नतिपरिवर्तन बिन्दु: Difference between revisions

From Vigyanwiki
 
(46 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{short description|Point where the curvature of a curve changes sign}}
[[Image:x cubed plot.svg|thumb|(0,0) पर नतिपरिवर्तन बिंदु के साथ y = x3 का प्लॉट, जो एक [[स्थिर बिंदु]] भी है।]]
{{More footnotes|date=July 2013}}
[[Image:x cubed plot.svg|thumb|टुकड़ा {{math|1=''y'' = ''x''<sup>3</sup>}} (0,0) पर एक विभक्ति बिंदु के साथ, जो एक [[स्थिर बिंदु]] भी है।]]
{{Cubic graph special points.svg}}
{{Cubic graph special points.svg}}
[[अंतर कलन]] और [[अंतर ज्यामिति]] में, एक इंफ्लेक्शन पॉइंट, इंफ्लेक्शन का पॉइंट, फ्लेक्स या इंफ्लेक्शन (ब्रिटिश अंग्रेजी: इन्फ्लेक्शन) प्लेन कर्व # स्मूथ प्लेन कर्व पर एक पॉइंट होता है, जिस पर साइन किए गए कर्वचर साइन बदलते हैं। विशेष रूप से, किसी फ़ंक्शन के ग्राफ़ के मामले में, यह एक बिंदु है जहां फ़ंक्शन अवतल फ़ंक्शन (अवतल नीचे की ओर) से उत्तल फ़ंक्शन (अवतल ऊपर की ओर), या इसके विपरीत बदलता है।
[[अंतर कलन|अवकलन गणित]] और [[अंतर ज्यामिति|अवकलन ज्यामिति]] में, एक '''नतिपरिवर्तन बिंदु''', नतिपरिवर्तन का बिंदु फ्लेक्स (बल) या नतिपरिवर्तन (ब्रिटिश अंग्रेजी: इन्फ्लेक्शन) निर्विघ्ऩ समतल वक्र पर एक बिंदु होता है जिस पर वक्रता परिवर्तन चिन्ह होता हैं। विशेष रूप से किसी फलन के ग्राफ़ (आलेख) के मामले में यह एक बिंदु है जहां फलन अवतल (अवतल नीचे की ओर) से उत्तल फलन (अवतल ऊपर की ओर) या इसके विपरीत बदलता है।


अवकलनीयता वर्ग के एक समारोह के ग्राफ के लिए {{math|''C''<sup>2</sup>}} (f, इसका पहला व्युत्पन्न f', और इसका [[दूसरा व्युत्पन्न]] f<nowiki></nowiki> मौजूद है और निरंतर है), स्थिति f<nowiki></nowiki> = 0 का उपयोग एक विभक्ति बिंदु खोजने के लिए भी किया जा सकता है क्योंकि f<nowiki></nowiki> = 0 का एक बिंदु f<nowiki></nowiki> को धनात्मक मान (अवतल ऊपर की ओर) से ऋणात्मक मान (अवतल नीचे की ओर) या इसके विपरीत f<nowiki> में बदलने के लिए पारित किया जाना चाहिए </nowiki> निरंतर है; वक्र का एक विभक्ति बिंदु है जहाँ f<nowiki></nowiki> = 0 और उस बिंदु पर अपना चिह्न बदलता है (सकारात्मक से ऋणात्मक या ऋणात्मक से धनात्मक)।<ref>{{Cite book|last=Stewart|first=James|title=गणना|publisher=Cengage Learning|year=2015|isbn=978-1-285-74062-1|edition=8|location=Boston|pages=281}}</ref> एक बिंदु जहां दूसरा व्युत्पन्न गायब हो जाता है, लेकिन इसके संकेत को नहीं बदलता है, उसे कभी-कभी लहरदार बिंदु या लहरदार बिंदु कहा जाता है।
अवकलनीयता वर्ग के एक फलन के ग्राफ़ (आलेख) के लिए {{math|''C''<sup>2</sup>}} (f इसका पहला व्युत्पन्न f' और इसका [[दूसरा व्युत्पन्न]] f उपस्थित है और निरंतर है) स्थिति f=0 का उपयोग नतिपरिवर्तन बिंदु खोजने के लिए भी किया जा सकता है क्योंकि f=0 का एक बिंदु f को धनात्मक मान (अवतल ऊपर की ओर) से ऋणात्मक मान (अवतल नीचे की ओर) या इसके विपरीत f<nowiki> में बदलने के लिए पारित किया जाना चाहिए </nowiki>क्योंकि f<nowiki>''</nowiki> निरंतर वक्र का नतिपरिवर्तन बिंदु है जहाँ f=0 और उस बिंदु पर अपना चिह्न बदलता है (धनात्मक से ऋणात्मक या ऋणात्मक से धनात्मक)।<ref>{{Cite book|last=Stewart|first=James|title=गणना|publisher=Cengage Learning|year=2015|isbn=978-1-285-74062-1|edition=8|location=Boston|pages=281}}</ref> एक बिंदु जहां दूसरा व्युत्पन्न गायब हो जाता है लेकिन इसके संकेत को नहीं बदलता है उसे कभी-कभी तरंगों का बिंदु या तरंग बिंदु कहा जाता है।


बीजगणितीय ज्यामिति में एक विभक्ति बिंदु को बीजगणितीय विविधता के एक नियमित बिंदु के रूप में थोड़ा अधिक सामान्य रूप से परिभाषित किया जाता है, जहां स्पर्शरेखा शास्त्रीय बीजगणितीय ज्यामिति #O कम से कम 3 की शब्दावली में वक्र से मिलती है, और एक तरंग बिंदु या हाइपरफ्लेक्स को एक बिंदु के रूप में परिभाषित किया जाता है जहां स्पर्शरेखा कम से कम 4 के क्रम में वक्र से मिलती है।
बीजगणितीय ज्यामिति में नतिपरिवर्तन बिंदु को एक नियमित बिंदु के रूप में अधिक सामान्य रूप से परिभाषित किया जाता है जहां स्पर्शरेखा कम से कम 3 के क्रम में वक्र से मिलती है और तरंग बिंदु या हाइपरफ्लेक्स को उस बिंदु के रूप में परिभाषित किया जाता है जहां स्पर्शरेखा कम से कम 4 के क्रम के लिए वक्र से मिलती है।


== परिभाषा ==
== परिभाषा ==
डिफरेंशियल ज्योमेट्री में इन्फ़्लेक्शन पॉइंट कर्व के पॉइंट होते हैं जहाँ [[वक्रता]] अपना चिन्ह बदलती है।<ref>{{Cite book|title=गणितीय विश्लेषण में समस्याएं|orig-year=1964 |year=1976|publisher=Mir Publishers|others=Baranenkov, G. S.|isbn=5030009434|location=Moscow|oclc=21598952}}</ref><ref>{{cite book |last=Bronshtein |last2=Semendyayev |title=गणित की पुस्तिका|edition=4th |location=Berlin |publisher=Springer |year=2004 |isbn=3-540-43491-7 |page=231 }}</ref>
विभेदक ज्यामिति में नतिपरिवर्तन बिंदु वक्र के बिंदु होते हैं जहाँ [[वक्रता]] अपना चिन्ह बदलती है।<ref>{{Cite book|title=गणितीय विश्लेषण में समस्याएं|orig-year=1964 |year=1976|publisher=Mir Publishers|others=Baranenkov, G. S.|isbn=5030009434|location=Moscow|oclc=21598952}}</ref><ref>{{cite book |last=Bronshtein |last2=Semendyayev |title=गणित की पुस्तिका|edition=4th |location=Berlin |publisher=Springer |year=2004 |isbn=3-540-43491-7 |page=231 }}</ref> उदाहरण के लिए, अवकलनीय फलन के ग्राफ़ में नतिपरिवर्तन बिंदु होता है {{math|(''x'', ''f''(''x''))}} और यदि इसका प्रथम अवकलज {{mvar|f' का x }} पर [[पृथक बिंदु]] चरम पर होता हैं {{mvar|}} (यह ऐसा कहने जैसा नहीं है {{mvar|f}} का चरम है)। यानी कई जगहों पर {{mvar|x}} एकमात्र बिंदु है जिस पर {{mvar|f'}} एक (स्थानीय) न्यूनतम या अधिकतम होता है। यदि सभी अति {{mvar|f'}} पृथक बिंदु हैं, तो ग्राफ पर एक नतिपरिवर्तन बिंदु है {{mvar|f}} जिस पर [[स्पर्शरेखा]] वक्र को पार करती है।
उदाहरण के लिए, अवकलनीय फलन के ग्राफ़ में एक विभक्ति बिंदु होता है {{math|(''x'', ''f''(''x''))}} अगर और केवल अगर इसका व्युत्पन्न {{mvar|f'}} एक [[पृथक बिंदु]] चरम पर है {{mvar|x}}. (यह ऐसा कहने जैसा नहीं है {{mvar|f}} एक चरम है)। यानी किसी मोहल्ले में {{mvar|x}} एक और एकमात्र बिंदु है जिस पर {{mvar|f'}} एक (स्थानीय) न्यूनतम या अधिकतम है। यदि सभी अति {{mvar|f'}} पृथक बिंदु हैं, तो एक विभक्ति बिंदु के ग्राफ पर एक बिंदु है {{mvar|f}} जिस पर [[स्पर्शरेखा]] वक्र को पार करती है।


विभक्ति का गिरता बिंदु एक विभक्ति बिंदु है जहां बिंदु के दोनों ओर व्युत्पन्न ऋणात्मक होता है; दूसरे शब्दों में, यह एक विभक्ति बिंदु है जिसके निकट फलन घट रहा है। विभक्ति का एक बढ़ता हुआ बिंदु एक बिंदु है जहां व्युत्पन्न बिंदु के दोनों ओर धनात्मक होता है; दूसरे शब्दों में, यह एक विभक्ति बिंदु है जिसके निकट फलन बढ़ रहा है।
नतिपरिवर्तन का स्खलन बिंदु एक नतिपरिवर्तन बिंदु है जहां बिंदु के दोनों ओर व्युत्पन्न ऋणात्मक होता है दूसरे शब्दों में, यह नतिपरिवर्तन बिंदु है जिसके निकट फलन घट रहा है। नतिपरिवर्तन का बढ़ता हुआ बिंदु एक बिंदु है जहां व्युत्पन्न बिंदु के दोनों ओर धनात्मक होता है दूसरे शब्दों में, यह नतिपरिवर्तन बिंदु है जिसके निकट फलन बढ़ रहा है।


[[पैरामीट्रिक समीकरण]]ों द्वारा दिए गए एक चिकने वक्र के लिए, एक बिंदु एक विभक्ति बिंदु है यदि इसकी वक्रता#हस्ताक्षरित वक्रता प्लस से माइनस या माइनस से प्लस में बदलती है, अर्थात, परिवर्तन चिह्न (गणित)।
[[Index.php?title=पैरामीट्रिक समीकरणों|पैरामीट्रिक समीकरणों]] द्वारा दिए गए एक निर्विघ्ऩ वक्र के लिए नतिपरिवर्तन बिंदु है यदि इसकी हस्ताक्षरित वक्रता प्लस से माइनस या माइनस से प्लस में बदलती है अर्थात चिह्न परिवर्तन होता है।


एक चिकने वक्र के लिए जो दो बार अलग-अलग फ़ंक्शन का एक ग्राफ़ है, एक विभक्ति बिंदु ग्राफ़ पर एक बिंदु होता है जिस पर दूसरा व्युत्पन्न एक पृथक शून्य होता है और चिह्न बदलता है।
एक निर्विघ्ऩ वक्र के लिए जो दो बार अलग-अलग फलन का ग्राफ़ है, नतिपरिवर्तन बिंदु ग्राफ़ पर एक बिंदु होता है जिस पर दूसरे व्युत्पन्न मे एक पृथक शून्य होता है और चिह्न बदलता है।


[[बीजगणितीय ज्यामिति]] में, [[बीजगणितीय वक्र]] का एक [[गैर-एकवचन बिंदु]] एक विभक्ति बिंदु होता है यदि और केवल यदि स्पर्श रेखा और वक्र (स्पर्शरेखा के बिंदु पर) की प्रतिच्छेदन संख्या 2 से अधिक हो। इस भिन्न परिभाषा की मुख्य प्रेरणा, यह है कि अन्यथा किसी वक्र के विभक्ति बिंदुओं का समुच्चय बीजगणितीय समुच्चय नहीं होगा। वास्तव में, एक समतल बीजगणितीय वक्र के विभक्ति बिंदुओं का समुच्चय ठीक इसके गैर-एकवचन बिंदु होते हैं जो इसकी प्रक्षेपी पूर्णता के हेस्सियन निर्धारक के शून्य होते हैं।
[[बीजगणितीय ज्यामिति]] में, यदि [[बीजगणितीय वक्र]] का [[गैर-एकवचन बिंदु]] नतिपरिवर्तन बिंदु होता है और केवल स्पर्श रेखा और वक्र (स्पर्शरेखा के बिंदु पर) की प्रतिच्छेदन संख्या 2 से अधिक हो। इस भिन्न परिभाषा की मुख्य प्रेरणा यह है कि अन्यथा किसी वक्र के नतिपरिवर्तन बिंदुओं का समुच्चय बीजगणितीय समुच्चय नहीं होगा। वास्तव में एक समतल बीजगणितीय वक्र के नतिपरिवर्तन बिंदुओं का समुच्चय ठीक इसके गैर-एकवचन बिंदु होते हैं जो इसकी प्रक्षेपी पूर्णता के हेस्सियन निर्धारक के शून्य होते हैं।


[[Image:Animated illustration of inflection point.gif|upright=2.5|thumb|टुकड़ा {{math|''f''(''x'') {{=}} sin(2''x'')}} से -{{pi}}/4 से 5{{pi}}/4; दूसरा व्युत्पन्न है {{math|''f{{''}}''(''x'') {{=}} –4sin(2''x'')}}, और इसका चिन्ह इस प्रकार के चिन्ह के विपरीत है {{mvar|f}}. [[स्पर्शरेखा]] नीला है जहां वक्र उत्तल कार्य है (अपनी स्वयं की स्पर्श रेखा के ऊपर), हरा जहां अवतल है (इसकी स्पर्शरेखा के नीचे), और विभक्ति बिंदुओं पर लाल: 0, {{pi}}/2 और {{pi}}]]
[[Image:Animated illustration of inflection point.gif|upright=2.5|thumb|{{math|''f''(''x'') {{=}} sin(2''x'')}} का आलेख -{{pi}}/4 से 5{{pi}}/4 तक दूसरा व्युत्पन्न है {{math|''f{{''}}''(''x'') {{=}} –4sin(2''x'')}} और इसका चिन्ह इस प्रकार {{mvar|f}} के चिह्न के विपरीत है। [[स्पर्शरेखा]] नीला है जहां वक्र उत्तल कार्य है (अपनी स्वयं की स्पर्श रेखा के ऊपर) हरा जहां अवतल है (इसकी स्पर्शरेखा के नीचे) और नतिपरिवर्तन बिंदुओं पर लाल 0, {{pi}}/2 और {{pi}}]]


== एक आवश्यक लेकिन पर्याप्त शर्त नहीं ==
== एक आवश्यक लेकिन पर्याप्त शर्त नहीं ==
किसी फलन f के लिए, यदि इसका दूसरा अवकलज है {{math|''f{{''}}''(''x'')}} पर मौजूद है {{math|''x''<sub>0</sub>}} तथा {{math|''x''<sub>0</sub>}} के लिए विभक्ति बिंदु है {{mvar|f}}, फिर {{math|1=''f{{''}}''(''x''<sub>0</sub>) = 0}}, लेकिन यह स्थिति विभक्ति बिंदु होने के लिए [[पर्याप्त स्थिति]] नहीं है, भले ही किसी आदेश के डेरिवेटिव मौजूद हों। इस मामले में, किसी को विषम क्रम (तीसरे, पांचवें, आदि) के लिए सबसे कम-क्रम (दूसरे से ऊपर) गैर-शून्य व्युत्पन्न की भी आवश्यकता होती है। यदि निम्नतम-क्रम गैर-शून्य व्युत्पन्न समान क्रम का है, तो बिंदु विभक्ति का बिंदु नहीं है, बल्कि एक तरंग बिंदु है। हालाँकि, बीजगणितीय ज्यामिति में, विभक्ति बिंदु और तरंग बिंदु दोनों को आमतौर पर विभक्ति बिंदु कहा जाता है। तरंग बिंदु का उदाहरण है {{math|1=''x'' = 0}} समारोह के लिए {{mvar|f}} के द्वारा दिया गया {{math|1=''f''(''x'') = ''x''<sup>4</sup>}}.
किसी फलन f के लिए यदि इसका दूसरा अवकलज {{math|''f{{''}}''(''x'')}} है जो {{math|''x''<sub>0</sub>}} पर उपस्थित है और {{math|''x''<sub>0</sub>}} के लिए नतिपरिवर्तन बिंदु है {{mvar|f}} तो {{math|1=''f{{''}}''(''x''<sub>0</sub>) = 0}}, लेकिन यह स्थिति एक नतिपरिवर्तन बिंदु होने के लिए [[पर्याप्त स्थिति]] नहीं है, भले ही किसी आदेश के व्युत्पन्न उपस्थित हों। इस मामले में किसी को विषम क्रम (तीसरे, पांचवें आदि) के लिए सबसे कम-क्रम (दूसरे से ऊपर) गैर-शून्य व्युत्पन्न की भी आवश्यकता होती है। यदि निम्नतम-क्रम गैर-शून्य व्युत्पन्न समान क्रम का है तो बिंदु नतिपरिवर्तन का बिंदु नहीं है बल्कि एक तरंग बिंदु है। हालाँकि, बीजगणितीय ज्यामिति में नतिपरिवर्तन बिंदु और तरंग बिंदु दोनों को आमतौर पर नतिपरिवर्तन बिंदु कहा जाता है। तरंग बिंदु का उदाहरण है {{math|1=''x'' = 0}} फलन {{mvar|f}} के द्वारा दिया गया {{math|1=''f''(''x'') = ''x''<sup>4</sup>}}


पिछले दावों में, यह माना जाता है {{mvar|f}} कुछ उच्च-क्रम गैर-शून्य व्युत्पन्न है {{mvar|x}}, जो जरूरी नहीं है। यदि यह स्थिति है, तो शर्त यह है कि पहले गैर-शून्य व्युत्पन्न का एक विषम क्रम है, जिसका अर्थ है कि का चिह्न {{math|''f{{'}}''(''x'')}} के दोनों ओर समान है {{mvar|x}} के एक [[पड़ोस (गणित)]] में {{mvar|x}}. यदि यह चिह्न धनात्मक संख्या है, तो बिंदु विभक्ति का एक बढ़ता हुआ बिंदु है; यदि यह [[ऋणात्मक संख्या]] है, तो बिंदु विभक्ति का गिरता हुआ बिंदु है।
पूर्ववर्ती अभिकथनों में यह माना जाता है कि {{mvar|f}} का {{mvar|x}} पर कुछ उच्च-क्रम गैर-शून्य व्युत्पन्न है जो जरूरी नहीं है। यदि यह स्थिति है, तो शर्त यह है कि पहले गैर-शून्य व्युत्पन्न का एक विषम क्रम है जिसका अर्थ है कि {{mvar|x}} के एक [[पड़ोस (गणित)]] में {{mvar|x}} के दोनों ओर {{math|''f{{'}}''(''x'')}} का चिह्न समान हैं, यदि यह चिह्न धनात्मक है तो नतिपरिवर्तन का बिंदु एक उभरता हुआ बिंदु है, यदि यह [[ऋणात्मक संख्या|ऋणात्मक]] है तो नतिपरिवर्तन बिंदु का स्खलन बिंदु (falling point) है।


'विभक्ति अंक पर्याप्त स्थिति:'
'नतिपरिवर्तन बिंदु की पर्याप्त स्थिति:'
# मामले में विभक्ति के बिंदु के लिए पर्याप्त अस्तित्व की स्थिति {{math|''f''(''x'')}} है {{mvar|k}} एक बिंदु के एक निश्चित पड़ोस में बार-बार अलग-अलग {{mvar|''x''<sub>0</sub>}} साथ {{mvar|k}} विषम और {{math|''k'' ≥ 3}}, क्या वह {{math|1=''f''{{i sup|(''n'')}}(''x''<sub>0</sub>) = 0}} के लिये {{math|1=''n'' = 2, ..., ''k'' − 1}} तथा {{math|''f''{{i sup|(''k'')}}(''x''<sub>0</sub>) ≠ 0}}. फिर {{math|''f''(''x'')}} पर मोड़ का एक बिंदु है {{math|''x''<sub>0</sub>}}.
# इस मामले में नतिपरिवर्तन बिंदु के लिए पर्याप्त अस्तित्व की स्थिति {{math|''f''(''x'')}} है {{mvar|k}} {{mvar}} विषम और {{math|''k'' ≥ 3}} के साथ बिंदु x0 के एक निश्चित पड़ोस में k बार-बार अलग-अलग होता है वह यह है कि {{math|1=''f''{{i sup|(''n'')}}(''x''<sub>0</sub>) = 0}} के लिये {{math|1=''n'' = 2, ..., ''k'' − 1}} तथा {{math|''f''{{i sup|(''k'')}}(''x''<sub>0</sub>) ≠ 0}} तब {{math|''f''(''x'')}} का {{math|''x''<sub>0</sub>}} पर एक नतिपरिवर्तन बिंदु है।
# एक और अधिक सामान्य पर्याप्त अस्तित्व की स्थिति की आवश्यकता है {{math|''f{{''}}''(''x''<sub>0</sub> + ''ε'')}} तथा {{math|''f{{''}}''(''x''<sub>0</sub> − ''ε'')}} के पड़ोस में विपरीत चिन्ह होना{{math|''x''<sub>0</sub>}} (ब्रोंशेटिन और सेमेंदयेव 2004, पृष्ठ 231)।
#
#
#
#एक और अधिक सामान्य पर्याप्त अस्तित्व की स्थिति के लिए {{math|''f{{''}}''(''x''<sub>0</sub> + ''ε'')}} तथा {{math|''f{{''}}''(''x''<sub>0</sub> − ''ε'')}} की आवश्यकता होती है ताकि x0 के पड़ोस में विपरीत संकेत हों (ब्रोंशेटिन और सेमेंदयेव 2004, पृष्ठ 231)।


== विभक्ति के बिंदुओं का वर्गीकरण ==
== नतिपरिवर्तन बिंदुओं का वर्गीकरण ==
[[Image:X to the 4th minus x.svg|thumb|upright=1.2|{{math|''y'' {{=}} ''x''<sup>4</sup> – ''x''}} बिंदु (0,0) पर शून्य का दूसरा व्युत्पन्न है, लेकिन यह एक विभक्ति बिंदु नहीं है क्योंकि चौथा व्युत्पन्न पहला उच्च क्रम गैर-शून्य व्युत्पन्न है (तीसरा व्युत्पन्न भी शून्य है)।]]विभक्ति के अंक भी कि क्या के अनुसार वर्गीकृत किया जा सकता है {{math|''f{{'}}''(''x'')}} शून्य या अशून्य है।
[[Image:X to the 4th minus x.svg|thumb|upright=1.2|{{math|''y'' {{=}} ''x''<sup>4</sup> – ''x''}} का बिंदु (0,0) पर शून्य का दूसरा व्युत्पन्न है लेकिन यह नतिपरिवर्तन बिंदु नहीं है क्योंकि चौथा व्युत्पन्न पहला उच्च क्रम गैर-शून्य व्युत्पन्न है (तीसरा व्युत्पन्न भी शून्य है)।]]नतिपरिवर्तन बिंदुओं को इस आधार पर भी वर्गीकृत किया जा सकता है कि {{math|''f{{'}}''(''x'')}} शून्य या अशून्य है।
* यदि {{math|''f{{'}}''(''x'')}} शून्य है, बिंदु विभक्ति का एक स्थिर बिंदु है
* यदि {{math|''f{{'}}''(''x'')}} शून्य है, तो नतिपरिवर्तन का एक स्थिर बिंदु है
* यदि {{math|''f{{'}}''(''x'')}} शून्य नहीं है, बिंदु विभक्ति का एक गैर-स्थिर बिंदु है
* यदि {{math|''f{{'}}''(''x'')}} शून्य नहीं है, तो नतिपरिवर्तन का एक गैर-स्थिर बिंदु है


विभक्ति का एक स्थिर बिंदु एक स्थानीय चरम सीमा नहीं है। अधिक आम तौर पर, कई वास्तविक चरों के कार्यों के संदर्भ में, एक स्थिर बिंदु जो स्थानीय चरम सीमा नहीं है, उसे काठी बिंदु#गणितीय चर्चा कहा जाता है।
नतिपरिवर्तन का स्थिर बिंदु एक स्थानीय चरम सीमा नहीं है। आमतौर पर, कई वास्तविक चरों के कार्यों के संदर्भ में, एक स्थिर बिंदु जो स्थानीय चरम सीमा नहीं है उसे पल्याण बिंदु (saddle point) कहा जाता है।


विभक्ति के एक स्थिर बिंदु का एक उदाहरण बिंदु है {{math|(0, 0)}} के ग्राफ पर {{math|''y'' {{=}} ''x''<sup>3</sup>}}. स्पर्शरेखा है {{mvar|x}}-अक्ष, जो इस बिंदु पर ग्राफ को काटता है।
नतिपरिवर्तन का स्थिर बिंदु का एक उदाहरण बिंदु {{math|(0, 0)}} है y = x3 के ग्राफ पर स्पर्शरेखा {{mvar|x}}-अक्ष है जो इस बिंदु पर ग्राफ (आलेख) को काटता है।


विभक्ति के एक गैर-स्थिर बिंदु का एक उदाहरण बिंदु है {{math|(0, 0)}} के ग्राफ पर {{math|''y'' {{=}} ''x''<sup>3</sup> + ''ax''}}, किसी भी अशून्य के लिए {{mvar|a}}. मूल बिंदु पर स्पर्शरेखा रेखा है {{math|''y'' {{=}} ''ax''}}, जो इस बिंदु पर ग्राफ को काटता है।
नतिपरिवर्तन के गैर-स्थिर बिंदु का एक उदाहरण बिंदु है {{math|(0, 0)}} है {{math|''y'' {{=}} ''x''<sup>3</sup> + ''ax''}} के ग्राफ पर किसी भी अशून्य {{mvar|a}} के लिए मूल बिंदु पर स्पर्शरेखा रेखा {{math|''y'' {{=}} ''ax''}} है जो इस बिंदु पर ग्राफ को काटता है।


== विच्छिन्नता के साथ कार्य ==
== विच्छिन्नता के साथ कार्य ==
कुछ कार्य विभक्ति के बिंदुओं के बिना अवतलता को बदलते हैं। इसके बजाय, वे ऊर्ध्वाधर स्पर्शोन्मुख या विच्छिन्नता के आसपास अवतलता को बदल सकते हैं। उदाहरण के लिए, समारोह <math>x\mapsto \frac1x</math> ऋणात्मक के लिए अवतल है {{mvar|x}} और सकारात्मक के लिए उत्तल {{mvar|x}}, लेकिन इसमें विभक्ति का कोई बिंदु नहीं है क्योंकि 0 फलन के क्षेत्र में नहीं है।
कुछ कार्य नतिपरिवर्तन बिंदुओं के बिना अवतलता को बदलते हैं। इसके बजाय, वे ऊर्ध्वाधर स्पर्शोन्मुख या विच्छिन्नता के आसपास अवतलता को बदल सकते हैं। उदाहरण के लिए, फलन <math>x\mapsto \frac1x</math> ऋणात्मक x के लिए अवतल और धनात्मक x के लिए उत्तल है लेकिन इसमें नतिपरिवर्तन का कोई बिंदु नहीं है क्योंकि 0 फलन के क्षेत्र में नहीं है।


== विभक्ति बिंदुओं के साथ कार्य जिसका दूसरा व्युत्पन्न गायब नहीं होता है ==
== नतिपरिवर्तन बिंदुओं के साथ कार्य जिसका दूसरा व्युत्पन्न गायब नहीं होता है ==
कुछ निरंतर कार्यों में एक विभक्ति बिंदु होता है, भले ही दूसरा व्युत्पन्न कभी भी 0 न हो। उदाहरण के लिए, क्यूब रूट फ़ंक्शन x ऋणात्मक होने पर ऊपर की ओर अवतल होता है, और x धनात्मक होने पर नीचे की ओर अवतल होता है, लेकिन मूल पर किसी भी क्रम का कोई व्युत्पन्न नहीं होता है।
कुछ निरंतर कार्यों में एक नतिपरिवर्तन बिंदु होता है भले ही दूसरा व्युत्पन्न कभी भी 0 न हो। उदाहरण के लिए, घनमूल फलन x ऋणात्मक होने पर ऊपर की ओर अवतल होता है और x धनात्मक होने पर नीचे की ओर अवतल होता है लेकिन मूल पर किसी भी क्रम का कोई व्युत्पन्न नहीं होता है।


== यह भी देखें ==
== यह भी देखें ==
* [[महत्वपूर्ण बिंदु (गणित)]]
* [[महत्वपूर्ण बिंदु (गणित)]]
* [[पारिस्थितिक दहलीज]]
* [[पारिस्थितिक दहलीज]]
* एक [[अण्डाकार वक्र]] के नौ विभक्ति बिंदुओं द्वारा गठित [[हेस्से विन्यास]]
* एक [[अण्डाकार वक्र]] के नौ नतिपरिवर्तन बिंदु द्वारा गठित [[हेस्से विन्यास]]
* [[द्विज्या]], एक विभक्ति बिंदु के साथ एक वास्तुशिल्प रूप
* [[द्विज्या]], नतिपरिवर्तन बिंदु के साथ एक वास्तुशिल्प रूप
* [[वर्टेक्स (वक्र)]], एक स्थानीय न्यूनतम या अधिकतम वक्रता
* [[Index.php?title=चरम बिंदु (वक्र)|वर्टेक्स (वक्र)]], एक स्थानीय न्यूनतम या अधिकतम वक्रता


==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
== स्रोत ==
== स्रोत ==
* {{MathWorld|title=Inflection Point|urlname=InflectionPoint}}
* {{MathWorld|title=Inflection Point|urlname=InflectionPoint}}
* {{springer|title=Point of inflection|id=p/p073190}}
* {{springer|title=Point of inflection|id=p/p073190}}
श्रेणी:अंतर कलन
श्रेणी:विभेदक ज्यामिति
श्रेणी:विश्लेषणात्मक ज्यामिति
श्रेणी:वक्र




[[Category: Machine Translated Page]]
[[Category:All articles lacking in-text citations]]
[[Category:Articles lacking in-text citations from July 2013]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with short description]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 25/11/2022]]
[[Category:Created On 25/11/2022]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 17:15, 23 August 2023

(0,0) पर नतिपरिवर्तन बिंदु के साथ y = x3 का प्लॉट, जो एक स्थिर बिंदु भी है।
The roots, stationary points, inflection point and concavity of a cubic polynomial x3 − 3x2 − 144x + 432 (black line) and its first and second derivatives (red and blue).

अवकलन गणित और अवकलन ज्यामिति में, एक नतिपरिवर्तन बिंदु, नतिपरिवर्तन का बिंदु फ्लेक्स (बल) या नतिपरिवर्तन (ब्रिटिश अंग्रेजी: इन्फ्लेक्शन) निर्विघ्ऩ समतल वक्र पर एक बिंदु होता है जिस पर वक्रता परिवर्तन चिन्ह होता हैं। विशेष रूप से किसी फलन के ग्राफ़ (आलेख) के मामले में यह एक बिंदु है जहां फलन अवतल (अवतल नीचे की ओर) से उत्तल फलन (अवतल ऊपर की ओर) या इसके विपरीत बदलता है।

अवकलनीयता वर्ग के एक फलन के ग्राफ़ (आलेख) के लिए C2 (f इसका पहला व्युत्पन्न f' और इसका दूसरा व्युत्पन्न f उपस्थित है और निरंतर है) स्थिति f=0 का उपयोग नतिपरिवर्तन बिंदु खोजने के लिए भी किया जा सकता है क्योंकि f=0 का एक बिंदु f को धनात्मक मान (अवतल ऊपर की ओर) से ऋणात्मक मान (अवतल नीचे की ओर) या इसके विपरीत f में बदलने के लिए पारित किया जाना चाहिए क्योंकि f'' निरंतर वक्र का नतिपरिवर्तन बिंदु है जहाँ f=0 और उस बिंदु पर अपना चिह्न बदलता है (धनात्मक से ऋणात्मक या ऋणात्मक से धनात्मक)।[1] एक बिंदु जहां दूसरा व्युत्पन्न गायब हो जाता है लेकिन इसके संकेत को नहीं बदलता है उसे कभी-कभी तरंगों का बिंदु या तरंग बिंदु कहा जाता है।

बीजगणितीय ज्यामिति में नतिपरिवर्तन बिंदु को एक नियमित बिंदु के रूप में अधिक सामान्य रूप से परिभाषित किया जाता है जहां स्पर्शरेखा कम से कम 3 के क्रम में वक्र से मिलती है और तरंग बिंदु या हाइपरफ्लेक्स को उस बिंदु के रूप में परिभाषित किया जाता है जहां स्पर्शरेखा कम से कम 4 के क्रम के लिए वक्र से मिलती है।

परिभाषा

विभेदक ज्यामिति में नतिपरिवर्तन बिंदु वक्र के बिंदु होते हैं जहाँ वक्रता अपना चिन्ह बदलती है।[2][3] उदाहरण के लिए, अवकलनीय फलन के ग्राफ़ में नतिपरिवर्तन बिंदु होता है (x, f(x)) और यदि इसका प्रथम अवकलज f' का x पर पृथक बिंदु चरम पर होता हैं (यह ऐसा कहने जैसा नहीं है f का चरम है)। यानी कई जगहों पर x एकमात्र बिंदु है जिस पर f' एक (स्थानीय) न्यूनतम या अधिकतम होता है। यदि सभी अति f' पृथक बिंदु हैं, तो ग्राफ पर एक नतिपरिवर्तन बिंदु है f जिस पर स्पर्शरेखा वक्र को पार करती है।

नतिपरिवर्तन का स्खलन बिंदु एक नतिपरिवर्तन बिंदु है जहां बिंदु के दोनों ओर व्युत्पन्न ऋणात्मक होता है दूसरे शब्दों में, यह नतिपरिवर्तन बिंदु है जिसके निकट फलन घट रहा है। नतिपरिवर्तन का बढ़ता हुआ बिंदु एक बिंदु है जहां व्युत्पन्न बिंदु के दोनों ओर धनात्मक होता है दूसरे शब्दों में, यह नतिपरिवर्तन बिंदु है जिसके निकट फलन बढ़ रहा है।

पैरामीट्रिक समीकरणों द्वारा दिए गए एक निर्विघ्ऩ वक्र के लिए नतिपरिवर्तन बिंदु है यदि इसकी हस्ताक्षरित वक्रता प्लस से माइनस या माइनस से प्लस में बदलती है अर्थात चिह्न परिवर्तन होता है।

एक निर्विघ्ऩ वक्र के लिए जो दो बार अलग-अलग फलन का ग्राफ़ है, नतिपरिवर्तन बिंदु ग्राफ़ पर एक बिंदु होता है जिस पर दूसरे व्युत्पन्न मे एक पृथक शून्य होता है और चिह्न बदलता है।

बीजगणितीय ज्यामिति में, यदि बीजगणितीय वक्र का गैर-एकवचन बिंदु नतिपरिवर्तन बिंदु होता है और केवल स्पर्श रेखा और वक्र (स्पर्शरेखा के बिंदु पर) की प्रतिच्छेदन संख्या 2 से अधिक हो। इस भिन्न परिभाषा की मुख्य प्रेरणा यह है कि अन्यथा किसी वक्र के नतिपरिवर्तन बिंदुओं का समुच्चय बीजगणितीय समुच्चय नहीं होगा। वास्तव में एक समतल बीजगणितीय वक्र के नतिपरिवर्तन बिंदुओं का समुच्चय ठीक इसके गैर-एकवचन बिंदु होते हैं जो इसकी प्रक्षेपी पूर्णता के हेस्सियन निर्धारक के शून्य होते हैं।

f(x) = sin(2x) का आलेख -π/4 से 5π/4 तक दूसरा व्युत्पन्न है f″(x) = –4sin(2x) और इसका चिन्ह इस प्रकार f के चिह्न के विपरीत है। स्पर्शरेखा नीला है जहां वक्र उत्तल कार्य है (अपनी स्वयं की स्पर्श रेखा के ऊपर) हरा जहां अवतल है (इसकी स्पर्शरेखा के नीचे) और नतिपरिवर्तन बिंदुओं पर लाल 0, π/2 और π

एक आवश्यक लेकिन पर्याप्त शर्त नहीं

किसी फलन f के लिए यदि इसका दूसरा अवकलज f″(x) है जो x0 पर उपस्थित है और x0 के लिए नतिपरिवर्तन बिंदु है f तो f″(x0) = 0, लेकिन यह स्थिति एक नतिपरिवर्तन बिंदु होने के लिए पर्याप्त स्थिति नहीं है, भले ही किसी आदेश के व्युत्पन्न उपस्थित हों। इस मामले में किसी को विषम क्रम (तीसरे, पांचवें आदि) के लिए सबसे कम-क्रम (दूसरे से ऊपर) गैर-शून्य व्युत्पन्न की भी आवश्यकता होती है। यदि निम्नतम-क्रम गैर-शून्य व्युत्पन्न समान क्रम का है तो बिंदु नतिपरिवर्तन का बिंदु नहीं है बल्कि एक तरंग बिंदु है। हालाँकि, बीजगणितीय ज्यामिति में नतिपरिवर्तन बिंदु और तरंग बिंदु दोनों को आमतौर पर नतिपरिवर्तन बिंदु कहा जाता है। तरंग बिंदु का उदाहरण है x = 0 फलन f के द्वारा दिया गया f(x) = x4

पूर्ववर्ती अभिकथनों में यह माना जाता है कि f का x पर कुछ उच्च-क्रम गैर-शून्य व्युत्पन्न है जो जरूरी नहीं है। यदि यह स्थिति है, तो शर्त यह है कि पहले गैर-शून्य व्युत्पन्न का एक विषम क्रम है जिसका अर्थ है कि x के एक पड़ोस (गणित) में x के दोनों ओर f'(x) का चिह्न समान हैं, यदि यह चिह्न धनात्मक है तो नतिपरिवर्तन का बिंदु एक उभरता हुआ बिंदु है, यदि यह ऋणात्मक है तो नतिपरिवर्तन बिंदु का स्खलन बिंदु (falling point) है।

'नतिपरिवर्तन बिंदु की पर्याप्त स्थिति:'

  1. इस मामले में नतिपरिवर्तन बिंदु के लिए पर्याप्त अस्तित्व की स्थिति f(x) है k {{{1}}} विषम और k ≥ 3 के साथ बिंदु x0 के एक निश्चित पड़ोस में k बार-बार अलग-अलग होता है वह यह है कि f(n)(x0) = 0 के लिये n = 2, ..., k − 1 तथा f(k)(x0) ≠ 0 तब f(x) का x0 पर एक नतिपरिवर्तन बिंदु है।
  2. एक और अधिक सामान्य पर्याप्त अस्तित्व की स्थिति के लिए f″(x0 + ε) तथा f″(x0ε) की आवश्यकता होती है ताकि x0 के पड़ोस में विपरीत संकेत हों (ब्रोंशेटिन और सेमेंदयेव 2004, पृष्ठ 231)।

नतिपरिवर्तन बिंदुओं का वर्गीकरण

y = x4x का बिंदु (0,0) पर शून्य का दूसरा व्युत्पन्न है लेकिन यह नतिपरिवर्तन बिंदु नहीं है क्योंकि चौथा व्युत्पन्न पहला उच्च क्रम गैर-शून्य व्युत्पन्न है (तीसरा व्युत्पन्न भी शून्य है)।

नतिपरिवर्तन बिंदुओं को इस आधार पर भी वर्गीकृत किया जा सकता है कि f'(x) शून्य या अशून्य है।

  • यदि f'(x) शून्य है, तो नतिपरिवर्तन का एक स्थिर बिंदु है
  • यदि f'(x) शून्य नहीं है, तो नतिपरिवर्तन का एक गैर-स्थिर बिंदु है

नतिपरिवर्तन का स्थिर बिंदु एक स्थानीय चरम सीमा नहीं है। आमतौर पर, कई वास्तविक चरों के कार्यों के संदर्भ में, एक स्थिर बिंदु जो स्थानीय चरम सीमा नहीं है उसे पल्याण बिंदु (saddle point) कहा जाता है।

नतिपरिवर्तन का स्थिर बिंदु का एक उदाहरण बिंदु (0, 0) है y = x3 के ग्राफ पर स्पर्शरेखा x-अक्ष है जो इस बिंदु पर ग्राफ (आलेख) को काटता है।

नतिपरिवर्तन के गैर-स्थिर बिंदु का एक उदाहरण बिंदु है (0, 0) है y = x3 + ax के ग्राफ पर किसी भी अशून्य a के लिए मूल बिंदु पर स्पर्शरेखा रेखा y = ax है जो इस बिंदु पर ग्राफ को काटता है।

विच्छिन्नता के साथ कार्य

कुछ कार्य नतिपरिवर्तन बिंदुओं के बिना अवतलता को बदलते हैं। इसके बजाय, वे ऊर्ध्वाधर स्पर्शोन्मुख या विच्छिन्नता के आसपास अवतलता को बदल सकते हैं। उदाहरण के लिए, फलन ऋणात्मक x के लिए अवतल और धनात्मक x के लिए उत्तल है लेकिन इसमें नतिपरिवर्तन का कोई बिंदु नहीं है क्योंकि 0 फलन के क्षेत्र में नहीं है।

नतिपरिवर्तन बिंदुओं के साथ कार्य जिसका दूसरा व्युत्पन्न गायब नहीं होता है

कुछ निरंतर कार्यों में एक नतिपरिवर्तन बिंदु होता है भले ही दूसरा व्युत्पन्न कभी भी 0 न हो। उदाहरण के लिए, घनमूल फलन x ऋणात्मक होने पर ऊपर की ओर अवतल होता है और x धनात्मक होने पर नीचे की ओर अवतल होता है लेकिन मूल पर किसी भी क्रम का कोई व्युत्पन्न नहीं होता है।

यह भी देखें

संदर्भ

  1. Stewart, James (2015). गणना (8 ed.). Boston: Cengage Learning. p. 281. ISBN 978-1-285-74062-1.
  2. गणितीय विश्लेषण में समस्याएं. Baranenkov, G. S. Moscow: Mir Publishers. 1976 [1964]. ISBN 5030009434. OCLC 21598952.{{cite book}}: CS1 maint: others (link)
  3. Bronshtein; Semendyayev (2004). गणित की पुस्तिका (4th ed.). Berlin: Springer. p. 231. ISBN 3-540-43491-7.

स्रोत