बहुभिन्नरूपी स्थिर वितरण: Difference between revisions

From Vigyanwiki
No edit summary
Tag: Manual revert
No edit summary
 
Line 2: Line 2:
   | name      = बहुभिन्नरूपी स्थिर
   | name      = बहुभिन्नरूपी स्थिर
   | type      = बहुभिन्नरूपी
   | type      = बहुभिन्नरूपी
   | pdf_image  = [[File:Mv stable.png|220px]]<br/> <small>Heatmap showing a Multivariate (bivariate) stable distribution with&nbsp;''&alpha;''&nbsp;=&nbsp;1.1</small>
   | pdf_image  = [[File:Mv stable.png|220px]]<br/> <small>हीटमैप एक बहुभिन्नरूपी (द्विभिन्नरूपी) स्थिर वितरण दिखा रहा है विथ &nbsp;''&alpha;''&nbsp;=&nbsp;1.1</small>
   | cdf_image  =
   | cdf_image  =
   | parameters = <math>\alpha \in (0,2]</math> — [[exponent]]<br/><math>\delta \in \mathbb{R}^d</math> - shift/location vector<br><math>\Lambda(s)</math> - a spectral finite measure on the sphere
   | parameters = <math>\alpha \in (0,2]</math> — [[exponent]]<br/><math>\delta \in \mathbb{R}^d</math> - शिफ्ट/स्थान वेक्टर<br><math>\Lambda(s)</math> - गोले पर एक वर्णक्रमीय परिमित माप
   | support    = <math>u \in \mathbb{R}^d</math>  
   | support    = <math>u \in \mathbb{R}^d</math>  
   | pdf        = (no analytic expression)
   | pdf        = (कोई विश्लेषणात्मक अभिव्यक्ति नहीं)
   | cdf        = (no analytic expression)
   | cdf        = (कोई विश्लेषणात्मक अभिव्यक्ति नहीं)
   | mean      =  
   | mean      =  
   | median    =  
   | median    =  
   | mode      =  
   | mode      =  
   | variance  = Infinite when <math>\alpha < 2</math>
   | variance  = अनंत जब <math>\alpha < 2</math>
   | skewness  =  
   | skewness  =  
   | kurtosis  =  
   | kurtosis  =  
   | entropy    =  
   | entropy    =  
   | mgf        =  
   | mgf        =  
   | char      = see text
   | char      = टेक्स्ट देखें
   }}
   }}



Latest revision as of 15:48, 30 August 2023

बहुभिन्नरूपी स्थिर
Mv stable.png
हीटमैप एक बहुभिन्नरूपी (द्विभिन्नरूपी) स्थिर वितरण दिखा रहा है विथ  α = 1.1
Parameters exponent
- शिफ्ट/स्थान वेक्टर
- गोले पर एक वर्णक्रमीय परिमित माप
Support
Unknown type (कोई विश्लेषणात्मक अभिव्यक्ति नहीं)
CDF (कोई विश्लेषणात्मक अभिव्यक्ति नहीं)
Unknown type अनंत जब
CF टेक्स्ट देखें

बहुभिन्नरूपी स्थिर वितरण बहुभिन्नरूपी संभाव्यता वितरण है जो कि अविभाज्य स्थिर वितरण का बहुभिन्नरूपी सामान्यीकरण है। बहुभिन्नरूपी स्थिर वितरण इस प्रकार सीमांतों के बीच रैखिक संबंधों को परिभाषित करता है। उसी प्रकार जैसे कि अविभाज्य स्थितियों के लिए करता है , तथा वितरण को उसके विशिष्ट कार्य (संभावना सिद्धांत) के संदर्भ में परिभाषित किया गया है।

इस प्रकार बहुभिन्नरूपी स्थिर वितरण को बहुभिन्नरूपी सामान्य वितरण के विस्तार के रूप में भी सोचा जा सकता है।जबकि इसमें पैरामीटर α है, जिसे 0 < α ≤ 2 को उपयोग करके इसकी सीमा में परिभाषित किया गया है, और जहां स्थिति α = 2 बहुभिन्नरूपी सामान्य वितरण के सामान्तर है। इसमें अतिरिक्त तिरछा पैरामीटर का उपयोग किया गया है जो गैर-सममित वितरण की अनुमति देता है, जहां बहुभिन्नरूपी सामान्य वितरण सममित है।

परिभाषा

मान लीजिए कि इकाई क्षेत्र में हो .इसी प्रकार यादृच्छिक सदिश, , बहुभिन्नरूपी स्थिर वितरण है - जिसके रूप में दर्शाया गया है -, यदि संयुक्त विशेषता कार्य है[1]

जहां 0 < α < 2, और के लिए

यह मूलतः फेल्डहाइम का परिणाम है,[2] किसी भी स्थिर यादृच्छिक सदिश को वर्णक्रमीय माप द्वारा चित्रित किया जा सकता है (पर सीमित उपाय ) और शिफ्ट सदिश है .

अनुमानों का उपयोग करके पैरामीट्रिज़ेशन

एक स्थिर यादृच्छिक सदिश का वर्णन करने की दूसरा विधि अनुमानों के संदर्भ में है। किसी भी सदिश के लिए , प्रक्षेपण अविभाज्य है जब कुछ तिरछापन और कुछ बदलाव के साथ स्थिर , के मापदंड होते है जिसमे संकेतन का उपयोग किया जाता है यदि X स्थिर है तब होता है तब एक के लिए होगा . इसे प्रक्षेपण मानकीकरण भी कहा जाता है।

वर्णक्रमीय माप प्रक्षेपण पैरामीटर कार्यों को निम्न द्वारा निर्धारित करता है:


विशेष स्तिथियाँ

ऐसे विशेष स्थितियों हैं जहां बहुभिन्नरूपी विशेषता फलन है (संभावना सिद्धांत) जो कि सरल रूप लेता है। स्थिर सीमांत के चारित्रिक कार्य को इस प्रकार परिभाषित करें कि


आइसोट्रोपिक बहुभिन्नरूपी स्थिर वितरण

चारित्रिक कार्य है वर्णक्रमीय माप निरंतर और समान है, जिससे रेडियल/आइसोट्रोपिक समरूपता प्राप्त होती है।[3] बहुसामान्य स्थितियों के लिए होता है ,तथा यह स्वतंत्र घटकों से मेल खाता है, किन्तु ऐसा तब नहीं होता जब होता है जहाँ आइसोट्रॉपी अण्डा कारता का विशेष स्थिति है (अगला पैराग्राफ देखें) - बस लें पहचान आव्युह का गुणज होना।

अण्डाकार रूप से समोच्च बहुभिन्नरूपी स्थिर वितरण

अण्डाकार वितरण बहुभिन्नरूपी स्थिर वितरण बहुभिन्नरूपी स्थिर वितरण का विशेष सममित स्थिति है। यदि X α-स्थिर है और अण्डाकार रूप से समोच्च है, तब इसमें संयुक्त विशेषता कार्य (संभावना सिद्धांत) है

  कुछ शिफ्ट सदिश के लिए  (जब यह उपस्थित होता है तब माध्य के सामान्तर) और कुछ सकारात्मक निश्चित आव्युह  (सहसंबंध आव्युह के समान, चूंकि सहसंबंध की सामान्य परिभाषा सार्थक होने में विफल रहती है)।

बहुभिन्नरूपी सामान्य वितरण के विशिष्ट कार्य के संबंध पर ध्यान दें: जब α=2 प्राप्त होता है।

स्वतंत्र घटक

सीमांत स्वतंत्र हैं , फिर चारित्रिक कार्य है

ध्यान दें कि जब α=2 यह फिर से बहुभिन्नरूपी सामान्य में कम हो जाता है; ध्यान दें कि आईआईडी केस और आइसोट्रोपिक केस α <2 होने पर मेल नहीं खाते हैं। स्वतंत्र घटक असतत वर्णक्रमीय माप (अगला पैराग्राफ देखें) का विशेष स्थितिहै, जिसमें वर्णक्रमीय माप मानक इकाई सदिश द्वारा समर्थित है।

हीटमैप α=1 के साथ एक बहुभिन्नरूपी (द्विचरीय) स्वतंत्र स्थिर वितरण दिखा रहा है
हीटमैप α=2 के साथ एक बहुभिन्नरूपी (द्विचरीय) स्वतंत्र स्थिर वितरण दिखा रहा है


असतत

यदि वर्ण क्रमीय माप पर द्रव्यमान के साथ अलग है पर पर द्रव्यमान के साथ असतत है तो विशेषता कार्य है


रैखिक गुण

यदि D-आयामी है, A एमएक्सडी आव्युह है, और तब AX + b m-आयामी है -स्केल फलन के साथ स्थिर तिरछापन फलन और स्थान फलन


स्वतंत्र घटक मॉडल में अनुमान

वर्तमान में[4] यह दिखाया गया कि स्वतंत्र घटक मॉडल को सम्मिलित करते हुए रैखिक मॉडल (या समकक्ष कारक विश्लेषण मॉडल) में बंद-रूप में अनुमान की गणना कैसे की जाती है।

अधिक विशेष रूप से, आइए आई.आई.डी. का समूह बनें स्थिर वितरण से लिया गया अवलोकित अविभाज्य। आकार का ज्ञात रैखिक संबंध आव्युह ए दिया गया है , अवलोकन यह माना जाता है कि इसे छुपे हुए कारकों के संयोजन के रूप में वितरित किया गया है . . अनुमान का कार्य सबसे संभावित की गणना करना है , रैखिक संबंध आव्युह A और अवलोकन दिए गए हैं . इस कार्य की गणना O(n3) में बंद रूप में की जा सकती है.

इस निर्माण के लिए एप्लिकेशन स्थिर, गैर-गाऊसी ध्वनि के साथ बहुउपयोगकर्ता पहचान है।

यह भी देखें

संसाधन

  • मार्क वेइलेट का स्थिर वितरण मैटलैब पैकेज http://www.mathworks.com/matlabcentral/fileexchange/37514
  • इस पृष्ठ के प्लॉट जहां रैखिक-स्थिर मॉडल मैटलैब पैकेज में डैनी बिक्सन के अनुमान का उपयोग करके प्लॉट किए गए हैं: https://www.cs.cmu.edu/~bickson/stable

टिप्पणियाँ

  1. J. Nolan, Multivariate stable densities and distribution functions: general and elliptical case, BundesBank Conference, Eltville, Germany, 11 November 2005. See also http://academic2.american.edu/~jpnolan/stable/stable.html
  2. Feldheim, E. (1937). Etude de la stabilité des lois de probabilité . Ph. D. thesis, Faculté des Sciences de Paris, Paris, France.
  3. User manual for STABLE 5.1 Matlab version, Robust Analysis Inc., http://www.RobustAnalysis.com
  4. D. Bickson and C. Guestrin. Inference in linear models with multivariate heavy-tails. In Neural Information Processing Systems (NIPS) 2010, Vancouver, Canada, Dec. 2010. https://www.cs.cmu.edu/~bickson/stable/