लौहचुम्बकत्व: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 2: Line 2:
{{not to be confused with|फेरी चुम्बकत्व}}
{{not to be confused with|फेरी चुम्बकत्व}}
[[File:MagnetEZ.jpg|thumb|अलनिको से बना एक चुंबक, एक लौहचुंबकीय लौह मिश्र धातु, जिसका रक्षक होता है]]
[[File:MagnetEZ.jpg|thumb|अलनिको से बना एक चुंबक, एक लौहचुंबकीय लौह मिश्र धातु, जिसका रक्षक होता है]]
[[File:Paramagnetism, ferromagnetism and spin waves.webm|thumb|अनुचुम्बकत्व, लौहचुम्बकत्व और स्पिन तरंगें]]लौह [[चुंबकत्व]] कुछ सामग्रियों (जैसे [[लोहा]]) का एक गुण है जिसके परिणामस्वरूप एक महत्वपूर्ण, अवलोकन योग्य चुंबकीय पारगम्यता होती है, और कई स्थितियों में, एक महत्वपूर्ण चुंबकीय बलशीलता होती है, जो पदार्थ को एक [[स्थायी चुंबक]] बनाने की अनुमति देती है। लौहचुंबकीय सामग्रियां परिचित धातुएं हैं जो चुंबक की ओर स्पष्ट रूप से आकर्षित होती हैं, जो उनकी पर्याप्त चुंबकीय पारगम्यता का परिणाम है। चुंबकीय पारगम्यता ''बाहरी'' चुंबकीय क्षेत्र की उपस्थिति के कारण किसी पदार्थ के प्रेरित चुंबकत्व का वर्णन करती है। यह अस्थायी रूप से प्रेरित चुंबकत्व, उदाहरण के लिए, स्टील प्लेट के अंदर, स्थायी चुंबक के प्रति इसके आकर्षण का कारण बनता है। वह स्टील प्लेट स्थायी चुंबकत्व प्राप्त करती है या नहीं, यह न केवल प्रयुक्त क्षेत्र की शक्ति पर निर्भर करता है, किंतु `लौहचुंबकीय पदार्थ की तथाकथित विविशता पर भी निर्भर करता है, जो अधिक भिन्न हो सकता है।
[[File:Paramagnetism, ferromagnetism and spin waves.webm|thumb|अनुचुम्बकत्व, लौहचुम्बकत्व और स्पिन तरंगें]]'''लौह चुंबकत्व''' कुछ सामग्रियों (जैसे लोहा) का एक गुण है जिसके परिणामस्वरूप एक महत्वपूर्ण, अवलोकन योग्य चुंबकीय पारगम्यता होती है, और कई स्थितियों में, एक महत्वपूर्ण चुंबकीय बलशीलता होती है, जो पदार्थ को एक स्थायी चुंबक बनाने की अनुमति देती है। लौहचुंबकीय सामग्रियां परिचित धातुएं हैं जो चुंबक की ओर स्पष्ट रूप से आकर्षित होती हैं, जो उनकी पर्याप्त चुंबकीय पारगम्यता का परिणाम है। चुंबकीय पारगम्यता ''बाहरी'' चुंबकीय क्षेत्र की उपस्थिति के कारण किसी पदार्थ के प्रेरित चुंबकत्व का वर्णन करती है। यह अस्थायी रूप से प्रेरित चुंबकत्व, उदाहरण के लिए, स्टील प्लेट के अंदर, स्थायी चुंबक के प्रति इसके आकर्षण का कारण बनता है। वह स्टील प्लेट स्थायी चुंबकत्व प्राप्त करती है या नहीं, यह न केवल प्रयुक्त क्षेत्र की शक्ति पर निर्भर करता है, किंतु `लौहचुंबकीय पदार्थ की तथाकथित विविशता पर भी निर्भर करता है, जो अधिक भिन्न हो सकता है।


भौतिकी में, कई अलग-अलग प्रकार के भौतिक चुंबकत्व को प्रतिष्ठित किया गया है। लौहचुंबकत्व (समान प्रभाव लौहचुंबकत्व के साथ) सबसे शसक्त प्रकार है और चुंबक या सामान्य उपयोगों में चुंबकत्व की सामान्य घटना के लिए उत्तरदाई है।<ref name=Chikazumi>{{cite book |last=Chikazumi |first=Sōshin |title=लौहचुम्बकत्व का भौतिकी|year=2009 |publisher=Oxford University Press |location=Oxford |isbn=9780199564811 |edition=2nd |others=English edition prepared with the assistance of C.&nbsp;D. Graham, Jr. |page=118}}</ref> पदार्थ तीन अन्य प्रकार के चुंबकत्व - [[ अनुचुंबकत्व |अनुचुंबकत्व]] , [[ प्रतिचुम्बकत्व |प्रतिचुम्बकत्व]] और [[ प्रतिलौहचुंबकत्व |प्रतिलौहचुंबकत्व]] के साथ चुंबकीय क्षेत्र में अशक्त प्रतिक्रिया करते हैं - किंतु बल समान्यत: इतने अशक्त होते हैं कि उन्हें केवल प्रयोगशाला में संवेदनशील उपकरणों द्वारा ही पता लगाया जा सकता है। लौहचुंबकीय पदार्थ से बने स्थायी चुंबक का एक रोजमर्रा का उदाहरण एक [[रेफ्रिजरेटर चुंबक]] है, जैसे कि रेफ्रिजरेटर के दरवाजे पर कागज रखने के लिए उपयोग किया जाता है। चुंबक और लोहे जैसे लौहचुंबकीय पदार्थ के बीच आकर्षण को चुंबकत्व की गुणवत्ता के रूप में वर्णित किया गया है जो प्राचीन दुनिया में और आज हमारे लिए पहली बार स्पष्ट है।<ref name="bozorth">Bozorth, Richard M. ''Ferromagnetism'', first published 1951, reprinted 1993 by [[IEEE]] Press, New York as a "Classic Reissue". {{ISBN|0-7803-1032-2}}.</ref>
भौतिकी में, कई अलग-अलग प्रकार के भौतिक चुंबकत्व को प्रतिष्ठित किया गया है। लौहचुंबकत्व (समान प्रभाव लौहचुंबकत्व के साथ) सबसे शसक्त प्रकार है और चुंबक या सामान्य उपयोगों में चुंबकत्व की सामान्य घटना के लिए उत्तरदाई है।<ref name=Chikazumi>{{cite book |last=Chikazumi |first=Sōshin |title=लौहचुम्बकत्व का भौतिकी|year=2009 |publisher=Oxford University Press |location=Oxford |isbn=9780199564811 |edition=2nd |others=English edition prepared with the assistance of C.&nbsp;D. Graham, Jr. |page=118}}</ref> पदार्थ तीन अन्य प्रकार के चुंबकत्व - अनुचुंबकत्व, प्रतिचुम्बकत्व और प्रतिलौहचुंबकत्व के साथ चुंबकीय क्षेत्र में अशक्त प्रतिक्रिया करते हैं - किंतु बल समान्यत: इतने अशक्त होते हैं कि उन्हें केवल प्रयोगशाला में संवेदनशील उपकरणों द्वारा ही पता लगाया जा सकता है। लौहचुंबकीय पदार्थ से बने स्थायी चुंबक का एक रोजमर्रा का उदाहरण एक [[रेफ्रिजरेटर चुंबक]] है, जैसे कि रेफ्रिजरेटर के दरवाजे पर कागज रखने के लिए उपयोग किया जाता है। चुंबक और लोहे जैसे लौहचुंबकीय पदार्थ के बीच आकर्षण को चुंबकत्व की गुणवत्ता के रूप में वर्णित किया गया है जो प्राचीन दुनिया में और आज हमारे लिए पहली बार स्पष्ट है।<ref name="bozorth">Bozorth, Richard M. ''Ferromagnetism'', first published 1951, reprinted 1993 by [[IEEE]] Press, New York as a "Classic Reissue". {{ISBN|0-7803-1032-2}}.</ref>


स्थायी चुम्बक (ऐसी सामग्रियाँ जो बाहरी [[चुंबकीय क्षेत्र]] द्वारा चुम्बकित हो सकती हैं और बाहरी क्षेत्र हटा दिए जाने के बाद भी चुम्बकित रहती हैं) या तो लौहचुम्बकीय या लौहचुम्बकीय होती हैं, जैसे कि वे सामग्रियाँ जो उनकी ओर आकर्षित होती हैं। इस प्रकार वह अपेक्षाकृत कुछ सामग्रियां लौहचुंबकीय होती हैं और समान्यत: लौह, [[कोबाल्ट]], [[निकल]] और कुछ [[दुर्लभ-पृथ्वी चुंबक]] या दुर्लभ-पृथ्वी धातुओं के शुद्ध रूप, मिश्र धातु या यौगिक होती हैं। इसकी रासायनिक संरचना से परे, किसी पदार्थ के लौहचुंबकीय गुण (या उसकी कमी) उसकी [[स्फटिक]] संरचना से प्रभावित होते हैं। लौहचुंबकत्व औद्योगिक अनुप्रयोगों और आधुनिक प्रौद्योगिकियों में महत्वपूर्ण है, क्योंकि यह कई [[विद्युत]] और विद्युत यांत्रिक उपकरणों, जैसे विद्युत चुंबक का आधार है; [[विद्युत मोटर]]; [[बिजली पैदा करने वाला|जेनरेटर]]; [[ट्रांसफार्मर]]; [[टेप रिकॉर्डर]] और [[हार्ड डिस्क]] सहित [[चुंबकीय भंडारण|चुंबकीय संचयन]]; और लौह पदार्थ का गैर-विनाशकारी परीक्षण है।
स्थायी चुम्बक (ऐसी सामग्रियाँ जो बाहरी [[चुंबकीय क्षेत्र]] द्वारा चुम्बकित हो सकती हैं और बाहरी क्षेत्र हटा दिए जाने के बाद भी चुम्बकित रहती हैं) या तो लौहचुम्बकीय या लौहचुम्बकीय होती हैं, जैसे कि वे सामग्रियाँ जो उनकी ओर आकर्षित होती हैं। इस प्रकार वह अपेक्षाकृत कुछ सामग्रियां लौहचुंबकीय होती हैं और समान्यत: लौह, [[कोबाल्ट]], [[निकल]] और कुछ [[दुर्लभ-पृथ्वी चुंबक]] या दुर्लभ-पृथ्वी धातुओं के शुद्ध रूप, मिश्र धातु या यौगिक होती हैं। इसकी रासायनिक संरचना से परे, किसी पदार्थ के लौहचुंबकीय गुण (या उसकी कमी) उसकी [[स्फटिक]] संरचना से प्रभावित होते हैं। लौहचुंबकत्व औद्योगिक अनुप्रयोगों और आधुनिक प्रौद्योगिकियों में महत्वपूर्ण है, क्योंकि यह कई [[विद्युत]] और विद्युत यांत्रिक उपकरणों, जैसे विद्युत चुंबक का आधार है; [[विद्युत मोटर]]; [[बिजली पैदा करने वाला|जेनरेटर]]; [[ट्रांसफार्मर]]; [[टेप रिकॉर्डर]] और [[हार्ड डिस्क]] सहित [[चुंबकीय भंडारण|चुंबकीय संचयन]]; और लौह पदार्थ का गैर-विनाशकारी परीक्षण है।
Line 209: Line 209:
{{magnetic states}}
{{magnetic states}}


[[Category: क्वांटम चरण]] [[Category: चुंबकीय हिस्टैरिसीस]] [[Category: भौतिक घटनाएँ]] [[Category: लौहचुम्बकत्व]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 English-language sources (en)]]
 
[[Category:CS1 maint]]
 
[[Category:Collapse templates]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/07/2023]]
[[Category:Created On 25/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:क्वांटम चरण]]
[[Category:चुंबकीय हिस्टैरिसीस]]
[[Category:भौतिक घटनाएँ]]
[[Category:लौहचुम्बकत्व]]

Latest revision as of 15:06, 6 September 2023

अलनिको से बना एक चुंबक, एक लौहचुंबकीय लौह मिश्र धातु, जिसका रक्षक होता है
अनुचुम्बकत्व, लौहचुम्बकत्व और स्पिन तरंगें

लौह चुंबकत्व कुछ सामग्रियों (जैसे लोहा) का एक गुण है जिसके परिणामस्वरूप एक महत्वपूर्ण, अवलोकन योग्य चुंबकीय पारगम्यता होती है, और कई स्थितियों में, एक महत्वपूर्ण चुंबकीय बलशीलता होती है, जो पदार्थ को एक स्थायी चुंबक बनाने की अनुमति देती है। लौहचुंबकीय सामग्रियां परिचित धातुएं हैं जो चुंबक की ओर स्पष्ट रूप से आकर्षित होती हैं, जो उनकी पर्याप्त चुंबकीय पारगम्यता का परिणाम है। चुंबकीय पारगम्यता बाहरी चुंबकीय क्षेत्र की उपस्थिति के कारण किसी पदार्थ के प्रेरित चुंबकत्व का वर्णन करती है। यह अस्थायी रूप से प्रेरित चुंबकत्व, उदाहरण के लिए, स्टील प्लेट के अंदर, स्थायी चुंबक के प्रति इसके आकर्षण का कारण बनता है। वह स्टील प्लेट स्थायी चुंबकत्व प्राप्त करती है या नहीं, यह न केवल प्रयुक्त क्षेत्र की शक्ति पर निर्भर करता है, किंतु `लौहचुंबकीय पदार्थ की तथाकथित विविशता पर भी निर्भर करता है, जो अधिक भिन्न हो सकता है।

भौतिकी में, कई अलग-अलग प्रकार के भौतिक चुंबकत्व को प्रतिष्ठित किया गया है। लौहचुंबकत्व (समान प्रभाव लौहचुंबकत्व के साथ) सबसे शसक्त प्रकार है और चुंबक या सामान्य उपयोगों में चुंबकत्व की सामान्य घटना के लिए उत्तरदाई है।[1] पदार्थ तीन अन्य प्रकार के चुंबकत्व - अनुचुंबकत्व, प्रतिचुम्बकत्व और प्रतिलौहचुंबकत्व के साथ चुंबकीय क्षेत्र में अशक्त प्रतिक्रिया करते हैं - किंतु बल समान्यत: इतने अशक्त होते हैं कि उन्हें केवल प्रयोगशाला में संवेदनशील उपकरणों द्वारा ही पता लगाया जा सकता है। लौहचुंबकीय पदार्थ से बने स्थायी चुंबक का एक रोजमर्रा का उदाहरण एक रेफ्रिजरेटर चुंबक है, जैसे कि रेफ्रिजरेटर के दरवाजे पर कागज रखने के लिए उपयोग किया जाता है। चुंबक और लोहे जैसे लौहचुंबकीय पदार्थ के बीच आकर्षण को चुंबकत्व की गुणवत्ता के रूप में वर्णित किया गया है जो प्राचीन दुनिया में और आज हमारे लिए पहली बार स्पष्ट है।[2]

स्थायी चुम्बक (ऐसी सामग्रियाँ जो बाहरी चुंबकीय क्षेत्र द्वारा चुम्बकित हो सकती हैं और बाहरी क्षेत्र हटा दिए जाने के बाद भी चुम्बकित रहती हैं) या तो लौहचुम्बकीय या लौहचुम्बकीय होती हैं, जैसे कि वे सामग्रियाँ जो उनकी ओर आकर्षित होती हैं। इस प्रकार वह अपेक्षाकृत कुछ सामग्रियां लौहचुंबकीय होती हैं और समान्यत: लौह, कोबाल्ट, निकल और कुछ दुर्लभ-पृथ्वी चुंबक या दुर्लभ-पृथ्वी धातुओं के शुद्ध रूप, मिश्र धातु या यौगिक होती हैं। इसकी रासायनिक संरचना से परे, किसी पदार्थ के लौहचुंबकीय गुण (या उसकी कमी) उसकी स्फटिक संरचना से प्रभावित होते हैं। लौहचुंबकत्व औद्योगिक अनुप्रयोगों और आधुनिक प्रौद्योगिकियों में महत्वपूर्ण है, क्योंकि यह कई विद्युत और विद्युत यांत्रिक उपकरणों, जैसे विद्युत चुंबक का आधार है; विद्युत मोटर; जेनरेटर; ट्रांसफार्मर; टेप रिकॉर्डर और हार्ड डिस्क सहित चुंबकीय संचयन; और लौह पदार्थ का गैर-विनाशकारी परीक्षण है।

लौहचुंबकीय सामग्रियों को चुंबकीय रूप से नरम सामग्रियों में विभाजित किया जा सकता है जैसे एनीलिंग (धातुकर्म) लोहा, जिसे चुंबकित किया जा सकता है किंतु चुंबकीय बने रहने की प्रवृत्ति नहीं होती है, और चुंबकीय रूप से कठोर पदार्थ , जो चुंबकीय रूप से कठोर होती हैं। स्थायी चुम्बक कठोर लौहचुम्बकीय पदार्थ , जैसे कि अल्निको, और लौहचुम्बकीय पदार्थ , जैसे फेराइट (चुम्बक) से बनाए जाते हैं, जिन्हें विनिर्माण के समय उनकी आंतरिक क्रिस्टलीय संरचना को संरेखित करने के लिए एक शसक्त चुंबकीय क्षेत्र में विशेष प्रसंस्करण के अधीन किया जाता है, जिससे उन्हें विचुंबकित करना कठिन हो जाता है। एक संतृप्त चुंबक को विचुंबकित करने के लिए, एक निश्चित चुंबकीय क्षेत्र प्रयुक्त किया जाना चाहिए, और यह सीमा संबंधित पदार्थ की विविशता पर निर्भर करती है। कठोर पदार्थों में उच्च निग्राहिता होता है, जबकि नरम पदार्थों में कम निग्राहिता होता है। किसी चुंबक की समग्र शक्ति उसके चुंबकीय क्षण या वैकल्पिक रूप से, उसके द्वारा उत्पन्न कुल चुंबकीय प्रवाह से मापी जाती है। किसी पदार्थ में चुंबकत्व की स्थानीय शक्ति उसके चुंबकत्व द्वारा मापी जाती है।

लौहचुम्बकत्व से इतिहास और भेद

लौहचुंबकीय सामग्री: सभी आणविक चुंबकीय द्विध्रुव एक ही दिशा में निर्देशित होते हैं
फेरिमैग्नेटिक सामग्री: कुछ द्विध्रुव विपरीत दिशा में इंगित करते हैं, लेकिन उनका छोटा योगदान दूसरों द्वारा दूर कर दिया जाता है

ऐतिहासिक रूप से, लौहचुंबकत्व शब्द का उपयोग किसी भी ऐसी पदार्थ के लिए किया जाता था जो सहज चुंबकत्व प्रदर्शित कर सकती थी: बाहरी चुंबकीय क्षेत्र की अनुपस्थिति में एक शुद्ध चुंबकीय क्षण; वह कोई भी पदार्थ है जो चुंबक बन सकता है। यह सामान्य परिभाषा अभी भी समान्य उपयोग में है।[3]

चूँकि, 1948 में एक ऐतिहासिक पेपर में, लुई नील ने दिखाया कि चुंबकीय संरेखण के दो स्तर हैं जिनके परिणामस्वरूप यह व्यवहार होता है। एक सख्त अर्थ में लौहचुंबकत्व है, जहां सभी चुंबकीय क्षण संरेखित होते हैं। दूसरा है लौहचुंबकत्व, जहां कुछ चुंबकीय क्षण विपरीत दिशा की ओर संकेत करते हैं किंतु उनका योगदान कम होता है, इसलिए वहां अभी भी सहज चुंबकत्व होता है।[4][5]

विशेष स्थिति में जहां विरोधी क्षण पूरी तरह से संतुलित होते हैं, संरेखण को एंटीफेरोमैग्नेटिज्म के रूप में जाना जाता है। इसलिए प्रतिलौह चुम्बक में स्वतःस्फूर्त चुम्बकत्व नहीं होता है।

लौहचुंबकीय पदार्थ

कुछ क्रिस्टलीय लौहचुंबकीय सामग्रियों के लिए क्यूरी तापमान[6][7]
पदार्थ क्यूरी

तापमान (क)

Co 1388
Fe 1043
Fe2O3[lower-alpha 1] 948
NiOFe2O3[lower-alpha 1] 858
CuOFe2O3[lower-alpha 1] 728
MgOFe2O3[lower-alpha 1] 713
Mn Bi 630
Ni 627
Nd2Fe14 B 593
MnSb 587
MnOFe2O3[lower-alpha 1] 573
Y3Fe5O12[lower-alpha 1] 560
CrO2 386
MnAs 318
Gd 292
Tb 219
Dy 88
EuO 69
  1. 1.0 1.1 1.2 1.3 1.4 1.5 Ferrimagnetic material

लौहचुम्बकत्व एक असामान्य गुण है जो केवल कुछ ही पदार्थों में होता है। समान्य हैं संक्रमण धातुएँ लोहा, निकल, कोबाल्ट और उनकी मिश्रधातुएँ, और दुर्लभ-पृथ्वी धातुओं की मिश्रधातुएँ यह न केवल किसी पदार्थ की रासायनिक संरचना का गुण है, किंतु `इसकी क्रिस्टलीय संरचना और सूक्ष्म संरचना का भी गुण है। उनका लौहचुंबकत्व उनके ब्लॉक (आवर्त सारणी) में कई अयुग्मित इलेक्ट्रॉनों के कारण होता है | लोहे और उसके संबंध की स्थिति में डी-ब्लॉक, या दुर्लभ-पृथ्वी धातुओं के स्थिति में एफ-ब्लॉक, हंड के अधिकतम बहुलता के नियम का परिणाम है। ऐसे लौहचुंबकीय धातु मिश्र धातु हैं जिनके घटक स्वयं लौहचुंबकीय नहीं होते हैं, जिन्हें हेस्लर मिश्रधातु कहा जाता है, जिसका नाम फ़्रिट्ज़ हेस्लर के नाम पर रखा गया है। इसके विपरीत, गैर-चुंबकीय मिश्र धातुएं हैं, जैसे कि स्टेनलेस स्टील के प्रकार, जो लगभग विशेष रूप से लौहचुंबकीय धातुओं से बने होते हैं।

अनाकार (गैर-क्रिस्टलीय) लौहचुंबकीय धात्विक मिश्रधातु किसी तरल मिश्रधातु के बहुत तेजी से शमन (ठंडा करने) द्वारा बनाई जा सकती है। इनका लाभ यह है कि उनके गुण लगभग आइसोट्रोपिक (क्रिस्टल अक्ष के साथ संरेखित नहीं) होते हैं; इसके परिणामस्वरूप कम बलशीलता, कम हिस्टैरिसीस हानि, उच्च पारगम्यता और उच्च विद्युत प्रतिरोधकता होती है। ऐसी ही एक विशिष्ट पदार्थ एक संक्रमण धातु-धातु मिश्र धातु है, जो लगभग 80% संक्रमण धातु (समान्यत: Fe, Co, या Ni) और एक धातु घटक (बोरॉन, कार्बन, सिलिकॉन, फास्फोरस या अल्युमीनियम) से बनी होती है जो द्रवण-विंदु को कम करती है।

असाधारण रूप से शसक्त लौहचुंबकीय सामग्रियों का एक अपेक्षाकृत नया वर्ग दुर्लभ-पृथ्वी चुंबक हैं। उनमें लैंथेनाइड तत्व होते हैं जो अच्छी तरह से स्थानीयकृत एफ-ऑर्बिटल्स में बड़े चुंबकीय क्षणों को ले जाने की क्षमता के लिए जाने जाते हैं।

तालिका में फेरोमैग्नेटिक और फेरिमैग्नेटिक यौगिकों के चयन को सूचीबद्ध किया गया है, साथ ही उस तापमान के साथ जिसके ऊपर वे सहज चुंबकीयकरण प्रदर्शित करना संवर्त कर देते हैं (क्यूरी तापमान देखें)।

असामान्य पदार्थ

अधिकांश लौहचुंबकीय पदार्थ धातु हैं, क्योंकि संचालन करने वाले इलेक्ट्रॉन अधिकांशतः लौहचुंबकीय अंतःक्रियाओं में मध्यस्थता के लिए उत्तरदाई होते हैं। इसलिए फेरोमैग्नेटिक इंसुलेटर विकसित करना एक चुनौती है, विशेष रूप से मल्टीफ़िरोइक्स पदार्थ, जो फेरोमैग्नेटिक और फेरोइलेक्ट्रिक दोनों हैं।[8]

कई एक्टिनाइड यौगिक कमरे के तापमान पर लौह चुम्बक होते हैं या ठंडा होने पर लौह चुम्बकत्व प्रदर्शित करते हैं। प्लूटोनियम फॉस्फोरस कमरे के तापमान पर घन क्रिस्टल प्रणाली वाला एक पैरामैग्नेट है, किंतु जो अपने TC= 125 K के नीचे ठंडा होने पर फेरोमैग्नेटिक ऑर्डर के साथ चतुष्कोणीय क्रिस्टल प्रणाली अवस्था में एक संरचनात्मक संक्रमण से गुजरता है। अपनी लौहचुंबकीय अवस्था में, पीयूपी की आसान धुरी ⟨100⟩ दिशा में है।[9]

NpFe2 में आसान अक्ष ⟨111⟩ है।[10] ऊपर TC ≈ 500 K, NpFe2अनुचुम्बकीय और घनीय भी है। क्यूरी तापमान के नीचे ठंडा करने से एक रंबोहेड्रल विकृति उत्पन्न होती है जिसमें रंबोहेड्रल कोण 60° (घन चरण) से 60.53° तक बदल जाता है। इस विकृति का एक वैकल्पिक वर्णन अद्वितीय त्रिकोणीय अक्ष के साथ लंबाई c पर विचार करना है (विकृति प्रारंभ होने के बाद) और ए को सी के लंबवत विमान में दूरी के रूप में मानना ​​है। घन चरण में यह क्यूरी तापमान से कम होकर c/a = 1.00 हो जाता है

जो किसी भी एक्टिनाइड यौगिक में सबसे बड़ा तनाव है।[11] NpNi2 (43 ± 5) × 10−4 के तनाव के साथ TC = 32 K के नीचे एक समान जाली विरूपण से गुजरता है।[11] NpCo2 15 K से नीचे का एक लौह चुम्बक है।

2009 में, एमआईटी भौतिकविदों की एक टीम ने प्रदर्शित किया गया था कि एक केल्विन से कम तक ठंडा की गई लिथियम गैस लौहचुंबकत्व प्रदर्शित कर सकती है।[12] टीम ने फर्मिओनिक लिथियम 6 को इससे कम तक ठंडा किया 150 nK (एक केल्विन का 150 अरबवां भाग) इन्फ्रारेड लेजर शीतलन का उपयोग करते है। यह प्रदर्शन पहली बार है कि किसी गैस में लौहचुम्बकत्व का प्रदर्शन किया गया है।

2018 में, मिनेसोटा विश्वविद्यालय के भौतिकविदों की एक टीम ने प्रदर्शित किया कि शरीर-केंद्रित टेट्रागोनल रूथेनियम कमरे के तापमान पर लौहचुंबकत्व प्रदर्शित करता है।[13]

विद्युत प्रेरित लौहचुम्बकत्व

वर्तमान के शोध से इस बात के प्रमाण मिले हैं कि विद्युत धारा या वोल्टेज द्वारा कुछ सामग्रियों में लौहचुंबकत्व को प्रेरित किया जा सकता है। एंटीफेरोमैग्नेटिक LaMnO3 और SrCoO को करंट द्वारा फेरोमैग्नेटिक में बदल दिया गया है। जुलाई 2020 में वैज्ञानिकों ने एक प्रयुक्त वोल्टेज द्वारा प्रचुर मात्रा में प्रतिचुंबकीय पदार्थ आयरन पाइराइट ("फ़ूल्स गोल्ड") में लौहचुंबकत्व उत्पन्न करने की सूचना दी थी इन प्रयोगों में लौहचुम्बकत्व एक पतली सतह परत तक सीमित था।।[14][15]

स्पष्टीकरण

1910 के दशक में खोजे गए बोह्र-वान लीउवेन प्रमेय से पता चला कि मौलिक भौतिकी सिद्धांत लौहचुंबकत्व सहित किसी भी प्रकार के भौतिक चुंबकत्व का गणना देने में असमर्थ हैं; स्पष्टीकरण परमाणुओं के क्वांटम यांत्रिक विवरण पर निर्भर करता है। क्वांटम यांत्रिकी द्वारा वर्णित अनुसार, परमाणु के प्रत्येक इलेक्ट्रॉन का उसकी स्पिन (भौतिकी) स्थिति के अनुसार एक चुंबकीय क्षण होता है। पाउली अपवर्जन सिद्धांत, जो क्वांटम यांत्रिकी का एक परिणाम भी है, परमाणु कक्षाओं में इलेक्ट्रॉनों के स्पिन अवस्था के अधिभोग को प्रतिबंधित करता है, जिससे समान्य रूप से परमाणु के इलेक्ट्रॉनों से चुंबकीय क्षण बड़े मापदंड पर या पूरी तरह से समाप्त हो जाते हैं।[16] एक परमाणु में एक शुद्ध चुंबकीय क्षण होगा जब वह समाप्ति अधूरा होगा।

परमाणु चुंबकत्व की उत्पत्ति

एक इलेक्ट्रॉन कवच मूलभूत गुणों में से एक (इसके अतिरिक्त यह आवेश वहन करता है) यह है कि इसमें एक इलेक्ट्रॉन चुंबकीय क्षण होता है, अथार्त , यह एक छोटे चुंबक की तरह व्यवहार करता है, एक चुंबकीय क्षेत्र उत्पन्न करता है। यह द्विध्रुवीय क्षण इलेक्ट्रॉन की अधिक मौलिक गुण से आता है कि इसमें क्वांटम मैकेनिकल स्पिन (भौतिकी) है। अपनी क्वांटम प्रकृति के कारण, इलेक्ट्रॉन का चक्रण केवल दो अवस्थाओं में से एक में हो सकता है; चुंबकीय क्षेत्र या तो ऊपर या नीचे की ओर निरुपित करते हुए (ऊपर और नीचे के किसी भी विकल्प के लिए) परमाणुओं में इलेक्ट्रॉनों का घूमना लौहचुम्बकत्व का मुख्य स्रोत है, चूँकि परमाणु नाभिक के चारों ओर इलेक्ट्रॉन के परमाणु कक्षीय कोणीय संवेग का भी इसमें योगदान होता है। जब पदार्थ के एक टुकड़े में ये चुंबकीय द्विध्रुव संरेखित होते हैं, (एक ही दिशा में निरुपित करते हैं) तो उनके व्यक्तिगत रूप से छोटे चुंबकीय क्षेत्र एक साथ जुड़कर एक बहुत बड़ा स्थूल क्षेत्र बनाते हैं।

चूँकि भरे हुए इलेक्ट्रॉन कोश वाले परमाणुओं से बनी सामग्रियों का कुल द्विध्रुव आघूर्ण शून्य होता है: क्योंकि सभी इलेक्ट्रॉन विपरीत स्पिन वाले जोड़े में उपस्थित होते हैं, प्रत्येक इलेक्ट्रॉन का चुंबकीय क्षण युग्म में दूसरे इलेक्ट्रॉन के विपरीत क्षण द्वारा समाप्त कर दिया जाता है। केवल आंशिक रूप से भरे हुए कोश वाले परमाणुओं (अथार्त , अयुग्मित इलेक्ट्रॉन) में शुद्ध चुंबकीय क्षण हो सकता है, इसलिए लौहचुंबकत्व केवल आंशिक रूप से भरे हुए कोश वाले पदार्थों में होता है। हंड के नियमों के कारण, एक कोश में पहले कुछ इलेक्ट्रॉनों की स्पिन समान होती है, जिससे कुल द्विध्रुव आघूर्ण बढ़ जाता है।

ये अयुग्मित इलेक्ट्रॉन ( अधिकांशतः इन्हें केवल घूमता हुआ कहा जाता है, तथापि इनमें समान्य रूप से कक्षीय कोणीय गति भी सम्मिलित होती है) बाहरी चुंबकीय क्षेत्र के समानांतर संरेखित होते हैं – एक स्थूल प्रभाव की ओर ले जाता है जिसे अनुचुंबकत्व कहा जाता है। चूँकि लौहचुंबकत्व में, निकटतम परमाणुओं के चुंबकीय द्विध्रुवों के बीच चुंबकीय संपर्क इतना शसक्त होता है कि वे किसी भी प्रयुक्त क्षेत्र की परवाह किए बिना एक दूसरे के साथ संरेखित होते हैं, जिसके परिणामस्वरूप तथाकथित या चुंबकीय डोमेन का सहज चुंबकीयकरण होता है। इसके परिणामस्वरूप फेरोमैग्नेटिक्स की बड़ी चुंबकीय पारगम्यता और स्थायी चुंबक बनाने के लिए कठोर चुंबकीय पदार्थ की क्षमता देखी जाती है।

विनिमय अंतःक्रिया

जब दो पास के परमाणुओं में अयुग्मित इलेक्ट्रॉन होते हैं, तो क्या इलेक्ट्रॉन स्पिन समानांतर या एंटीपैरलल होते हैं, यह प्रभावित करता है कि क्वांटम यांत्रिकी प्रभाव के परिणामस्वरूप इलेक्ट्रॉन एक ही कक्षा को साझा कर सकते हैं या नहीं, जिसे विनिमय अंतःक्रिया कहा जाता है। यह बदले में इलेक्ट्रॉन स्थान और कूलम्ब बल या कूलम्ब (इलेक्ट्रोस्टैटिक) इंटरैक्शन को प्रभावित करता है और इस प्रकार इन अवस्था के बीच ऊर्जा अंतर को प्रभावित करता है।

विनिमय अंतःक्रिया पाउली अपवर्जन सिद्धांत से संबंधित है, जो कहता है कि एक ही स्पिन वाले दो इलेक्ट्रॉन भी एक ही स्थानिक अवस्था (कक्षीय) में नहीं हो सकते हैं। यह स्पिन-सांख्यिकी प्रमेय का परिणाम है और इलेक्ट्रॉन फ़र्मिअन हैं। इसलिए, कुछ नियमों के अनुसार , जब आसन्न परमाणुओं से अयुग्मित बाहरी रासायनिक संयोजन इलेक्ट्रॉन की परमाणु कक्षा ओवरलैप होती है, तो अंतरिक्ष में उनके विद्युत आवेश का वितरण विपरीत स्पिन वाले इलेक्ट्रॉनों की तुलना में समानांतर स्पिन होने पर अधिक दूर होता है। यह इलेक्ट्रॉनों की इलेक्ट्रोस्टैटिक ऊर्जा को कम कर देता है जब उनके स्पिन समानांतर होते हैं, जबकि उनकी ऊर्जा की तुलना में जब स्पिन एंटीपैरल होते हैं, इसलिए समानांतर-स्पिन स्थिति अधिक स्थिर होती है। ऊर्जा के इस अंतर को विनिमय ऊर्जा कहा जाता है। सरल शब्दों में, आसन्न परमाणुओं के बाहरी इलेक्ट्रॉन, जो एक-दूसरे को प्रतिकर्षित करते हैं, अपने स्पिन को समानांतर में संरेखित करके एक दूसरे से दूर जा सकते हैं, इसलिए इन इलेक्ट्रॉनों के स्पिन एक पंक्ति में होते हैं।

यह ऊर्जा अंतर द्विध्रुव अभिविन्यास के कारण चुंबकीय द्विध्रुव-द्विध्रुव अंतःक्रिया से जुड़े ऊर्जा अंतर से अधिक परिमाण का हो सकता है,[17] जो द्विध्रुवों को प्रतिसमानांतर संरेखित करता है। कुछ डोप्ड अर्धचालक ऑक्साइड में आरकेकेवाई इंटरैक्शन को आवधिक लंबी दूरी की चुंबकीय इंटरैक्शन लाने के लिए दिखाया गया है, जो स्पिंट्रोनिक्स के अध्ययन में महत्व की घटना है।[18]

वे सामग्रियां जिनमें विनिमय अंतःक्रिया प्रतिस्पर्धी द्विध्रुव-द्विध्रुव अंतःक्रिया की तुलना में अधिक शसक्त होती है, उन्हें अधिकांशतः चुंबकीय पदार्थ कहा जाता है। उदाहरण के लिए, लोहे (Fe) में विनिमय बल द्विध्रुवीय अंतःक्रिया से लगभग 1000 गुना अधिक शसक्त होता है। इसलिए, क्यूरी तापमान के नीचे लौहचुंबकीय पदार्थ के लगभग सभी द्विध्रुव संरेखित हो जाएंगे। लौहचुंबकत्व के अतिरिक्त, विनिमय अंतःक्रिया चुंबकीय ठोस पदार्थों, प्रतिलौहचुंबकत्व और लौहचुंबकत्व में होने वाले परमाणु चुंबकीय क्षणों के अन्य प्रकार के सहज क्रम के लिए भी उत्तरदाई है।

विभिन्न विनिमय अंतःक्रिया तंत्र हैं जो विभिन्न लौहचुंबकीय, लौहचुंबकीय और प्रतिलौहचुंबकीय पदार्थों में चुंबकत्व उत्पन्न करते हैं। इन तंत्रों में विनिमय अंतःक्रिया या सॉलिड्स में प्रत्यक्ष विनिमय अंतःक्रिया आरकेकेवाई इंटरेक्शन, दोहरा विनिमय और सुपरएक्सचेंज सम्मिलित हैं।

चुंबकीय अनिसोट्रॉपी

चूँकि विनिमय इंटरैक्शन स्पिन को संरेखित रखता है, किंतु यह उन्हें किसी विशेष दिशा में संरेखित नहीं करता है। चुंबकीय अनिसोट्रॉपी के बिना, चुंबक में घूमने वाले थर्मल उतार-चढ़ाव के उत्तर में व्यवस्थित रूप से दिशा बदलते हैं और चुंबक अतिपरचुंबकीय होता है। चुंबकीय अनिसोट्रॉपी कई प्रकार की होती है, जिनमें से सबसे समान्य मैग्नेटोक्रिस्टलाइन अनिसोट्रॉपी है। यह क्रिस्टलोग्राफिक जाली के सापेक्ष चुंबकत्व की दिशा पर ऊर्जा की निर्भरता है। अनिसोट्रॉपी का एक अन्य सामान्य स्रोत, व्युत्क्रम मैग्नेटोस्ट्रिक्शन, आंतरिक विरूपण (यांत्रिकी) से प्रेरित है। एकल-डोमेन (चुंबकीय) या कण आकार के मैग्नेटोस्टैटिक प्रभावों के कारण एकल-डोमेन मैग्नेट में अनिसोट्रॉपी आकार भी हो सकता है। जैसे-जैसे चुंबक का तापमान बढ़ता है, अनिसोट्रॉपी कम हो जाती है, और अधिकांशतः एक सुपरपरमैग्नेटिज्म या ब्लॉकिंग तापमान होता है, जिस पर सुपरपैरामैग्नेटिज्म में संक्रमण होता है।[19]

चुंबकीय डोमेन

अनाज-उन्मुख विद्युत सिलिकॉन स्टील की विद्युत चुम्बकीय गतिशील चुंबकीय डोमेन गति
धातु की सतह का केर माइक्रोग्राफ चुंबकीय डोमेन दिखा रहा है, जिसमें लाल और हरी धारियां विपरीत चुंबकीयकरण दिशाओं को दर्शाती हैं

उपरोक्त से प्रतीत होता है कि लौहचुंबकीय पदार्थ के प्रत्येक टुकड़े में एक शसक्त चुंबकीय क्षेत्र होना चाहिए, क्योंकि सभी स्पिन संरेखित हैं, फिर भी लोहा और अन्य लौहचुंबक अधिकांशतः अचुंबकीय अवस्था में पाए जाते हैं। इसका कारण यह है कि लौहचुंबकीय पदार्थ का एक बड़ा टुकड़ा छोटे-छोटे क्षेत्रों में विभाजित होता है जिन्हें चुंबकीय डोमेन कहा जाता है[20] (वेइस डोमेन के रूप में भी जाना जाता है)। प्रत्येक डोमेन के अंदर स्पिन संरेखित होते हैं, किंतु (यदि थोक पदार्थ अपनी सबसे कम ऊर्जा विन्यास में है; अथार्त अचुंबकीय), अलग-अलग डोमेन के स्पिन अलग-अलग दिशाओं में निरुपित करते हैं और उनके चुंबकीय क्षेत्र समाप्त हो जाते हैं, इसलिए ऑब्जेक्ट में कोई शुद्ध बड़े मापदंड पर चुंबकीय क्षेत्र नहीं होता है।

फेरोमैग्नेटिक पदार्थ स्वचालित रूप से चुंबकीय डोमेन में विभाजित हो जाती है क्योंकि विनिमय संपर्क एक छोटी दूरी की शक्ति है, इसलिए कई परमाणुओं की लंबी दूरी पर विपरीत दिशाओं में उन्मुख होकर अपनी ऊर्जा को कम करने के लिए चुंबकीय द्विध्रुवों की प्रवृत्ति जीत जाती है। यदि लौहचुंबकीय पदार्थ के एक टुकड़े में सभी द्विध्रुव समानांतर संरेखित होते हैं, तो यह इसके चारों ओर अंतरिक्ष में विस्तारित एक बड़ा चुंबकीय क्षेत्र बनाता है। इसमें बहुत अधिक मात्रा में मैग्नेटोस्टैटिक्स ऊर्जा होती है। पदार्थ अलग-अलग दिशाओं की ओर संकेत करने वाले कई डोमेन में विभाजित होकर इस ऊर्जा को कम कर सकती है, इसलिए चुंबकीय क्षेत्र पदार्थ में छोटे स्थानीय क्षेत्रों तक ही सीमित रहता है, जिससे क्षेत्र का आयतन कम हो जाता है। डोमेन को पतली डोमेन वाल्स (चुंबकत्व) द्वारा कई अणुओं से अलग किया जाता है, जिसमें द्विध्रुवों के चुंबकत्व की दिशा एक डोमेन की दिशा से दूसरे तक सरलता से घूमती है।

चुम्बकीय पदार्थ

नीचे की दिशा में बढ़ते बाहरी चुंबकीय क्षेत्र के कारण सिलिकॉन स्टील के एक कण में डोमेन दीवारों का हिलना, केर माइक्रोस्कोप में देखा गया। सफ़ेद क्षेत्र ऊपर की ओर निर्देशित चुम्बकत्व वाले डोमेन हैं, अंधेरे क्षेत्र नीचे की ओर निर्देशित चुम्बकत्व वाले डोमेन हैं।

इस प्रकार, अपनी निम्नतम ऊर्जा अवस्था (अचुंबकीय) में लोहे के एक टुकड़े में समान्य रूप पर बहुत कम या कोई शुद्ध चुंबकीय क्षेत्र नहीं होता है। चूँकि किसी पदार्थ में चुंबकीय डोमेन अपनी जगह पर स्थिर नहीं होते हैं; वे बस ऐसे क्षेत्र हैं जहां इलेक्ट्रॉनों के स्पिन उनके चुंबकीय क्षेत्र के कारण स्वचालित रूप से संरेखित हो गए हैं, और इस प्रकार इन्हें बाहरी चुंबकीय क्षेत्र द्वारा बदला जा सकता है। यदि पदार्थ पर एक शसक्त पर्याप्त बाहरी चुंबकीय क्षेत्र प्रयुक्त किया जाता है, तो डोमेन दीवारें एक डोमेन में दीवार के पास परमाणुओं में इलेक्ट्रॉनों के स्पिन की प्रक्रिया से आगे बढ़ेंगी जो बाहरी क्षेत्र के प्रभाव में दूसरे डोमेन में इलेक्ट्रॉनों के समान दिशा में बदल जाएंगी, इस प्रकार डोमेन को फिर से उन्मुख किया जाएगा जिससे अधिक से अधिक द्विध्रुव बाहरी क्षेत्र के साथ संरेखित हो जाएं। जब बाहरी क्षेत्र हटा दिया जाता है तो डोमेन संरेखित रहेंगे, जिससे पदार्थ के चारों ओर अंतरिक्ष में अपना स्वयं का चुंबकीय क्षेत्र फैल जाएगा, इस प्रकार एक स्थायी चुंबक बन जाएगा। जब क्षेत्र हटा दिया जाता है तो डोमेन अपने मूल न्यूनतम ऊर्जा विन्यास पर वापस नहीं जाते हैं क्योंकि डोमेन की दीवारें क्रिस्टल जाली में दोषों पर 'पिन' या 'स्नैग्ड' हो जाती हैं, जिससे उनका समानांतर अभिविन्यास बना रहता है। इसे बार्कहाउज़ेन प्रभाव द्वारा दिखाया गया है: जैसे ही चुंबकीयकरण क्षेत्र बदलता है, चुंबकीयकरण हजारों छोटे असंतुलित छलांगों में बदल जाता है क्योंकि डोमेन की दीवारें अचानक पिछले दोषों को तोड़ देती हैं।

बाहरी क्षेत्र के एक कार्य के रूप में इस चुंबकत्व को हिस्टैरिसीस पाश द्वारा वर्णित किया गया है। यद्यपि चुंबकीय लौहचुंबकीय पदार्थ के एक टुकड़े में पाए जाने वाले संरेखित डोमेन की यह स्थिति न्यूनतम-ऊर्जा विन्यास नहीं है, यह मेटास्टेबल है, और लंबे समय तक बनी रह सकती है, जैसा कि समुद्र तल से मैग्नेटाइट के नमूनों से पता चलता है जिन्होंने लाखों वर्षों से अपना चुंबकत्व बनाए रखा है।

चुंबकीय पदार्थ को गर्म करना और फिर ठंडा करना (एनीलिंग (धातुकर्म)), इसे हथौड़े से मारकर कंपन के अधीन करना, या डीगाउसिंग से तेजी से दोलन करने वाले चुंबकीय क्षेत्र को प्रयुक्त करने से डोमेन की दीवारें अपनी पिन की गई स्थिति से मुक्त हो जाती हैं, और डोमेन सीमाएं कम बाहरी चुंबकीय क्षेत्र के साथ कम ऊर्जा विन्यास में वापस चली जाती हैं, इस प्रकार पदार्थ विचुंबकीय हो जाती है।

वाणिज्यिक चुम्बक कठोर लौहचुंबकीय या फेरिचुंबकीय सामग्रियों से बने होते हैं जिनमें बहुत बड़ी चुंबकीय अनिसोट्रॉपी होती है जैसे कि एलनीको और फेराइट (चुंबक), जिनमें क्रिस्टल के एक अक्ष, आसान अक्ष के साथ निर्देशित होने के लिए चुंबकत्व की बहुत शसक्त प्रवृत्ति होती है। निर्माण के समय सामग्रियों को एक शक्तिशाली चुंबकीय क्षेत्र में विभिन्न धातुकर्म प्रक्रियाओं के अधीन किया जाता है, जो क्रिस्टल अनाज को संरेखित करता है जिससे उनके चुंबकीयकरण के सभी आसान अक्ष एक ही दिशा में निरुपित हों। इस प्रकार चुंबकत्व, और परिणामी चुंबकीय क्षेत्र, पदार्थ की क्रिस्टल संरचना में निर्मित होता है, जिससे इसे विचुंबकित करना बहुत कठिन हो जाता है।

क्यूरी तापमान

जैसे-जैसे तापमान बढ़ता है, तापीय गति, या एन्ट्रापी, द्विध्रुवों को संरेखित करने के लिए लौहचुंबकीय प्रवृत्ति के साथ प्रतिस्पर्धा करती है। जब तापमान एक निश्चित बिंदु से अधिक बढ़ जाता है, जिसे क्यूरी तापमान कहा जाता है, तो दूसरे क्रम का चरण संक्रमण होता है और सिस्टम अब सहज चुंबकीयकरण को बनाए नहीं रख सकता है, इसलिए चुंबकित होने या चुंबक की ओर आकर्षित होने की इसकी क्षमता विलुप्त हो जाती है, चूँकि यह अभी भी बाहरी क्षेत्र में अनुचुंबकीय रूप से प्रतिक्रिया करता है। उस तापमान के नीचे सहज समरूपता टूटती है और चुंबकीय क्षण अपने निकटतम के साथ संरेखित हो जाते हैं। क्यूरी तापमान अपने आप में एक महत्वपूर्ण बिंदु (थर्मोडायनामिक्स) है, जहां चुंबकीय संवेदनशीलता सैद्धांतिक रूप से अनंत है और चूँकि कोई शुद्ध चुंबकीयकरण नहीं है, डोमेन-जैसे स्पिन सहसंबंध सभी लंबाई के मापदंड पर उतार-चढ़ाव करते हैं।

लौहचुंबकीय चरण संक्रमणों के अध्ययन, विशेष रूप से सरलीकृत आइसिंग मॉडल स्पिन मॉडल के माध्यम से, सांख्यिकीय भौतिकी के विकास पर एक महत्वपूर्ण प्रभाव पड़ा जिस कारण वहां, यह पहली बार स्पष्ट रूप से दिखाया गया था कि माध्य क्षेत्र सिद्धांत दृष्टिकोण महत्वपूर्ण बिंदु पर सही व्यवहार की पूर्वानुमान करने में विफल रहे (जो एक सार्वभौमिकता वर्ग के अंतर्गत आता पाया गया जिसमें कई अन्य प्रणालियां सम्मिलित हैं, जैसे कि तरल-गैस संक्रमण), और इसे पुनर्सामान्यीकरण समूह सिद्धांत द्वारा प्रतिस्थापित किया जाना था।

यह भी देखें

  • लौहचुंबकीय सामग्री गुण
  • हिस्टैरिसीस
  • कक्षीय चुम्बकत्व
  • स्टोनर मानदंड
  • थर्मो-मैग्नेटिक मोटर
  • नेओद्यमिउम मगनेट

संदर्भ

  1. Chikazumi, Sōshin (2009). लौहचुम्बकत्व का भौतिकी. English edition prepared with the assistance of C. D. Graham, Jr. (2nd ed.). Oxford: Oxford University Press. p. 118. ISBN 9780199564811.
  2. Bozorth, Richard M. Ferromagnetism, first published 1951, reprinted 1993 by IEEE Press, New York as a "Classic Reissue". ISBN 0-7803-1032-2.
  3. Somasundaran, P., ed. (2006). सतह और कोलाइड विज्ञान का विश्वकोश (2nd ed.). New York: Taylor & Francis. p. 3471. ISBN 9780849396083.
  4. Cullity, B. D.; Graham, C. D. (2011). "6. Ferrimagnetism". चुंबकीय सामग्री का परिचय. John Wiley & Sons. ISBN 9781118211496.
  5. Aharoni, Amikam (2000). लौहचुम्बकत्व के सिद्धांत का परिचय (2nd ed.). Oxford: Oxford University Press. ISBN 9780198508090.
  6. Kittel, Charles (1986). Introduction to Solid State Physics (sixth ed.). John Wiley and Sons. ISBN 0-471-87474-4.
  7. Jackson, Mike (2000). "Wherefore Gadolinium? Magnetism of the Rare Earths" (PDF). IRM Quarterly. Institute for Rock Magnetism. 10 (3): 6. Archived from the original (PDF) on 2017-07-12. Retrieved 2016-08-08.
  8. Hill, Nicola A. (2000-07-01). "Why Are There so Few Magnetic Ferroelectrics?". The Journal of Physical Chemistry B. 104 (29): 6694–6709. doi:10.1021/jp000114x. ISSN 1520-6106.
  9. Lander G. H., Lam D. J. (1976). "Neutron diffraction study of PuP: The electronic ground state". Phys. Rev. B. 14 (9): 4064–4067. Bibcode:1976PhRvB..14.4064L. doi:10.1103/PhysRevB.14.4064.{{cite journal}}: CS1 maint: uses authors parameter (link)
  10. Aldred A. T., Dunlap B. D., Lam D. J., Lander G. H., Mueller M. H., Nowik I. (1975). "Magnetic properties of neptunium Laves phases: NpMn2, NpFe2, NpCo2, and NpNi2". Phys. Rev. B. 11 (1): 530–544. Bibcode:1975PhRvB..11..530A. doi:10.1103/PhysRevB.11.530.{{cite journal}}: CS1 maint: uses authors parameter (link)
  11. 11.0 11.1 Mueller M. H., Lander G. H., Hoff H. A., Knott H. W., Reddy J. F. (Apr 1979). "Lattice distortions measured in actinide ferromagnets PuP, NpFe2, and NpNi2" (PDF). J. Phys. Colloque C4, Supplement. 40 (4): C4-68–C4-69. Archived (PDF) from the original on 2011-05-09.{{cite journal}}: CS1 maint: uses authors parameter (link)
  12. G.-B. Jo; Y.-R. Lee; J.-H. Choi; C. A. Christensen; T. H. Kim; J. H. Thywissen; D. E. Pritchard; W. Ketterle (2009). "अल्ट्राकोल्ड परमाणुओं की फर्मी गैस में भ्रमणशील लौहचुम्बकत्व". Science. 325 (5947): 1521–1524. arXiv:0907.2888. Bibcode:2009Sci...325.1521J. doi:10.1126/science.1177112. PMID 19762638. S2CID 13205213.
  13. Quarterman, P.; Sun, Congli; Garcia-Barriocanal, Javier; D. C., Mahendra; Lv, Yang; Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.; Voyles, Paul M.; Wang, Jian-Ping (2018). "Demonstration of Ru as the 4th ferromagnetic element at room temperature". Nature Communications. 9 (1): 2058. Bibcode:2018NatCo...9.2058Q. doi:10.1038/s41467-018-04512-1. PMC 5970227. PMID 29802304.
  14. "'मूर्खों का सोना' आख़िरकार मूल्यवान हो सकता है". phys.org (in English). Retrieved 17 August 2020.
  15. Walter, Jeff; Voigt, Bryan; Day-Roberts, Ezra; Heltemes, Kei; Fernandes, Rafael M.; Birol, Turan; Leighton, Chris (1 July 2020). "प्रतिचुम्बक में वोल्टेज-प्रेरित लौहचुम्बकत्व". Science Advances (in English). 6 (31): eabb7721. Bibcode:2020SciA....6B7721W. doi:10.1126/sciadv.abb7721. ISSN 2375-2548. PMC 7439324. PMID 32832693.
  16. Feynman, Richard P.; Robert Leighton; Matthew Sands (1963). The Feynman Lectures on Physics, Vol. 2. Addison-Wesley. pp. Ch. 37.
  17. Chikazumi, Sōshin (2009). लौहचुम्बकत्व का भौतिकी. English edition prepared with the assistance of C. D. Graham, Jr. (2nd ed.). Oxford: Oxford University Press. pp. 129–130. ISBN 9780199564811.
  18. Assadi, M. H. N.; Hanaor, D. A. H. (2013). "Theoretical study on copper's energetics and magnetism in TiO2 polymorphs". Journal of Applied Physics. 113 (23): 233913-1–233913-5. arXiv:1304.1854. Bibcode:2013JAP...113w3913A. doi:10.1063/1.4811539. S2CID 94599250.
  19. Aharoni, Amikam (1996). लौहचुम्बकत्व के सिद्धांत का परिचय. Clarendon Press. ISBN 0-19-851791-2.
  20. Feynman, Richard P.; Robert B. Leighton; Matthew Sands (1963). The Feynman Lectures on Physics. Vol. I. Pasadena: California Inst. of Technology. pp. 37.5–37.6. ISBN 0465024939.


बाहरी संबंध