मेलिन परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 5 users not shown)
Line 2: Line 2:
गणित में, '''मेलिन परिवर्तन''' [[अभिन्न परिवर्तन]] है जिसे दो तरफा [[लाप्लास परिवर्तन]] के [[गुणक समूह]] संस्करण के रूप में माना जा सकता है। यह अभिन्न परिवर्तन [[डिरिचलेट श्रृंखला]] के सिद्धांत से निकटता से जुड़ा हुआ है, अधिकांशतः [[संख्या सिद्धांत]], [[गणितीय सांख्यिकी]] और [[स्पर्शोन्मुख विस्तार]] के सिद्धांत में उपयोग किया जाता है; यह लाप्लास ट्रांसफॉर्म और [[फूरियर रूपांतरण]] और [[गामा फ़ंक्शन|गामा फलन]] और संबद्ध विशेष कार्यों के सिद्धांत से निकटता से संबंधित है।
गणित में, '''मेलिन परिवर्तन''' [[अभिन्न परिवर्तन]] है जिसे दो तरफा [[लाप्लास परिवर्तन]] के [[गुणक समूह]] संस्करण के रूप में माना जा सकता है। यह अभिन्न परिवर्तन [[डिरिचलेट श्रृंखला]] के सिद्धांत से निकटता से जुड़ा हुआ है, अधिकांशतः [[संख्या सिद्धांत]], [[गणितीय सांख्यिकी]] और [[स्पर्शोन्मुख विस्तार]] के सिद्धांत में उपयोग किया जाता है; यह लाप्लास ट्रांसफॉर्म और [[फूरियर रूपांतरण]] और [[गामा फ़ंक्शन|गामा फलन]] और संबद्ध विशेष कार्यों के सिद्धांत से निकटता से संबंधित है।


किसी फलन {{mvar|f}} का मेलिन रूपांतरण   है
किसी फलन {{mvar|f}} का मेलिन रूपांतरण है


:<math>\left\{\mathcal{M}f\right\}(s) = \varphi(s)=\int_0^\infty x^{s-1} f(x) \, dx.</math>
:<math>\left\{\mathcal{M}f\right\}(s) = \varphi(s)=\int_0^\infty x^{s-1} f(x) \, dx.</math>
Line 10: Line 10:
संकेतन से पता चलता है कि यह जटिल विमान में ऊर्ध्वाधर रेखा पर लिया गया अभिन्न अंग है, जिसका वास्तविक भाग सी को केवल हल्की निचली सीमा को संतुष्ट करने की आवश्यकता है। वे स्थितियाँ जिनके अंतर्गत यह व्युत्क्रम मान्य है, मेलिन व्युत्क्रम प्रमेय में दी गई हैं।
संकेतन से पता चलता है कि यह जटिल विमान में ऊर्ध्वाधर रेखा पर लिया गया अभिन्न अंग है, जिसका वास्तविक भाग सी को केवल हल्की निचली सीमा को संतुष्ट करने की आवश्यकता है। वे स्थितियाँ जिनके अंतर्गत यह व्युत्क्रम मान्य है, मेलिन व्युत्क्रम प्रमेय में दी गई हैं।


इस परिवर्तन का नाम [[फिनलैंड]] के गणितज्ञ [[हजलमार मेलिन]] के नाम पर रखा गया है, जिन्होंने 1897 में एक्टा सोसाइटीस साइंटिअरम फेनिकी में प्रकाशित पेपर में इसे प्रस्तुत किया था।<ref>{{Cite journal|last=Mellin|first=Hj.|title=निश्चित अभिन्नों के दो सामान्य वर्गों के सिद्धांत पर|journal=Acta Societatis Scientiarum Fennicæ|volume=XXII, N:o 2|pages=1–75}}</ref>
इस परिवर्तन का नाम [[फिनलैंड]] के गणितज्ञ [[हजलमार मेलिन]] के नाम पर रखा गया है, जिन्होंने 1897 में एक्टा सोसाइटीस साइंटिअरम फेनिकी में प्रकाशित पेपर में इसे प्रस्तुत किया था।<ref name=":0">{{Cite journal|last=Mellin|first=Hj.|title=निश्चित अभिन्नों के दो सामान्य वर्गों के सिद्धांत पर|journal=Acta Societatis Scientiarum Fennicæ|volume=XXII, N:o 2|pages=1–75}}</ref>
 
==अन्य परिवर्तनों से संबंध                                                                                                                                                                                 ==
 
==अन्य परिवर्तनों से संबंध==
दो-तरफा लाप्लास परिवर्तन को मेलिन परिवर्तन के संदर्भ में परिभाषित किया जा सकता है
दो-तरफा लाप्लास परिवर्तन को मेलिन परिवर्तन के संदर्भ में परिभाषित किया जा सकता है


Line 31: Line 29:
मेलिन परिवर्तन पॉइसन-मेलिन-न्यूटन चक्र के माध्यम से न्यूटन श्रृंखला या [[द्विपद परिवर्तन]] को [[पॉइसन जनरेटिंग फ़ंक्शन|पॉइसन जनरेटिंग फलन]] के साथ भी जोड़ता है।
मेलिन परिवर्तन पॉइसन-मेलिन-न्यूटन चक्र के माध्यम से न्यूटन श्रृंखला या [[द्विपद परिवर्तन]] को [[पॉइसन जनरेटिंग फ़ंक्शन|पॉइसन जनरेटिंग फलन]] के साथ भी जोड़ता है।


मेलिन ट्रांसफॉर्म को गुणन के साथ सकारात्मक वास्तविक संख्याओं के स्पेसीय रूप से कॉम्पैक्ट एबेलियन समूह के [[कनवल्शन बीजगणित]] के लिए [[ गेलफैंड परिवर्तन ]] के रूप में भी देखा जा सकता है।
मेलिन ट्रांसफॉर्म को गुणन के साथ सकारात्मक वास्तविक संख्याओं के समष्टिीय रूप से कॉम्पैक्ट एबेलियन समूह के [[कनवल्शन बीजगणित]] के लिए [[ गेलफैंड परिवर्तन |गेलफैंड परिवर्तन]] के रूप में भी देखा जा सकता है।


==उदाहरण==
==उदाहरण                                                                                                                                                                                                   ==


===काहेन-मेलिन इंटीग्रल===
===काहेन-मेलिन इंटीग्रल===
Line 39: Line 37:


: <math>\Gamma(s) = \int_0^\infty x^{s-1}e^{-x} dx </math>
: <math>\Gamma(s) = \int_0^\infty x^{s-1}e^{-x} dx </math>
जहाँ <math>\Gamma(s)</math> गामा फलन है. <math>\Gamma(s)</math> सरल [[शून्य और ध्रुव]] वाला [[मेरोमोर्फिक फ़ंक्शन|मेरोमोर्फिक फलन]] <math>z = 0, -1, -2, \dots</math> है .<ref>{{cite book |first1=E.T. |last1=Whittaker |author-link1=E. T. Whittaker|first2=G.N. |last2=Watson|author-link2=G. N. Watson |title=[[A Course of Modern Analysis]] |year=1996 |publisher=Cambridge University Press}}</ref> इसलिए, <math>\Gamma(s)</math> के लिए विश्लेषणात्मक <math>\Re(s)>0</math> है . इस प्रकार, माना <math>c>0</math> और <math>z^{-s}</math> मुख्य शाखा पर, व्युत्क्रम परिवर्तन देता है
जहाँ <math>\Gamma(s)</math> गामा फलन है. <math>\Gamma(s)</math> सरल [[शून्य और ध्रुव]] वाला [[मेरोमोर्फिक फ़ंक्शन|मेरोमोर्फिक फलन]] <math>z = 0, -1, -2, \dots</math> है .<ref>{{cite book |first1=E.T. |last1=Whittaker |author-link1=E. T. Whittaker|first2=G.N. |last2=Watson|author-link2=G. N. Watson |title=[[A Course of Modern Analysis]] |year=1996 |publisher=Cambridge University Press}}</ref> इसलिए, <math>\Gamma(s)</math> के लिए विश्लेषणात्मक <math>\Re(s)>0</math> है . इस प्रकार, माना <math>c>0</math> और <math>z^{-s}</math> मुख्य शाखा पर, व्युत्क्रम परिवर्तन देता है


: <math> e^{-z}= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) z^{-s} \; ds </math>.
: <math> e^{-z}= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) z^{-s} \; ds </math>.


इस अभिन्न अंग को काहेन-मेलिन अभिन्न अंग के रूप में जाना जाता है।<ref>{{cite journal |first1=G. H. |last1=Hardy|author-link1=G. H. Hardy |first2=J. E. |last2=Littlewood|author-link2=J. E. Littlewood |title=रीमैन ज़ेटा-फ़ंक्शन के सिद्धांत और प्राइम्स के वितरण के सिद्धांत में योगदान|journal=[[Acta Mathematica]] |volume=41 |issue=1 |year=1916 |pages=119–196 |doi=10.1007/BF02422942 |url=https://zenodo.org/record/2294397 |doi-access=free }} ''(See notes therein for further references to Cahen's and Mellin's work, including Cahen's thesis.)''</ref>
इस अभिन्न अंग को काहेन-मेलिन अभिन्न अंग के रूप में जाना जाता है।<ref>{{cite journal |first1=G. H. |last1=Hardy|author-link1=G. H. Hardy |first2=J. E. |last2=Littlewood|author-link2=J. E. Littlewood |title=रीमैन ज़ेटा-फ़ंक्शन के सिद्धांत और प्राइम्स के वितरण के सिद्धांत में योगदान|journal=[[Acta Mathematica]] |volume=41 |issue=1 |year=1916 |pages=119–196 |doi=10.1007/BF02422942 |url=https://zenodo.org/record/2294397 |doi-access=free }} ''(See notes therein for further references to Cahen's and Mellin's work, including Cahen's thesis.)''</ref>
 
===बहुपद फलन                                                                                                                                   ===
 
माना <math display="inline">\int_0^\infty x^a dx</math> किसी भी मूल्य के लिए अभिसरण <math>a\in\mathbb{R}</math> नहीं है , मेलिन परिवर्तन को संपूर्ण सकारात्मक वास्तविक अक्ष पर परिभाषित बहुपद कार्यों के लिए परिभाषित नहीं किया गया है। चूँकि, वास्तविक अक्ष के विभिन्न खंडों पर इसे शून्य के रूप में परिभाषित करके, मेलिन परिवर्तन लेना संभव है। उदाहरण के लिए, यदि
===बहुपद फलन===
माना <math display="inline">\int_0^\infty x^a dx</math> किसी भी मूल्य के लिए अभिसरण <math>a\in\mathbb{R}</math> नहीं है , मेलिन परिवर्तन को संपूर्ण सकारात्मक वास्तविक अक्ष पर परिभाषित बहुपद कार्यों के लिए परिभाषित नहीं किया गया है। चूँकि, वास्तविक अक्ष के विभिन्न खंडों पर इसे शून्य के रूप में परिभाषित करके, मेलिन परिवर्तन लेना संभव है। उदाहरण के लिए, यदि


:<math>
:<math>
Line 57: Line 53:
\mathcal M f (s)= \int_0^1 x^{s-1}x^adx = \int_0^1 x^{s+a-1}dx = \frac 1 {s+a}.
\mathcal M f (s)= \int_0^1 x^{s-1}x^adx = \int_0^1 x^{s+a-1}dx = \frac 1 {s+a}.
</math>
</math>
इस प्रकार <math>\mathcal M f (s)</math> पर साधारण पोल <math>s=-a</math> है और इस प्रकार <math>\Re (s)>-a</math> परिभाषित किया गया है .
इस प्रकार <math>\mathcal M f (s)</math> पर साधारण पोल <math>s=-a</math> है और इस प्रकार <math>\Re (s)>-a</math> परिभाषित किया गया है .


:<math>
:<math>
Line 67: Line 63:
\mathcal M f (s)= \int_1^\infty x^{s-1}x^bdx = \int_1^\infty x^{s+b-1}dx = - \frac 1 {s+b}.
\mathcal M f (s)= \int_1^\infty x^{s-1}x^bdx = \int_1^\infty x^{s+b-1}dx = - \frac 1 {s+b}.
</math>
</math>
इस प्रकार <math>\mathcal M f (s)</math> पर साधारण पोल <math>s=-b</math> है और इस प्रकार <math>\Re (s)<-b</math> परिभाषित किया गया है .
इस प्रकार <math>\mathcal M f (s)</math> पर साधारण पोल <math>s=-b</math> है और इस प्रकार <math>\Re (s)<-b</math> परिभाषित किया गया है .


===घातांकीय फलन===
===घातांकीय फलन===
Line 74: Line 70:
\mathcal M f (s) = \int_0^\infty x^{s} e^{-px}\frac{dx}{x} = \int_0^\infty \left(\frac{u}{p} \right)^{s}e^{-u} \frac{du}{u} = \frac{1}{p^s}\int_0^\infty u^{s}e^{-u} \frac{du}{u} = \frac{1}{p^{s}}\Gamma(s).
\mathcal M f (s) = \int_0^\infty x^{s} e^{-px}\frac{dx}{x} = \int_0^\infty \left(\frac{u}{p} \right)^{s}e^{-u} \frac{du}{u} = \frac{1}{p^s}\int_0^\infty u^{s}e^{-u} \frac{du}{u} = \frac{1}{p^{s}}\Gamma(s).
</math>
</math>
===ज़ेटा फलन===
===ज़ेटा फलन===
[[रीमैन ज़ेटा फ़ंक्शन|रीमैन ज़ेटा फलन]] के लिए मूलभूत सूत्रों में <math>\zeta(s)</math> से का उत्पादन करने के लिए मेलिन ट्रांसफॉर्म का उपयोग करना संभव है, माना <math display="inline">f(x)=\frac{1}{e^x-1}</math>. तब
[[रीमैन ज़ेटा फ़ंक्शन|रीमैन ज़ेटा फलन]] के लिए मूलभूत सूत्रों में <math>\zeta(s)</math> से का उत्पादन करने के लिए मेलिन ट्रांसफॉर्म का उपयोग करना संभव है, माना <math display="inline">f(x)=\frac{1}{e^x-1}</math>. तब
Line 85: Line 79:
\zeta(s)=\frac{1}{\Gamma(s)}\int_0^\infty x^{s-1}\frac{1}{e^x-1}dx.
\zeta(s)=\frac{1}{\Gamma(s)}\int_0^\infty x^{s-1}\frac{1}{e^x-1}dx.
</math>
</math>
===सामान्यीकृत गाऊसी===
===सामान्यीकृत गाऊसी===
<math>p > 0</math>, के लिए माना <math>f(x)=e^{-x^p}</math> (अर्थात <math>f</math> स्केलिंग कारक के बिना [[सामान्यीकृत सामान्य वितरण]] है।) तब
<math>p > 0</math>, के लिए माना <math>f(x)=e^{-x^p}</math> (अर्थात <math>f</math> स्केलिंग कारक के बिना [[सामान्यीकृत सामान्य वितरण]] है।) तब


:<math>
:<math>
\mathcal M f (s) = \int_0^\infty x^{s-1}e^{-x^p}dx = \int_0^\infty x^{p-1}x^{s-p}e^{-x^p}dx = \int_0^\infty x^{p-1}(x^p)^{s/p-1}e^{-x^p}dx = \frac{1}{p}\int_0^\infty u^{s/p-1}e^{-u}du = \frac{\Gamma(s/p)}{p} .
\mathcal M f (s) = \int_0^\infty x^{s-1}e^{-x^p}dx = \int_0^\infty x^{p-1}x^{s-p}e^{-x^p}dx = \int_0^\infty x^{p-1}(x^p)^{s/p-1}e^{-x^p}dx = \frac{1}{p}\int_0^\infty u^{s/p-1}e^{-u}du = \frac{\Gamma(s/p)}{p} .
</math>
</math>
विशेष रूप से, सेटिंग <math>s=1</math> गामा फलन के निम्नलिखित स्वरूप को पुनः प्राप्त करता है
विशेष रूप से, समुच्चयिंग <math>s=1</math> गामा फलन के निम्नलिखित स्वरूप को पुनः प्राप्त करता है
:<math>
:<math>
\Gamma\left(1+\frac{1}{p}\right) = \int_0^\infty e^{-x^p}dx.
\Gamma\left(1+\frac{1}{p}\right) = \int_0^\infty e^{-x^p}dx.
</math>
</math>
===पावर श्रृंखला और डिरिचलेट श्रृंखला===
===पावर श्रृंखला और डिरिचलेट श्रृंखला===


Line 106: Line 96:
मेलिन परिवर्तन से जुड़ी औपचारिक पहचान द्वारा किया जाता है:<ref>{{cite journal |first1=Aurel |last1=Wintner|author-link1=Aurel Wintner |title=रीमैन के डिरिचलेट सीरीज को पावर सीरीज में घटाने पर|journal=[[American Journal of Mathematics]] |volume=69 |issue=4 |year=1947 |pages=769–789 |doi=10.2307/2371798|url=http://www.jstor.org/stable/2371798 |doi-access=free }}</ref>
मेलिन परिवर्तन से जुड़ी औपचारिक पहचान द्वारा किया जाता है:<ref>{{cite journal |first1=Aurel |last1=Wintner|author-link1=Aurel Wintner |title=रीमैन के डिरिचलेट सीरीज को पावर सीरीज में घटाने पर|journal=[[American Journal of Mathematics]] |volume=69 |issue=4 |year=1947 |pages=769–789 |doi=10.2307/2371798|url=http://www.jstor.org/stable/2371798 |doi-access=free }}</ref>
:<math>\Gamma(s)f(s)=\int_{0}^{\infty}x^{s-1}F(e^{-x})dx</math>
:<math>\Gamma(s)f(s)=\int_{0}^{\infty}x^{s-1}F(e^{-x})dx</math>
==मौलिक पट्टी==
==मौलिक पट्टी==


Line 165: Line 153:
गणित> \alpha < \Re s < \beta <nowiki></math></nowiki>
गणित> \alpha < \Re s < \beta <nowiki></math></nowiki>
| यहाँ  
| यहाँ  
गणित> \overline{z} <nowiki></math></nowiki> के जटिल संयुग्म को दर्शाता है गणित>जेड</गणित>.
गणित> \overline{z} <nowiki></math></nowiki> के जटिल संयुग्म को दर्शाता है गणित>जेड</गणित>.
|-
|-
| <math> f(\nu x) </math>
| <math> f(\nu x) </math>
Line 241: Line 229:
\int_0^{\infty} f_1(x)\,f_2(x)\,dx = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \tilde{f_1}(s)\,\tilde{f_2}(1-s)\,ds
\int_0^{\infty} f_1(x)\,f_2(x)\,dx = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \tilde{f_1}(s)\,\tilde{f_2}(1-s)\,ds
</math>
</math>
दाहिनी ओर एकीकरण ऊर्ध्वाधर रेखा <math> \Re r = c</math> के साथ किया जाता है वह पूरी तरह से (उपयुक्त रूपांतरित) मूलभूत पट्टियों के ओवरलैप के अन्दर स्थित है।
दाहिनी ओर एकीकरण ऊर्ध्वाधर रेखा <math> \Re r = c</math> के साथ किया जाता है वह पूरी तरह से (उपयुक्त रूपांतरित) मूलभूत पट्टियों के ओवरलैप के अन्दर स्थित है।


हम प्रतिस्थापित <math>f_2(x)</math> द्वारा <math>f_2(x)\,x^{s_0-1}</math> कर सकते हैं . यह प्रमेय का निम्नलिखित वैकल्पिक रूप देता है:
हम प्रतिस्थापित <math>f_2(x)</math> द्वारा <math>f_2(x)\,x^{s_0-1}</math> कर सकते हैं . यह प्रमेय का निम्नलिखित वैकल्पिक रूप देता है:


माना <math>f_1(x)</math> और <math>f_2(x)</math> कार्य अच्छी तरह से परिभाषित हों मेलिन रूपांतरित <math>\tilde{f}_{1,2}(s)=\mathcal{M}\{f_{1,2}\}(s)</math> होता है मौलिक पट्टियों में <math>\alpha_{1,2}<\real s<\beta_{1,2}</math>. है माना <math>c\in\mathbb{R}</math> साथ <math> \alpha_1<c<\beta_1 </math> और चुनना <math>s_0\in\mathbb{C}</math> साथ <math> \alpha_2< \Re s_0 - c <\beta_2 </math>.
माना <math>f_1(x)</math> और <math>f_2(x)</math> कार्य अच्छी तरह से परिभाषित हों मेलिन रूपांतरित <math>\tilde{f}_{1,2}(s)=\mathcal{M}\{f_{1,2}\}(s)</math> होता है मौलिक पट्टियों में <math>\alpha_{1,2}<\real s<\beta_{1,2}</math>. है माना <math>c\in\mathbb{R}</math> साथ <math> \alpha_1<c<\beta_1 </math> और चुनना <math>s_0\in\mathbb{C}</math> साथ <math> \alpha_2< \Re s_0 - c <\beta_2 </math>.
यदि कार्य <math>x^{c-1/2}\,f_1(x)</math> और <math>x^{s_0-c-1/2}\,f_2(x)</math> अंतराल पर वर्ग-पूर्णांक <math>(0,\infty)</math> भी हैं , तो हमारे पास हैं <ref>{{harvtxt|Titchmarsh|1948|p=95}}.</ref>
यदि कार्य <math>x^{c-1/2}\,f_1(x)</math> और <math>x^{s_0-c-1/2}\,f_2(x)</math> अंतराल पर वर्ग-पूर्णांक <math>(0,\infty)</math> भी हैं , तो हमारे पास हैं <ref>{{harvtxt|Titchmarsh|1948|p=95}}.</ref>
:<math>
:<math>
\int_0^{\infty} f_1(x)\,f_2(x)\,x^{s_0-1}\,dx = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \tilde{f_1}(s)\,\tilde{f_2}(s_0-s)\,ds
\int_0^{\infty} f_1(x)\,f_2(x)\,x^{s_0-1}\,dx = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \tilde{f_1}(s)\,\tilde{f_2}(s_0-s)\,ds
</math>
</math>
हम प्रतिस्थापित <math>f_2(x)</math> द्वारा <math>\overline{f_1(x)}</math> कर सकते हैं. यह निम्नलिखित प्रमेय देता है: माना <math>f(x)</math> अच्छी तरह से परिभ षित मेलिन परिवर्तन के साथ फलन <math>\tilde{f}(s)=\mathcal{M}\{f\}(s)</math> बनें मौलिक पट्टी में <math>\alpha<\real s<\beta</math>माना <math>c\in\mathbb{R}</math> साथ <math>\alpha<c<\beta</math>. यदि फलन <math>x^{c-1/2}\,f(x)</math> अंतराल पर वर्ग-पूर्णांक <math>(0,\infty)</math> भी है , फिर प्लांचरेल प्रमेय का प्रमेय मानता है:<ref>{{harvtxt|Titchmarsh|1948|p=94}}.</ref>
हम प्रतिस्थापित <math>f_2(x)</math> द्वारा <math>\overline{f_1(x)}</math> कर सकते हैं. यह निम्नलिखित प्रमेय देता है: माना <math>f(x)</math> अच्छी तरह से परिभ षित मेलिन परिवर्तन के साथ फलन <math>\tilde{f}(s)=\mathcal{M}\{f\}(s)</math> बनें मौलिक पट्टी में <math>\alpha<\real s<\beta</math>माना <math>c\in\mathbb{R}</math> साथ <math>\alpha<c<\beta</math>. यदि फलन <math>x^{c-1/2}\,f(x)</math> अंतराल पर वर्ग-पूर्णांक <math>(0,\infty)</math> भी है , फिर प्लांचरेल प्रमेय का प्रमेय मानता है:<ref>{{harvtxt|Titchmarsh|1948|p=94}}.</ref>
:<math>
:<math>
\int_0^{\infty} |f(x)|^2\,x^{2c-1}dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} | \tilde{f}(c+it) |^2 \,dt
\int_0^{\infty} |f(x)|^2\,x^{2c-1}dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} | \tilde{f}(c+it) |^2 \,dt
</math>
</math>
 
== L<sup>2</sup> रिक्त समष्टि पर एक सममिति के रूप में ==
 
[[हिल्बर्ट स्थान|हिल्बर्ट समष्टि]] के अध्ययन में, मेलिन परिवर्तन को अधिकांशतः थोड़े अलग विधि से प्रस्तुत किया जाता है। <math>L^2(0,\infty)</math> में कार्यों के लिए ([[एलपी समष्टि]] देखें) मौलिक पट्टी <math>\tfrac{1}{2}+i\mathbb{R}</math> सदैव सम्मिलित होती है , इसलिए हम [[रैखिक ऑपरेटर]] <math>\tilde{\mathcal{M}}</math> को परिभाषित कर सकते हैं जैसा
== L<sup>2</sup> रिक्त स्पेस पर एक सममिति के रूप में ==
[[हिल्बर्ट स्थान|हिल्बर्ट स्पेस]] के अध्ययन में, मेलिन परिवर्तन को अधिकांशतः थोड़े अलग विधि से प्रस्तुत किया जाता है। <math>L^2(0,\infty)</math> में कार्यों के लिए ([[एलपी स्पेस]] देखें) मौलिक पट्टी <math>\tfrac{1}{2}+i\mathbb{R}</math> सदैव सम्मिलित होती है , इसलिए हम [[रैखिक ऑपरेटर]] <math>\tilde{\mathcal{M}}</math> को परिभाषित कर सकते हैं जैसा


:<math>\tilde{\mathcal{M}}\colon L^2(0,\infty)\to L^2(-\infty,\infty),
:<math>\tilde{\mathcal{M}}\colon L^2(0,\infty)\to L^2(-\infty,\infty),
Line 264: Line 250:
\{\tilde{\mathcal{M}}f\}(s) := \frac{1}{\sqrt{2\pi}}\int_0^{\infty} x^{-\frac{1}{2} + is} f(x)\,dx.
\{\tilde{\mathcal{M}}f\}(s) := \frac{1}{\sqrt{2\pi}}\int_0^{\infty} x^{-\frac{1}{2} + is} f(x)\,dx.
</math>
</math>
दूसरे शब्दों में, हमने सेट कर लिया है
दूसरे शब्दों में, हमने समुच्चय कर लिया है


: <math>\{\tilde{\mathcal{M}}f\}(s):=\tfrac{1}{\sqrt{2\pi}}\{\mathcal{M}f\}(\tfrac{1}{2} + is).</math>
: <math>\{\tilde{\mathcal{M}}f\}(s):=\tfrac{1}{\sqrt{2\pi}}\{\mathcal{M}f\}(\tfrac{1}{2} + is).</math>
इस ऑपरेटर को सामान्यतः केवल <math>\mathcal{M}</math> द्वारा दर्शाया जाता है और मेलिन ट्रांसफॉर्म कहा जाता है, किन्तु <math>\tilde{\mathcal{M}}</math> इस लेख में अन्यत्र प्रयुक्त परिभाषा से अंतर करने के लिए यहां इसका उपयोग किया गया है। मेलिन व्युत्क्रम प्रमेय यह <math>\tilde{\mathcal{M}}</math> दर्शाता है व्युत्क्रम के साथ व्युत्क्रमणीय है
इस ऑपरेटर को सामान्यतः केवल <math>\mathcal{M}</math> द्वारा दर्शाया जाता है और मेलिन ट्रांसफॉर्म कहा जाता है, किन्तु <math>\tilde{\mathcal{M}}</math> इस लेख में अन्यत्र प्रयुक्त परिभाषा से अंतर करने के लिए यहां इसका उपयोग किया गया है। मेलिन व्युत्क्रम प्रमेय यह <math>\tilde{\mathcal{M}}</math> दर्शाता है व्युत्क्रम के साथ व्युत्क्रमणीय है


:<math>
:<math>
Line 288: Line 274:
     \mathcal{M}_{XY}(s) = \mathcal{M}_X(s)\mathcal{M}_Y(s)
     \mathcal{M}_{XY}(s) = \mathcal{M}_X(s)\mathcal{M}_Y(s)
   </math>
   </math>
==बेलनाकार समन्वय प्रणाली में लाप्लासियन के साथ समस्याएं==
==बेलनाकार समन्वय प्रणाली में लाप्लासियन के साथ समस्याएं==


Line 335: Line 319:
==अनुप्रयोग==
==अनुप्रयोग==
एल्गोरिदम के विश्लेषण के लिए कंप्यूटर विज्ञान में मेलिन ट्रांसफॉर्म का व्यापक रूप से उपयोग किया जाता है <ref>Philippe Flajolet and Robert Sedgewick. The Average Case Analysis of
एल्गोरिदम के विश्लेषण के लिए कंप्यूटर विज्ञान में मेलिन ट्रांसफॉर्म का व्यापक रूप से उपयोग किया जाता है <ref>Philippe Flajolet and Robert Sedgewick. The Average Case Analysis of
Algorithms: Mellin Transform Asymptotics. Research Report 2956. 93 pages. Institut National de Recherche en Informatique et en Automatique (INRIA), 1996.</ref> इसके मापदंड की अपरिवर्तनशील संपत्ति के कारण स्केल किए गए फलन के मेलिन ट्रांसफ़ॉर्म का परिमाण विशुद्ध रूप से काल्पनिक इनपुट के लिए मूल फलन के परिमाण के समान है। यह [[स्केल अपरिवर्तनीयता]] प्रॉपर्टी फूरियर ट्रांसफॉर्म की शिफ्ट इनवेरिएंस प्रॉपर्टी के अनुरूप है। समय-स्पेसांतरित फलन के फूरियर रूपांतरण का परिमाण मूल फलन के फूरियर रूपांतरण के परिमाण के समान है।
Algorithms: Mellin Transform Asymptotics. Research Report 2956. 93 pages. Institut National de Recherche en Informatique et en Automatique (INRIA), 1996.</ref> इसके मापदंड की अपरिवर्तनशील संपत्ति के कारण स्केल किए गए फलन के मेलिन ट्रांसफ़ॉर्म का परिमाण विशुद्ध रूप से काल्पनिक इनपुट के लिए मूल फलन के परिमाण के समान है। यह [[स्केल अपरिवर्तनीयता]] प्रॉपर्टी फूरियर ट्रांसफॉर्म की शिफ्ट इनवेरिएंस प्रॉपर्टी के अनुरूप है। समय-समष्टिांतरित फलन के फूरियर रूपांतरण का परिमाण मूल फलन के फूरियर रूपांतरण के परिमाण के समान है।


यह गुण [[छवि पहचान|इमेज पहचान]] में उपयोगी है। जब वस्तु को कैमरे की ओर या उससे दूर ले जाया जाता है तो किसी वस्तु की इमेज सरलता से स्केल की जाती है।
यह गुण [[छवि पहचान|इमेज पहचान]] में उपयोगी है। जब वस्तु को कैमरे की ओर या उससे दूर ले जाया जाता है तो किसी वस्तु की इमेज सरलता से स्केल की जाती है।


[[क्वांटम यांत्रिकी]] और विशेष रूप से [[क्वांटम क्षेत्र सिद्धांत]] में, [[फूरियर स्थान|फूरियर स्पेस]] बेहद उपयोगी है और बड़े मापदंड पर उपयोग किया जाता है क्योंकि गति और स्थिति दूसरे के फूरियर रूपांतरण हैं (उदाहरण के लिए, [[फेनमैन आरेख]] गति अंतरिक्ष में अधिक सरलता से गणना की जाती हैं)। 2011 में, ए. लियाम फिट्ज़पैट्रिक, [[जेरेड कपलान]], जोआओ पेनेडोन्स, [[ राज को लौटें ]] और बाल्ट सी. वैन रीस ने दिखाया कि मेलिन स्पेस एडीएस/सीएफटी पत्राचार के संदर्भ में समान भूमिका निभाता है।<ref>A. Liam Fitzpatrick, Jared Kaplan, Joao Penedones, Suvrat Raju, Balt C. van Rees. [https://arxiv.org/abs/1107.1499 "A Natural Language for AdS/CFT Correlators"].</ref><ref>A. Liam Fitzpatrick, Jared Kaplan. [https://arxiv.org/abs/1112.4845 "Unitarity and the Holographic S-Matrix"]</ref><ref>A. Liam Fitzpatrick.  [http://online.kitp.ucsb.edu/online/qgravity15/fitzpatrick/ "AdS/CFT and the Holographic S-Matrix"], video lecture.</ref>
[[क्वांटम यांत्रिकी]] और विशेष रूप से [[क्वांटम क्षेत्र सिद्धांत]] में, [[फूरियर स्थान|फूरियर समष्टि]] बेहद उपयोगी है और बड़े मापदंड पर उपयोग किया जाता है क्योंकि गति और स्थिति दूसरे के फूरियर रूपांतरण हैं (उदाहरण के लिए, [[फेनमैन आरेख]] गति अंतरिक्ष में अधिक सरलता से गणना की जाती हैं)। 2011 में, ए. लियाम फिट्ज़पैट्रिक, [[जेरेड कपलान]], जोआओ पेनेडोन्स, [[ राज को लौटें |राज को लौटें]] और बाल्ट सी. वैन रीस ने दिखाया कि मेलिन समष्टि एडीएस/सीएफटी पत्राचार के संदर्भ में समान भूमिका निभाता है।<ref>A. Liam Fitzpatrick, Jared Kaplan, Joao Penedones, Suvrat Raju, Balt C. van Rees. [https://arxiv.org/abs/1107.1499 "A Natural Language for AdS/CFT Correlators"].</ref><ref>A. Liam Fitzpatrick, Jared Kaplan. [https://arxiv.org/abs/1112.4845 "Unitarity and the Holographic S-Matrix"]</ref><ref>A. Liam Fitzpatrick.  [http://online.kitp.ucsb.edu/online/qgravity15/fitzpatrick/ "AdS/CFT and the Holographic S-Matrix"], video lecture.</ref>
 
 
==उदाहरण==
==उदाहरण==
* पेरोन का सूत्र डिरिचलेट श्रृंखला पर प्रयुक्त व्युत्क्रम मेलिन परिवर्तन का वर्णन करता है।
* पेरोन का सूत्र डिरिचलेट श्रृंखला पर प्रयुक्त व्युत्क्रम मेलिन परिवर्तन का वर्णन करता है।
Line 476: Line 458:
| <math> K_0(x) </math> दूसरे प्रकार का संशोधित बेसेल फलन है
| <math> K_0(x) </math> दूसरे प्रकार का संशोधित बेसेल फलन है
|}
|}
==यह भी देखें==
==यह भी देखें==
*मेलिन व्युत्क्रम प्रमेय
*मेलिन व्युत्क्रम प्रमेय
Line 485: Line 465:
==टिप्पणियाँ                                                                                                                                                                                                      ==
==टिप्पणियाँ                                                                                                                                                                                                      ==
<references />
<references />
==संदर्भ                                                                                                                                                                                                            ==
==संदर्भ                                                                                                                                                                                                            ==
{{refbegin}}
{{refbegin}}
Line 513: Line 491:
* Some Applications of the Mellin Transform in Statistics ([https://projecteuclid.org/download/pdf_1/euclid.aoms/1177730201 paper])
* Some Applications of the Mellin Transform in Statistics ([https://projecteuclid.org/download/pdf_1/euclid.aoms/1177730201 paper])
{{refend}}
{{refend}}
== बाहरी संबंध                                                                                                                                                                                                                                                    ==
== बाहरी संबंध                                                                                                                                                                                                                                                    ==
* Philippe Flajolet, Xavier Gourdon, Philippe Dumas, ''[http://algo.inria.fr/flajolet/Publications/mellin-harm.pdf मेलिन परिवर्तनs and Asymptotics: Harmonic sums.]''
* Philippe Flajolet, Xavier Gourdon, Philippe Dumas, ''[http://algo.inria.fr/flajolet/Publications/mellin-harm.pdf मेलिन परिवर्तनs and Asymptotics: Harmonic sums.]''
Line 522: Line 498:
* Antonio De Sena and Davide Rocchesso, ''[http://www.di.univr.it/documenti/ArticoloConferenza/allegato/allegato082603.pdf A FAST मेलिन परिवर्तन WITH APPLICATIONS IN DAFX]''
* Antonio De Sena and Davide Rocchesso, ''[http://www.di.univr.it/documenti/ArticoloConferenza/allegato/allegato082603.pdf A FAST मेलिन परिवर्तन WITH APPLICATIONS IN DAFX]''


{{DEFAULTSORT:Mellin Transform}}[[Category: जटिल विश्लेषण]] [[Category: अभिन्न परिवर्तन]] [[Category: लाप्लास रूपांतरित होता है]]
{{DEFAULTSORT:Mellin Transform}}
 
 


[[Category: Machine Translated Page]]
[[Category:CS1|Mellin Transform]]
[[Category:Created On 04/07/2023]]
[[Category:Created On 04/07/2023|Mellin Transform]]
[[Category:Lua-based templates|Mellin Transform]]
[[Category:Machine Translated Page|Mellin Transform]]
[[Category:Pages that use a deprecated format of the math tags|Mellin Transform]]
[[Category:Pages with script errors|Mellin Transform]]
[[Category:Short description with empty Wikidata description|Mellin Transform]]
[[Category:Templates Vigyan Ready|Mellin Transform]]
[[Category:Templates that add a tracking category|Mellin Transform]]
[[Category:Templates that generate short descriptions|Mellin Transform]]
[[Category:Templates using TemplateData|Mellin Transform]]
[[Category:अभिन्न परिवर्तन|Mellin Transform]]
[[Category:जटिल विश्लेषण|Mellin Transform]]
[[Category:लाप्लास रूपांतरित होता है|Mellin Transform]]

Latest revision as of 15:23, 28 August 2023

गणित में, मेलिन परिवर्तन अभिन्न परिवर्तन है जिसे दो तरफा लाप्लास परिवर्तन के गुणक समूह संस्करण के रूप में माना जा सकता है। यह अभिन्न परिवर्तन डिरिचलेट श्रृंखला के सिद्धांत से निकटता से जुड़ा हुआ है, अधिकांशतः संख्या सिद्धांत, गणितीय सांख्यिकी और स्पर्शोन्मुख विस्तार के सिद्धांत में उपयोग किया जाता है; यह लाप्लास ट्रांसफॉर्म और फूरियर रूपांतरण और गामा फलन और संबद्ध विशेष कार्यों के सिद्धांत से निकटता से संबंधित है।

किसी फलन f का मेलिन रूपांतरण है

व्युत्क्रम परिवर्तन है

संकेतन से पता चलता है कि यह जटिल विमान में ऊर्ध्वाधर रेखा पर लिया गया अभिन्न अंग है, जिसका वास्तविक भाग सी को केवल हल्की निचली सीमा को संतुष्ट करने की आवश्यकता है। वे स्थितियाँ जिनके अंतर्गत यह व्युत्क्रम मान्य है, मेलिन व्युत्क्रम प्रमेय में दी गई हैं।

इस परिवर्तन का नाम फिनलैंड के गणितज्ञ हजलमार मेलिन के नाम पर रखा गया है, जिन्होंने 1897 में एक्टा सोसाइटीस साइंटिअरम फेनिकी में प्रकाशित पेपर में इसे प्रस्तुत किया था।[1]

अन्य परिवर्तनों से संबंध

दो-तरफा लाप्लास परिवर्तन को मेलिन परिवर्तन के संदर्भ में परिभाषित किया जा सकता है

और इसके विपरीत हम दो-तरफा लाप्लास परिवर्तन से मेलिन परिवर्तन प्राप्त कर सकते हैं

मेलिन ट्रांसफ़ॉर्म को गुणात्मक हार माप के संबंध में कर्नेल x का उपयोग करके एकीकृत करने के बारे में सोचा जा सकता है, जो कि फैलाव के तहत अपरिवर्तनीय है, जिससे दो-तरफा लाप्लास परिवर्तन योगात्मक माप के संबंध में एकीकृत होता है, जो कि अनुवाद अपरिवर्तनीय है, जिससे प्राप्त होता है

हम फूरियर परिवर्तन को मेलिन परिवर्तन और इसके विपरीत के संदर्भ में भी परिभाषित कर सकते हैं; मेलिन परिवर्तन और ऊपर परिभाषित दो-तरफा लाप्लास परिवर्तन के संदर्भ में प्रयोग कियाजाता है

हम प्रक्रिया को व्युत्क्रम भी सकते हैं और प्राप्त कर सकते हैं

मेलिन परिवर्तन पॉइसन-मेलिन-न्यूटन चक्र के माध्यम से न्यूटन श्रृंखला या द्विपद परिवर्तन को पॉइसन जनरेटिंग फलन के साथ भी जोड़ता है।

मेलिन ट्रांसफॉर्म को गुणन के साथ सकारात्मक वास्तविक संख्याओं के समष्टिीय रूप से कॉम्पैक्ट एबेलियन समूह के कनवल्शन बीजगणित के लिए गेलफैंड परिवर्तन के रूप में भी देखा जा सकता है।

उदाहरण

काहेन-मेलिन इंटीग्रल

फलन का मेलिन रूपांतरण है

जहाँ गामा फलन है. सरल शून्य और ध्रुव वाला मेरोमोर्फिक फलन है .[2] इसलिए, के लिए विश्लेषणात्मक है . इस प्रकार, माना और मुख्य शाखा पर, व्युत्क्रम परिवर्तन देता है

.

इस अभिन्न अंग को काहेन-मेलिन अभिन्न अंग के रूप में जाना जाता है।[3]

बहुपद फलन

माना किसी भी मूल्य के लिए अभिसरण नहीं है , मेलिन परिवर्तन को संपूर्ण सकारात्मक वास्तविक अक्ष पर परिभाषित बहुपद कार्यों के लिए परिभाषित नहीं किया गया है। चूँकि, वास्तविक अक्ष के विभिन्न खंडों पर इसे शून्य के रूप में परिभाषित करके, मेलिन परिवर्तन लेना संभव है। उदाहरण के लिए, यदि

तब

इस प्रकार पर साधारण पोल है और इस प्रकार परिभाषित किया गया है .

तब

इस प्रकार पर साधारण पोल है और इस प्रकार परिभाषित किया गया है .

घातांकीय फलन

, के लिए माना . तब

ज़ेटा फलन

रीमैन ज़ेटा फलन के लिए मूलभूत सूत्रों में से का उत्पादन करने के लिए मेलिन ट्रांसफॉर्म का उपयोग करना संभव है, माना . तब

इस प्रकार,

सामान्यीकृत गाऊसी

, के लिए माना (अर्थात स्केलिंग कारक के बिना सामान्यीकृत सामान्य वितरण है।) तब

विशेष रूप से, समुच्चयिंग गामा फलन के निम्नलिखित स्वरूप को पुनः प्राप्त करता है

पावर श्रृंखला और डिरिचलेट श्रृंखला

सामान्यतः, आवश्यक अभिसरण मानते हुए, हम डिरिचलेट श्रृंखला और संबंधित पावर श्रृंखला को जोड़ सकते हैं

मेलिन परिवर्तन से जुड़ी औपचारिक पहचान द्वारा किया जाता है:[4]

मौलिक पट्टी

के लिए, खुली पट्टी को सभी के रूप में परिभाषित किया जाए। इस तरह कि के साथ की मूल पट्टी को परिभाषित किया गया है। सबसे बड़ी खुली पट्टी जिस पर इसे परिभाषित किया गया है। उदाहरण के लिए, के लिए मौलिक पट्टी है

जैसा कि इस उदाहरण से देखा जा सकता है, फलन की स्पर्शोन्मुखताएं इसकी मौलिक पट्टी के बाएं समापन बिंदु को परिभाषित करती हैं, और फलन की स्पर्शोन्मुखताएं इसके सही समापन बिंदु को परिभाषित करती हैं। बिग ओ नोटेशन का उपयोग करके सारांशित करने के लिए, यदि के रूप में है और और के रूप में है। तो को स्ट्रिप में परिभाषित किया गया है [5]

इसका एक अनुप्रयोग गामा फलन में देखा जा सकता है, चूंकि जैसा कि सभी के लिए और {डिस्प्लेस्टाइल है, तो को स्ट्रिप में परिभाषित किया जाना चाहिए, जो पुष्टि करता है कि गामा के लिए विश्लेषणात्मक है।

गुण

इस तालिका में ब्रेसवेल (2000) और एर्डेली (1954) गुण पाए जा सकते हैं .

मेलिन परिवर्तन के गुण
फलन मेलिन परिवर्तन मौलिक पट्टी टिप्पणियाँ
परिभाषा

गणित> \alpha < \nu^{-1} \, \Re s < \beta </math>

गणित> \nu\in\mathbb{R},\;\nu\neq 0 </math>

गणित> f(x^{-1}) </गणित>

गणित> \tilde{f}(-s) </math>

गणित> -\बीटा < \Re s < -\अल्फ़ा </गणित>

गणित> x^{-1}\,f(x^{-1}) </math>

गणित> \tilde{f}(1-s) </math>

गणित> 1-\बीटा < \Re s < 1-\अल्फा </गणित>

पेचीदगी

गणित> \overline{f(x)} </math>

गणित> \overline{\tilde{f}(\overline{s})} </math>

गणित> \alpha < \Re s < \beta </math>

यहाँ

गणित> \overline{z} </math> के जटिल संयुग्म को दर्शाता है गणित>जेड</गणित>.

, स्केलिंग
अभिन्न उपस्थित होने पर ही मान्य है।
अभिन्न उपस्थित होने पर ही मान्य है।
गुणक संवलन
गुणक संवलन (सामान्यीकृत)
गुणक संवलन (सामान्यीकृत)
गुणन. केवल तभी मान्य है जब अभिन्न उपस्थित हो। उन स्थितियों के लिए नीचे पार्सेवल का प्रमेय देखें जो अभिन्न के अस्तित्व को सुनिश्चित करते हैं।

पारसेवल का प्रमेय और प्लांचरेल का प्रमेय

माना और कार्य अच्छी तरह से परिभाषित हों मेलिन रूपांतरित होता है मौलिक पट्टियों में . है

माना साथ . यदि कार्य और अंतराल पर वर्ग-पूर्णांक भी हैं , पारसेवल %27 प्रमेय|पारसेवल का सूत्र मानता है [6]

दाहिनी ओर एकीकरण ऊर्ध्वाधर रेखा के साथ किया जाता है वह पूरी तरह से (उपयुक्त रूपांतरित) मूलभूत पट्टियों के ओवरलैप के अन्दर स्थित है।

हम प्रतिस्थापित द्वारा कर सकते हैं . यह प्रमेय का निम्नलिखित वैकल्पिक रूप देता है:

माना और कार्य अच्छी तरह से परिभाषित हों मेलिन रूपांतरित होता है मौलिक पट्टियों में . है माना साथ और चुनना साथ . यदि कार्य और अंतराल पर वर्ग-पूर्णांक भी हैं , तो हमारे पास हैं [7]

हम प्रतिस्थापित द्वारा कर सकते हैं. यह निम्नलिखित प्रमेय देता है: माना अच्छी तरह से परिभ षित मेलिन परिवर्तन के साथ फलन बनें मौलिक पट्टी में माना साथ . यदि फलन अंतराल पर वर्ग-पूर्णांक भी है , फिर प्लांचरेल प्रमेय का प्रमेय मानता है:[8]

L2 रिक्त समष्टि पर एक सममिति के रूप में

हिल्बर्ट समष्टि के अध्ययन में, मेलिन परिवर्तन को अधिकांशतः थोड़े अलग विधि से प्रस्तुत किया जाता है। में कार्यों के लिए (एलपी समष्टि देखें) मौलिक पट्टी सदैव सम्मिलित होती है , इसलिए हम रैखिक ऑपरेटर को परिभाषित कर सकते हैं जैसा

दूसरे शब्दों में, हमने समुच्चय कर लिया है

इस ऑपरेटर को सामान्यतः केवल द्वारा दर्शाया जाता है और मेलिन ट्रांसफॉर्म कहा जाता है, किन्तु इस लेख में अन्यत्र प्रयुक्त परिभाषा से अंतर करने के लिए यहां इसका उपयोग किया गया है। मेलिन व्युत्क्रम प्रमेय यह दर्शाता है व्युत्क्रम के साथ व्युत्क्रमणीय है

इसके अलावा, यह ऑपरेटर आइसोमेट्री है, अर्थात सभी के लिए (यह बताता है कि का कारक क्यों प्रयोग किया गया)।

संभाव्यता सिद्धांत में

संभाव्यता सिद्धांत में, यादृच्छिक चर के उत्पादों के वितरण का अध्ययन करने के लिए मेलिन परिवर्तन आवश्यक उपकरण है।[9] यदि X यादृच्छिक चर है, और X+ = max{X,0} इसके सकारात्मक भाग को दर्शाता है, जबकि X − = max{−X,0} इसका नकारात्मक भाग है, तो एक्स के मेलिन रूपांतरण को इस प्रकार परिभाषित किया गया है [10]

जहां γ औपचारिक अनिश्चित γ2 = 1 है . यह परिवर्तन किसी जटिल पट्टी में सभी D = {s : a ≤ Re(s) ≤ b} के लिए उपस्थित है , जहाँ a ≤ 0 ≤ b.[10]

मेलिन परिवर्तन यादृच्छिक चर X का वितरण फलन FX विशिष्ट रूप से निर्धारित होता है.[10] संभाव्यता सिद्धांत में मेलिन परिवर्तन का महत्व इस तथ्य में निहित है कि यदि एक्स और वाई दो स्वतंत्र यादृच्छिक चर हैं, तो उनके उत्पाद का मेलिन परिवर्तन एक्स और वाई के मेलिन परिवर्तन के उत्पाद के बराबर है:[11]

बेलनाकार समन्वय प्रणाली में लाप्लासियन के साथ समस्याएं

लाप्लासियन में सामान्य आयाम में बेलनाकार निर्देशांक में (एक कोण और त्रिज्या और शेष लंबाई के साथ ऑर्थोगोनल निर्देशांक) सदैव शब्द होता है:

उदाहरण के लिए, 2-डी ध्रुवीय निर्देशांक में लाप्लासियन है:

और 3-डी बेलनाकार निर्देशांक में लाप्लासियन है,

इस शब्द को मेलिन ट्रांसफॉर्म के साथ व्यवहार किया जा सकता है,[12] तब से:

उदाहरण के लिए, ध्रुवीय निर्देशांक में 2-डी लाप्लास समीकरण दो चर में पीडीई है:

और गुणन द्वारा:

त्रिज्या पर मेलिन परिवर्तन के साथ सरल हार्मोनिक दोलक बन जाता है:

सामान्य समाधान के साथ:

आइए अब उदाहरण के लिए मूल लाप्लास समीकरण में कुछ सरल वेज सीमा नियम प्रयुक्त करें:

ये मेलिन परिवर्तन के लिए विशेष रूप से सरल हैं, बन रहे हैं:

समाधान पर लगाई गई ये नियम इसे विशिष्ट बनाती हैं:

अब मेलिन परिवर्तन के लिए कनवल्शन प्रमेय द्वारा, मेलिन डोमेन में समाधान को व्युत्क्रम किया जा सकता है:

जहां निम्नलिखित व्युत्क्रम परिवर्तन संबंध नियोजित किया गया था:

जहाँ .

अनुप्रयोग

एल्गोरिदम के विश्लेषण के लिए कंप्यूटर विज्ञान में मेलिन ट्रांसफॉर्म का व्यापक रूप से उपयोग किया जाता है [13] इसके मापदंड की अपरिवर्तनशील संपत्ति के कारण स्केल किए गए फलन के मेलिन ट्रांसफ़ॉर्म का परिमाण विशुद्ध रूप से काल्पनिक इनपुट के लिए मूल फलन के परिमाण के समान है। यह स्केल अपरिवर्तनीयता प्रॉपर्टी फूरियर ट्रांसफॉर्म की शिफ्ट इनवेरिएंस प्रॉपर्टी के अनुरूप है। समय-समष्टिांतरित फलन के फूरियर रूपांतरण का परिमाण मूल फलन के फूरियर रूपांतरण के परिमाण के समान है।

यह गुण इमेज पहचान में उपयोगी है। जब वस्तु को कैमरे की ओर या उससे दूर ले जाया जाता है तो किसी वस्तु की इमेज सरलता से स्केल की जाती है।

क्वांटम यांत्रिकी और विशेष रूप से क्वांटम क्षेत्र सिद्धांत में, फूरियर समष्टि बेहद उपयोगी है और बड़े मापदंड पर उपयोग किया जाता है क्योंकि गति और स्थिति दूसरे के फूरियर रूपांतरण हैं (उदाहरण के लिए, फेनमैन आरेख गति अंतरिक्ष में अधिक सरलता से गणना की जाती हैं)। 2011 में, ए. लियाम फिट्ज़पैट्रिक, जेरेड कपलान, जोआओ पेनेडोन्स, राज को लौटें और बाल्ट सी. वैन रीस ने दिखाया कि मेलिन समष्टि एडीएस/सीएफटी पत्राचार के संदर्भ में समान भूमिका निभाता है।[14][15][16]

उदाहरण

  • पेरोन का सूत्र डिरिचलेट श्रृंखला पर प्रयुक्त व्युत्क्रम मेलिन परिवर्तन का वर्णन करता है।
  • मेलिन ट्रांसफ़ॉर्म का उपयोग प्राइम-काउंटिंग फलन के विश्लेषण में किया जाता है और रीमैन ज़ेटा फलन की चर्चा में होता है।
  • व्युत्क्रम मेलिन परिवर्तन सामान्यतः रिज़्ज़ साधनों में होते हैं।
  • मेलिन ट्रांसफ़ॉर्म का उपयोग ऑडियो टाइमस्केल-पिच संशोधन में किया जा सकता है .

चयनित मेलिन परिवर्तनों की तालिका

मेलिन परिवर्तन के लिए रोचक उदाहरणों की निम्नलिखित सूची यहां ब्रेसवेल (2000) और एर्डेली (1954) पाई जा सकती है

चयनित मेलिन परिवर्तन
फलन मेलिन परिवर्तन अभिसरण का क्षेत्र टिप्पणी
और सामान्यतः का मेलिन परिवर्तन है[17]
डिराक डेल्टा फलन है.
हेविसाइड चरण फलन है
प्रथम प्रकार का बेसेल फलन है।
दूसरे प्रकार का बेसेल फलन है
दूसरे प्रकार का संशोधित बेसेल फलन है

यह भी देखें

  • मेलिन व्युत्क्रम प्रमेय
  • पेरोन का सूत्र
  • रामानुजन का मास्टर प्रमेय

टिप्पणियाँ

  1. Mellin, Hj. "निश्चित अभिन्नों के दो सामान्य वर्गों के सिद्धांत पर". Acta Societatis Scientiarum Fennicæ. XXII, N:o 2: 1–75.
  2. Whittaker, E.T.; Watson, G.N. (1996). A Course of Modern Analysis. Cambridge University Press.
  3. Hardy, G. H.; Littlewood, J. E. (1916). "रीमैन ज़ेटा-फ़ंक्शन के सिद्धांत और प्राइम्स के वितरण के सिद्धांत में योगदान". Acta Mathematica. 41 (1): 119–196. doi:10.1007/BF02422942. (See notes therein for further references to Cahen's and Mellin's work, including Cahen's thesis.)
  4. Wintner, Aurel (1947). "रीमैन के डिरिचलेट सीरीज को पावर सीरीज में घटाने पर". American Journal of Mathematics. 69 (4): 769–789. doi:10.2307/2371798.
  5. Flajolet, P.; Gourdon, X.; Dumas, P. (1995). "Mellin transforms and asymptotics: Harmonic sums" (PDF). Theoretical Computer Science. 144 (1–2): 3–58. doi:10.1016/0304-3975(95)00002-e.
  6. Titchmarsh (1948, p. 95).
  7. Titchmarsh (1948, p. 95).
  8. Titchmarsh (1948, p. 94).
  9. Galambos & Simonelli (2004, p. 15)
  10. 10.0 10.1 10.2 Galambos & Simonelli (2004, p. 16)
  11. Galambos & Simonelli (2004, p. 23)
  12. Bhimsen, Shivamoggi, Chapter 6: The Mellin Transform, par. 4.3: Distribution of a Potential in a Wedge, pp. 267–8
  13. Philippe Flajolet and Robert Sedgewick. The Average Case Analysis of Algorithms: Mellin Transform Asymptotics. Research Report 2956. 93 pages. Institut National de Recherche en Informatique et en Automatique (INRIA), 1996.
  14. A. Liam Fitzpatrick, Jared Kaplan, Joao Penedones, Suvrat Raju, Balt C. van Rees. "A Natural Language for AdS/CFT Correlators".
  15. A. Liam Fitzpatrick, Jared Kaplan. "Unitarity and the Holographic S-Matrix"
  16. A. Liam Fitzpatrick. "AdS/CFT and the Holographic S-Matrix", video lecture.
  17. Jacqueline Bertrand, Pierre Bertrand, Jean-Philippe Ovarlez. The Mellin Transform. The Transforms and Applications Handbook, 1995, 978-1420066524. ffhal-03152634f

संदर्भ

बाहरी संबंध