरी वोल्टेज स्रोत द्वारा प्रदान की गई धारा के साथ इसकी आपूर्ति की जाती है।

एक निर्वात नली जिसमें दो ऊर्जा डायोड हैं

कैथोड का प्रचालन तापमान निर्वात में इलेक्ट्रॉन को छोड़ने का कारण बनता है, इस प्रक्रिया को तापयानी उत्सर्जन कहा जाता है। कैथोड को क्षारीय मृदा धातुओं के ऑक्तरफ़ के साथ लेपित किया जाता है, जैसे कि बेरियम और स्ट्रोंटियम ऑक्तरफ़। इनके फंक्शन का कार्य बहुत कम होता है, जिसका अर्थ है कि वे अनियंत्रित कैथोड की तुलना में अधिक आसानी से इलेक्ट्रॉनों का उत्सर्जन करते हैं।

ज़ब प्लेट को गर्म नहीं किया जाता है, उस समय इलेक्ट्रॉनों का उत्सर्जन नहीं होता है, लेकिन उन्हें अवशोषित करने में यह सक्षम होता है।

इस प्रकार ठीक किए जाने वाले वैकल्पिक वोल्टेज को कैथोड और प्लेट के बीच लागू किया जाता है। जब प्लेट वोल्टेज कैथोड के संबंध में धनात्मक होता है, तो प्लेट विद्युतस्थैतिकी (इलेक्ट्रोस्टैटिक्स) के कारण कैथोड से इलेक्ट्रॉनों को आकर्षित करता है, इसलिए कैथोड से प्लेट तक नलिका के माध्यम से इलेक्ट्रॉनों की धारा बहती है। जब प्लेट वोल्टेज कैथोड के संबंध में ऋणात्मक होता है, तो इलेक्ट्रॉन को प्लेट द्वारा उत्सर्जित नहीं किया जाता है, इसलिए धारा प्लेट से कैथोड तक नहीं जा सकती है।

अर्धचालक डायोड

DO7 ग्लास समूहेज में एक EFD108 जर्मेनियम स्पर्शबिन्दु-सम्पर्क डायोड का क्लोज़-अप, शार्प मेटल वायर (कैट व्हिस्कर) दिखाते हुए जो अर्धचालक जंक्शन बनाता है।

स्पर्शबिन्दु-सम्पर्क डायोड

स्पर्शबिन्दु-सम्पर्क डायोड को 1930 के दशक में शुरू किया गया था, जो प्रारंभ में स्फटिक संसूचक तकनीक से बाहर था, और अब साधारणतयः 3 से 30 गिगाहर्ट्ज़ क्षेत्र में उपयोग किया जाता है।[17][21][22][23] स्पर्शबिन्दु-सम्पर्क डायोड एक अर्धचालक स्फटिक के संपर्क में छोटे व्यास वाले धातु के तार का उपयोग करती हैं और गैर-वेल्डेड संपर्क या वेल्डेड संपर्क प्रकार के होते हैं। गैर-वेल्डेड संपर्क निर्माण शॉट्की बाधा सिद्धांत का उपयोग करता है। धातु का पक्ष एक छोटे व्यास के तार का नुकीला सिरा होता है जो अर्धचालक स्फटिक के संपर्क में रहता है।[24] वेल्डेड संपर्क प्रकार में, उपकरण के माध्यम से एक अपेक्षाकृत बड़े धारा को पारित करके एक छोटे से p-क्षेत्र वाले धातु बिंदु के चारों ओर n-प्रकार के स्फटिक में बनाया जाता है।[25][26] बिंदु संपर्क डायोड साधारणतयः कम धारिता, उच्च अग्रसर प्रतिरोध और जंक्शन डायोड की तुलना में अधिक विपरीत रिसाव का प्रदर्शन करते हैं।

जंक्शन डायोड

p-n जंक्शन डायोड

एक p-n जंक्शन डायोड अर्धचालक के स्फटिक से बना होता है, साधारणतयः सिलिकॉन, जर्मेनियम और गैलियम आर्सेनाइड का भी उपयोग किया जाता है। इस प्रकार इस क्षेत्र को बनाने के लिए अशुद्धियों को जोड़ा जाता है जिसमें ऋणात्मक धारा वाहक (इलेक्ट्रॉन) होते हैं, जिसे n-प्रकार अर्धचालक कहा जाता है, और दूसरी तरफ एक क्षेत्र जिसमें धनात्मक धारा वाहक ( इलेक्ट्रॉन छिद्र) होते हैं, जिसे p-प्रकार अर्धचालक कहा जाता है। जब n-प्रकार और p-प्रकार की सामग्री एक साथ जुड़ती है, तो इलेक्ट्रॉनों का एक क्षणिक प्रवाह n से p की तरफ़ होता है जिसके परिणामस्वरूप दोनों के बीच एक तीसरा क्षेत्र होता है जहां कोई धारा वाहक सम्मलित नहीं होता है। इस क्षेत्र को रिक्ति क्षेत्र कहा जाता है क्योंकि इसमें न तो इलेक्ट्रॉनों और न ही छेद कोई धारा वाहक नहीं होते हैं। डायोड के सीमावर्ती को n-प्रकार और p-प्रकार के क्षेत्रों से जोड़ा जाता है। इन दो क्षेत्रों के बीच की सीमा p-n जंक्शन कहलाती है, जहां डायोड का अनुयोजन होता है। जब n प्रकार (कैथोड ) की तुलना में पर्याप्त रूप से उच्च विद्युत क्षमता को p प्रकार पर लागू किया जाता है, तो यह इलेक्ट्रॉनों को n-प्रकार की तरफ़ से p-प्रकार की तरफ़ तक घटने वाले क्षेत्र के माध्यम से प्रवाहित करने की अनुमति देता है। जंक्शन विपरीत दिशा में इलेक्ट्रॉनों के प्रवाह की अनुमति नहीं देता है जब क्षमता को रिवर्स में लागू किया जाता है, तो एक अर्थ में, एक विद्युत चेक वाल्व का निर्माण होता है।

शॉटकी डायोड

यहाँ एक अन्य प्रकार का जंक्शन डायोड है जो कि शोट्की डायोड है, यह p-n जंक्शन के अतिरिक्त मेटल-अर्धचालक जंक्शन से बनता है, जो समाई को कम करता है और स्विचिंग गति को बढ़ाता है।[27][28]

धारा-वोल्टेज विशेषता

I -V (धारा बनाम वोल्टेज) एक p -n जंक्शन डायोड की विशेषताएं

एक परिपथ में अर्धचालक डायोड का व्यवहार इसकी धारा-वोल्टेज विशेषता, या I-V ग्राफ द्वारा दिया जाता है (नीचे ग्राफ देखें)। वक्र का आकार तथाकथित अवक्षय परत या अवक्षय क्षेत्र के माध्यम से आवेश वाहकों के परिवहन द्वारा निर्धारित होता है जो विभिन्न अर्धचालकों के बीच p-n जंक्शन पर सम्मलित होता है। जब एक p-n जंक्शन पहली बार बनाया जाता है, तो N-अपमिश्रित क्षेत्र से चालन-बैंड (मोबाइल) इलेक्ट्रॉन P-डोप्ड क्षेत्र में फैल जाते हैं जहां छिद्रों की एक बड़ी आबादी होती है (इलेक्ट्रॉनों के लिए खाली स्थान) जिसके साथ इलेक्ट्रॉन "पुनर्संयोजन" करते हैं। जब एक मोबाइल इलेक्ट्रॉन एक छेद के साथ पुनर्संयोजित होता है, तो छेद और इलेक्ट्रॉन दोनों गायब हो जाते हैं, एन पक्ष पर एक धनात्मक रूप से आवेशित दाता (डोपेंट) और पी पक्ष पर ऋणात्मक चार्ज स्वीकर्ता (डोपेंट) को पीछे छोड़ देता है। p-n जंक्शन के आसपास का क्षेत्र आवेश वाहकों से रहित हो जाता है और इस प्रकार एक अवरोधक ( बिजली ) के रूप में व्यवहार करता है।

हालाँकि, कमी क्षेत्र की चौड़ाई (जिसे कमी की चौड़ाई कहा जाता है) बिना सीमा के नहीं बढ़ सकती है। किए गए प्रत्येक इलेक्ट्रॉन-छिद्र युग्म पुनर्संयोजन के लिए, एक धनात्मक रूप से आवेशित डोपेंट आयन N-डोप्ड क्षेत्र में पीछे रह जाता है, और पी-डॉप्ड क्षेत्र में एक ऋणात्मक रूप से आवेशित डोपेंट आयन बनाया जाता है। जैसे-जैसे पुनर्संयोजन आगे बढ़ता है और अधिक आयन बनते हैं, एक बढ़ता हुआ विद्युत क्षेत्र अवक्षय क्षेत्र के माध्यम से विकसित होता है जो धीमी गति से कार्य करता है और अंत में पुनर्संयोजन को रोकता है। इस बिंदु पर, रिक्तीकरण क्षेत्र में एक "अंतर्निहित" क्षमता है।

अग्रसर पूर्वाग्रह मोड में एक pn जंक्शन डायोड, घटती चौड़ाई कम हो जाती है।दोनों p और n जंक्शनों को 1E15/सेमी 3 अपमिश्रितग (अर्धचालक) स्तर पर अपमिश्रित किया जाता है, जिससे ~ 0.59V की अंतर्निहित क्षमता होती है।n और p क्षेत्रों (लाल घटता) में चालनपट्टी और वैलेंसपट्टी के लिए अलग -अलग क्वासी फर्मी स्तरों का निरीक्षण करें।

विपरीत पूर्वाग्रह ( बायस )

यदि एक बाहरी वोल्टेज को डायोड में अंतर्निहित क्षमता के समान ध्रुवता के साथ रखा जाता है, डिप्लेशन ज़ोन एक इंसुलेटर के रूप में कार्य करना जारी रखता है, किसी भी महत्वपूर्ण विद्युत प्रवाह को रोकता है (जब तक कि जंक्शन में इलेक्ट्रॉन-छेद जोड़े सक्रिय रूप से नहीं बनाए जाते हैं, उदाहरण के लिए, प्रकाश; फोटोडायोड देखें)। इसे रिवर्स बायस घटना कहा जाता है।

अग्रसर पूर्वाग्रह ( बायस )

चूंकि, अगर बाहरी वोल्टेज की ध्रुवीयता अंतर्निहित क्षमता का विरोध करती है, तो पुनर्संयोजन एक बार फिर से आगे बढ़ सकता है, जिसके परिणामस्वरूप पी-एन जंक्शन के माध्यम से पर्याप्त विद्युत प्रवाह होता है। (यानी पर्याप्त संख्या में इलेक्ट्रॉन और छेद जंक्शन पर पुनः संयोजित होते हैं)। सिलिकॉन डायोड के लिए, अंतर्निहित क्षमता लगभग 0.7 V (जर्मेनियम के लिए 0.3 V और Schottky के लिए 0.2 V) है। इस प्रकार, यदि अंतर्निर्मित वोल्टेज से अधिक और विपरीत बाहरी वोल्टेज लगाया जाता है, तो एक धारा प्रवाहित होगी और डायोड को "चालू" कहा जाता है क्योंकि इसे बाहरी अग्रदिशिक बायस दिया गया है। डायोड को साधारणतयः आगे "दहलीज" वोल्टेज कहा जाता है, जिसके ऊपर यह संचालित होता है और जिसके नीचे चालन बंद हो जाता है। हालाँकि, यह केवल एक सन्निकटन है क्योंकि आगे की विशेषता चिकनी है (ऊपर I-V ग्राफ देखें)।

एक डायोड की धारा-वोल्टेज I -V विशेषता विशेषता को ऑपरेशन के चार क्षेत्रों द्वारा अनुमानित किया जा सकता है:

  1. बहुत बड़े रिवर्स बायस पर, पीक इनवर्स वोल्टेज या PIV से परे, विपरीत विश्लेषण ब्रेकडाउन नामक एक प्रक्रिया होती है जो धारा में बड़ी वृद्धि का कारण बनता है (यानी, बड़ी संख्या में इलेक्ट्रॉन और छेद p-n जंक्शन पर बनते हैं और दूर चले जाते हैं) जो साधारणतयः डिवाइस को स्थायी रूप से नुकसान पहुंचाता है। हिमस्खलन डायोड जानबूझकर उस तरीके से उपयोग के लिए डिज़ाइन किया गया है। ज़ेनर डायोड में PIV की अवधारणा लागू नहीं होती है। एक जेनर डायोड में अत्यधिक डोप्ड p-n जंक्शन होता है जो इलेक्ट्रॉनों को p-टाइप सामग्री के वैलेंस बैंड से n-टाइप सामग्री के सुचालक बैंड तक टनल करने की अनुमति देता है, जैसे कि रिवर्स वोल्टेज एक ज्ञात मान (जिसे जेनर वोल्टेज कहा जाता है) पर "क्लैंप" किया जाता है, और हिमस्खलन नहीं होता है। हालाँकि, दोनों डिवाइसों में अधिकतम धारा और पावर की सीमा होती है, जो वे क्लैंप किए गए रिवर्स-वोल्टेज क्षेत्र में झेल सकते हैं। इसके अतिरिक्त, किसी भी डायोड में अग्रेषण चालन के अंत के बाद, थोड़े समय के लिए रिवर्स धारा होता है। जब तक रिवर्स धारा समाप्त नहीं हो जाता, तब तक डिवाइस अपनी पूर्ण अवरोधक क्षमता प्राप्त नहीं करता है।
  2. PIV से कम पूर्वाग्रह के लिए, रिवर्स धारा बहुत छोटा होता है। एक सामान्य पी-एन रेक्टीफायर डायोड के लिए, माइक्रो-एम्पीयर (μA) रेंज में डिवाइस के माध्यम से रिवर्स धारा बहुत कम होता है। हालाँकि, यह तापमान पर निर्भर है, और पर्याप्त उच्च तापमान पर, पर्याप्त मात्रा में रिवर्स धारा देखा जा सकता है (mA या अधिक)। डायोड के चारों ओर घूमने वाले इलेक्ट्रॉनों के कारण एक छोटी सतह रिसाव भी होती है, चूंकि यह एक अपूर्ण इन्सुलेटर था।
  3. एक छोटे से आगे के पूर्वाग्रह के साथ, जहां केवल एक छोटा सा आगे प्रवाहित किया जाता है, धारा-वोल्टेज वक्र आदर्श डायोड समीकरण के अनुसार चरघातांकी है। एक निश्चित फॉरवर्ड वोल्टेज होता है जिस पर डायोड महत्वपूर्ण रूप से संचालन करना शुरू कर देता है। इसे घुटने का वोल्टेज या कट-इन वोल्टेज कहा जाता है और यह पी-एन जंक्शन की बाधा क्षमता के बराबर होता है। यह घातीय वक्र की एक विशेषता है और यहां दिखाए गए आरेख की तुलना में अधिक संकुचित धारा पैमाने पर तेज दिखाई देता है।
  4. अधिक आगे की धाराओं में बल्क अर्धचालक के ओमिक प्रतिरोध द्वारा धारा-वोल्टेज वक्र का प्रभुत्व होना शुरू हो जाता है। वक्र अब घातीय नहीं है, यह एक सीधी रेखा के लिए स्पर्शोन्मुख है जिसका ढलान बल्क प्रतिरोध है। यह क्षेत्र पावर डायोड के लिए विशेष रूप से महत्वपूर्ण है। डायोड को एक निश्चित प्रतिरोधक के साथ श्रृंखला में एक आदर्श डायोड के रूप में तैयार किया जा सकता है।

रेटेड धाराओं पर चलने वाले एक छोटे सिलिकॉन डायोड में, वोल्टेज ड्रॉप लगभग 0.6 से 0.7 वोल्ट होता है। अन्य डायोड प्रकारों के लिए मान अलग-अलग होता है- शोट्की डायोड को 0.2 V, जर्मेनियम डायोड 0.25 से 0.3 V तक कम रेट किया जा सकता है, और लाल या नीले प्रकाश उत्सर्जक डायोड (एलईडी) में क्रमशः 1.4 वी और 4.0 वी के मान हो सकते हैं।

शॉक्ले डायोड समीकरण

शॉकली आदर्श डायोड समीकरण या डायोड कानून (द्विध्रु V जंक्शन ट्रांजिस्टर सह-आविष्कारक विलियम शॉक्ले के नाम पर) आगे या रिवर्स पूर्वाग्रह (या कोई पूर्वाग्रह) में एक आदर्श डायोड की I-V विशेषता देता है। निम्नलिखित समीकरण को शॉकली आदर्श डायोड समीकरण कहा जाता है जब एन, आदर्शता कारक, 1 के बराबर सेट किया जाता है:

जहाँ पे-

I डायोड धारा है,
IS विपरीत पूर्वाग्रह संतृप्ति धारा ( या मापक्रम धारा ) है,
VD डायोड में वोल्टेज है,
VT ऊष्मीय वोल्टेज है, और
n आदर्शता कारक है, जिसे गुणवत्ता कारक या कभी-कभी उत्सर्जन गुणांक के रूप में भी जाना जाता है। आदर्शता कारक एन साधारणतयः 1 से 2 तक भिन्न होता है (चूंकि कुछ स्थितियों में अधिक हो सकता है), यह निर्माण प्रक्रिया और अर्धचालक सामग्री पर निर्भर करता है और "आदर्श" डायोड के स्थिति में 1 के बराबर सेट होता है (इस प्रकार n कभी-कभी छोड़ा जाता है)। वास्तविक ट्रांजिस्टर में देखे गए अपूर्ण जंक्शनों के लिए आदर्शता कारक जोड़ा गया था। कारक मुख्य रूप से वाहक पुनर्संयोजन के लिए जिम्मेदार होता है क्योंकि चार्ज वाहक कमी क्षेत्र को पार करते हैं।

ऊष्मीय वोल्टेज VT 300 K पर लगभग 25.85 mV है, जो साधारणतयः डिवाइस सिमुलेशन सॉफ़्टवेयर में उपयोग किए जाने वाले "कमरे के तापमान" के करीब का तापमान है।

किसी भी तापमान पर यह ज्ञात स्थिरांक है:

जहां k बोल्ट्जमैन स्थिरांक है, T p-n जंक्शन का पूर्ण तापमान है, और q एक इलेक्ट्रॉन (प्रारंभिक आवेश) के आवेश का परिमाण है।

रिवर्स सैचुरेशन धारा, IS, किसी दिए गए डिवाइस के लिए स्थिर नहीं है, लेकिन तापमान के साथ बदलता रहता है; साधारणतयः VT से अधिक महत्वपूर्ण, ताकि टी बढ़ने पर VD साधारणतयः घट जाए।

शॉकली आदर्श डायोड समीकरण या डायोड कानून धारणा के साथ लिया गया है कि डायोड में धारा उत्पन्न करने वाली एकमात्र प्रक्रिया बहाव (विद्युत क्षेत्र के कारण), विसरण, और थर्मल पुनर्संयोजन-पीढ़ी (आर-जी) (यह समीकरण ऊपर n = 1 सेट करके प्राप्त किया गया है)। यह यह भी मानता है कि अवक्षय क्षेत्र में R-G धारा नगण्य है। इसका मतलब यह है कि शॉकली आदर्श डायोड समीकरण रिवर्स ब्रेकडाउन और फोटॉन-सहायता प्राप्त आर-जी (R–G) में सम्मलित प्रक्रियाओं के लिए जिम्मेदार नहीं है। इसके अतिरिक्त, यह आंतरिक प्रतिरोध के कारण उच्च अग्र बायस पर I-V वक्र के "लेवलिंग ऑफ" का वर्णन नहीं करता है। आदर्शता कारक का परिचय, n, पुनर्संयोजन और वाहकों की पीढ़ी के लिए खाता है।

रिवर्स बायस वोल्टेज के तहत डायोड समीकरण में घातांक नगण्य है, और धारा -IS का एक स्थिर (ऋणात्मक) रिवर्स धारा वैल्यू है। रिवर्स ब्रेकडाउन क्षेत्र को शॉक्ले डायोड समीकरण द्वारा प्रतिरूपित नहीं किया गया है।

इसके अतिरिक्त छोटे फॉरवर्ड बायस वोल्टेज के लिए घातांक बहुत बड़ा है क्योंकि थर्मल वोल्टेज तुलना में बहुत छोटा है। डायोड समीकरण में घटाया गया '1' तब नगण्य होता है और आगे डायोड धारा को इसके द्वारा अनुमानित किया जा सकता है

विद्युत परिपथ ( विद्युत परिपथ ) समस्याओं में डायोड समीकरण का उपयोग डायोड आदर्श शॉक्ले डायोड के लेख में चित्रित किया गया है।

छोटा-सिग्नल व्यवहार

संतृप्ति वोल्टेज से कम आगे के वोल्टेज पर, अधिकांश डायोड का वोल्टेज बनाम धारा विशेषता वक्र एक सीधी रेखा नहीं है। धारा का अनुमान जैसा कि पिछले अनुभाग में बताया गया है।

संसूचक और मिक्सर अनुप्रयोगों में, धारा का अनुमान टेलर की श्रृंखला द्वारा लगाया जा सकता है।[29] विषम शब्दों को छोड़ा जा सकता है क्योंकि वे आवृत्ति घटकों का उत्पादन करते हैं जो मिक्सर या डिटेक्टर के पास बैंड के बाहर होते हैं। यहां तक ​​कि दूसरे डेरिवेटिव से परे के शब्दों को साधारणतयः सम्मलित करने की आवश्यकता नहीं होती है क्योंकि वे दूसरे क्रम के शब्द की तुलना में छोटे होते हैं।[29] वांछित धारा घटक इनपुट वोल्टेज के वर्ग के लगभग आनुपातिक है, इसलिए प्रतिक्रिया को इस क्षेत्र में वर्ग कानून कहा जाता है।[24]: p. 3 

विपरीत- पुनर्लाभ प्रभाव

p-n प्रकार के डायोड में अग्रेषण चालन के अंत के बाद, एक रिवर्स धारा थोड़े समय के लिए प्रवाहित हो सकता है।

जब तक जंक्शन में मोबाइल चार्ज समाप्त नहीं हो जाता, तब तक डिवाइस अपनी ब्लॉकिंग क्षमता प्राप्त नहीं करता है।

बड़ी धाराओं को बहुत तेज़ी से स्विच करने पर प्रभाव महत्वपूर्ण हो सकता है।[30] डायोड से रिवर्स रिकवरी चार्ज Qr को हटाने के लिए एक निश्चित मात्रा में "रिवर्स रिकवरी टाइम" tr (दसियों नैनोसेकंड से लेकर कुछ माइक्रोसेकंड तक) की आवश्यकता हो सकती है। इस पुनर्प्राप्ति समय के दौरान, डायोड वास्तव में विपरीत दिशा में आचरण कर सकता है। यह थोड़े समय के लिए उल्टी दिशा में एक बड़े धारा को जन्म दे सकता है जबकि डायोड रिवर्स बायस्ड है। ऐसे रिवर्स धारा का परिमाण ऑपरेटिंग परिपथ (यानी, श्रृंखला प्रतिरोध) द्वारा निर्धारित किया जाता है और कहा जाता है कि डायोड स्टोरेज-फेज में है।[31] कुछ वास्तविक दुनिया के स्थितियों में इस गैर-आदर्श डायोड प्रभाव से होने वाली हानियों पर विचार करना महत्वपूर्ण है।[32] हालाँकि, जब धारा की स्लीव रेट इतनी गंभीर नहीं होती है (जैसे लाइन फ़्रीक्वेंसी) तो प्रभाव को सुरक्षित रूप से अनदेखा किया जा सकता है। अधिकांश अनुप्रयोगों के लिए, शॉटकी डायोड के लिए भी प्रभाव नगण्य है।

संग्रहीत चार्ज समाप्त होने पर रिवर्स धारा अचानक बंद हो जाता है; अत्यंत कम दालों की पीढ़ी के लिए सोपान पुनर्लाभ डायोड में इस अचानक रोक का शोषण किया जाता है।

अर्धचालक डायोड के प्रकार

सामान्य (पी-एन) डायोड, जो ऊपर बताए अनुसार काम करते हैं, साधारणतयः डोप्ड सिलिकॉन या जर्मेनियम से बने होते हैं। सिलिकॉन पावर रेक्टीफायर डायोड के विकास से पहले, क्यूप्रस ऑक्तरफ़ और बाद में विद्युत अपघरनी नियम का उपयोग किया गया था। उनकी कम दक्षता को लागू करने के लिए बहुत अधिक आगे वोल्टेज की आवश्यकता होती है (साधारणतयः 1.4 से 1.7 वी प्रति "सेल", कई कोशिकाओं को स्टैक किया जाता है ताकि उच्च वोल्टेज रेक्टीफायर में आवेदन के लिए चरम उलटा वोल्टेज रेटिंग में वृद्धि हो सके), और एक बड़े हीट सिंक (प्रायः डायोड के धातु सब्सट्रेट ( अर्धचालक ) का एक विस्तार) की आवश्यकता होती है, यह उसी धारा रेटिंग के बाद के सिलिकॉन डायोड की तुलना में बहुत बड़ा है जिसकी आवश्यकता होगी। सभी डायोड का विशाल बहुमत p-n डायोड हैं जो CMOS एकीकृत विद्युत परिपथ में पाए जाते हैं,[33] जिसमें प्रति पिन दो डायोड और कई अन्य आंतरिक डायोड सम्मलित हैं।

अवालांचे डायोड
ये डायोड हैं जो विपरीत दिशा में संचालित होते हैं जब रिवर्स बायस वोल्टेज ब्रेकडाउन वोल्टेज से अधिक हो जाता है। ये विद्युत रूप से जेनर डायोड के समान हैं (और प्रायः गलती से जेनर डायोड कहलाते हैं), लेकिन एक अलग तंत्र द्वारा टूट जाता है: हिमस्खलन प्रभाव। यह तब होता है जब पी-एन जंक्शन पर लागू रिवर्स विद्युत क्षेत्र आयनीकरण की एक लहर का कारण बनता है, हिमस्खलन की याद दिलाता है, जिससे एक बड़ा प्रवाह होता है। हिमस्खलन डायोड को नष्ट किए बिना एक अच्छी तरह से परिभाषित रिवर्स वोल्टेज पर टूटने के लिए डिज़ाइन किया गया है। हिमस्खलन डायोड (जिसका रिवर्स ब्रेकडाउन लगभग 6.2 V से ऊपर है) और जेनर के बीच का अंतर यह है कि पूर्व की चैनल लंबाई इलेक्ट्रॉनों के औसत मुक्त पथ से अधिक है, जिसके परिणामस्वरूप चैनल के रास्ते में उनके बीच कई टकराव होते हैं। दो प्रकारों के बीच एकमात्र व्यावहारिक अंतर यह है कि उनके विपरीत ध्रुवों के तापमान गुणांक हैं।
निरंतर-धारा डायोड
ये वास्तव में JFETs[34] हैं, जिनका गेट स्रोत से छोटा है, और वोल्टेज-लिमिटिंग जेनर डायोड के दो-टर्मिनल धारा-लिमिटिंग एनालॉग की तरह कार्य करता है। वे अपने माध्यम से धारा को एक निश्चित मूल्य तक बढ़ने की अनुमति देते हैं, और फिर एक विशिष्ट मूल्य पर बंद हो जाते हैं। सीएलडी, निरंतर-धारा डायोड, डायोड से जुड़े ट्रांजिस्टर, या धारा-विनियमन डायोड भी कहा जाता है।
  1. क्रिस्टल संशोधक या क्रिस्टल डायोड
ये बिंदु-संपर्क डायोड हैं।[24] 1N21 श्रृंखला और अन्य का उपयोग रडार और माइक्रोवेव रिसीवर्स में मिक्सर और डिटेक्टर अनुप्रयोगों में किया जाता है।[21][22][23] 1N34A क्रिस्टल डायोड का एक और उदाहरण है।[35]
गन डायोड
ये टनल डायोड के समान हैं जिसमें वे सामग्री से बने होते हैं जैसे कि GaAs या InP जो ऋणात्मक अंतर प्रतिरोध के क्षेत्र को प्रदर्शित करते हैं। उपयुक्त बायसिंग के साथ, द्विध्रुवीय डोमेन बनते हैं और डायोड में यात्रा करते हैं, यह उच्च आवृत्ति वाले सूक्ष्म तरंग इलेक्ट्रॉनिक दोलक को बनाने की अनुमति देता है।
प्रकाश उत्सर्जक डायोड (एलईडी)
एक प्रत्यक्षपट्टीगैप से गठित एक डायोड में, प्रत्यक्षपट्टी-अन्तर अर्धचालक, जैसे कि गैलियम आर्सेनाइड , धारा वाहक जो जंक्शन को पार कर सकते हैं, जब वे दूसरी ओर के बहुसंख्यक वाहक के साथ पुन: संयोजन करते हैं। इन सामग्री, तरंग दैर्ध्यों ( या रंग ) के आधार पर[36] निकट पराबैंगनी से अवरक्त के रूप में उत्पादन किया जा सकता है।[37] पहले एलईडी लाल और पीले थी, और समय के साथ उच्च आवृत्ति वाले डायोड विकसित किए गए हैं। सभी एलईडी असंगत, संकीर्ण- वर्णक्रम प्रकाश का उत्पादन करते हैं जैसे प्रकाश- संपादन डायोड | सफेद एल ई डी वास्तव में एक पीले रंग के प्रस्फुरक कोटिंग के साथ एक नीला एलईडी होती है, या एक अलग रंग के तीन एल ई डी के संयोजन से बनती हैं। एलईडी को सिग्नल अनुप्रयोगों में कम दक्षता वाले फोटोडायोड के रूप में भी उपयोग किया जा सकता है। एक ऑप्टो-आइसोलेटर बनाने के लिए एक एलईडी को एक ही संपुष्टि में एक फोटोडायोड या फोटोट्रांसिस्टर के साथ जोड़ा जा सकता है।
लेजर डायोड
जब एक एलईडी जैसी संरचना समानांतर छोरों को पॉलिश करके बनाई गई प्रकाशीय गुहा में समाहित होती है, तो एक लेजर का निर्माण किया जा सकता है। लेजर डायोड का उपयोग साधारणतयः प्रकाशीय भंडारण उपकरण और हाई स्पीड प्रकाशीय संचार के लिए किया जाता है।
ऊष्मीय डायोड
इस शब्द का उपयोग पारंपरिक पी-एन डायोड दोनों के लिए किया जाता है, जिसका उपयोग तापमान की निगरानी के लिए किया जाता है क्योंकि तापमान के साथ उनके अलग-अलग वोल्टेज होते हैं, और थर्मोइलेक्ट्रिक हीटिंग और कूलिंग के लिए पेल्टियर हीट पंप के लिए। पेल्टियर ताप पंप अर्धचालक से बनाए जा सकते हैं, चूंकि उनके पास कोई सुधारक जंक्शन नहीं है, वे गर्मी को स्थानांतरित करने के लिए एन और पी-प्रकार अर्धचालक में आवेश वाहकों के भिन्न व्यवहार का उपयोग करते हैं।
फोटोडायोड्स
सभी अर्धचालक ऑप्टिकल चार्ज वाहक पीढ़ी के अधीन हैं। यह विशेष रूप से एक अवांछित प्रभाव है, इसलिए अधिकांश अर्धचालकों को प्रकाश-अवरोधक सामग्री में पैक किया जाता है। फोटोडायोड्स का उद्देश्य प्रकाश (फोटोडेटेक्टर) को महसूस करना है, इसलिए उन्हें ऐसी सामग्री में पैक किया जाता है जो प्रकाश को पास करने की अनुमति देती है, और ये साधारणतयः पिन होते हैं (एक प्रकार का डायोड जो प्रकाश के प्रति सबसे अधिक संवेदनशील होता है)।[38] एक फोटोडायोड का उपयोग सौर कोशिकाओं में, फोटोमेट्री में, या प्रकाशीय संचार में किया जा सकता है। एकाधिक फोटोडायोड को एक ही उपकरण में पैक किया जा सकता है, या तो एक रेखीय सरणी के रूप में या द्वि-आयामी सरणी के रूप में। इन सरणियों को चार्ज-युग्मित उपकरणों के साथ भ्रमित नहीं होना चाहिए।
कील डायोड
एक पिन डायोड में एक केंद्रीय अन-डोप्ड, या आंतरिक, परत होती है, जो एक पी-प्रकार/आंतरिक/एन-प्रकार संरचना बनाती है।[39] उनका उपयोग रेडियो फ्रीक्वेंसी स्विच और एटेन्यूएटर्स के रूप में किया जाता है। उनका उपयोग बड़ी मात्रा, आयनीकरण-विकिरण डिटेक्टरों और फोटोडेटेक्टर के रूप में भी किया जाता है। ऊर्जा इलेक्ट्रॉनिक्स में पिन डायोड का भी उपयोग किया जाता है, क्योंकि उनकी केंद्रीय परत उच्च वोल्टेज का सामना कर सकती है। इसके अतिरिक्त, पिन संरचना कई शक्ति अर्धचालक उपकरणों में पाई जा सकती है, जैसे IGBTs, पावर MOSFETs और थाइरिस्टर।
शोट्की डायोड
Schottky डायोड का निर्माण धातु से अर्धचालक संपर्क में किया जाता है। उनके पास पी-एन जंक्शन डायोड की तुलना में कम फॉरवर्ड वोल्टेज ड्रॉप है। लगभग 1 mA की आगे की धाराओं पर उनका आगे का वोल्टेज ड्रॉप 0.15 V से 0.45 V की सीमा में है, जो उन्हें वोल्टेज क्लैम्पर ( इलेक्ट्रॉनिक्स ) अनुप्रयोगों और ट्रांजिस्टर संतृप्ति की रोकथाम में उपयोगी बनाता है। उनका उपयोग कम नुकसान वाले संशोधक के रूप में भी किया जा सकता है, चूंकि उनका रिवर्स लीकेज धारा अन्य डायोड की तुलना में सामान्य रूप से अधिक होता है। Schottky डायोड बहुसंख्यक वाहक उपकरण हैं और इसलिए अल्पसंख्यक वाहक भंडारण समस्याओं से ग्रस्त नहीं हैं जो कई अन्य डायोड को धीमा कर देता है - इसलिए उनके पास पी-एन जंक्शन डायोड की तुलना में तेजी से रिवर्स रिकवरी होती है। उनके पास पी-एन डायोड की तुलना में बहुत कम जंक्शन धारिता होता है, जो उच्च स्विचिंग गति और हाई-स्पीड परिपथ्री और आरएफ उपकरणों में उनके उपयोग के लिए प्रदान करता है जैसे आवृति मिश्रण और संसूचक ( रेडियो ) में उनके उपयोग के लिए प्रदान करता है।
उत्कृष्ट अवरौध डायोड
सुपर बैरियर डायोड संशोधक डायोड होते हैं जो सर्ज-हैंडलिंग क्षमता और सामान्य p-n जंक्शन डायोड के लो रिवर्स लीकेज धारा के साथ शोट्की डायोड के लो फॉरवर्ड वोल्टेज ड्रॉप को सम्मलित करते हैं।
सोन-अपमिश्रित डायोड
डोपेंट के रूप में, सोना ( या प्लैटिनम ) पुनर्संयोजन केंद्रों के रूप में कार्य करता है, जो अल्पसंख्यक वाहकों के तेजी से पुनर्संयोजन में मदद करता है। यह डायोड को सिग्नल फ्रीक्वेंसी पर संचालित करने की अनुमति देता है, उच्च आगे वोल्टेज ड्रॉप की कीमत पर। सोना-डोप्ड डायोड अन्य पी-एन डायोड की तुलना में तेज़ होते हैं (लेकिन स्कॉटकी डायोड जितना तेज़ नहीं)। उनके पास शॉट्की डायोड्स की तुलना में कम रिवर्स-धारा लीकेज भी है (लेकिन अन्य पी-एन डायोड्स जितना अच्छा नहीं है)।[40][41] एक विशिष्ट उदाहरण 1N914 है।
स्नैप-ऑफ या पद पुनर्लाभ डायोड
शब्द पद पुनर्लाभ इन उपकरणों की रिवर्स रिकवरी विशेषता के रूप से संबंधित है। एक एसआरडी में एक फॉरवर्ड धारा गुजरने के बाद और धारा बाधित या उल्टा हो जाता है, विपरीत चालन बहुत अचानक बंद हो जाएगा (जैसा कि एक चरण तरंग में)। एसआरडी, इसलिए चार्ज वाहकों के अचानक गायब होने से बहुत तेज वोल्टेज संक्रमण प्रदान कर सकते हैं।
स्टैबिस्टर्स या अग्रसर निर्देशक डायोड
स्टेबिस्टर शब्द एक विशेष प्रकार के डायोड को संदर्भित करता है जिसमें बेहद स्थिर फॉरवर्ड वोल्टेज विशेषताएँ होती हैं। इन उपकरणों को विशेष रूप से लो-वोल्टेज स्थिरीकरण अनुप्रयोगों के लिए डिज़ाइन किया गया है, जिसमें एक विस्तृत धारा सीमा पर अधिपत्रित वोल्टेज और तापमान पर अत्यधिक स्थिर होने की आवश्यकता होती है।
क्षणिक वोल्टेज दमन डायोड (TVS)
ये विश्लेषण डायोड हैं जिन्हें विशेष रूप से अन्य अर्धचालक उपकरणों को उच्च-वोल्टेज ट्रांसिएंट से बचाने के लिए डिज़ाइन किया गया है।[42] उनके पी-एन जंक्शनों में सामान्य डायोड की तुलना में बहुत बड़ा क्रॉस-आंशिक क्षेत्र होता है, यह उन्हें नुकसान पहुंचाए बिना जमीन पर बड़ी धाराओं का संचालन करने की अनुमति देता है।
टनल डायोड या एसाकी डायोड
क्वान्टम सुरंगन के कारण होने वाले ऋणात्मक प्रतिरोध को दिखाते हुए इनका संचालन क्षेत्र होता है,[43] यह संकेतों के प्रवर्धन और बहुत ही सरल बिस्टेबल परिपथ की अनुमति देता है। उच्च वाहक सांद्रता के कारण, सुरंग डायोड बहुत तेज़ होते हैं, कम (mK) तापमान, उच्च चुंबकीय क्षेत्र और उच्च विकिरण वातावरण में उपयोग किए जा सकते हैं।[44] इन्हीं गुणों के कारण इनका उपयोग प्रायः अंतरिक्ष यान में किया जाता है।
वैरीकैप या वैरेक्टर डायोड
इनका उपयोग वोल्टेज-नियंत्रित संधारित्र (कैपेसिटर) के रूप में किया जाता है। ये PLL ( चरण-बंद परिपथ ) और FLL ( आवृति-बंद परिपथ ) विद्युत परिपथ में महत्वपूर्ण हैं, जिससे ट्यूनिंग विद्युत परिपथ, जैसे कि टेलीविजन रिसीवर में, आवृत्ति पर जल्दी से लॉक करने की अनुमति मिलती है। उन्होंने रेडियो के शुरुआती असतत समस्वरणीय करने योग्य दोलक को भी सक्षम किया, जहां एक सस्ता और स्थिर, लेकिन निर्धारित-आवृति, स्फटिक दोलक ने वोल्टेज-नियंत्रित दोलक के लिए संदर्भ आवृत्ति प्रदान की।
ज़ेनर डायोड
इन्हें विपरीत पूर्वाग्रह में संचालित करने के लिए बनाया जा सकता है, और सही ढंग से विपरीत विश्लेषण डायोड कहा जाता है। ज़ेनर विश्लेषण नामक यह प्रभाव, एक सटीक रूप से परिभाषित वोल्टेज पर होता है, जिससे डायोड को सटीक वोल्टेज संदर्भ के रूप में उपयोग किया जा सकता है। ज़ेनर डायोड शब्द बोलचाल की भाषा में कई प्रकार के विश्लेषण डायोड पर लागू होता है, लेकिन कठोरता से बोलते हुए, ज़ेनर डायोड में 5 वोल्ट से नीचे का विश्लेषण वोल्टेज होता है, जबकि विश्लेषण डायोड का उपयोग उस मूल्य के ऊपर विश्लेषण वोल्टेज के लिए किया जाता है। व्यावहारिक वोल्टेज संदर्भ विद्युत परिपथ में, ज़ेनर और बदलना डायोड श्रृंखला में जुड़े हुए हैं और विपरीत दिशाओं में डायोड के तापमान गुणांक प्रतिक्रिया को निकट-शून्य तक संतुलित करने के लिए। उच्च-वोल्टेज ज़ेनर डायोड के रूप में स्तर किए गए कुछ उपकरण वास्तव में विश्लेषण डायोड हैं ( ऊपर देखें )। श्रृंखला में दो ( समतुल्य ) ज़ेनर् और विपरीत क्रम में, एक ही समूहेज में, एक क्षणिक अवशोषक ( या ट्रांसॉर्, एक पंजीकृत व्यापार चिह्न हैं ) का गठन करते हैं।

अर्धचालक डायोड के लिए अन्य उपयोगों में तापमान की संवेदन, और संगणना समधर्मी लघुगणक ( परिचालन प्रवर्धक अनुप्रयोग लघुगणक उत्पादन देखें ) सम्मलित हैं।

रेखाचित्रीय प्रतीक

एक विद्युत परिपथ आरेख में एक विशेष प्रकार के डायोड का प्रतिनिधित्व करने के लिए उपयोग किया जाने वाला प्रतीक पाठक को सामान्य विद्युत कार्य को व्यक्त करता है। कुछ प्रकार के डायोड के लिए वैकल्पिक प्रतीक हैं, चूंकि अंतर मामूली हैं। प्रतीकों में त्रिभुज आगे की दिशा में इंगित करता है, अर्थात् पारंपरिक धारा प्रवाह की दिशा में।

संख्यांकन और संकेतन योजनाएं

डायोड के लिए कई सामान्य, मानक और निर्माता-चालित संख्यांकनऔर संकेतन योजनाएं हैं, दो सबसे आम इलेक्ट्रॉनिक उद्योग गठबंधन EIA-JEDEC मानक और यूरोपीय अनुसर्व इलेक्ट्रॉन मानक।

EIA-JEDEC

मानकीकृत 1N- शृंखला संख्यांकन EIA370 प्रणाली को 1960 के बारे में EIA/JEDEC ( संयुक्त इलेक्ट्रॉन उपकरण अभियांत्रिकी परिषद ) द्वारा अमेरिका में पेश किया गया था। अधिकांश डायोड में 1-उपसर्ग पदनाम ( जैसे, 1N4003 ) है। इस श्रृंखला में सबसे कमकप्रिय थे- 1N34A/1N270 ( जर्मेनियम सिग्नल ), 1N34A/1N270सिग्नल डायोड ( सिलिकॉन सिग्नल ), 1N400X सामान्य-शुद्ध डायोड ( सिलिकॉन 1A ऊर्जा संशोधक ), और 1N580x शॉटकी डायोड् ( सिलिकॉन 3A ऊर्जा संशोधक )।[45][46][47]

JIS

JIS अर्धचालक पदनाम प्रणाली में सभी अर्धचालक डायोड पदनाम 1s से शुरू होते हैं।

अनुसर्व इलेक्ट्रॉन

सक्रिय घटक के लिए यूरोपीय अनुसर्व इलेक्ट्रॉन संकेतन प्रणाली को 1966 में पेश किया गया था और इसमें भाग संकेत के बाद दो पत्र सम्मलित थे। पहला अक्षर घटक ( A = जर्मेनियम और B = सिलिकॉन ) के लिए उपयोग किए जाने वाले अर्धचालक सामग्री का प्रतिनिधित्व करता है और दूसरा पत्र भाग के सामान्य कार्य ( डायोड के लिए, A = कम-शक्ति संकेत, B = चर धारिता, X= गुणक, y = संशोधक और z = वोल्टेज संदर्भ ) , उदाहरण के लिए-

  • AA- शृंखला जर्मेनियम कम- ऊर्जा-सिग्नल डायोड ( जैसे, AA 119 )
  • BA- शृंखला सिलिकॉन कम- ऊर्जा-सिग्नल डायोड ( जैसे, BAT18 सिलिकॉन RF डायोड )
  • BY- शृंखला सिलिकॉन संशोधक डायोड ( जैसे, BY127 1250V, 1A संशोधक डायोड )
  • BZ- शृंखला सिलिकॉन ज़ेनर डायोड ( जैसे, BZY88C4V7 4.7V ज़ेनर डायोड )

अन्य सामान्य संख्यांकन संकेतन प्रणाली ( साधारणतयः निर्माता-चालित ) में सम्मलित हैं-

  • GD- शृंखला जर्मेनियम डायोड ( जैसे, जीडी 9 ) – यह एक बहुत पुरानी संकेतन प्रणाली है
  • OA- शृंखला जर्मेनियम डायोड ( जैसे, OA47 ) – मुलार्ड -फिलिप्स नलिका पदनाम मुलार्ड, यूके कंपनी द्वारा विकसित किया गया

संबंधित उपकरण

प्रकाशिकी में, डायोड के लिए एक समान उपकरण लेकिन लेजर प्रकाश के साथ प्रकाशीय विलगक होगा, जिसे प्रकाशीय डायोड के रूप में भी जाना जाता है,[48] यह प्रकाश को केवल एक दिशा में पारित करने की अनुमति देता है। यह मुख्य घटक के रूप में एक फैराडे आवर्तनी का उपयोग करता है।

अनुप्रयोग

रेडियो विमॉडुलन

एक साधारण लिफाफा संसूचक विद्युत परिपथ।

डायोड के लिए पहला उपयोग आयाम प्रतिरुपण ( AM ) रेडियो प्रसारण का विमुद्रीकरण था। इस खोज के इतिहास का स्फटिक संसूचक लेख में गहराई से इलाज किया जाता है। सारांश में, AM सिग्नल में एक रेडियो वाहक लहर के धनात्मक और ऋणात्मक चोटियों को वैकल्पिक रूप से सम्मलित किया जाता है, जिसका आयाम या लिफाफा मूल श्रव्य सिग्नल के लिए आनुपातिक है। डायोड संशोधक AM रेडियो आवृति सिग्नल, केवल वाहक तरंग की धनात्मक चोटियों को छोड़कर। श्रव्य को तब एक साधारण इलेक्ट्रॉनिक छन्नी का उपयोग करके सुधारित वाहक तरंग से निकाला जाता है और एक श्रव्य प्रवर्धक या पारक्रमित्र में खिलाया जाता है, जो श्रव्य वक्ता के माध्यम से ध्वनि तरंगों को उत्पन्न करता है।

सूक्ष्म तरंग और मिलीमीटर तरंग प्रौद्योगिकी में, 1930 के दशक की शुरुआत में, शोधकर्ताओं ने स्फटिक संसूचक में सुधार और लघुकरण किया। स्पर्शबिन्दु-सम्पर्क डायोड ( स्फटिक डायोड ) और जंक्शन डायोड का उपयोग रेडार, सूक्ष्म तरंग और मिलीमीटर तरंग संसूचकों में किया जाता है।[27]

ऊर्जा रूपांतरण

बुनियादी AC-टू- DC बिजली की आपूर्ति का योजनाबद्ध

संशोधक का निर्माण डायोड से किया जाता है, जहां वे वैकल्पिक धारा ( AC ) बिजली को प्रत्यक्ष धारा ( DC ) में बदलने के लिए उपयोग किए जाते हैं। स्वचालित प्रत्यावर्ति एक सामान्य उदाहरण है, जहां डायोड, जो DC में AC को ठीक करता है, कम्यूटेटर ( इलेक्ट्रिक ) या उससे पहले, विद्युत जनरेटर की तुलना में बेहतर प्रदर्शन प्रदान करता है। इसी तरह, डायोड का उपयोग कॉकक्रॉफ्ट-वाल्टन जनरेटर में भी किया जाता है। कॉकक्रॉफ्ट वाल्टन वोल्टेज गुणक AC को उच्च DC वोल्टेज में परिवर्तित करने के लिए।

विपरीत-वोल्टेज सुरक्षा

चूंकि अधिकांश इलेक्ट्रॉनिक विद्युत परिपथ क्षतिग्रस्त हो सकते हैं जब उनकी बिजली आपूर्ति आगत की ध्रुवीयता उलट हो जाती है, एक श्रृंखला डायोड का उपयोग कभी-कभी ऐसी स्थितियों से बचाने के लिए किया जाता है। इस अवधारणा को कई नामकरण विविधताओं से जाना जाता है, जिसका अर्थ एक ही बात है-विपरीत वोल्टेज संरक्षण, विपरीत विपरीतता संरक्षण और विपरीत बैटरी संरक्षण।

प्रसारित-वोल्टेज संरक्षण

डायोड का उपयोग प्रायः संवेदनशील इलेक्ट्रॉनिक उपकरणों से दूर उच्च वोल्टेज को नुकसान पहुंचाने के लिए किया जाता है। वे साधारणतयः सामान्य परिस्थितियों में विपरीत-पूर्वाग्रह्ड ( गैर-संचालन ) होते हैं। जब वोल्टेज सामान्य सीमा से ऊपर उठता है, तो डायोड अग्रसर- पूर्वाग्रह्ड ( संचालन ) हो जाते हैं। उदाहरण के लिए, डायोड का उपयोग ( पदर चालक और H-सेतु ) चालक नियंत्रक में किया जाता है और रिले विद्युत परिपथ को कम करने वाले वोल्टेज कीलें के बिना कुंडली को तेजी से अहितकर करने के लिए किया जाता है जो अन्यथा होता है। ( इस तरह के अनुप्रयोग में उपयोग किए जाने वाले डायोड को फ्लाईबैक डायोड कहा जाता है )। कई एकीकृत विद्युत परिपथ भी बाहरी वोल्टेज को अपने संवेदनशील ट्रांजिस्टर को हानि पहुंचाने से रोकने के लिए संपर्क पिन पर डायोड को सम्मलित करते हैं। उच्च शक्ति पर प्रसारित-वोल्टेज से बचाने के लिए विशेष डायोड का उपयोग किया जाता है ( ऊपर अर्धचालक डायोड के प्रकार देखें )।

लॉजिक गेट

तार्किक संयोजन और तार्किक डिस्धारा लॉजिक गेट् के निर्माण के लिए डायोड को अन्य घटकों के साथ जोड़ा जा सकता है। इसेडायोड लॉजिक के रूप में जाना जाता है।

आयनकारी विकिरण संसूचक

प्रकाश के अतिरिक्त, ऊपर उल्लेख किया गया है, अर्धचालक डायोड अधिक ऊर्जा विकिरण के प्रति संवेदनशील हैं। इलेक्ट्रॉनिक्स में, कॉस्मिक किरणों और आयनीकरण विकिरण के अन्य स्रोत शोर दालों और एकल और कई बिट त्रुटियों का कारण बनते हैं। इस प्रभाव को कभी -कभी विकिरण का पता लगाने के लिए कण संसूचकों द्वारा शोषण किया जाता है। विकिरण का एक एकल कण, हजारों या लाखों इलेक्ट्रॉन वोल्ट के साथ, ऊर्जा के S, कई धारा वाहक जोड़े उत्पन्न करता है, क्योंकि इसकी ऊर्जा अर्धचालक सामग्री में जमा होती है। यदि कमी की परत पूरे फुहारा को पकड़ने या एक भारी कण को ​​रोकने के लिए पर्याप्त है, तो कण की ऊर्जा को अधिक सही रूप से मापा जा सकता है, बस आयोजित आवेश को मापकर और एक चुंबकीय स्पेक्ट्रोमीटर की जटिलता के बिना इन अर्धचालक विकिरण संसूचकों को कुशल और समान धारा संग्रह और कम रिसाव धारा की आवश्यकता होती है। वे प्रायः तरल नाइट्रोजन द्वारा ठंडा किया जाता है। लंबी दूरी के लिए ( लगभग एक सेंटीमीटर ) कणों के लिए, उन्हें बहुत बड़ी कमी की गहराई और बड़े क्षेत्र की आवश्यकता होती है। छोटी दूरी के कणों के लिए, उन्हें कम से कम एक सतह पर किसी भी संपर्क या अवक्षयित अर्धचालक की आवश्यकता होती है जो बहुत पतली होती है। पिछला-पूर्वाग्रह वोल्टेज विश्लेषण ( लगभग एक हजार वोल्ट प्रति सेंटीमीटर ) के पास हैं। जर्मेनियम और सिलिकॉन आम सामग्री हैं। इन संसूचकों में से कुछ ऊर्जा के साथ-साथ ऊर्जा की स्थिति भी है। उनके पास एक परिमित जीवन है, मुख्यतः जब विकिरण क्षति के कारण भारी कणों का पता लगाना। गामा किरण को इलेक्ट्रॉन फुहारा में बदलने की उनकी क्षमता में सिलिकॉन और जर्मेनियम बहुत अलग हैं।

उच्च-ऊर्जा कणों के लिए अर्धचालक संसूचक का उपयोग बड़ी संख्या में किया जाता है। ऊर्जा हानि के उतार-चढ़ाव के कारण, जमा की गई ऊर्जा का सटीक माप कम उपयोग का है।

तापमान माप

एक डायोड का उपयोग तापमान मापने वाले उपकरण के रूप में किया जा सकता है, क्योंकि डायोड के पार अग्रसर वोल्टेज गिरावट तापमान पर निर्भर करता है, जैसा कि सिलिकॉन पट्टी तापमान सेंसर में है। ऊपर दिए गए शॉक्ले आदर्श डायोड समीकरण से, यह प्रतीत हो सकता है कि वोल्टेज में एक धनात्मक तापमान गुणांक ( एक निरंतर धारा में ) होता है, लेकिन साधारणतयः संतृप्ति धारा शब्द की भिन्नता ऊष्मीय वोल्टेज शब्द में भिन्नता से अधिक महत्वपूर्ण होती है। इसलिए अधिकांश डायोड में एक ऋणात्मक तापमान गुणांक होता है, साधारणतयः सिलिकॉन डायोड के लिए m2 mV/° C। तापमान गुणांक लगभग 20 केल्विन से ऊपर के तापमान के लिए लगभग स्थिर है। कुछ रेखांकन 1N400X श्रृंखला के लिए दिए गए हैं,[49] और CY7 परिशीतन तापमान संवेदक है।[50]

धारा परिचालक

डायोड अनपेक्षित दिशाओं में धाराओं को रोकेंगे। बिजली की विफलता के दौरान विद्युत परिपथ को बिजली की आपूर्ति करने के लिए, विद्युत परिपथ एक बैटरी ( बिजली ) से धारा खींच सकता है। एक निर्बाध बिजली की आपूर्ति इस तरह से डायोड का उपयोग कर सकती है ताकि यह सुनिश्चित हो सके कि धारा आवश्यक होने पर केवल बैटरी से खींचा जाता है। इसी तरह, छोटी नौकाओं में साधारणतयः अपनी बैटरी के साथ दो विद्युत परिपथ होते हैं- एक इंजन शुरू करने के लिए उपयोग किया जाता है, गृह वस्त्र के लिए उपयोग किया गया है। साधारणतयः, दोनों को एक ही प्रत्यावर्ति से धारा किया जाता है, और अल्टरनेटर के चलने पर कम-धारा बैटरी के माध्यम से दिष्ट धारा करने से उच्च-धारा बैटरी ( साधारणतयः इंजन की बैटरी ) को रोकने के लिए एक भारी शुल्क वाले विभाजन-धारा डायोड का उपयोग किया जाता है।

इलेक्ट्रॉनिक कीबोर्ड में डायोड का भी उपयोग किया जाता है। इलेक्ट्रॉनिक संगीत कीबोर्ड में आवश्यक तार की मात्रा को कम करने के लिए, ये उपकरण प्रायः कीबोर्ड मैट्रिक्स विद्युत परिपथ का उपयोग करते हैं। कीबोर्ड नियंत्रक पंक्तियों और स्तंभों को स्कैन करता है ताकि यह निर्धारित किया जा सके कि खिलाड़ी ने किस टिप्पणी को दबाया है। मैट्रिक्स विद्युत परिपथ के साथ समस्या यह है कि, जब कई नोटों को एक साथ दबाया जाता है, तो धारा विद्युत परिपथ के माध्यम से पीछे की ओर प्रवाहित हो सकता है और कीबोर्ड ( संगणना ) शासन संसाधक को प्रेरित कर सकता है जो भूत टिप्पणी को खेलने का कारण बनता है। अवांछित टिप्पणी को प्रेरित करने से बचने के लिए, अधिकांश कीबोर्ड मैट्रिक्स विद्युत परिपथ में संगीत कीबोर्ड की प्रत्येक कुंजी के नीचे बदलना के साथ बेचा गए डायोड होते हैं। एक ही सिद्धांत का उपयोग ठोस अवस्था कीलबॉल मशीन में बदलना मैट्रिक्स के लिए भी किया जाता है।

तरंगरूप स्थिरक ( क्लिपर )

डायोड का उपयोग एक निर्धारित वोल्टेज के लिए एक संकेत के धनात्मक या ऋणात्मक भ्रमण को सीमित करने के लिए किया जा सकता है।

सधर ( क्लैम्पर )

यह सरल डायोड क्लैंप आने वाली तरंग की ऋणात्मक चोटियों को सामान्य रेल वोल्टेज में ले जाएगा

एक डायोड क्लैम्पर (इलेक्ट्रॉनिक्स) एक आवधिक वैकल्पिक धारा संकेत ले सकता है जो धनात्मक और ऋणात्मक मूल्यों के बीच दोलन करता है, और इसे लंबवत रूप से विस्थापित करता है कि या तो धनात्मक या ऋणात्मक चोटियां एक निर्धारित स्तर पर होती हैं। क्लैम्पर सिग्नल के शिखर-से-शिखर भ्रमण को प्रतिबंधित नहीं करता है, यह पूरे सिग्नल को ऊपर या नीचे ले जाता है ताकि चोटियों को संदर्भ स्तर पर रखा जा सके।

संक्षिप्तीकरण

डायोड को साधारणतयः मुद्रित विद्युत परिपथ बोर्ड पर डायोड के लिए D के रूप में संदर्भित किया जाता है। कभी-कभी स्फटिक संशोधक के लिए संक्षिप्त नाम CR का उपयोग किया जाता है।[51]

यह भी देखें

संदर्भ

  1. Tooley, Mike (2013). Electronic Circuits: Fundamentals and Applications, 3rd Ed. Routledge. p. 81. ISBN 978-1-136-40731-4.
  2. Crecraft, Filip Mincic; Stephen Gergely (2002). Analog Electronics: Circuits, Systems and Signal Processing. Butterworth-Heinemann. p. 110. ISBN 0-7506-5095-8.
  3. Horowitz, Paul; Winfield Hill (1989). The Art of Electronics, 2nd Ed. London: Cambridge University Press. p. 44. ISBN 0-521-37095-7.
  4. "Physical Explanation – General Semiconductors". 2010-05-25. Retrieved 2010-08-06.
  5. "The Constituents of Semiconductor Components". 2010-05-25. Archived from the original on 2011-07-10. Retrieved 2010-08-06.
  6. 6.0 6.1 6.2 Turner, L. W. (2013). Electronics Engineer's Reference Book, 4th Ed. Butterworth-Heinemann. pp. 8.14–8.22. ISBN 978-1483161273.
  7. Guarnieri, M. (2011). "Trailblazers in Solid-State Electronics". IEEE Ind. Electron. M. 5 (4): 46–47. doi:10.1109/MIE.2011.943016. S2CID 45476055.
  8. Guthrie, Frederick (October 1873) "On a relation between heat and static electricity," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4th series, 46: 257–266.
  9. 1928 Nobel Lecture: Owen W. Richardson, "Thermionic phenomena and the laws which govern them", December 12, 1929,
  10. Edison, Thomas A. "Electrical Meter" U.S. Patent 307,030 Issue date: Oct 21, 1884
  11. Redhead, P. A. (1998-05-01). "The birth of electronics: Thermionic emission and vacuum". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 16 (3): 1394–1401. Bibcode:1998JVSTA..16.1394R. doi:10.1116/1.581157. ISSN 0734-2101.
  12. "Road to the Transistor". Jmargolin.com. Retrieved 2008-09-22.
  13. Braun, Ferdinand (1874) "Ueber die Stromleitung durch Schwefelmetalle" (On current conduction in metal sulphides), Annalen der Physik und Chemie, 153 : 556–563.
  14. Karl Ferdinand Braun. chem.ch.huji.ac.il
  15. Sarkar, Tapan K. (2006). History of wireless. US: John Wiley and Sons. pp. 94, 291–308. ISBN 0-471-71814-9.
  16. Pickard, G. W., "Means for receiving intelligence communicated by electric waves" U.S. Patent 836,531 Issued: August 30, 1906
  17. 17.0 17.1 17.2 17.3 Scaff, J. H., Ohl, R. S. "Development of Silicon Crystal Rectifiers for Microwave Radar Receivers", The Bell System Technical Journal, Vol. 24, No. 1, Jan. 1947. pp. 1 - 30
  18. "Sylvania 1949 data book page". Archived from the original on 25 May 2018.
  19. Sylvania, 40 Uses for Germanium Diodes, Sylvania Electric Products Co., 1949, p. 9
  20. "W. H. Preece, "Multiplex Telegraphy", The Telegraphic Journal and Electrical Review, Vol. XIX, September 10, 1886, p. 252". 1886.
  21. 21.0 21.1 "SemiGen Inc".
  22. 22.0 22.1 "Advanced Semiconductor, Inc" (PDF).
  23. 23.0 23.1 "Massachusetts Bay Technologies".
  24. 24.0 24.1 24.2 "H. C. Torrey, C. A. Whitmer, Crystal Rectifiers, New York: McGraw-Hill, 1948".
  25. "H. Q. North, Asymmetrically Conductive Device, U.S. patent 2,704,818" (PDF).
  26. "U. S. Navy Center for Surface Combat Systems, Navy Electricity and Electronics Training Series, Module 11, 2012, pp. 2-81–2-83".
  27. 27.0 27.1 "Skyworks Solutions, Inc., Mixer and Detector Diodes" (PDF).
  28. "Microsemi Corporation Schottky web page".
  29. 29.0 29.1 Giacoletto, Lawrence Joseph (1977). Electronics Designers' Handbook. New York: McGraw-Hill. pp. 24–138.
  30. Diode reverse recovery in a boost converter. ECEN5817. ecee.colorado.edu
  31. Elhami Khorasani, A.; Griswold, M.; Alford, T. L. (2014). "Gate-Controlled Reverse Recovery for Characterization of LDMOS Body Diode". IEEE Electron Device Letters. 35 (11): 1079. Bibcode:2014IEDL...35.1079E. doi:10.1109/LED.2014.2353301. S2CID 7012254.
  32. Inclusion of Switching Loss in the Averaged Equivalent Circuit Model. ECEN5797. ecee.colorado.edu
  33. Roddick, R.G. (1962-10-01). "Tunnel Diode Circuit Analysis". doi:10.2172/4715062. {{cite journal}}: Cite journal requires |journal= (help)
  34. Current regulator diodes. Digikey.com (2009-05-27). Retrieved 2013-12-19.
  35. "NTE data sheet" (PDF).
  36. Classification of components. Digikey.com (2009-05-27). Retrieved 2013-12-19.
  37. "Component Construction". 2010-05-25. Archived from the original on 2016-05-16. Retrieved 2010-08-06.
  38. Component Construction. Digikey.com (2009-05-27). Retrieved 2013-12-19.
  39. "Physics and Technology". 2010-05-25. Archived from the original on 2016-05-16. Retrieved 2010-08-06.
  40. Fast Recovery Epitaxial Diodes (FRED) Characteristics – Applications – Examples. (PDF). Retrieved 2013-12-19.
  41. Sze, S. M. (1998) Modern Semiconductor Device Physics, Wiley Interscience, ISBN 0-471-15237-4
  42. Protecting Low Current Loads in Harsh Electrical Environments. Digikey.com (2009-05-27). Retrieved 2013-12-19.
  43. Jonscher, A. K. (1961). "The physics of the tunnel diode". British Journal of Applied Physics. 12 (12): 654. Bibcode:1961BJAP...12..654J. doi:10.1088/0508-3443/12/12/304.
  44. Dowdey, J. E.; Travis, C. M. (1964). "An Analysis of Steady-State Nuclear Radiation Damage of Tunnel Diodes". IEEE Transactions on Nuclear Science. 11 (5): 55. Bibcode:1964ITNS...11...55D. doi:10.1109/TNS2.1964.4315475.
  45. "About JEDEC". Jedec.org. Retrieved 2008-09-22.
  46. "Introduction dates of common transistors and diodes?". EDAboard.com. 2010-06-10. Archived from the original on October 11, 2007. Retrieved 2010-08-06.
  47. I.D.E.A. "Transistor Museum Construction Projects Point Contact Germanium Western Electric Vintage Historic Semiconductors Photos Alloy Junction Oral History". Semiconductormuseum.com. Retrieved 2008-09-22.
  48. "Optical Isolator – an overview | ScienceDirect Topics".
  49. "1N400x Diode Family Forward Voltage". cliftonlaboratories.com. Archived from the original on 2013-05-24. Retrieved 2013-12-19.
  50. Cryogenic Temperature Sensors. omega.com
  51. John Ambrose Fleming (1919). The Principles of Electric Wave Telegraphy and Telephony. London: Longmans, Green. p. 550.


अग्रिम पठन

periodicals
  • Solid-State Diodes; ages; 2001. (archive)
  • Silicon Rectifier Handbook; 1st Ed; Bob Dale; Motorola; 213 pages; 1966. (archive)
  • Electronic Rectification; F.G. Spreadbury; D. Van nostrand Co; 1962.
  • Zener Diode Handbook; International Rectifier; 96 pages; 1960.
  • F.T. Selenium Rectifier Handbook; 2nd Ed; Federal Telephone and Radio; 80 pages; 1953. (archive)
  • S.T. Selenium Rectifier Handbook; 1st Ed; Sarkes Tarzian; 80 pages; 1950. (archive)
Circuit books
  • 50 Simple LED Circuits; 1st Ed; R.n. Soar; Babani press; 62 pages; 1977; ISBN 978-0859340434. (archive)
  • 38 practical Tested Diode Circuits For the Home Constructor; 1st Ed; Bernard Babani; Krisson printing; 48 pages; 1972. (archive)
  • Diode Circuits Handbook; 1st Ed; Rufus Turner; Howard Sams & Co; 128 pages; 1963; LCCn 63-13904. (archive)
  • 40 Uses for Germanium Diodes; 2nd Ed; Sylvania Electric products; 47 pages; 1949. (archive)
Databooks


बाहरी संबंध

Interactive and animations