सामान्य सापेक्षता में द्रव्यमान: Difference between revisions

From Vigyanwiki
 
(22 intermediate revisions by 4 users not shown)
Line 3: Line 3:
विशेष सापेक्षता में [[द्रव्यमान]] की अवधारणा की तुलना में [[सामान्य सापेक्षता]] (जीआर) में द्रव्यमान की अवधारणा परिभाषित करने के लिए अधिक सूक्ष्म है। वस्तुत: सामान्य सापेक्षता द्रव्यमान शब्द की एक परिभाषा नहीं अपितु अनेक भिन्न-भिन्न परिभाषाएँ प्रदान करती है जो विभिन्न परिस्थितियों में अनप्रयुक्‍त होती हैं। कुछ परिस्थितियों में, सामान्य सापेक्षता में किसी प्रणाली के द्रव्यमान को परिभाषित भी नहीं किया जा सकता है।
विशेष सापेक्षता में [[द्रव्यमान]] की अवधारणा की तुलना में [[सामान्य सापेक्षता]] (जीआर) में द्रव्यमान की अवधारणा परिभाषित करने के लिए अधिक सूक्ष्म है। वस्तुत: सामान्य सापेक्षता द्रव्यमान शब्द की एक परिभाषा नहीं अपितु अनेक भिन्न-भिन्न परिभाषाएँ प्रदान करती है जो विभिन्न परिस्थितियों में अनप्रयुक्‍त होती हैं। कुछ परिस्थितियों में, सामान्य सापेक्षता में किसी प्रणाली के द्रव्यमान को परिभाषित भी नहीं किया जा सकता है।


इस सूक्ष्मता का कारण यह है कि गुरुत्वाकर्षण क्षेत्र में ऊर्जा और संवेग को सुस्पष्ट रूप से स्थानीयकृत नहीं किया जा सकता है।(अध्याय 20 देखें <ref name="mtw">{{cite book |last1=Misner |first1=Charles W. |last2=Thorne |first2=Kip S. |last3=Wheeler |first3=John A. |title=आकर्षण-शक्ति|date=1973 |publisher=W. H. Freeman and Company |location=New York |isbn=0-7167-0334-3}}</ref>।) इसलिए, सामान्य सापेक्षता में मास की कठोर परिभाषाएँ सीमित नहीं हैं, जैसा कि शास्त्रीय यांत्रिकी या विशेष सापेक्षता में है, लेकिन समष्टि काल की स्पर्शोन्मुख प्रकृति का संदर्भ देती हैं। की एक अच्छी परिभाषित धारणा उपगामितः अवक्र दिक्काल के लिए और उपगामितः [[एंटी-डी सिटर स्पेस]] समष्टि के लिए उपस्थित है। यद्यपि, इन परिभाषाओं का उपयोग अन्य समायोजनों में सावधानी के साथ किया जाना चाहिए।
इस सूक्ष्मता का कारण यह है कि गुरुत्वाकर्षण क्षेत्र में ऊर्जा और संवेग को सुस्पष्ट रूप से स्थानीयकृत नहीं किया जा सकता है।(अध्याय 20 देखें <ref name="mtw">{{cite book |last1=Misner |first1=Charles W. |last2=Thorne |first2=Kip S. |last3=Wheeler |first3=John A. |title=आकर्षण-शक्ति|date=1973 |publisher=W. H. Freeman and Company |location=New York |isbn=0-7167-0334-3}}</ref>।) इसलिए, सामान्य सापेक्षता में द्रव्यमान की कठोर परिभाषाएँ सीमित नहीं हैं, जैसा कि शास्त्रीय यांत्रिकी या विशेष सापेक्षता में है, लेकिन समष्टि काल की स्पर्शोन्मुख प्रकृति का संदर्भ देती हैं। द्रव्यमान की पूर्णतः स्पष्ट परिभाषित धारणा असम्बद्ध रूप से अवक्र दिक्-काल और [[एंटी-डी सिटर स्पेस|एंटी-डी सिटर]] दिक्-काल के लिए उपस्थित है। यद्यपि, इन परिभाषाओं का उपयोग अन्य समायोजनों में सावधानी के साथ किया जाना चाहिए।


== सामान्य सापेक्षता में द्रव्यमान को परिभाषित करना: अवधारणाएं और बाधाएं ==
== सामान्य सापेक्षता में द्रव्यमान को परिभाषित करना: अवधारणाएं और बाधाएं ==
विशेष सापेक्षता में, किसी कण के शेष द्रव्यमान को उसकी ऊर्जा और संवेग के संदर्भ में स्पष्ट रूप से परिभाषित किया जा सकता है जैसा कि विशेष सापेक्षता में मास पर लेख में वर्णित है। यद्यपि, सामान्य सापेक्षता के लिए ऊर्जा और संवेग की धारणा को सामान्य बनाना सूक्ष्म है। इसका मुख्य कारण यह है कि गुरुत्वाकर्षण क्षेत्र ही ऊर्जा और संवेग में योगदान देता है। यद्यपि, "गुरुत्वाकर्षण क्षेत्र ऊर्जा" ऊर्जा-संवेग टेंसर (प्रदिश) का अंश नहीं है; इसके बजाय, जिसे कुल ऊर्जा में गुरुत्वाकर्षण क्षेत्र के योगदान के रूप में पहचाना जा सकता है, आइंस्टीन के समीकरण के दूसरी ओर आइंस्टीन प्रदिश का अंश है (और जैसे, इन समीकरणों की गैर-रैखिकता का परिणाम)। जबकि कुछ स्थितियों में समीकरणों को पुनः लिखना संभव है ताकि "गुरुत्वाकर्षण ऊर्जा" का अंश अब तनाव-ऊर्जा-संवेग छद्म प्रदिश के रूप में अन्य स्रोत शर्तों के साथ खड़ा हो, यह अलगाव सभी पर्यवेक्षकों के लिए सही नहीं है, और इसे प्राप्त करने की कोई सामान्य परिभाषा नहीं है।<ref>Cf. {{Harvnb|Misner|Thorne|Wheeler|1973|loc=§20.4}}</ref>
विशेष आपेक्षिकता में किसी कण के शेष द्रव्यमान को उसकी ऊर्जा और संवेग के संदर्भ में स्पष्ट रूप से परिभाषित किया जा सकता है जैसा कि विशेष सापेक्षता में द्रव्यमान के लेख में वर्णित है। यद्यपि, सामान्य सापेक्षता के लिए ऊर्जा और संवेग की धारणा को सामान्य बनाना सूक्ष्म है। इसका मुख्य कारण यह है कि गुरुत्वाकर्षण क्षेत्र ही ऊर्जा और संवेग में योगदान देता है। यद्यपि "गुरुत्वाकर्षण क्षेत्र ऊर्जा" ऊर्जा-संवेग टेंसर (प्रदिश) का भाग नहीं है; इसके अतिरिक्त इसे कुल ऊर्जा में गुरुत्वाकर्षण क्षेत्र के योगदान के रूप में निर्धारित किया जा सकता है, जो आइंस्टीन के समीकरण के दूसरी ओर आइंस्टीन प्रदिश का भाग है (और इन समीकरणों की अरैखिकता के परिणामस्वरूप)। जबकि कुछ स्थितियों में समीकरणों का पुनर्लेखन संभव है इसलिए "गुरुत्वाकर्षण ऊर्जा" का भाग अब तनाव-ऊर्जा-संवेग प्रच्छन्न प्रदिश के रूप में अन्य स्रोत शर्तों के साथ स्थित हो, यह वियुक्ति सभी पर्यवेक्षकों के लिए सही नहीं है तथा इसे प्राप्त करने की कोई सामान्य परिभाषा नहीं है।<ref>Cf. {{Harvnb|Misner|Thorne|Wheeler|1973|loc=§20.4}}</ref>


फिर, कोई कैसे एक अवधारणा को एक प्रणाली के कुल मास के रूप में परिभाषित करता है - जिसे शास्त्रीय यांत्रिकी में सरलता से परिभाषित किया गया है? जैसा कि यह पता चला है, कम से कम समष्टि काल के लिए जो उपगामितः रूप से सपाट हैं (लगभग, जो अन्यथा शून्य और गुरुत्वाकर्षण-मुक्त अनंत समष्टि में कुछ विलगित गुरुत्वाकर्षण प्रणाली का प्रतिनिधित्व करते हैं), एडीएम 3 +1 विभाजन एक समाधान की ओर ले जाता है: जैसा कि सामान्य हैमिल्टनी औपचारिकता में होता है, उस विभाजन में उपयोग की जाने वाली समय दिशा में एक संबद्ध ऊर्जा होती है, जिसे एडीएम मास (या, समतुल्य, एडीएम ऊर्जा) के रूप में ज्ञात वैश्विक मात्रा प्राप्त करने के लिए एकीकृत किया जा सकता है।<ref>{{Harvnb|Arnowitt|Deser|Misner|1962}}.</ref> वैकल्पिक रूप से, एक [[स्थिर अंतरिक्ष समय|समष्टि काल]] जो स्थिर है, के लिए मास को परिभाषित करने की संभावना है, अन्य शब्दों में, जिसका समय-जैसा [[हत्या वेक्टर क्षेत्र|किलिंग सदिश क्षेत्र]] है (जो, समय के उत्पादक क्षेत्र के रूप में, ऊर्जा के लिए विहित रूप से संयुग्मित है); परिणाम तथाकथित [[ द्रव्यमान को लौटें |कोमार मास]] है<ref>Cf. {{Harvnb|Komar|1959}}</ref><ref name="Wald.11.2">For a pedagogical introduction, see {{Harvnb|Wald|1984|loc=sec. 11.2}}.</ref> यद्यपि पूर्ण रूप से पृथक रूप में परिभाषित किया गया है, इसे स्थिर समष्टि काल के लिए एडीएम मास के समान दिखाया जा सकता है।<ref>This is shown in {{Harvnb|Ashtekar|Magnon-Ashtekar|1979}}.</ref> कोमार समाकल परिभाषा को गैर-स्थिर क्षेत्रों के लिए भी सामान्यीकृत किया जा सकता है जिसके लिए कम से कम एक स्पर्शोन्मुख [[समय अनुवाद समरूपता]] है; एक निश्चित गेज की स्थिति को लागू करते हुए, बोंडी ऊर्जा को शून्य अनंतता पर परिभाषित किया जा सकता है। एक तरह से, एडीएम ऊर्जा समष्टि काल में निहित सभी ऊर्जा को मापती है, जबकि बोंडी ऊर्जा गुरुत्वाकर्षण तरंगों द्वारा अनंत तक ले जाने वाले भागों को बहिष्कृत करती है।<ref name="Wald.11.2" /> '''द्रव्यमान, जिसे वर्तमान में परिभाषित किया गया है, के लिए सकारात्मक प्रमेयों को सिद्ध करने के लिए अधिक प्रयास किए गए हैं, कम से कम सकारात्मकता नहीं क्योंकि, या कम से कम एक निम्न सीमा का अस्तित्व, नीचे से बाध्यता के अधिक मौलिक प्रश्न पर असर डालता है: यदि ऊर्जा के लिए कोई निम्न सीमा नहीं था, तब कोई पृथक प्रणाली पूर्णतः स्थिर नहीं होगी; इससे भी निम्न कुल ऊर्जा की स्थिति में क्षय की संभावना सदैव बनी रहेगी।''' एडीएम मास और बौंडी मास दोनों के वास्तव में सकारात्मक होने के कई प्रकार के प्रमाण उपस्थित हैं; विशेष रूप से इसका अर्थ है कि मिन्कोव्स्की समष्टि (जिसके लिए दोनों शून्य हैं) वास्तव में स्थिर है।<ref>See the various references given on p. 295 of {{Harvnb|Wald|1984}}.</ref> जबकि यहां ऊर्जा पर ध्यान दिया गया है, वैश्विक संवेग के लिए अनुरूप परिभाषाएं उपस्थित हैं; कोणीय किलिंग सदिश के क्षेत्र को देखते हुए और कोमार तकनीक का पालन करते हुए, वैश्विक कोणीय संवेग को भी परिभाषित किया जा सकता है।<ref>E.g. {{Harvnb|Townsend|1997|loc=ch. 5}}.</ref>
फिर, कोई कैसे एक अवधारणा को एक प्रणाली के कुल द्रव्यमान के रूप में परिभाषित करता है - जिसे चिरसम्मत यांत्रिकी में सरलता से परिभाषित किया गया है? जैसा कि ज्ञात है कि कम से कम दिक्-काल के लिए जो विषम रूप से सपाट हैं (मोटे तौर पर बोलना, जो या तो रिक्त और गुरुत्वाकर्षण-मुक्त अनंत अंतरिक्ष में कुछ पृथक गुरुत्वाकर्षण प्रणाली का प्रतिनिधित्व करते हैं) एडीएम 3+1 विभाजन समाधान की ओर ले जाता है: जैसा कि सामान्य हैमिल्टन वैधिकता में होता है कि उस विभाजन में उपयोग की जाने वाली औपचारिकता समय दिशा में एक संबद्ध ऊर्जा होती है जिसे एडीएम द्रव्यमान (या, समतुल्य, एडीएम ऊर्जा) के रूप में ज्ञात वैश्विक मात्रा उत्पन्न करने के लिए एकीकृत किया जा सकता है।<ref>{{Harvnb|Arnowitt|Deser|Misner|1962}}.</ref> वैकल्पिक रूप से, एक [[स्थिर अंतरिक्ष समय|दिक्-काल]] के लिए द्रव्यमान को परिभाषित करने की जो संभावना है वह स्थिर है दूसरे शब्दों में समय- जैसा [[हत्या वेक्टर क्षेत्र|किलिंग सदिश क्षेत्र]] है (जो, समय के उत्पादक क्षेत्र के रूप में, ऊर्जा के लिए विहित रूप से संयुग्मित है); परिणाम तथाकथित [[ द्रव्यमान को लौटें |कोमार द्रव्यमान]] है।<ref>Cf. {{Harvnb|Komar|1959}}</ref><ref name="Wald.11.2">For a pedagogical introduction, see {{Harvnb|Wald|1984|loc=sec. 11.2}}.</ref> जबकि पूर्ण रूप से अलग प्रकार से परिभाषित किया गया है इसे स्थिर दिक्-काल के लिए एडीएम द्रव्यमान के समांतर प्रदर्शित किया जा सकता है।<ref>This is shown in {{Harvnb|Ashtekar|Magnon-Ashtekar|1979}}.</ref> कोमार समाकल परिभाषा को गैर-स्थिर क्षेत्रों के लिए भी सामान्यीकृत किया जा सकता है जिसके लिए कम से कम एक स्पर्शोन्मुख [[समय अनुवाद समरूपता]] है जो एक निश्चित माप की स्थिति को अधिरोपित करते हुए बोंडी ऊर्जा को शून्य अनन्तता पर परिभाषित कर सकती है। एक तरह से, एडीएम ऊर्जा दिक्-काल में निहित सभी ऊर्जा को मापती है, जबकि बोंडी ऊर्जा गुरुत्वाकर्षण तरंगों द्वारा अनंत तक ले जाने वाले भागों को बहिष्कृत करती है।<ref name="Wald.11.2" /> द्रव्यमान के लिए सकारात्मकता प्रमेयों को सिद्ध करने के लिए कई प्रयास किए गए हैं जो ना ही इसकी सकारात्मकता के कारण और ना ही किसी न्यूनतम सीमा के कारण जबकि न्यूनतम सीमा का अस्तित्व न्यूनता से बाध्यता के मौलिक प्रश्न पर प्रभाव डालता है: ऊर्जा की कोई पृथक प्रणाली बिल्कुल स्थिर नहीं होगी अतः इससे भी कुल ऊर्जा की निम्न स्थिति में क्षय की संभावना सदैव बनी रहेगी। एडीएम द्रव्यमान और बौंडी द्रव्यमान दोनों के वास्तव में सकारात्मक होने के कई प्रकार के प्रमाण उपलब्ध हैं विशेष रूप से इसका अर्थ है कि मिन्कोव्स्की स्थान (जिसके लिए दोनों शून्य हैं) वास्तव में स्थिर है।<ref>See the various references given on p. 295 of {{Harvnb|Wald|1984}}.</ref> जबकि यहां ऊर्जा पर ध्यान दिया गया है, वैश्विक संवेग के लिए अनुरूप परिभाषाएं उपस्थित हैं; कोणीय किलिंग सदिश के क्षेत्र को देखते हुए और कोमार तकनीक का पालन करते हुए वैश्विक कोणीय संवेग को भी परिभाषित किया जा सकता है।<ref>E.g. {{Harvnb|Townsend|1997|loc=ch. 5}}.</ref>






== अर्ध-स्थानीय मात्राएँ ==
== अर्ध-स्थानीय मात्राएँ ==
अब तक उल्लिखित सभी परिभाषाओं का नुकसान यह है कि उन्हें केवल (शून्य या स्थानिक) अनंत पर परिभाषित किया गया है; 1970 के दशक के उपरान्त से, भौतिकविदों और गणितज्ञों ने उपयुक्त अर्ध-सीमित मात्राओं को परिभाषित करने के अधिक महत्वाकांक्षी प्रयास पर काम किए है, जैसे कि एक पृथक प्रणाली के मास को केवल उस प्रणाली के समष्टि के परिमित क्षेत्र के भीतर परिभाषित मात्राओं का उपयोग करके परिभाषित किया गया है। यद्यपि [[हॉकिंग ऊर्जा]], जेरोच ऊर्जा या पेनरोज़ की अर्ध-सीमित ऊर्जा-संवेग जैसे [[ट्विस्टर सिद्धांत]] विधियों पर आधारित विभिन्न प्रकार की प्रस्तावित परिभाषाएँ हैं, लेकिन क्षेत्र अभी भी प्रवाह में है। अंत में, आशा है कि एक अधिक सटीक [[घेरा अनुमान|हुप कंजेक्चर]] के सूत्रीकरण देने के लिए एक उपयुक्त परिभाषित अर्ध-सीमित मास का उपयोग किया जाए, ब्लैक होल (कृष्ण विवर) के लिए तथाकथित [[पेनरोज़ असमानता]] को सिद्ध करें (ब्लैक होल के मास को क्षितिज क्षेत्र से संबंधित) और ब्लैक होल यांत्रिकी के नियमों का अर्ध-सीमित संस्करण खोजें।<ref>See the review article {{Harvnb|Szabados|2004}}.</ref>
अब तक कथित सभी परिभाषाओं का नुकसान यह है कि उन्हें केवल (शून्य या स्थानिक) अनंत पर परिभाषित किया गया है; 1970 के दशक के बाद से भौतिकविदों और गणितज्ञों ने उपयुक्त अर्ध-स्थानीय मात्राओं को परिभाषित करने के अधिक महत्वाकांक्षी प्रयास किये है, जैसे कि एक अलग प्रणाली के द्रव्यमान को केवल उस प्रणाली वाले दिक् के परिमित क्षेत्र के भीतर स्पष्ट मात्राओं का उपयोग करके परिभाषित किया गया है। यद्यपि [[हॉकिंग ऊर्जा]],जेरोच ऊर्जा या पेनरोज़ की अर्ध-सीमित ऊर्जा-संवेग जैसे [[ट्विस्टर सिद्धांत]] विधियों पर आधारित विभिन्न प्रकार की प्रस्तावित परिभाषाएँ हैं, लेकिन क्षेत्र अभी भी प्रवाह में है। अंततः आशा है कि [[घेरा अनुमान|हुप कंजेक्चर]] का अधिक सटीक सूत्रीकरण देने के लिए उपयुक्त परिभाषित अर्ध-स्थानीय द्रव्यमान का उपयोग किया जाए, ब्लैक होल हेतु तथाकथित [[पेनरोज़ असमानता]] को प्रमाणित करें (ब्लैक होल के द्रव्यमान को क्षितिज क्षेत्र से संबंधित) और ब्लैक होल यांत्रिकी के नियमों का अर्ध-सीमित संस्करण खोजें।<ref>See the review article {{Harvnb|Szabados|2004}}.</ref>
 
 




== सामान्य सापेक्षता में द्रव्यमान के प्रकार ==
== सामान्य सापेक्षता में द्रव्यमान के प्रकार ==


=== स्थिर समष्टि काल में कोमार मास ===
=== स्थिर समष्टि काल में कोमार द्रव्यमान ===
{{Main |कोमार मास}}
{{Main |कोमार मास}}


स्थिर समष्टि काल की गैर-तकनीकी परिभाषा एक समष्टि काल है जहां कोई भी मीट्रिक गुणांक <math>g_{\mu\nu}\,</math> समय फलन नहीं हैं। एक [[ब्लैक होल]] की [[श्वार्जस्चिल्ड मीट्रिक]] और एक घूर्णन ब्लैक होल की [[ केर मीट्रिक |केर मीट्रिक]] स्थिर समष्टि काल के सामान्य उदाहरण हैं।
स्थिर समष्टि काल की गैर-तकनीकी परिभाषा एक समष्टि काल है जहां कोई भी मीट्रिक गुणांक <math>g_{\mu\nu}\,</math> समय फलन नहीं हैं। एक [[ब्लैक होल]] की [[श्वार्जस्चिल्ड मीट्रिक]] और एक घूर्णन ब्लैक होल की [[ केर मीट्रिक |केर मीट्रिक]] स्थिर समष्टि काल के सामान्य उदाहरण हैं।


परिभाषा के अनुसार, एक स्थिर समष्टि काल समय अनुवाद समरूपता प्रदर्शित करता है । इसे तकनीकी रूप से काल सदृश [[ हत्या वेक्टर |किलिंग सदिश]] कहा जाता है। क्योंकि प्रणाली में समय अनुवाद समरूपता है, नोएदर का प्रमेय प्रत्याभुति करता है कि इसमें एक संरक्षित ऊर्जा है। क्योंकि एक स्थिर प्रणाली में पूर्णतः स्पष्ट विरामस्थ तंत्र भी होता है जिसमें इसके संवेग को शून्य माना जा सकता है, प्रणाली की ऊर्जा को परिभाषित करना भी इसके मास को परिभाषित करना है। सामान्य सापेक्षता में, इस मास को प्रणाली का कोमार मास कहा जाता है। कोमार मास केवल स्थिर प्रणालियों के लिए परिभाषित किया जा सकता है।
परिभाषा के अनुसार, एक स्थिर समष्टि काल समय अनुवाद समरूपता प्रदर्शित करता है। इसे तकनीकी रूप से काल सदृश [[ हत्या वेक्टर |किलिंग सदिश]] कहा जाता है। क्योंकि प्रणाली में समय अनुवाद समरूपता है, नोएदर का प्रमेय प्रत्याभुति करता है कि इसमें एक संरक्षित ऊर्जा है। क्योंकि एक स्थिर प्रणाली में पूर्णतः स्पष्ट विरामस्थ तंत्र भी होता है जिसमें इसके संवेग को शून्य माना जा सकता है, प्रणाली की ऊर्जा को परिभाषित करना भी इसके द्रव्यमान को परिभाषित करना है। सामान्य सापेक्षता में, इस द्रव्यमान को प्रणाली का कोमार द्रव्यमान कहा जाता है। कोमार द्रव्यमान केवल स्थिर प्रणालियों के लिए परिभाषित किया जा सकता है।


कोमार मास को फ्लक्स समाकल द्वारा भी परिभाषित किया जा सकता है। यह उस प्रकार से है जैसे गॉस का नियम एक सतह से घिरे आवेश को क्षेत्र द्वारा गुणा किए गए सामान्य विद्युत बल के रूप में परिभाषित करता है। कोमार मास को परिभाषित करने के लिए उपयोग किया जाने वाला फ्लक्स समाकल विद्युत क्षेत्र को परिभाषित करने के लिए उपयोग किए जाने वाले से किंचित भिन्न है, यद्यपि - सामान्य बल वास्तविक बल नहीं है, बल्कि "अनंत पर बल" है। अधिक विवरण के लिए मुख्य लेख देखें।
कोमार द्रव्यमान को फ्लक्स समाकल द्वारा भी परिभाषित किया जा सकता है। यह उस प्रकार से है जैसे गॉस का नियम एक सतह से घिरे आवेश को क्षेत्र द्वारा गुणा किए गए सामान्य विद्युत बल के रूप में परिभाषित करता है। कोमार द्रव्यमान को परिभाषित करने के लिए उपयोग किया जाने वाला फ्लक्स समाकल विद्युत क्षेत्र को परिभाषित करने के लिए उपयोग किए जाने वाले से किंचित भिन्न है, यद्यपि - सामान्य बल वास्तविक बल नहीं है, अपितु "अनंत पर बल" है। अधिक विवरण के लिए मुख्य लेख देखें।


दो परिभाषाओं में से, समय अनुवाद समरूपता के संदर्भ में कोमार मास का विवरण गहन अंतर्दृष्टि प्रदान करता है।
दो परिभाषाओं में से, समय अनुवाद समरूपता के संदर्भ में कोमार द्रव्यमान का विवरण गहन अंतर्दृष्टि प्रदान करता है।


=== उपगामितः अवक्र दिक्काल में एडीएम और बोंडी द्रव्यमान ===
=== असम्बद्ध रूप से अवक्र दिक्-काल में एडीएम और बोंडी द्रव्यमान ===
यदि गुरुत्वाकर्षण स्रोतों वाली एक प्रणाली एक अनंत निर्वात क्षेत्र से घिरी हुई है, तो समष्टि काल की ज्यामिति अनंत पर विशेष सापेक्षता के अवक्र मिन्कोव्स्की ज्यामिति के समीप आ जाएगी। ऐसे समष्टि काल को [[विषम रूप से सपाट|उपगामितः अवक्र]] के रूप में जाना जाता है।
यदि गुरुत्वाकर्षण स्रोतों वाली एक प्रणाली एक अनंत निर्वात क्षेत्र से घिरी हुई है, तो दिक्-काल की ज्यामिति अनंत पर विशेष सापेक्षता के अवक्र मिन्कोव्स्की ज्यामिति के समीप आ जाएगी। ऐसे दिक्-काल को [[विषम रूप से सपाट|असम्बद्ध रूप से स्पष्ट]] माना जाता है।


उन प्रणालियों के लिए जिनमें समष्टि काल उपगामित रूप से अवक्र है , एडीएम और बौंडी ऊर्जा, संवेग, और मास को परिभाषित किया जा सकता है। नोएदर के प्रमेय के संदर्भ में, एडीएम ऊर्जा, संवेग और मास को स्थानिक अनंतता पर उपगामी समरूपता द्वारा परिभाषित किया गया है, और बौंडी ऊर्जा, संवेग और मास को शून्य अनंतता पर उपगामी समरूपता द्वारा परिभाषित किया गया है। ध्यान दें कि मास की गणना ऊर्जा-संवेग [[चार-वेक्टर|चार-सदिश]] की लंबाई के रूप में की जाती है , जिसे "अनंतता पर" प्रणाली की ऊर्जा और संवेग के रूप में माना जा सकता है।
एडीएम और बॉन्डी ऊर्जा, संवेग और द्रव्यमान को उन प्रणालियों के लिए परिभाषित किया जा सकता है जिनमें दिक्-काल असमान रूप से स्पष्ट है। नोएदर के प्रमेय के संदर्भ में, एडीएम ऊर्जा, संवेग और द्रव्यमान को स्थानिक अनंतता पर उपगामी समरूपता द्वारा परिभाषित किया गया है, और बौंडी ऊर्जा, संवेग और द्रव्यमान को शून्य अनंतता पर उपगामी समरूपता द्वारा परिभाषित किया गया है। ध्यान दें कि द्रव्यमान की गणना ऊर्जा-संवेग [[चार-वेक्टर|चार-सदिश]] की लंबाई के रूप में की जाती है, जिसे "अनंतता पर" प्रणाली की ऊर्जा और संवेग के रूप में माना जा सकता है।


एडीएम ऊर्जा को अनंतता पर निम्नलिखित फ्लक्स समाकल के माध्यम से परिभाषित किया गया है।<ref name="mtw" />यदि समष्टि काल उपगामितः अवक्र है, तो इसका अर्थ है कि "अनंतता" के समीप मीट्रिक सपाटसमष्‍टि की ओर जाता है। सपाटसमष्‍टि से दूर मीट्रिक के उपगामी विचलन को इसके द्वारा पैरामिट्रीकृत किया जा सकता है
एडीएम ऊर्जा को अनंतता पर निम्नलिखित फ्लक्स समाकल के माध्यम से परिभाषित किया गया है।<ref name="mtw" />यदि समष्टि काल उपगामितः अवक्र है, तो इसका अर्थ है कि "अनंतता" के समीप मीट्रिक सपाटसमष्‍टि की ओर जाता है। सपाटसमष्‍टि से दूर मीट्रिक के उपगामी विचलन को इसके द्वारा पैरामिट्रीकृत किया जा सकता है
Line 41: Line 43:
P^0 = {1 \over 16 \pi G} \int \left(\partial^k h_{j k} - \partial^j h_{k k} \right) d^2 S_j,
P^0 = {1 \over 16 \pi G} \int \left(\partial^k h_{j k} - \partial^j h_{k k} \right) d^2 S_j,
</math>
</math>
जहां <math> S_j </math>, <math>S</math> के लिए जावक-इंगित सामान्य है। आइंस्टाइन योग सम्मेलन को पुनरावर्ती सूचकांक के लिए माना जाता है लेकिन k और j पर योग केवल स्थानिक दिशाओं में चलता है। उपरोक्त सूत्र में सहसंयोजक व्युत्पन्न के बजाय साधारण व्युत्पन्न का उपयोग उपगामी ज्यामिति समतल के मान्यता के धारणा को उचित सिद्ध करता है।
जहां <math> S_j </math>, <math>S</math> के लिए जावक-इंगित सामान्य है। आइंस्टाइन योग सम्मेलन को पुनरावर्ती सूचकांक के लिए माना जाता है लेकिन k और j पर योग केवल स्थानिक दिशाओं में चलता है। उपरोक्त सूत्र में सहसंयोजक व्युत्पन्न के स्थान पर साधारण व्युत्पन्न का उपयोग उपगामी ज्यामिति समतल के मान्यता के धारणा को उचित सिद्ध करता है।


उपरोक्त सूत्र के लिए कुछ अंतर्ज्ञान निम्नानुसार प्राप्त किया जा सकता है। कल्पना कीजिए कि हम सतह, <math>S</math> को एक गोलाकार सतह के रूप में लेते हैं ताकि सामान्य बिंदु त्रिज्यतः बहिर्मुखी हों। ऊर्जा r के स्रोत से बड़ी दूरी पर प्रदिश <math>h_{i j}</math> के <math>r^{-1}</math> रूप में गिरने की उम्मीद है  और r के संबंध में व्युत्पन्न इसे  <math>r^{-2}</math> में परिवर्तित करता है। बड़े त्रिज्या पर गोले का क्षेत्रफल भी ठीक <math>r^2</math> के रूप में बढ़ता है और इसलिए ऊर्जा के लिए एक परिमित मान प्राप्त होता है।
उपरोक्त सूत्र के लिए कुछ अंतर्ज्ञान निम्नानुसार प्राप्त किया जा सकता है। कल्पना कीजिए कि हम सतह, <math>S</math> को एक गोलाकार सतह के रूप में लेते हैं ताकि सामान्य बिंदु त्रिज्यतः बहिर्मुखी हों। ऊर्जा r के स्रोत से बड़ी दूरी पर प्रदिश <math>h_{i j}</math> के <math>r^{-1}</math> रूप में गिरने की उम्मीद है  और r के संबंध में व्युत्पन्न इसे  <math>r^{-2}</math> में परिवर्तित करता है। बड़े त्रिज्या पर गोले का क्षेत्रफल भी ठीक <math>r^2</math> के रूप में बढ़ता है और इसलिए ऊर्जा के लिए एक परिमित मान प्राप्त होता है।


स्पर्शोन्मुख रूप से अवक्र दिक्काल में संवेग के लिए अभिव्यक्ति प्राप्त करना भी संभव है। ऐसी अभिव्यक्ति प्राप्त करने के लिए परिभाषित करता है
स्पर्शोन्मुख रूप से अवक्र दिक्-काल में संवेग के लिए अभिव्यक्ति प्राप्त करना भी संभव है। ऐसी अभिव्यक्ति प्राप्त करने के लिए परिभाषित करता है
:<math>
:<math>
H^{\mu \alpha \nu \beta} = -\bar{h}^{\mu \nu} \eta^{\alpha \beta} - \eta^{\mu \nu} \bar{h}^{\alpha \beta} + \bar{h}^{\alpha \nu} \eta^{\mu \beta} + \bar{h}^{\mu \beta} \eta^{\alpha \nu}
H^{\mu \alpha \nu \beta} = -\bar{h}^{\mu \nu} \eta^{\alpha \beta} - \eta^{\mu \nu} \bar{h}^{\alpha \beta} + \bar{h}^{\alpha \nu} \eta^{\mu \beta} + \bar{h}^{\mu \beta} \eta^{\alpha \nu}
Line 59: Line 61:
ध्यान दें कि <math>P^0</math> के लिए अभिव्यक्ति उपरोक्त सूत्र से प्राप्त ऊपर दिए गए एडीएम ऊर्जा के अभिव्यक्ति के अनुरूप है जिसे H के लिए स्पष्ट अभिव्यक्ति का उपयोग करके सरलता से जांचा जा सकता है।
ध्यान दें कि <math>P^0</math> के लिए अभिव्यक्ति उपरोक्त सूत्र से प्राप्त ऊपर दिए गए एडीएम ऊर्जा के अभिव्यक्ति के अनुरूप है जिसे H के लिए स्पष्ट अभिव्यक्ति का उपयोग करके सरलता से जांचा जा सकता है।


=== प्रायः अवक्र दिक्काल के लिए न्यूटोनियन सीमा ===
=== प्रायः अवक्र दिक्-काल के लिए न्यूटोनियन सीमा ===
न्यूटोनियन सीमा में, अर्ध-स्थैतिक प्रणालियों के लिए प्रायः अवक्र दिक्काल में, प्रणाली की ऊर्जा के गैर-गुरुत्वाकर्षण घटकों को एक साथ जोड़कर और फिर न्यूटनी गुरुत्वाकर्षण बंधन ऊर्जा को घटाकर प्रणाली की कुल ऊर्जा का अनुमान लगाया जा सकता है।
न्यूटोनियन सीमा में, अर्ध-स्थैतिक प्रणालियों के लिए प्रायः अवक्र दिक्-काल में, प्रणाली की ऊर्जा के गैर-गुरुत्वाकर्षण घटकों को एक साथ जोड़कर और फिर न्यूटनी गुरुत्वाकर्षण बंधन ऊर्जा को घटाकर प्रणाली की कुल ऊर्जा का अनुमान लगाया जा सकता है।


उपरोक्त कथन का सामान्य सापेक्षता की भाषा में अनुवाद करते हुए हम कहते हैं कि प्रायः अवक्र दिक्काल में एक प्रणाली में कुल गैर-गुरुत्वाकर्षण ऊर्जा E और संवेग P होता है:
उपरोक्त कथन का सामान्य सापेक्षता की भाषा में अनुवाद करते हुए हम कहते हैं कि प्रायः अवक्र दिक्-काल में एक प्रणाली में कुल गैर-गुरुत्वाकर्षण ऊर्जा E और संवेग P होता है:


:<math>E = \int_v T_{00} dV \qquad P^i = \int_V T_{0i} dV </math>
:<math>E = \int_v T_{00} dV \qquad P^i = \int_V T_{0i} dV </math>
जब प्रणाली के संवेग सदिश के घटक शून्य होते हैं, अर्थात P<sup>i</sup> = 0, प्रणाली का अनुमानित मास बस (E+E<sub>binding</sub>)/c<sup>2</sup>  होता है, E<sub>binding</sub> एक ऋणात्मक संख्या होती है जो न्यूटनी गुरुत्वाकर्षण स्व-बंधन ऊर्जा का प्रतिनिधित्व करती है।
जब प्रणाली के संवेग सदिश के घटक शून्य होते हैं, अर्थात P<sup>i</sup> = 0, प्रणाली का अनुमानित द्रव्यमान बस (E+E<sub>binding</sub>)/c<sup>2</sup>  होता है तथा E<sub>binding</sub> एक ऋणात्मक संख्या होती है जो न्यूटनी गुरुत्वाकर्षण स्व-बंधन ऊर्जा का प्रतिनिधित्व करती है।


इसलिए जब कोई अनुमान लगाता है कि प्रणाली अर्ध-स्थैतिक है, तो वे अनुमानित करते हैं कि "गुरुत्वाकर्षण तरंगों" के रूप में कोई महत्वपूर्ण ऊर्जा उपस्थित नहीं है। जब कोई अनुमानित करता है कि प्रणाली "प्रायः अवक्र" दिक्काल में है, तो वे अनुमानित करते हैं कि स्वीकार्य प्रयोगात्मक त्रुटि के भीतर मीट्रिक गुणांक अनिवार्य रूप से [[मिंकोवस्कीयन|मिंकोव्स्की]] हैं।
इसलिए जब कोई अनुमान लगाता है कि प्रणाली अर्ध-स्थैतिक है, तो वे अनुमानित करते हैं कि "गुरुत्वाकर्षण तरंगों" के रूप में कोई महत्वपूर्ण ऊर्जा उपस्थित नहीं है। जब कोई अनुमानित करता है कि प्रणाली "प्रायः अवक्र" दिक्-काल में है, तो वे अनुमानित करते हैं कि स्वीकार्य प्रयोगात्मक त्रुटि के भीतर मीट्रिक गुणांक अनिवार्य रूप से [[मिंकोवस्कीयन|मिंकोव्स्की]] हैं।


इस सीमा में स्वाभाविक रूप से कुल ऊर्जा और संवेग के सूत्र इस प्रकार उत्पन्न होते देखे जा सकते हैं।<ref name="mtw" />रैखिककृत सीमा में, सामान्य सापेक्षता के समीकरणों को इस रूप में लिखा जा सकता है
इस सीमा में स्वाभाविक रूप से कुल ऊर्जा और संवेग के सूत्र इस प्रकार उत्पन्न होते देखे जा सकते हैं।<ref name="mtw" /> रैखिककृत सीमा में, सामान्य सापेक्षता के समीकरणों को इस रूप में लिखा जा सकता है
:<math>
:<math>
\partial_{\alpha} \partial_{\beta} H^{\mu \alpha \nu \beta} = 16 \pi G T^{\mu \nu}
\partial_{\alpha} \partial_{\beta} H^{\mu \alpha \nu \beta} = 16 \pi G T^{\mu \nu}
Line 83: Line 85:
जहाँ j पर योग केवल स्थानिक दिशाओं पर चलता है और द्वितीय समानता इस तथ्य का उपयोग करती है कि <math>H^{\mu \alpha \nu \beta}</math> <math>\nu</math> और <math> \beta </math>  में विरोधी सममित है।  
जहाँ j पर योग केवल स्थानिक दिशाओं पर चलता है और द्वितीय समानता इस तथ्य का उपयोग करती है कि <math>H^{\mu \alpha \nu \beta}</math> <math>\nu</math> और <math> \beta </math>  में विरोधी सममित है।  


अंत में, गाऊसी क्षेत्र पर समाकल में स्थानिक अंश पर एक अपसरण के समाकल को परिवर्तित करने के लिए [[गॉस कानून|गॉस नियम]] का उपयोग करता है
अंत में, गाऊसी क्षेत्र पर समाकल में स्थानिक भाग पर एक अपसरण के समाकल को परिवर्तित करने के लिए [[गॉस कानून|गॉस नियम]] का उपयोग करता है
:<math>
:<math>
{1 \over 16 \pi G} \int \partial_{\alpha} \partial_j H^{\mu \alpha 0 j} d^3 x = {1 \over 16 \pi G} \int \partial_{\alpha} H^{\mu \alpha 0 j} d^2 S_j
{1 \over 16 \pi G} \int \partial_{\alpha} \partial_j H^{\mu \alpha 0 j} d^3 x = {1 \over 16 \pi G} \int \partial_{\alpha} H^{\mu \alpha 0 j} d^2 S_j
Line 89: Line 91:


== इतिहास ==
== इतिहास ==
वर्ष 1918 में, [[डेविड हिल्बर्ट]] ने [[फेलिक्स क्लेन]] के साथ पत्राचार में एक "क्षेत्र" और "ऊर्जा प्रमेय की विफलता" को ऊर्जा प्रदान करने में कठिनाई के बारे में लिखा। इस पत्र में, हिल्बर्ट ने अनुमान लगाया कि यह विफलता सामान्य सिद्धांत की अभिलक्षणिक विशेषता है, और यह कि "उचित ऊर्जा प्रमेयों" के बजाय 'अनुचित ऊर्जा प्रमेय' थे।
वर्ष 1918 में, [[डेविड हिल्बर्ट]] ने [[फेलिक्स क्लेन]] के साथ पत्राचार में एक "क्षेत्र" और "ऊर्जा प्रमेय की विफलता" को ऊर्जा प्रदान करने में समस्या के विषय में लिखा। इस पत्र में, हिल्बर्ट ने अनुमान लगाया कि यह विफलता सामान्य सिद्धांत की अभिलक्षणिक विशेषता है और यह कि "उचित ऊर्जा प्रमेयों" के बजाय 'अनुचित ऊर्जा प्रमेय' थे।


यह अनुमान शीघ्र ही हिल्बर्ट के घनिष्ट सहयोगियों में से एक [[एमी नोथेर]] द्वारा सही सिद्ध हुआ। नोएदर का प्रमेय किसी भी प्रणाली पर प्रयुक्त होता है जिसे [[क्रिया (भौतिकी)]] सिद्धांत द्वारा वर्णित किया जा सकता है। नोएदर की प्रमेय संरक्षित ऊर्जा को समय-अनुवाद समरूपता से जोड़ती है। जब समय-अनुवाद समरूपता एक परिमित पैरामीटर निरंतर समूह होता है जैसे कि पोंकारे समूह नोथेर के प्रमेय प्रश्न में प्रणाली के लिए एक स्केलर संरक्षित ऊर्जा को परिभाषित करता है। यद्यपि, जब समरूपता परिमित प्राचल निरंतर समूह है, तो संरक्षित ऊर्जा के अस्तित्व की अधिपत्रित नहीं है। इसी तरह, नोएदर के प्रमेय संरक्षित संवेग को समष्टि-अनुवाद के साथ जोड़ता है, जब समरूपता समूह अनुवाद परिमित-आयामी है। क्योंकि सामान्य सापेक्षता एक भिन्नतावादी अपरिवर्तनीय सिद्धांत है, इसमें समरूपता के परिमित-प्राचल समूह स्थान पर समरूपता का एक अनंत निरंतर समूह है, और इसलिए संरक्षित ऊर्जा की अधिपत्रित के लिए इसमें अनुचित समूह संरचना है। सामान्य सापेक्षता में द्रव्यमान, प्रणाली ऊर्जा और प्रणाली संवेग के विभिन्न विचारों को प्रेरित करने और एकीकृत करने में नोएदर का प्रमेय अत्यंत प्रभावशाली रहा है।
यह अनुमान शीघ्र ही हिल्बर्ट के घनिष्ट सहयोगियों में से एक [[एमी नोथेर]] द्वारा सही सिद्ध हुआ। नोएदर का प्रमेय किसी भी प्रणाली पर प्रयुक्त होता है जिसे [[क्रिया (भौतिकी)]] सिद्धांत द्वारा वर्णित किया जा सकता है। नोएदर की प्रमेय संरक्षित ऊर्जा को समय-अनुवाद समरूपता से जोड़ती है। जब समय-अनुवाद समरूपता एक परिमित पैरामीटर निरंतर समूह होता है जैसे कि पोंकारे समूह नोथेर के प्रमेय प्रश्न में प्रणाली के लिए एक स्केलर संरक्षित ऊर्जा को परिभाषित करता है। यद्यपि, जब समरूपता परिमित प्राचल निरंतर समूह है, तो संरक्षित ऊर्जा के अस्तित्व की अधिपत्रित नहीं है। इसी तरह, नोएदर के प्रमेय संरक्षित संवेग को समष्टि-अनुवाद के साथ जोड़ता है, जब समरूपता समूह अनुवाद परिमित-आयामी है। क्योंकि सामान्य सापेक्षता एक भिन्नतावादी अपरिवर्तनीय सिद्धांत है, इसमें समरूपता के परिमित-प्राचल समूह स्थान पर समरूपता का एक अनंत निरंतर समूह है, और इसलिए संरक्षित ऊर्जा की अधिपत्रित के लिए इसमें अनुचित समूह संरचना है। सामान्य सापेक्षता में द्रव्यमान, प्रणाली ऊर्जा और प्रणाली संवेग के विभिन्न विचारों को प्रेरित करने और एकीकृत करने में नोएदर का प्रमेय अत्यंत प्रभावशाली रहा है।


नोएदर के प्रमेय के अनुप्रयोग के एक उदाहरण के रूप में स्थिर समष्टि–काल और उनके संबंधित कोमार मास का उदाहरण है। (कोमार वर्ष 1959)।  जबकि सामान्य समष्टि–काल में परिमित-प्राचल समय-अनुवाद समरूपता का अभाव होता है, स्थिर समष्टि–काल में ऐसी समरूपता होती है, जिसे किलिंग सदिश के रूप में जाना जाता है। नोएदर की प्रमेय यह सिद्ध करती है कि इस तरह के स्थिर समष्टि–काल में एक संबद्ध संरक्षित ऊर्जा होनी चाहिए। यह संरक्षित ऊर्जा एक संरक्षित मास, कोमार मास को परिभाषित करती है।
नोएदर के प्रमेय के अनुप्रयोग के एक उदाहरण के रूप में स्थिर समष्टि–काल और उनके संबंधित कोमार द्रव्यमान का उदाहरण है। (कोमार वर्ष 1959)।  जबकि सामान्य समष्टि–काल में परिमित-प्राचल समय-अनुवाद समरूपता का अभाव होता है, स्थिर समष्टि–काल में ऐसी समरूपता होती है, जिसे किलिंग सदिश के रूप में जाना जाता है। नोएदर की प्रमेय यह सिद्ध करती है कि इस तरह के स्थिर समष्टि–काल में एक संबद्ध संरक्षित ऊर्जा होनी चाहिए। यह संरक्षित ऊर्जा एक संरक्षित द्रव्यमान, कोमार द्रव्यमान को परिभाषित करती है।


एडीएम द्रव्यमान को सामान्य सापेक्षता के प्रारंभिक-मूल्य सूत्रीकरण से प्रस्तुत (अर्नोविट एट अल., वर्ष 1960) किया गया था। तत्पश्चात इसे विभिन्न लेखकों द्वारा स्थानिक अनंतता, एसपीआई समूह में उपगामी समरूपता के समूह के संदर्भ में (वर्ष 1980,आयोजित) पुनर्निर्मित किया गया था। इस पुनर्निर्माण ने सिद्धांत को स्पष्ट करने के लिए बहुत कुछ किया, जिसमें क्यों एडीएम संवेग और एडीएम ऊर्जा को 4-सदिश (वर्ष 1980, आयोजित) के रूप में रूपांतर किया जाता हैं, का विवरण सम्मिलित है। ध्यान दें कि एसपीआई समूह वास्तव में अनंत-विमितीय है। संरक्षित मात्राओं का अस्तित्व इसलिए है क्योंकि "उत्कृष्ट-अनुवाद" के एसपीआई समूह में "शुद्ध" अनुवादों का अधिमानित 4-प्राचल उपसमूह है, जो, नोएदर के प्रमेय द्वारा, संरक्षित 4-प्राचल ऊर्जा-संवेग उत्पन्न करता है। इस 4-प्राचल ऊर्जा-संवेग का मानदंड एडीएम द्रव्यमान है।
एडीएम द्रव्यमान को सामान्य सापेक्षता के प्रारंभिक-मूल्य सूत्रीकरण से प्रस्तुत (अर्नोविट एट अल., वर्ष 1960) किया गया था। तत्पश्चात इसे विभिन्न लेखकों द्वारा स्थानिक अनंतता, एसपीआई समूह में उपगामी समरूपता के समूह के संदर्भ में (वर्ष 1980,आयोजित) पुनर्निर्मित किया गया था। इस पुनर्निर्माण ने सिद्धांत को स्पष्ट करने के लिए बहुत कुछ किया, जिसमें यह भी बताया गया है कि एडीएम संवेग और एडीएम ऊर्जा को 4-सदिश (वर्ष 1980, आयोजित) के रूप में रूपांतर क्यों किया जाता हैं। ध्यान दें कि एसपीआई समूह वास्तव में अनंत-विमितीय है। संरक्षित मात्राओं का अस्तित्व इसलिए है क्योंकि "उत्कृष्ट-अनुवाद" के एसपीआई समूह में "शुद्ध" अनुवादों का अधिमानित 4-प्राचल उपसमूह है, जो, नोएदर के प्रमेय द्वारा, संरक्षित 4-प्राचल ऊर्जा-संवेग उत्पन्न करता है। इस 4-प्राचल ऊर्जा-संवेग का मानदंड एडीएम द्रव्यमान है।


बॉन्डी द्रव्यमान को एक लेख्य में प्रस्तुत किया गया था (बॉन्डी,वर्ष 1962) जिसमें गुरुत्वाकर्षण विकिरण के माध्यम से भौतिक प्रणालियों के मास के नुकसान का अध्ययन किया गया था। बोंडी द्रव्यमान उपगामी समरूपता के समूह, शून्य अनंतता पर बीएमएस समूह के साथ भी संबंधित है। स्थानिक अनंतता पर एसपीआई समूह के समान, शून्य अनंतता पर बीएमएस समूह अनंत-विमितीय है और इसमें "शुद्ध" अनुवादों का अधिमानित 4-प्राचल उपसमूह भी है।
बॉन्डी द्रव्यमान को एक लेख्य में प्रस्तुत किया गया था (बॉन्डी,वर्ष 1962) जिसमें गुरुत्वाकर्षण विकिरण के माध्यम से भौतिक प्रणालियों के द्रव्यमान के नुकसान का अध्ययन किया गया था। बोंडी द्रव्यमान उपगामी समरूपता के समूह, शून्य अनंतता पर बीएमएस समूह के साथ भी संबंधित है। स्थानिक अनंतता पर एसपीआई समूह के समान, शून्य अनंतता पर बीएमएस समूह अनंत-विमितीय है और इसमें "शुद्ध" अनुवादों का अधिमानित 4-प्राचल उपसमूह भी है।


सामान्य सापेक्षता में ऊर्जा की समस्या के लिए एक अन्य दृष्टिकोण लैंडौ-लिफ्शिट्ज़ छद्म प्रदिश जैसे छद्म प्रदिश का उपयोग है। (लैंडौ और लिफ्शिट्ज़,वर्ष 1962)। छद्म प्रदिश गेज निश्चर नहीं हैं - इसी कारण, वे केवल कुल ऊर्जा के लिए निरंतर गेज-स्वतंत्र उत्तर देते हैं जब अतिरिक्त बाधाएं (जैसे कि उपगामी समतलता) उपस्थित होती हैं। छद्म प्रदिश की गेज निर्भरता भी स्थानीय ऊर्जा घनत्व की किसी भी गेज-स्वतंत्र परिभाषा को निवारित करती है, क्योंकि प्रति विभिन्न गेज विकल्प के परिणामस्वरूप एक विभिन्न स्थानीय ऊर्जा घनत्व होता है।
सामान्य सापेक्षता में ऊर्जा की समस्या के लिए एक अन्य दृष्टिकोण लैंडौ-लिफ्शिट्ज़ छद्म प्रदिश जैसे छद्म प्रदिश का उपयोग है। (लैंडौ और लिफ्शिट्ज़,वर्ष 1962)। छद्म प्रदिश गेज निश्चर नहीं हैं - इसी कारण, वे केवल कुल ऊर्जा के लिए निरंतर गेज-स्वतंत्र उत्तर देते हैं कि जब अतिरिक्त बाधाएं (जैसे कि उपगामी समतलता) उपस्थित होती हैं। छद्म प्रदिश की गेज निर्भरता भी स्थानीय ऊर्जा घनत्व की किसी भी गेज-स्वतंत्र परिभाषा को निवारित करती है, क्योंकि प्रति विभिन्न गेज विकल्प के परिणामस्वरूप एक विभिन्न स्थानीय ऊर्जा घनत्व होता है।


== यह भी देखें ==
== यह भी देखें ==
Line 155: Line 157:
== बाहरी संबंध ==
== बाहरी संबंध ==
* [http://math.ucr.edu/home/baez/physics/Relativity/GR/energy_gr.html "Is energy conserved in General Relativity?]
* [http://math.ucr.edu/home/baez/physics/Relativity/GR/energy_gr.html "Is energy conserved in General Relativity?]
[[Category: सामान्य सापेक्षता]] [[Category: द्रव्यमान]] [[Category: भौतिकी में अनसुलझी समस्याएं]] [[Category: खगोल विज्ञान में अनसुलझी समस्याएं]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 31/03/2023]]
[[Category:Created On 31/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:खगोल विज्ञान में अनसुलझी समस्याएं]]
[[Category:द्रव्यमान]]
[[Category:भौतिकी में अनसुलझी समस्याएं]]
[[Category:सामान्य सापेक्षता]]

Latest revision as of 12:54, 5 September 2023

विशेष सापेक्षता में द्रव्यमान की अवधारणा की तुलना में सामान्य सापेक्षता (जीआर) में द्रव्यमान की अवधारणा परिभाषित करने के लिए अधिक सूक्ष्म है। वस्तुत: सामान्य सापेक्षता द्रव्यमान शब्द की एक परिभाषा नहीं अपितु अनेक भिन्न-भिन्न परिभाषाएँ प्रदान करती है जो विभिन्न परिस्थितियों में अनप्रयुक्‍त होती हैं। कुछ परिस्थितियों में, सामान्य सापेक्षता में किसी प्रणाली के द्रव्यमान को परिभाषित भी नहीं किया जा सकता है।

इस सूक्ष्मता का कारण यह है कि गुरुत्वाकर्षण क्षेत्र में ऊर्जा और संवेग को सुस्पष्ट रूप से स्थानीयकृत नहीं किया जा सकता है।(अध्याय 20 देखें [1]।) इसलिए, सामान्य सापेक्षता में द्रव्यमान की कठोर परिभाषाएँ सीमित नहीं हैं, जैसा कि शास्त्रीय यांत्रिकी या विशेष सापेक्षता में है, लेकिन समष्टि काल की स्पर्शोन्मुख प्रकृति का संदर्भ देती हैं। द्रव्यमान की पूर्णतः स्पष्ट परिभाषित धारणा असम्बद्ध रूप से अवक्र दिक्-काल और एंटी-डी सिटर दिक्-काल के लिए उपस्थित है। यद्यपि, इन परिभाषाओं का उपयोग अन्य समायोजनों में सावधानी के साथ किया जाना चाहिए।

सामान्य सापेक्षता में द्रव्यमान को परिभाषित करना: अवधारणाएं और बाधाएं

विशेष आपेक्षिकता में किसी कण के शेष द्रव्यमान को उसकी ऊर्जा और संवेग के संदर्भ में स्पष्ट रूप से परिभाषित किया जा सकता है जैसा कि विशेष सापेक्षता में द्रव्यमान के लेख में वर्णित है। यद्यपि, सामान्य सापेक्षता के लिए ऊर्जा और संवेग की धारणा को सामान्य बनाना सूक्ष्म है। इसका मुख्य कारण यह है कि गुरुत्वाकर्षण क्षेत्र ही ऊर्जा और संवेग में योगदान देता है। यद्यपि "गुरुत्वाकर्षण क्षेत्र ऊर्जा" ऊर्जा-संवेग टेंसर (प्रदिश) का भाग नहीं है; इसके अतिरिक्त इसे कुल ऊर्जा में गुरुत्वाकर्षण क्षेत्र के योगदान के रूप में निर्धारित किया जा सकता है, जो आइंस्टीन के समीकरण के दूसरी ओर आइंस्टीन प्रदिश का भाग है (और इन समीकरणों की अरैखिकता के परिणामस्वरूप)। जबकि कुछ स्थितियों में समीकरणों का पुनर्लेखन संभव है इसलिए "गुरुत्वाकर्षण ऊर्जा" का भाग अब तनाव-ऊर्जा-संवेग प्रच्छन्न प्रदिश के रूप में अन्य स्रोत शर्तों के साथ स्थित हो, यह वियुक्ति सभी पर्यवेक्षकों के लिए सही नहीं है तथा इसे प्राप्त करने की कोई सामान्य परिभाषा नहीं है।[2]

फिर, कोई कैसे एक अवधारणा को एक प्रणाली के कुल द्रव्यमान के रूप में परिभाषित करता है - जिसे चिरसम्मत यांत्रिकी में सरलता से परिभाषित किया गया है? जैसा कि ज्ञात है कि कम से कम दिक्-काल के लिए जो विषम रूप से सपाट हैं (मोटे तौर पर बोलना, जो या तो रिक्त और गुरुत्वाकर्षण-मुक्त अनंत अंतरिक्ष में कुछ पृथक गुरुत्वाकर्षण प्रणाली का प्रतिनिधित्व करते हैं) एडीएम 3+1 विभाजन समाधान की ओर ले जाता है: जैसा कि सामान्य हैमिल्टन वैधिकता में होता है कि उस विभाजन में उपयोग की जाने वाली औपचारिकता समय दिशा में एक संबद्ध ऊर्जा होती है जिसे एडीएम द्रव्यमान (या, समतुल्य, एडीएम ऊर्जा) के रूप में ज्ञात वैश्विक मात्रा उत्पन्न करने के लिए एकीकृत किया जा सकता है।[3] वैकल्पिक रूप से, एक दिक्-काल के लिए द्रव्यमान को परिभाषित करने की जो संभावना है वह स्थिर है दूसरे शब्दों में समय- जैसा किलिंग सदिश क्षेत्र है (जो, समय के उत्पादक क्षेत्र के रूप में, ऊर्जा के लिए विहित रूप से संयुग्मित है); परिणाम तथाकथित कोमार द्रव्यमान है।[4][5] जबकि पूर्ण रूप से अलग प्रकार से परिभाषित किया गया है इसे स्थिर दिक्-काल के लिए एडीएम द्रव्यमान के समांतर प्रदर्शित किया जा सकता है।[6] कोमार समाकल परिभाषा को गैर-स्थिर क्षेत्रों के लिए भी सामान्यीकृत किया जा सकता है जिसके लिए कम से कम एक स्पर्शोन्मुख समय अनुवाद समरूपता है जो एक निश्चित माप की स्थिति को अधिरोपित करते हुए बोंडी ऊर्जा को शून्य अनन्तता पर परिभाषित कर सकती है। एक तरह से, एडीएम ऊर्जा दिक्-काल में निहित सभी ऊर्जा को मापती है, जबकि बोंडी ऊर्जा गुरुत्वाकर्षण तरंगों द्वारा अनंत तक ले जाने वाले भागों को बहिष्कृत करती है।[5] द्रव्यमान के लिए सकारात्मकता प्रमेयों को सिद्ध करने के लिए कई प्रयास किए गए हैं जो ना ही इसकी सकारात्मकता के कारण और ना ही किसी न्यूनतम सीमा के कारण जबकि न्यूनतम सीमा का अस्तित्व न्यूनता से बाध्यता के मौलिक प्रश्न पर प्रभाव डालता है: ऊर्जा की कोई पृथक प्रणाली बिल्कुल स्थिर नहीं होगी अतः इससे भी कुल ऊर्जा की निम्न स्थिति में क्षय की संभावना सदैव बनी रहेगी। एडीएम द्रव्यमान और बौंडी द्रव्यमान दोनों के वास्तव में सकारात्मक होने के कई प्रकार के प्रमाण उपलब्ध हैं विशेष रूप से इसका अर्थ है कि मिन्कोव्स्की स्थान (जिसके लिए दोनों शून्य हैं) वास्तव में स्थिर है।[7] जबकि यहां ऊर्जा पर ध्यान दिया गया है, वैश्विक संवेग के लिए अनुरूप परिभाषाएं उपस्थित हैं; कोणीय किलिंग सदिश के क्षेत्र को देखते हुए और कोमार तकनीक का पालन करते हुए वैश्विक कोणीय संवेग को भी परिभाषित किया जा सकता है।[8]


अर्ध-स्थानीय मात्राएँ

अब तक कथित सभी परिभाषाओं का नुकसान यह है कि उन्हें केवल (शून्य या स्थानिक) अनंत पर परिभाषित किया गया है; 1970 के दशक के बाद से भौतिकविदों और गणितज्ञों ने उपयुक्त अर्ध-स्थानीय मात्राओं को परिभाषित करने के अधिक महत्वाकांक्षी प्रयास किये है, जैसे कि एक अलग प्रणाली के द्रव्यमान को केवल उस प्रणाली वाले दिक् के परिमित क्षेत्र के भीतर स्पष्ट मात्राओं का उपयोग करके परिभाषित किया गया है। यद्यपि हॉकिंग ऊर्जा,जेरोच ऊर्जा या पेनरोज़ की अर्ध-सीमित ऊर्जा-संवेग जैसे ट्विस्टर सिद्धांत विधियों पर आधारित विभिन्न प्रकार की प्रस्तावित परिभाषाएँ हैं, लेकिन क्षेत्र अभी भी प्रवाह में है। अंततः आशा है कि हुप कंजेक्चर का अधिक सटीक सूत्रीकरण देने के लिए उपयुक्त परिभाषित अर्ध-स्थानीय द्रव्यमान का उपयोग किया जाए, ब्लैक होल हेतु तथाकथित पेनरोज़ असमानता को प्रमाणित करें (ब्लैक होल के द्रव्यमान को क्षितिज क्षेत्र से संबंधित) और ब्लैक होल यांत्रिकी के नियमों का अर्ध-सीमित संस्करण खोजें।[9]



सामान्य सापेक्षता में द्रव्यमान के प्रकार

स्थिर समष्टि काल में कोमार द्रव्यमान

स्थिर समष्टि काल की गैर-तकनीकी परिभाषा एक समष्टि काल है जहां कोई भी मीट्रिक गुणांक समय फलन नहीं हैं। एक ब्लैक होल की श्वार्जस्चिल्ड मीट्रिक और एक घूर्णन ब्लैक होल की केर मीट्रिक स्थिर समष्टि काल के सामान्य उदाहरण हैं।

परिभाषा के अनुसार, एक स्थिर समष्टि काल समय अनुवाद समरूपता प्रदर्शित करता है। इसे तकनीकी रूप से काल सदृश किलिंग सदिश कहा जाता है। क्योंकि प्रणाली में समय अनुवाद समरूपता है, नोएदर का प्रमेय प्रत्याभुति करता है कि इसमें एक संरक्षित ऊर्जा है। क्योंकि एक स्थिर प्रणाली में पूर्णतः स्पष्ट विरामस्थ तंत्र भी होता है जिसमें इसके संवेग को शून्य माना जा सकता है, प्रणाली की ऊर्जा को परिभाषित करना भी इसके द्रव्यमान को परिभाषित करना है। सामान्य सापेक्षता में, इस द्रव्यमान को प्रणाली का कोमार द्रव्यमान कहा जाता है। कोमार द्रव्यमान केवल स्थिर प्रणालियों के लिए परिभाषित किया जा सकता है।

कोमार द्रव्यमान को फ्लक्स समाकल द्वारा भी परिभाषित किया जा सकता है। यह उस प्रकार से है जैसे गॉस का नियम एक सतह से घिरे आवेश को क्षेत्र द्वारा गुणा किए गए सामान्य विद्युत बल के रूप में परिभाषित करता है। कोमार द्रव्यमान को परिभाषित करने के लिए उपयोग किया जाने वाला फ्लक्स समाकल विद्युत क्षेत्र को परिभाषित करने के लिए उपयोग किए जाने वाले से किंचित भिन्न है, यद्यपि - सामान्य बल वास्तविक बल नहीं है, अपितु "अनंत पर बल" है। अधिक विवरण के लिए मुख्य लेख देखें।

दो परिभाषाओं में से, समय अनुवाद समरूपता के संदर्भ में कोमार द्रव्यमान का विवरण गहन अंतर्दृष्टि प्रदान करता है।

असम्बद्ध रूप से अवक्र दिक्-काल में एडीएम और बोंडी द्रव्यमान

यदि गुरुत्वाकर्षण स्रोतों वाली एक प्रणाली एक अनंत निर्वात क्षेत्र से घिरी हुई है, तो दिक्-काल की ज्यामिति अनंत पर विशेष सापेक्षता के अवक्र मिन्कोव्स्की ज्यामिति के समीप आ जाएगी। ऐसे दिक्-काल को असम्बद्ध रूप से स्पष्ट माना जाता है।

एडीएम और बॉन्डी ऊर्जा, संवेग और द्रव्यमान को उन प्रणालियों के लिए परिभाषित किया जा सकता है जिनमें दिक्-काल असमान रूप से स्पष्ट है। नोएदर के प्रमेय के संदर्भ में, एडीएम ऊर्जा, संवेग और द्रव्यमान को स्थानिक अनंतता पर उपगामी समरूपता द्वारा परिभाषित किया गया है, और बौंडी ऊर्जा, संवेग और द्रव्यमान को शून्य अनंतता पर उपगामी समरूपता द्वारा परिभाषित किया गया है। ध्यान दें कि द्रव्यमान की गणना ऊर्जा-संवेग चार-सदिश की लंबाई के रूप में की जाती है, जिसे "अनंतता पर" प्रणाली की ऊर्जा और संवेग के रूप में माना जा सकता है।

एडीएम ऊर्जा को अनंतता पर निम्नलिखित फ्लक्स समाकल के माध्यम से परिभाषित किया गया है।[1]यदि समष्टि काल उपगामितः अवक्र है, तो इसका अर्थ है कि "अनंतता" के समीप मीट्रिक सपाटसमष्‍टि की ओर जाता है। सपाटसमष्‍टि से दूर मीट्रिक के उपगामी विचलन को इसके द्वारा पैरामिट्रीकृत किया जा सकता है

जहां समतल स्थान मीट्रिक है। एडीएम ऊर्जा तब अनंतता पर सतह में एक समाकल द्वारा दी जाती है

जहां , के लिए जावक-इंगित सामान्य है। आइंस्टाइन योग सम्मेलन को पुनरावर्ती सूचकांक के लिए माना जाता है लेकिन k और j पर योग केवल स्थानिक दिशाओं में चलता है। उपरोक्त सूत्र में सहसंयोजक व्युत्पन्न के स्थान पर साधारण व्युत्पन्न का उपयोग उपगामी ज्यामिति समतल के मान्यता के धारणा को उचित सिद्ध करता है।

उपरोक्त सूत्र के लिए कुछ अंतर्ज्ञान निम्नानुसार प्राप्त किया जा सकता है। कल्पना कीजिए कि हम सतह, को एक गोलाकार सतह के रूप में लेते हैं ताकि सामान्य बिंदु त्रिज्यतः बहिर्मुखी हों। ऊर्जा r के स्रोत से बड़ी दूरी पर प्रदिश के रूप में गिरने की उम्मीद है और r के संबंध में व्युत्पन्न इसे में परिवर्तित करता है। बड़े त्रिज्या पर गोले का क्षेत्रफल भी ठीक के रूप में बढ़ता है और इसलिए ऊर्जा के लिए एक परिमित मान प्राप्त होता है।

स्पर्शोन्मुख रूप से अवक्र दिक्-काल में संवेग के लिए अभिव्यक्ति प्राप्त करना भी संभव है। ऐसी अभिव्यक्ति प्राप्त करने के लिए परिभाषित करता है

जहां

तब संवेग को स्पर्शोन्मुख रूप से अवक्र क्षेत्र में एक फ्लक्स समाकल द्वारा प्राप्त किया जाता है

ध्यान दें कि के लिए अभिव्यक्ति उपरोक्त सूत्र से प्राप्त ऊपर दिए गए एडीएम ऊर्जा के अभिव्यक्ति के अनुरूप है जिसे H के लिए स्पष्ट अभिव्यक्ति का उपयोग करके सरलता से जांचा जा सकता है।

प्रायः अवक्र दिक्-काल के लिए न्यूटोनियन सीमा

न्यूटोनियन सीमा में, अर्ध-स्थैतिक प्रणालियों के लिए प्रायः अवक्र दिक्-काल में, प्रणाली की ऊर्जा के गैर-गुरुत्वाकर्षण घटकों को एक साथ जोड़कर और फिर न्यूटनी गुरुत्वाकर्षण बंधन ऊर्जा को घटाकर प्रणाली की कुल ऊर्जा का अनुमान लगाया जा सकता है।

उपरोक्त कथन का सामान्य सापेक्षता की भाषा में अनुवाद करते हुए हम कहते हैं कि प्रायः अवक्र दिक्-काल में एक प्रणाली में कुल गैर-गुरुत्वाकर्षण ऊर्जा E और संवेग P होता है:

जब प्रणाली के संवेग सदिश के घटक शून्य होते हैं, अर्थात Pi = 0, प्रणाली का अनुमानित द्रव्यमान बस (E+Ebinding)/c2 होता है तथा Ebinding एक ऋणात्मक संख्या होती है जो न्यूटनी गुरुत्वाकर्षण स्व-बंधन ऊर्जा का प्रतिनिधित्व करती है।

इसलिए जब कोई अनुमान लगाता है कि प्रणाली अर्ध-स्थैतिक है, तो वे अनुमानित करते हैं कि "गुरुत्वाकर्षण तरंगों" के रूप में कोई महत्वपूर्ण ऊर्जा उपस्थित नहीं है। जब कोई अनुमानित करता है कि प्रणाली "प्रायः अवक्र" दिक्-काल में है, तो वे अनुमानित करते हैं कि स्वीकार्य प्रयोगात्मक त्रुटि के भीतर मीट्रिक गुणांक अनिवार्य रूप से मिंकोव्स्की हैं।

इस सीमा में स्वाभाविक रूप से कुल ऊर्जा और संवेग के सूत्र इस प्रकार उत्पन्न होते देखे जा सकते हैं।[1] रैखिककृत सीमा में, सामान्य सापेक्षता के समीकरणों को इस रूप में लिखा जा सकता है

इस सीमा में, प्रणाली की कुल ऊर्जा-संवेग केवल आकाशवत अंश पर तनाव-प्रदिश को समाकलित करके दिया जाता है।

लेकिन गति के समीकरणों का उपयोग करके इसे इस रूप में भी लिखा जा सकता है

जहाँ j पर योग केवल स्थानिक दिशाओं पर चलता है और द्वितीय समानता इस तथ्य का उपयोग करती है कि और में विरोधी सममित है।

अंत में, गाऊसी क्षेत्र पर समाकल में स्थानिक भाग पर एक अपसरण के समाकल को परिवर्तित करने के लिए गॉस नियम का उपयोग करता है

जो ऊपर दिए गए कुल संवेग के सूत्र के अनुरूप होता है।

इतिहास

वर्ष 1918 में, डेविड हिल्बर्ट ने फेलिक्स क्लेन के साथ पत्राचार में एक "क्षेत्र" और "ऊर्जा प्रमेय की विफलता" को ऊर्जा प्रदान करने में समस्या के विषय में लिखा। इस पत्र में, हिल्बर्ट ने अनुमान लगाया कि यह विफलता सामान्य सिद्धांत की अभिलक्षणिक विशेषता है और यह कि "उचित ऊर्जा प्रमेयों" के बजाय 'अनुचित ऊर्जा प्रमेय' थे।

यह अनुमान शीघ्र ही हिल्बर्ट के घनिष्ट सहयोगियों में से एक एमी नोथेर द्वारा सही सिद्ध हुआ। नोएदर का प्रमेय किसी भी प्रणाली पर प्रयुक्त होता है जिसे क्रिया (भौतिकी) सिद्धांत द्वारा वर्णित किया जा सकता है। नोएदर की प्रमेय संरक्षित ऊर्जा को समय-अनुवाद समरूपता से जोड़ती है। जब समय-अनुवाद समरूपता एक परिमित पैरामीटर निरंतर समूह होता है जैसे कि पोंकारे समूह नोथेर के प्रमेय प्रश्न में प्रणाली के लिए एक स्केलर संरक्षित ऊर्जा को परिभाषित करता है। यद्यपि, जब समरूपता परिमित प्राचल निरंतर समूह है, तो संरक्षित ऊर्जा के अस्तित्व की अधिपत्रित नहीं है। इसी तरह, नोएदर के प्रमेय संरक्षित संवेग को समष्टि-अनुवाद के साथ जोड़ता है, जब समरूपता समूह अनुवाद परिमित-आयामी है। क्योंकि सामान्य सापेक्षता एक भिन्नतावादी अपरिवर्तनीय सिद्धांत है, इसमें समरूपता के परिमित-प्राचल समूह स्थान पर समरूपता का एक अनंत निरंतर समूह है, और इसलिए संरक्षित ऊर्जा की अधिपत्रित के लिए इसमें अनुचित समूह संरचना है। सामान्य सापेक्षता में द्रव्यमान, प्रणाली ऊर्जा और प्रणाली संवेग के विभिन्न विचारों को प्रेरित करने और एकीकृत करने में नोएदर का प्रमेय अत्यंत प्रभावशाली रहा है।

नोएदर के प्रमेय के अनुप्रयोग के एक उदाहरण के रूप में स्थिर समष्टि–काल और उनके संबंधित कोमार द्रव्यमान का उदाहरण है। (कोमार वर्ष 1959)।  जबकि सामान्य समष्टि–काल में परिमित-प्राचल समय-अनुवाद समरूपता का अभाव होता है, स्थिर समष्टि–काल में ऐसी समरूपता होती है, जिसे किलिंग सदिश के रूप में जाना जाता है। नोएदर की प्रमेय यह सिद्ध करती है कि इस तरह के स्थिर समष्टि–काल में एक संबद्ध संरक्षित ऊर्जा होनी चाहिए। यह संरक्षित ऊर्जा एक संरक्षित द्रव्यमान, कोमार द्रव्यमान को परिभाषित करती है।

एडीएम द्रव्यमान को सामान्य सापेक्षता के प्रारंभिक-मूल्य सूत्रीकरण से प्रस्तुत (अर्नोविट एट अल., वर्ष 1960) किया गया था। तत्पश्चात इसे विभिन्न लेखकों द्वारा स्थानिक अनंतता, एसपीआई समूह में उपगामी समरूपता के समूह के संदर्भ में (वर्ष 1980,आयोजित) पुनर्निर्मित किया गया था। इस पुनर्निर्माण ने सिद्धांत को स्पष्ट करने के लिए बहुत कुछ किया, जिसमें यह भी बताया गया है कि एडीएम संवेग और एडीएम ऊर्जा को 4-सदिश (वर्ष 1980, आयोजित) के रूप में रूपांतर क्यों किया जाता हैं। ध्यान दें कि एसपीआई समूह वास्तव में अनंत-विमितीय है। संरक्षित मात्राओं का अस्तित्व इसलिए है क्योंकि "उत्कृष्ट-अनुवाद" के एसपीआई समूह में "शुद्ध" अनुवादों का अधिमानित 4-प्राचल उपसमूह है, जो, नोएदर के प्रमेय द्वारा, संरक्षित 4-प्राचल ऊर्जा-संवेग उत्पन्न करता है। इस 4-प्राचल ऊर्जा-संवेग का मानदंड एडीएम द्रव्यमान है।

बॉन्डी द्रव्यमान को एक लेख्य में प्रस्तुत किया गया था (बॉन्डी,वर्ष 1962) जिसमें गुरुत्वाकर्षण विकिरण के माध्यम से भौतिक प्रणालियों के द्रव्यमान के नुकसान का अध्ययन किया गया था। बोंडी द्रव्यमान उपगामी समरूपता के समूह, शून्य अनंतता पर बीएमएस समूह के साथ भी संबंधित है। स्थानिक अनंतता पर एसपीआई समूह के समान, शून्य अनंतता पर बीएमएस समूह अनंत-विमितीय है और इसमें "शुद्ध" अनुवादों का अधिमानित 4-प्राचल उपसमूह भी है।

सामान्य सापेक्षता में ऊर्जा की समस्या के लिए एक अन्य दृष्टिकोण लैंडौ-लिफ्शिट्ज़ छद्म प्रदिश जैसे छद्म प्रदिश का उपयोग है। (लैंडौ और लिफ्शिट्ज़,वर्ष 1962)। छद्म प्रदिश गेज निश्चर नहीं हैं - इसी कारण, वे केवल कुल ऊर्जा के लिए निरंतर गेज-स्वतंत्र उत्तर देते हैं कि जब अतिरिक्त बाधाएं (जैसे कि उपगामी समतलता) उपस्थित होती हैं। छद्म प्रदिश की गेज निर्भरता भी स्थानीय ऊर्जा घनत्व की किसी भी गेज-स्वतंत्र परिभाषा को निवारित करती है, क्योंकि प्रति विभिन्न गेज विकल्प के परिणामस्वरूप एक विभिन्न स्थानीय ऊर्जा घनत्व होता है।

यह भी देखें

  • विशेष सापेक्षता में द्रव्यमान
  • सामान्य सापेक्षता
  • ऊर्जा संरक्षण
  • कोमार द्रव्यमान
  • हॉकिंग ऊर्जा
  • एडीएम द्रव्यमान
  • धनात्मक द्रव्यमान प्रमेय

टिप्पणियाँ

  1. 1.0 1.1 1.2 Misner, Charles W.; Thorne, Kip S.; Wheeler, John A. (1973). आकर्षण-शक्ति. New York: W. H. Freeman and Company. ISBN 0-7167-0334-3.
  2. Cf. Misner, Thorne & Wheeler 1973, §20.4
  3. Arnowitt, Deser & Misner 1962.
  4. Cf. Komar 1959
  5. 5.0 5.1 For a pedagogical introduction, see Wald 1984, sec. 11.2.
  6. This is shown in Ashtekar & Magnon-Ashtekar 1979.
  7. See the various references given on p. 295 of Wald 1984.
  8. E.g. Townsend 1997, ch. 5.
  9. See the review article Szabados 2004.


संदर्भ


बाहरी संबंध