निष्क्रिय सौर भवन डिजाइन: Difference between revisions

From Vigyanwiki
No edit summary
 
(13 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Architectural engineering that uses the Sun's heat without electric or mechanical systems}}
{{Short description|Architectural engineering that uses the Sun's heat without electric or mechanical systems}}
{{Sustainable energy}}
{{Sustainable energy}}
निष्क्रिय सौर भवन डिजाइन में, खिड़कियां, दीवारें और फर्श सर्दियों में गर्मी के रूप में और गर्मियों में सौर ऊर्जा को अस्वीकार करने के लिए [[सौर ऊर्जा]] को इकट्ठा, संग्रह, प्रतिबिंबित और वितरित करने के लिए बनाए जाते हैं। इसे निष्क्रिय सौर डिजाइन कहा जाता है क्योंकि सक्रिय सौर ताप प्रणालियों के विपरीत, इसमें यांत्रिक और विद्युत उपकरणों का उपयोग शामिल नहीं है।{{Sfn|Doerr|2012}}
'''निष्क्रिय सौर भवन डिजाइन''' में, खिड़कियां, दीवारें और फर्श सर्दियों में गर्मी के रूप में और गर्मियों में सौर ऊर्जा को अस्वीकार करने के लिए [[सौर ऊर्जा]] को इकट्ठा, संग्रह, प्रतिबिंबित और वितरित करने के लिए बनाए जाते हैं। इसे निष्क्रिय सौर डिजाइन कहा जाता है क्योंकि सक्रिय सौर ताप प्रणालियों के विपरीत, इसमें यांत्रिक और विद्युत उपकरणों का उपयोग सम्मिलित नहीं है।{{Sfn|Doerr|2012}}


निष्क्रिय सौर भवन डिजाइन करने का उपाय, सटीक [[साइट विश्लेषण]] करने के लिए स्थानीय [[जलवायु]] का लाभ उठाना है। जिन तत्वों पर विचार किया जाना है उनमें विंडो प्लेसमेंट और आकार, [[ग्लेज़िंग (खिड़की)]] प्रकार, [[थर्मल इन्सुलेशन|ऊष्मीय इन्सुलेशन]], [[थर्मल द्रव्यमान|ऊष्मीय द्रव्यमान]] और छायांकन शामिल हैं।{{Sfn|Norton|2014}} निष्क्रिय सौर डिजाइन तकनीकों को नई इमारतों में सबसे आसानी से लागू किया जा सकता है, लेकिन मौजूदा इमारतों को अनुकूलित या पुनः संयोजित किया जा सकता है।
निष्क्रिय सौर भवन डिजाइन करने का उपाय, सटीक [[साइट विश्लेषण]] करने के लिए स्थानीय [[जलवायु]] का लाभ उठाना है। जिन तत्वों पर विचार किया जाना है उनमें विंडो प्लेसमेंट और आकार, [[ग्लेज़िंग (खिड़की)]] प्रकार, [[थर्मल इन्सुलेशन|ऊष्मीय इन्सुलेशन]], [[थर्मल द्रव्यमान|ऊष्मीय द्रव्यमान]] और छायांकन सम्मिलित हैं।{{Sfn|Norton|2014}} निष्क्रिय सौर डिजाइन तकनीकों को नई इमारतों में सबसे आसानी से लागू किया जा सकता है, लेकिन मौजूदा इमारतों को अनुकूलित या पुनः संयोजित किया जा सकता है।  


== निष्क्रिय ऊर्जा लाभ ==
== निष्क्रिय ऊर्जा लाभ ==
[[Image:Illust passive solar d1.gif|thumb|upright=1.5|right|प्रत्यक्ष लाभ अनुप्रयोग में दिखाए गए निष्क्रिय सौर डिजाइन के तत्व]]निष्क्रिय सौर प्रौद्योगिकियां सक्रिय यांत्रिक प्रणालियों के बिना सूर्य के प्रकाश का उपयोग करती है (जैसा कि सक्रिय [[सौर थर्मल कलेक्टर|सौर]] के विपरीत है, जो [[सौर थर्मल कलेक्टर|ऊष्मीय संग्राहकों]] का उपयोग करती है)। इस तरह की प्रौद्योगिकियां सूर्य के प्रकाश को उपयोगी ऊष्मा (पानी, वायु और ऊष्मीय द्रव्यमान में) में परिवर्तित करती हैं, जो अन्य ऊर्जा स्रोतों के कम उपयोग के साथ वेंटिलेटिंग या भविष्य के उपयोग के लिए वायु संचलन का कारण बनती हैं। सामान्य उदाहरण एक इमारत के [[भूमध्य रेखा]] के किनारे पर धूपघड़ी है। [[निष्क्रिय शीतलन]] ग्रीष्मकालीन शीतलन आवश्यकताओं को कम करने के लिए समान डिजाइन सिद्धांतों का उपयोग है।
[[Image:Illust passive solar d1.gif|thumb|upright=1.5|right|प्रत्यक्ष लाभ अनुप्रयोग में दिखाए गए निष्क्रिय सौर डिजाइन के तत्व]]निष्क्रिय सौर प्रौद्योगिकियां सक्रिय यांत्रिक प्रणालियों के बिना सूर्य के प्रकाश का उपयोग करती है ( जैसा कि सक्रिय [[सौर थर्मल कलेक्टर|सौर]] के विपरीत है, जो [[सौर थर्मल कलेक्टर|ऊष्मीय संग्राहकों]] का उपयोग करती है )। इस तरह की प्रौद्योगिकियां सूर्य के प्रकाश को उपयोगी ऊष्मा ( पानी, वायु और ऊष्मीय द्रव्यमान में ) में परिवर्तित करती हैं, जो अन्य ऊर्जा स्रोतों के कम उपयोग के साथ वेंटिलेटिंग या भविष्य के उपयोग के लिए वायु संचलन का कारण बनती हैं। सामान्य उदाहरण एक इमारत के [[भूमध्य रेखा]] के किनारे पर धूपघड़ी है। [[निष्क्रिय शीतलन]] ग्रीष्मकालीन शीतलन आवश्यकताओं को कम करने के लिए समान डिजाइन सिद्धांतों का उपयोग है।


कुछ निष्क्रिय प्रणालियाँ प्रवात नियंत्रक, शटर, नाइट इंसुलेशन और अन्य उपकरणों को नियंत्रित करने के लिए पारंपरिक ऊर्जा की छोटी मात्रा का उपयोग करती हैं जो सौर ऊर्जा संग्रह, भंडारण और उपयोग को बढ़ाती और अवांछनीय गर्मी हस्तांतरण को कम करती हैं।
कुछ निष्क्रिय प्रणालियाँ प्रवात नियंत्रक, शटर, नाइट तापावरोधन और अन्य उपकरणों को नियंत्रित करने के लिए पारंपरिक ऊर्जा की छोटी मात्रा का उपयोग करते हैं जो सौर ऊर्जा संग्रह, भंडारण और उपयोग को बढ़ाते हैं, और अवांछनीय गर्मी हस्तांतरण को कम करते हैं।


निष्क्रिय सौर प्रौद्योगिकियों में अंतरिक्ष हीटिंग के लिए प्रत्यक्ष और अप्रत्यक्ष [[सौर लाभ|सौर ऊर्जा]] सम्मिलित है, थर्मोसिफोन पर आधारित [[सौर गर्म पानी|सौर जल तापन]] प्रणाली, ऊष्मीय द्रव्यमान और आंतरिक वायु तापमान में गिरावट को धीमा करने के लिए [[चरण परिवर्तन सामग्री|अवस्था परिवर्तन सामग्री]], [[सौर कुकर]], प्राकृतिक वेंटिलेशन को बढ़ाने के लिए [[सौर चिमनी]] और [[पृथ्वी आश्रय|पृथ्वी सुरक्षा]] सम्मिलित हैं।
निष्क्रिय सौर प्रौद्योगिकियों में अंतरिक्ष हीटिंग के लिए प्रत्यक्ष और अप्रत्यक्ष [[सौर लाभ|सौर ऊर्जा]] सम्मिलित है, थर्मोसिफोन पर आधारित [[सौर गर्म पानी|सौर जल तापन]] प्रणाली, ऊष्मीय द्रव्यमान और आंतरिक वायु तापमान में गिरावट को धीमा करने के लिए [[चरण परिवर्तन सामग्री|अवस्था परिवर्तन सामग्री]], [[सौर कुकर]], प्राकृतिक वेंटिलेशन को बढ़ाने के लिए [[सौर चिमनी]] और [[पृथ्वी आश्रय|पृथ्वी सुरक्षा]] सम्मिलित हैं।


अधिक व्यापक रूप से, सौर प्रौद्योगिकियों में सौर भट्टी सम्मिलित है, लेकिन इसके लिए सामान्यतः कुछ बाहरी ऊर्जा की आवश्यकता होती है जो उनके सांद्रित प्रतिबिंब या रिसीवर को संरेखित करती है और ऐतिहासिक रूप से व्यापक उपयोग के लिए व्यावहारिक या लागत प्रभावी साबित नहीं हुई है। सौर ऊर्जा के निष्क्रिय उपयोग के लिए अंतरिक्ष और जल तापन जैसी 'निम्न-श्रेणी' ऊर्जा की ज़रूरतें समय के साथ बेहतर साबित हुई हैं।
अधिक व्यापक रूप से, सौर प्रौद्योगिकियों में सौर भट्टी सम्मिलित है, लेकिन इसके लिए सामान्यतः कुछ बाहरी ऊर्जा की आवश्यकता होती है जो उनके सांद्रित प्रतिबिंब या रिसीवर को संरेखित करती है, और ऐतिहासिक रूप से व्यापक उपयोग के लिए व्यावहारिक या लागत प्रभावी साबित नहीं हुई है। सौर ऊर्जा के निष्क्रिय उपयोग के लिए अंतरिक्ष और जल तापन जैसी 'निम्न-श्रेणी' ऊर्जा की ज़रूरतें समय के साथ बेहतर साबित हुई हैं।


== विज्ञान के रूप में ==
== विज्ञान के रूप में ==
निष्क्रिय सौर भवन डिजाइन के लिए [[वैज्ञानिक]] आधार जलवायु विज्ञान, [[ऊष्मप्रवैगिकी]] (विशेष रूप से ऊष्मा हस्तांतरण: [[चालन]] (ताप), संवहन और [[विद्युत चुम्बकीय विकिरण]]), [[द्रव यांत्रिकी]]/[[प्राकृतिक संवहन]] (उपयोग के बिना हवा और पानी के बिजली, पंखे या पंप निष्क्रिय संचलन) के संयोजन से विकसित किया गया और मानव ऊष्मीय [[ताप सूचकांक]] पर आधारित सुविधा, वायुवाष्पमितीय और ऊष्मीय  धारिता नियंत्रण के आधार पर इमारतों को मनुष्यों या जानवरों, [[सनरूम]], सोलारियम और पौधों को बढ़ाने के लिए [[ग्रीन हाउस]] में रहने के लिए नियंत्रित किया जाता है।
निष्क्रिय सौर भवन डिजाइन के लिए [[वैज्ञानिक]] आधार जलवायु विज्ञान, [[ऊष्मप्रवैगिकी]] (विशेष रूप से ऊष्मा हस्तांतरण: [[चालन]] (ताप), संवहन और [[विद्युत चुम्बकीय विकिरण]]), [[द्रव यांत्रिकी]] / [[प्राकृतिक संवहन]] (उपयोग के बिना हवा और पानी के बिजली, पंखे या पंप निष्क्रिय संचलन) के संयोजन से विकसित किया गया, और मानव ऊष्मीय [[ताप सूचकांक]] पर आधारित सुविधा, वायुवाष्पमितीय और ऊष्मीय  धारिता नियंत्रण के आधार पर इमारतों को मनुष्यों या जानवरों, [[सनरूम]], सोलारियम और पौधों को बढ़ाने के लिए [[ग्रीन हाउस]] में रहने के लिए नियंत्रित किया जाता है।


विशेष देखरेख में विभाजित किया गया: भवन की साइट, स्थान और सौर अभिविन्यास, स्थानीय सूर्य पथ, [[आतपन]] का प्रचलित स्तर ([[अक्षांश]]/धूप/बादल/वर्षा), डिजाइन और निर्माण गुणवत्ता/सामग्री, प्लेसमेंट/आकार/खिड़कियों का प्रकार और दीवारें, और ताप क्षमता के साथ सौर-ऊर्जा-भंडारण ताप द्रव्यमान का समावेश है।
विशेष देखरेख में विभाजित किया गया: भवन की साइट, स्थान और सौर अभिविन्यास, स्थानीय सूर्य पथ, [[आतपन]] का प्रचलित स्तर ([[अक्षांश]] / धूप / बादल /वर्षा), डिजाइन और निर्माण गुणवत्ता / सामग्री,प्लेसमेंट /आकार / खिड़कियों का प्रकार और दीवारें, और ताप क्षमता के साथ सौर-ऊर्जा-भंडारण ताप द्रव्यमान का समावेश है।


यद्यपि इन विचारों को किसी भी इमारत की ओर निर्देशित किया जा सकता है, आदर्श अनुकूलित लागत/प्रदर्शन समाधान को प्राप्त करने के लिए इन वैज्ञानिक सिद्धांतों के सावधानीपूर्वक, [[समग्र]], प्रणाली एकीकरण [[अभियांत्रिकी]] की आवश्यकता होती है। कंप्यूटर मॉडलिंग के माध्यम से [[निष्क्रिय सौर निर्माण डिजाइन का इतिहास]] (जैसे कि व्यापक अमेरिकी ऊर्जा ऊर्जा विभाग<ref>{{cite web  | title = U.S. Department of Energy – Energy Efficiency and Renewable Energy – Energy Plus Energy Simulation Software | url = http://apps1.eere.energy.gov/buildings/energyplus/ | access-date = 2011-03-27 }}</ref> [[निर्माण ऊर्जा सिमुलेशन]] सॉफ्टवेयर) और दशकों से सीखे गए सबक के अनुप्रयोग (1970 के दशक के बाद से ऊर्जा संकट) कार्यक्षमता या एस्थेटिक्स का त्याग किए बिना महत्वपूर्ण ऊर्जा बचत और पर्यावरणीय क्षति में कमी कर सकते हैं।<ref name=fs110>{{cite web
यद्यपि इन विचारों को किसी भी इमारत की ओर निर्देशित किया जा सकता है, आदर्श अनुकूलित लागत/प्रदर्शन समाधान को प्राप्त करने के लिए इन वैज्ञानिक सिद्धांतों के सावधानीपूर्वक, [[समग्र]], प्रणाली एकीकरण [[अभियांत्रिकी]] की आवश्यकता होती है। कंप्यूटर मॉडलिंग के माध्यम से [[निष्क्रिय सौर निर्माण डिजाइन का इतिहास]] ( जैसे कि व्यापक अमेरिकी ऊर्जा ऊर्जा विभाग<ref>{{cite web  | title = U.S. Department of Energy – Energy Efficiency and Renewable Energy – Energy Plus Energy Simulation Software | url = http://apps1.eere.energy.gov/buildings/energyplus/ | access-date = 2011-03-27 }}</ref> [[निर्माण ऊर्जा सिमुलेशन]] सॉफ्टवेयर ) और दशकों से सीखे गए सबक के अनुप्रयोग (1970 के दशक के बाद से ऊर्जा संकट) कार्यक्षमता या एस्थेटिक्स का त्याग किए बिना महत्वपूर्ण ऊर्जा बचत और पर्यावरणीय क्षति में कमी कर सकते हैं।<ref name=fs110>{{cite web
  | url = http://www.yourhome.gov.au/technical/fs15.html
  | url = http://www.yourhome.gov.au/technical/fs15.html
  | title = Rating tools
  | title = Rating tools
Line 25: Line 25:
  | archive-url = https://web.archive.org/web/20070930015551/http://www.greenhouse.gov.au/yourhome/technical/fs110.htm
  | archive-url = https://web.archive.org/web/20070930015551/http://www.greenhouse.gov.au/yourhome/technical/fs110.htm
  | archive-date = September 30, 2007
  | archive-date = September 30, 2007
}}</ref> वास्तव में, निष्क्रिय-सौर डिजाइन सुविधाएँ जैसे कि ग्रीनहाउस/सनरूम/सोलारियम अंतरिक्ष की प्रति यूनिट कम लागत पर, घर की जीवंतता, दिन के उजाले, विचारों और मूल्य को बहुत बढ़ा सकती है।
}}</ref> वास्तव में, निष्क्रिय-सौर डिजाइन सुविधाएँ जैसे कि ग्रीनहाउस / सनरूम / सोलारियम अंतरिक्ष की प्रति यूनिट कम लागत पर, घर की जीवंतता, दिन के उजाले, विचारों और मूल्य को बहुत बढ़ा सकती है।


1970 के दशक के ऊर्जा संकट के बाद से निष्क्रिय सौर निर्माण डिजाइन के बारे में बहुत कुछ सीखा गया है। कई अवैज्ञानिक, अंतर्ज्ञान-आधारित महंगे निर्माण प्रयोगों ने शून्य ऊर्जा भवन को प्राप्त करने का प्रयास किया  -हीटिंग-एंड-कूलिंग ऊर्जा बिलों का कुल उन्मूलन और विफल रहे हैं।
1970 के दशक के ऊर्जा संकट के बाद से निष्क्रिय सौर निर्माण डिजाइन के बारे में बहुत कुछ सीखा गया है। कई अवैज्ञानिक, अंतर्ज्ञान-आधारित महंगे निर्माण प्रयोगों ने शून्य ऊर्जा भवन को प्राप्त करने का प्रयास किया  -हीटिंग-एंड-कूलिंग ऊर्जा बिलों का कुल उन्मूलन और विफल रहे हैं।


निष्क्रिय सौर भवन निर्माण मुश्किल या महंगा नहीं हो सकता है ( मौजूदा सामग्री और प्रौद्योगिकी का उपयोग करके), लेकिन वैज्ञानिक निष्क्रिय सौर भवन डिजाइन गैर-विभागीय इंजीनियरिंग प्रयास है जिसके लिए पिछले काउंटर-इंट्यूटी सबक सीखे गए और प्रवेश करने के लिए समय, मूल्यांकन, और सिमुलेशन इनपुट और आउटपुट को परिष्कृत करने की आवश्यकता है।
निष्क्रिय सौर भवन निर्माण मुश्किल या महंगा नहीं हो सकता है (उपस्थित सामग्री और प्रौद्योगिकी का उपयोग करके), लेकिन वैज्ञानिक निष्क्रिय सौर भवन डिजाइन गैर-विभागीय इंजीनियरिंग प्रयास है जिसके लिए पिछले काउंटर-इंट्यूटी सबक सीखे गए और प्रवेश करने के लिए समय, मूल्यांकन, और सिमुलेशन इनपुट और आउटपुट को परिष्कृत करने की आवश्यकता है।


निर्माण के बाद के सबसे उपयोगी मूल्यांकन उपकरणों में से औपचारिक मात्रात्मक वैज्ञानिक [[ऊर्जस्विता का लेखापरीक्षण]] के लिए डिजिटल [[थर्मोग्राफिक कैमरा|थर्मोग्राफिक कैमरे]] का उपयोग कर थर्मोग्राफी किया गया है। ऊष्मीय इमेजिंग का उपयोग खराब ऊष्मीय प्रदर्शन के क्षेत्रों जैसे कि छत-कोण वाले ग्लास के नकारात्मक ऊष्मीय प्रभाव या ठंडे सर्दियों की रात या गर्म गर्मी के दिन पर रोशनदान के लिए किया जा सकता है।
निर्माण के बाद के सबसे उपयोगी मूल्यांकन उपकरणों में से औपचारिक मात्रात्मक वैज्ञानिक [[ऊर्जस्विता का लेखापरीक्षण]] के लिए डिजिटल [[थर्मोग्राफिक कैमरा|थर्मोग्राफिक कैमरे]] का उपयोग कर थर्मोग्राफी किया गया है। ऊष्मीय इमेजिंग का उपयोग खराब ऊष्मीय प्रदर्शन के क्षेत्रों जैसे कि छत-कोण वाले ग्लास के नकारात्मक ऊष्मीय प्रभाव या ठंडे सर्दियों की रात या गर्म गर्मी के दिन पर रोशनदान के लिए किया जा सकता है।
Line 39: Line 39:
वैज्ञानिक डिजाइन और इंजीनियरिंग के लिए आर्थिक प्रेरणा महत्वपूर्ण है। यदि इसे 1980 में नए भवन निर्माण के लिए बड़े पैमाने पर लागू किया गया था (1970 के दशक के पाठों के आधार पर), संयुक्त राज्य अमेरिका महंगी ऊर्जा और संबंधित प्रदूषण पर प्रति वर्ष $ 250,000,000 से अधिक की बचत कर सकता है।<ref name=":1" />
वैज्ञानिक डिजाइन और इंजीनियरिंग के लिए आर्थिक प्रेरणा महत्वपूर्ण है। यदि इसे 1980 में नए भवन निर्माण के लिए बड़े पैमाने पर लागू किया गया था (1970 के दशक के पाठों के आधार पर), संयुक्त राज्य अमेरिका महंगी ऊर्जा और संबंधित प्रदूषण पर प्रति वर्ष $ 250,000,000 से अधिक की बचत कर सकता है।<ref name=":1" />


1979 के बाद से, निष्क्रिय सौर निर्माण डिजाइन शैक्षिक संस्थान प्रयोगों और दुनिया भर की सरकारों द्वारा शून्य ऊर्जा निर्माण प्राप्त करने का महत्वपूर्ण तत्व रहा है, अमेरिका के ऊर्जा विभाग और ऊर्जा अनुसंधान वैज्ञानिकों सहित दुनिया भर की सरकारों ने दशकों से समर्थन किया है। अवधारणा का लागत प्रभावी प्रमाण दशकों पहले स्थापित किया गया था, लेकिन वास्तुकला, निर्माण व्यापार और निर्माण-मालिक निर्णय लेने में [[सांस्कृतिक परिवर्तन]] बहुत धीमा और मुश्किल रहा है।<ref name=":1" />
1979 के बाद से, निष्क्रिय सौर निर्माण डिजाइन शैक्षिक संस्थान प्रयोगों और दुनिया भर की सरकारों द्वारा शून्य ऊर्जा निर्माण प्राप्त करने का महत्वपूर्ण तत्व रहा है, अमेरिका के ऊर्जा विभाग और ऊर्जा अनुसंधान वैज्ञानिकों सहित दुनिया भर की सरकारों ने दशकों से समर्थन किया है। अवधारणा का लागत प्रभावी प्रमाण दशकों पहले स्थापित किया गया था, लेकिन वास्तुकला, निर्माण व्यापार, और निर्माण-मालिक निर्णय लेने में [[सांस्कृतिक परिवर्तन]] बहुत धीमा और मुश्किल रहा है।<ref name=":1" />


वास्तुकला विज्ञान और वास्तुकला प्रौद्योगिकी जैसे नए विषयों को वास्तुकला के कुछ स्कूलों में जोड़ा जा रहा है, जिसका भविष्य का लक्ष्य उपरोक्त वैज्ञानिक और ऊर्जा-इंजीनियरिंग सिद्धांतों को सिखाना है।
वास्तुकला विज्ञान और वास्तुकला प्रौद्योगिकी जैसे नए विषयों को वास्तुकला के कुछ स्कूलों में जोड़ा जा रहा है, जिसका भविष्य का लक्ष्य उपरोक्त वैज्ञानिक और ऊर्जा-इंजीनियरिंग सिद्धांतों को सिखाना है।
Line 55: Line 55:


* सूर्य दक्षिण की ओर (भूमध्य रेखा की दिशा में) अपने उच्चतम बिंदु पर पहुंच जाता है।
* सूर्य दक्षिण की ओर (भूमध्य रेखा की दिशा में) अपने उच्चतम बिंदु पर पहुंच जाता है।
* जैसे -जैसे शीतकालीन संक्रांति निकलता है, [[दिगंश]] जिस पर सूर्य [[सूर्योदय]] और [[सूर्यास्त]] उत्तरोत्तर दक्षिण की ओर आगे बढ़ता है, दिन के उजाले का समय छोटा हो जाता है
* जैसे -जैसे शीतकालीन संक्रांति निकलता है, [[दिगंश]] जिस पर सूर्य [[सूर्योदय]] और [[सूर्यास्त]] उत्तरोत्तर दक्षिण की ओर आगे बढ़ता है, दिन के उजाले का समय छोटा हो जाता है।
* इसके विपरीत गर्मियों में देखा गया है जहां सूर्य उदय होगा, उत्तर की ओर आगे बढ़ेगा और दिन का समय बढ़ जाता है।<ref>http://www.srrb.noaa.gov/highlights/sunrise/fig5_40n.gif {{Bare URL image|date=March 2022}}</ref>
* इसके विपरीत गर्मियों में देखा गया है जहां सूर्य उदय होगा, उत्तर की ओर आगे बढ़ेगा और दिन का समय बढ़ जाता है।<ref>http://www.srrb.noaa.gov/highlights/sunrise/fig5_40n.gif {{Bare URL image|date=March 2022}}</ref>
दक्षिणी गोलार्ध में यह देखा जाता है, लेकिन सूरज पूर्व में उगता और पश्चिम की ओर सूर्यास्त होता है, चाहे आप किसी भी गोलार्द्ध में हों।
दक्षिणी गोलार्ध में यह देखा जाता है, लेकिन सूरज पूर्व में उगता और पश्चिम की ओर सूर्यास्त होता है, चाहे आप किसी भी गोलार्द्ध में हों।
Line 63: Line 63:
उत्तर या दक्षिण ध्रुव से 23.5 डिग्री से अधिक क्षेत्रों में, गर्मियों के दौरान सूर्य बिना अस्त के आकाश में पूर्ण चक्र का पता लगाएगा, जबकि यह छह महीने बाद, सर्दियों की  उच्चत्व के दौरान क्षितिज के ऊपर कभी नहीं दिखाई देता हैl  <ref>http://www.srrb.noaa.gov/highlights/sunrise/fig5_90n.gif {{Bare URL image|date=March 2022}}</ref>
उत्तर या दक्षिण ध्रुव से 23.5 डिग्री से अधिक क्षेत्रों में, गर्मियों के दौरान सूर्य बिना अस्त के आकाश में पूर्ण चक्र का पता लगाएगा, जबकि यह छह महीने बाद, सर्दियों की  उच्चत्व के दौरान क्षितिज के ऊपर कभी नहीं दिखाई देता हैl  <ref>http://www.srrb.noaa.gov/highlights/sunrise/fig5_90n.gif {{Bare URL image|date=March 2022}}</ref>


सर्दियों और गर्मियों के बीच [[सौर दोपहर]] में सूर्य की ऊंचाई में 47 डिग्री का अंतर निष्क्रिय सौर डिजाइन का आधार है। इस जानकारी को स्थानीय जलवायु डेटा ([[डिग्री दिवस]]) ताप और शीतन आवश्यकताओं के साथ संयुक्त किया जाता है यह निर्धारित करने के लिए कि वर्ष के किस समय सौर लाभ ऊष्मीय आराम के लिए फायदेमंद होगा, और कब इसे छायांकन के साथ अवरुद्ध किया जाना चाहिए था। ग्लेजिंग और शेडिंग उपकरणों जैसे वस्तुओं का रणनीतिक नियोजन, भवन में प्रवेश करने वाले सौर लाभ के प्रतिशत को पूरे वर्ष नियंत्रित किया जा सकता है।
सर्दियों और गर्मियों के बीच [[सौर दोपहर]] में सूर्य की ऊंचाई में 47 डिग्री का अंतर निष्क्रिय सौर डिजाइन का आधार है। इस जानकारी को स्थानीय जलवायु डेटा ( [[डिग्री दिवस]] ) ताप और शीतन आवश्यकताओं के साथ संयुक्त किया जाता है यह निर्धारित करने के लिए कि वर्ष के किस समय सौर लाभ ऊष्मीय आराम के लिए फायदेमंद होगा, और कब इसे छायांकन के साथ अवरुद्ध किया जाना चाहिए था। ग्लेजिंग और शेडिंग उपकरणों जैसे वस्तुओं का रणनीतिक नियोजन, भवन में प्रवेश करने वाले सौर लाभ के प्रतिशत को पूरे वर्ष नियंत्रित किया जा सकता है।


निष्क्रिय सौर सूर्य पथ डिजाइन समस्या यह है कि यद्यपि सूर्य पृथ्वी के ऊष्मीय  द्रव्यमान से "ऊष्मीय लैग" के कारण छह सप्ताह पहले और संक्रांति के छह सप्ताह बाद समान सापेक्ष स्थिति में है, तापमान और सौर लाभ की आवश्यकताएं गर्मी या सर्दी संक्रांति से पहले और बाद में काफी अलग हैं। मूवेबल शटर्स, शेड्स, शेड स्क्रीन्स, या विंडो क्विल्ट्स दिन-प्रतिदिन और घंटे-दर-घंटे सौर लाभ और इन्सुलेशन आवश्यकताओं को समायोजित कर सकते हैं।
निष्क्रिय सौर सूर्य पथ डिजाइन समस्या यह है कि यद्यपि सूर्य पृथ्वी के ऊष्मीय  द्रव्यमान से "ऊष्मीय लैग" के कारण छह सप्ताह पहले और संक्रांति के छह सप्ताह बाद समान सापेक्ष स्थिति में है, तापमान और सौर लाभ की आवश्यकताएं गर्मी या सर्दी संक्रांति से पहले और बाद में काफी अलग हैं। मूवेबल शटर्स, शेड्स, शेड स्क्रीन्स, या विंडो क्विल्ट्स दिन-प्रतिदिन और घंटे-दर-घंटे सौर लाभ और इन्सुलेशन आवश्यकताओं को समायोजित कर सकते हैं।


कमरे की सावधानीपूर्वक व्यवस्था निष्क्रिय सौर डिजाइन को पूरा करती है। आवासीय आवासों के लिए सामान्य विशेषता यह है कि रहने वाले क्षेत्रों को दोपहर के सूरज की ओर और शयन कक्षों को विपरीत दिशा में रखा जाता है।<ref name="autogenerated2">{{cite web|url=http://www.yourhome.gov.au/technical/fs43.html|title=Your Home Technical Manual - 4.3 Orientation - Part 1|date=9 November 2012|archive-url=https://web.archive.org/web/20121109095540/http://www.yourhome.gov.au/technical/fs43.html|archive-date=2012-11-09}}</ref> [[हेलिओडोन]] एक पारंपरिक चल प्रकाश उपकरण है जिसका उपयोग वास्तुकारों और डिजाइनरों द्वारा सूर्य पथ प्रभावों के मॉडल की सहायता के लिए किया जाता है। आधुनिक समय में, 3D कंप्यूटर ग्राफिक्स इस डेटा को दृष्टि से अनुकरण कर सकते हैं और प्रदर्शन भविष्यवाणियों की गणना कर सकते हैं।<ref name="fs110" />
कमरे की सावधानीपूर्वक व्यवस्था निष्क्रिय सौर डिजाइन को पूरा करती है। आवासीय आवासों के लिए सामान्य विशेषता यह है कि रहने वाले क्षेत्रों को दोपहर के सूरज की ओर और शयन कक्षों को विपरीत दिशा में रखा जाता है।<ref name="autogenerated2">{{cite web|url=http://www.yourhome.gov.au/technical/fs43.html|title=Your Home Technical Manual - 4.3 Orientation - Part 1|date=9 November 2012|archive-url=https://web.archive.org/web/20121109095540/http://www.yourhome.gov.au/technical/fs43.html|archive-date=2012-11-09}}</ref> [[हेलिओडोन]] एक पारंपरिक चल प्रकाश उपकरण है जिसका उपयोग वास्तुकारों और डिजाइनरों द्वारा सूर्य पथ प्रभावों के मॉडल की सहायता के लिए किया जाता है। आधुनिक समय में, 3D कंप्यूटर ग्राफिक्स इस डेटा को दृष्टि से अनुकरण कर सकते हैं और प्रदर्शन भविष्यवाणियों की गणना कर सकते हैं।<ref name="fs110" />
== निष्क्रिय सौर ऊर्जा हस्तांतरण सिद्धांत ==
== निष्क्रिय सौर ऊर्जा हस्तांतरण सिद्धांत ==


Line 79: Line 79:
ऊष्मा हस्तांतरण का मुख्य स्रोत विकिरण ऊर्जा है और प्राथमिक स्रोत सूर्य है। सौर विकिरण मुख्य रूप से छत और खिड़कियों (लेकिन दीवारों के माध्यम से भी) के माध्यम से होता है। ऊष्मीय विकिरण गर्म सतह से ठंडी सतह पर चला जाता है। छतें घर में वितरित अधिकांश सौर विकिरण प्राप्त करती हैं। रेडिएंट बैरियर के अलावा ठंडी छत या [[हरी छत|कच्ची छत]] आपके अटारी को गर्मी के चरम बाहरी हवा के तापमान से अधिक गर्म होने से रोकने में मदद कर सकती है <ref>{{cite web|url=http://www.eere.energy.gov/consumer/your_home/insulation_airsealing/index.cfm/mytopic=11680 |title=EERE Radiant Barriers |publisher=Eere.energy.gov |date=2009-05-28 |access-date=2010-03-16}}</ref> (देखें [[albedo|अलबेडो]], [[अवशोषण]], [[उत्सर्जन]] और परावर्तकता)।
ऊष्मा हस्तांतरण का मुख्य स्रोत विकिरण ऊर्जा है और प्राथमिक स्रोत सूर्य है। सौर विकिरण मुख्य रूप से छत और खिड़कियों (लेकिन दीवारों के माध्यम से भी) के माध्यम से होता है। ऊष्मीय विकिरण गर्म सतह से ठंडी सतह पर चला जाता है। छतें घर में वितरित अधिकांश सौर विकिरण प्राप्त करती हैं। रेडिएंट बैरियर के अलावा ठंडी छत या [[हरी छत|कच्ची छत]] आपके अटारी को गर्मी के चरम बाहरी हवा के तापमान से अधिक गर्म होने से रोकने में मदद कर सकती है <ref>{{cite web|url=http://www.eere.energy.gov/consumer/your_home/insulation_airsealing/index.cfm/mytopic=11680 |title=EERE Radiant Barriers |publisher=Eere.energy.gov |date=2009-05-28 |access-date=2010-03-16}}</ref> (देखें [[albedo|अलबेडो]], [[अवशोषण]], [[उत्सर्जन]] और परावर्तकता)।


विंडोज ऊष्मीय विकिरण के लिए तैयार और अनुमानित साइट है।<ref name=fs18a>{{cite web
खिड़कियाँ तापीय विकिरण के लिए तैयार और पूर्वानुमेय स्थान हैं।<ref name=fs18a>{{cite web
  | url = http://www.yourhome.gov.au/technical/fs410.html
  | url = http://www.yourhome.gov.au/technical/fs410.html
  | title = Glazing
  | title = Glazing
  | access-date = 2011-11-03
  | access-date = 2011-11-03
|archive-url = https://web.archive.org/web/20071215075543/http://www.greenhouse.gov.au/yourhome/technical/fs18a.htm |archive-date = December 15, 2007}}</ref> विकिरण से ऊर्जा दिन में एक खिड़की में और रात में एक ही खिड़की से बाहर जा सकती है। विकिरण एक वैक्यूम, या अनुवाद माध्यम के माध्यम से विद्युत चुम्बकीय तरंगों को संचारित करने के लिए फोटॉन का उपयोग करता है। शीत-स्‍पष्‍ट दिनों में भी सौर ऊर्जा का लाभ महत्‍वपूर्ण हो सकता है। खिड़कियों के माध्यम से सौर ताप लाभ को [[अछूता ग्लेज़िंग|इनसुलेटेड ग्लेजिंग]], छायांकन और अभिविन्यास द्वारा कम किया जा सकता है। छत और दीवारों की तुलना में विंडोज को इंसुलेट करना विशेष रूप से कठिन है। विंडो कवरिंग के माध्यम से और आसपास संवहनीय ऊष्मा हस्तांतरण भी इसके इन्सुलेशन गुणों को कम करता है।<ref name=fs18a/>  खिड़कियों को छायांकित करते समय, बाहरी छायांकन आंतरिक खिड़की के आवरणों की तुलना में गर्मी के लाभ को कम करने में अधिक प्रभावी होता है।<ref name=fs18a/>
|archive-url = https://web.archive.org/web/20071215075543/http://www.greenhouse.gov.au/yourhome/technical/fs18a.htm |archive-date = December 15, 2007}}</ref> विकिरण से ऊर्जा दिन में एक खिड़की में और रात में एक ही खिड़की से बाहर जा सकती है। विकिरण निर्वात, या पारभासी माध्यम से विद्युत चुम्बकीय तरंगों को संचारित करने के लिए फोटॉन का उपयोग करता है। ठंडे साफ दिनों में भी सौर ताप का लाभ महत्वपूर्ण हो सकता है। खिड़कियों के माध्यम से सौर ताप लाभ को [[अछूता ग्लेज़िंग|इनसुलेटेड ग्लेजिंग]], छायांकन और अभिविन्यास द्वारा कम किया जा सकता है। छत और दीवारों की तुलना में विंडोज को इंसुलेट करना विशेष रूप से कठिन है। खिड़की के आवरण के माध्यम से और उसके आसपास संवहन गर्मी हस्तांतरण भी इसके इन्सुलेशन गुणों को कम करता है।<ref name=fs18a/>  खिड़कियों को छायांकित करते समय, बाहरी छायांकन आंतरिक खिड़की के आवरणों की तुलना में गर्मी के लाभ को कम करने में अधिक प्रभावी होता है।<ref name=fs18a/>


पश्चिमी और पूर्वी सूर्य गर्मी और प्रकाश प्रदान कर सकते हैं, लेकिन अगर छाया नहीं की गई तो गर्मी में अधिक गर्म करने के लिए असुरक्षित हैं। इसके विपरीत, कम दोपहर का सूर्य सर्दियों के दौरान प्रकाश और गर्मी को आसानी से स्वीकार करता है, लेकिन गर्मियों के दौरान उचित लंबाई के ओवरहंग या ग्रीम छाया वाले पत्तों के साथ लूवरेस के साथ आसानी से छाया की जा सकती है जो गिरने में अपनी पत्तियां बहा देते हैं। प्राप्त विकिरण गर्मी की मात्रा स्थान अक्षांश, [[ऊंचाई]], [[बादल मूंदना|बादल आवरण]] और घटना के मौसमी/घंटा कोण से संबंधित है (देखें सूर्य पथ और लैम्बर्ट का कोज्या नियम)।
पश्चिमी और पूर्वी सूर्य गर्मी और प्रकाश प्रदान कर सकते हैं, लेकिन अगर छाया नहीं की गई तो गर्मी में अधिक गर्म करने के लिए असुरक्षित हैं। इसके विपरीत, कम दोपहर का सूर्य सर्दियों के दौरान प्रकाश और गर्मी को आसानी से स्वीकार करता है, लेकिन गर्मियों के दौरान उचित लंबाई के ओवरहंग या ग्रीम छाया वाले पत्तों के साथ लूवरेस के साथ आसानी से छाया की जा सकती है जो गिरने में अपनी पत्तियां बहा देते हैं। प्राप्त विकिरण गर्मी की मात्रा स्थान अक्षांश, [[ऊंचाई]], [[बादल मूंदना|बादल आवरण]] और घटना के मौसमी / घंटा कोण से संबंधित है (देखें सूर्य पथ और लैम्बर्ट का कोज्या नियम)।


एक अन्य निष्क्रिय सौर डिजाइन सिद्धांत यह है कि ऊष्मीय ऊर्जा को कुछ निर्माण सामग्री में संग्रहीत किया जा सकता है और फिर से जारी किया जा सकता है जब ऊर्जा लाभ डायर्नल (दिन/रात) तापमान विविधताओं को स्थिर करने के लिए होता है। [[thermodynamic|थर्मोडायनामिक]] सिद्धांतों की जटिल बातचीत पहली बार डिजाइनरों के लिए प्रतिकूल हो सकती है। सटीक कंप्यूटर मॉडलिंग महंगे निर्माण प्रयोगों से बचने में मदद कर सकते हैं।  
एक अन्य निष्क्रिय सौर डिजाइन सिद्धांत यह है कि ऊष्मीय ऊर्जा को कुछ निर्माण सामग्री में संग्रहीत किया जा सकता है और फिर से जारी किया जा सकता है जब ऊर्जा लाभ डायर्नल ( दिन / रात ) तापमान विविधताओं को स्थिर करने के लिए होता है। [[thermodynamic|थर्मोडायनामिक]] सिद्धांतों की जटिल बातचीत पहली बार डिजाइनरों के लिए प्रतिकूल हो सकती है। सटीक कंप्यूटर मॉडलिंग महंगे निर्माण प्रयोगों से बचने में मदद कर सकते हैं।  


== साइट विशिष्ट विचार डिजाइन के दौरान ==
== साइट विशिष्ट विचार डिजाइन के दौरान ==
Line 99: Line 99:
== समशीतोष्ण जलवायु में आवासीय इमारतों के लिए डिजाइन तत्व ==
== समशीतोष्ण जलवायु में आवासीय इमारतों के लिए डिजाइन तत्व ==
* घर में कमरे-प्रकार, आंतरिक दरवाजे, दीवारों और उपकरणों का स्थान।
* घर में कमरे-प्रकार, आंतरिक दरवाजे, दीवारों और उपकरणों का स्थान।
* भूमध्य रेखा का सामना करने के लिए (या सुबह के सूरज को पकड़ने के लिए पूर्व में कुछ डिग्री) इमारत को उन्मुख करना।<ref name="autogenerated2" />
* भूमध्य रेखा का सामना करने के लिए ( या सुबह के सूरज को पकड़ने के लिए पूर्व में कुछ डिग्री ) इमारत को उन्मुख करना।<ref name="autogenerated2" />
*पूर्व -पश्चिम अक्ष के साथ भवन आयाम का विस्तार करना।
*पूर्व -पश्चिम अक्ष के साथ भवन आयाम का विस्तार करना।
* सर्दियों में दोपहर के सूरज का सामना करने के लिए पर्याप्त रूप से खिड़कियों को आकार देना और गर्मियों में छायांकित होना।
* सर्दियों में दोपहर के सूरज का सामना करने के लिए पर्याप्त रूप से खिड़कियों को आकार देना और गर्मियों में छायांकित होना।
* दूसरी ओर खिड़कियों को छोटा करना, विशेष रूप से पश्चिमी खिड़कियां<ref name="fs18a" />
* दूसरी ओर खिड़कियों को छोटा करना, विशेष रूप से पश्चिमी खिड़कियां<ref name="fs18a" />
*सही आकार, अक्षांश-विशिष्ट छत ओवरहैंग<ref>{{cite journal|last=Springer|first=John L.|date=December 1954|title=The 'Big Piece' Way to Build|journal=Popular Science|volume=165|issue=6|page=157|url=http://www.popsci.com/archive-viewer?id=1yADAAAAMBAJ&pg=157&query=1955}}</ref> या छायांकन तत्व (झाड़ी, पेड़, ट्रेलिस, बाड़, शटर आदि)।<ref>{{cite web|url=http://www.yourhome.gov.au/technical/fs44.html|title=Your Home Technical Manual - 4.4 Shading - Part 1|date=21 January 2012|archive-url=https://web.archive.org/web/20120121220047/http://www.yourhome.gov.au/technical/fs44.html|archive-date=2012-01-21}}</ref>
*सही आकार, अक्षांश-विशिष्ट छत ओवरहैंग<ref>{{cite journal|last=Springer|first=John L.|date=December 1954|title=The 'Big Piece' Way to Build|journal=Popular Science|volume=165|issue=6|page=157|url=http://www.popsci.com/archive-viewer?id=1yADAAAAMBAJ&pg=157&query=1955}}</ref> या छायांकन तत्व ( झाड़ी, पेड़, ट्रेलिस, बाड़, शटर आदि )।<ref>{{cite web|url=http://www.yourhome.gov.au/technical/fs44.html|title=Your Home Technical Manual - 4.4 Shading - Part 1|date=21 January 2012|archive-url=https://web.archive.org/web/20120121220047/http://www.yourhome.gov.au/technical/fs44.html|archive-date=2012-01-21}}</ref>
* मौसमी अत्यधिक गर्मी लाभ या हानि को कम करने के लिए रेडिएंट बैरियर और थोक इन्सुलेशन सहित उचित मात्रा और प्रकार के [[निर्माण इन्सुलेशन]] का उपयोग करना।
* मौसमी अत्यधिक गर्मी लाभ या हानि को कम करने के लिए रेडिएंट बैरियर और थोक इन्सुलेशन सहित उचित मात्रा और प्रकार के [[निर्माण इन्सुलेशन]] का उपयोग करना।
* सर्दियों के दिन के दौरान अतिरिक्त सौर ऊर्जा (जो रात के दौरान फिर से विकीर्ण होता है) को संग्रहीत करने के लिए ऊष्मीय द्रव्यमान का उपयोग करना।<ref>{{cite web|url=http://yourhome.gov.au/technical/fs49.html|title=Your Home Technical Manual - 4.9 Thermal Mass|date=16 February 2011|archive-url=https://web.archive.org/web/20110216201057/http://yourhome.gov.au/technical/fs49.html|archive-date=2011-02-16}}</ref>
* सर्दियों के दिन के दौरान अतिरिक्त सौर ऊर्जा ( जो रात के दौरान फिर से विकीर्ण होता है ) को संग्रहीत करने के लिए ऊष्मीय द्रव्यमान का उपयोग करना।<ref>{{cite web|url=http://yourhome.gov.au/technical/fs49.html|title=Your Home Technical Manual - 4.9 Thermal Mass|date=16 February 2011|archive-url=https://web.archive.org/web/20110216201057/http://yourhome.gov.au/technical/fs49.html|archive-date=2011-02-16}}</ref>
भूमध्य रेखा- ग्लास और ऊष्मीय मास की सटीक मात्रा अक्षांश, ऊंचाई, जलवायु परिस्थितियों और तापन/शीतलन डिग्री डे आवश्यकताओं के सावधानीपूर्वक विचार पर आधारित होनी चाहिए।
भूमध्य रेखा- ग्लास और ऊष्मीय मास की सटीक मात्रा अक्षांश, ऊंचाई, जलवायु परिस्थितियों और तापन / शीतलन डिग्री डे आवश्यकताओं के सावधानीपूर्वक विचार पर आधारित होनी चाहिए।


ऊष्मीय कार्य को कम करने वाले कारक:
ऊष्मीय कार्य को कम करने वाले कारक:


* आदर्श अभिविन्यास और उत्तर -दक्षिण/पूर्व/पश्चिम पहलू अनुपात से विचलन।
* आदर्श अभिविन्यास और उत्तर -दक्षिण / पूर्व / पश्चिम पहलू अनुपात से विचलन।
* अत्यधिक ग्लास क्षेत्र (ओवर-ग्लाजिंग) के परिणामस्वरूप ओवरहीटिंग (जिसका परिणाम सॉफ्ट फ़र्निंग भी होता है) और परिवेशी वायु के तापमान में गिरावट आने पर गर्मी का नुकसान होता है।
* अत्यधिक ग्लास क्षेत्र (ओवर-ग्लाजिंग) के परिणामस्वरूप ओवरहीटिंग ( जिसका परिणाम सॉफ्ट फ़र्निंग भी होता है ) और परिवेशी वायु के तापमान में गिरावट आने पर गर्मी का नुकसान होता है।
*ग्लेज़िंग स्थापित करना जहां दिन के दौरान सौर लाभ और रात के दौरान ऊष्मीय नुकसान को आसानी से नियंत्रित नहीं किया जा सकता है। उदा: वेस्ट-फेसिंग, एंगल्ड ग्लेज़िंग, रोशनदान<ref>{{cite web | title = Introductory Passive Solar Energy Technology Overview | publisher = U.S. DOE – ORNL Passive Solar Workshop | url = http://www.passivesolarenergy.info/#S1 | access-date = 2007-12-23 | archive-url = https://web.archive.org/web/20190329110034/http://passivesolarenergy.info/#S1 | archive-date = 2019-03-29 | url-status = dead }}</ref>
*ग्लेज़िंग स्थापित करना जहां दिन के दौरान सौर लाभ और रात के दौरान ऊष्मीय नुकसान को आसानी से नियंत्रित नहीं किया जा सकता है। उदा: वेस्ट-फेसिंग, एंगल्ड ग्लेज़िंग, रोशनदान<ref>{{cite web | title = Introductory Passive Solar Energy Technology Overview | publisher = U.S. DOE – ORNL Passive Solar Workshop | url = http://www.passivesolarenergy.info/#S1 | access-date = 2007-12-23 | archive-url = https://web.archive.org/web/20190329110034/http://passivesolarenergy.info/#S1 | archive-date = 2019-03-29 | url-status = dead }}</ref>
* गैर-इन्सुलेटेड या असुरक्षित ग्लेजिंग के माध्यम से ऊष्मीय नुकसान
* गैर-इन्सुलेटेड या असुरक्षित ग्लेजिंग के माध्यम से ऊष्मीय नुकसान
* उच्च सौर लाभ के मौसमी अवधि के दौरान पर्याप्त छायांकन की कमी (विशेष रूप से पश्चिम की दीवार पर)
* उच्च सौर लाभ के मौसमी अवधि के दौरान पर्याप्त छायांकन की कमी ( विशेष रूप से पश्चिम की दीवार पर )
* दैनिक तापमान भिन्नताओं को संशोधित करने के लिए ऊष्मीय द्रव्यमान का गलत अनुप्रयोग
* दैनिक तापमान भिन्नताओं को संशोधित करने के लिए ऊष्मीय द्रव्यमान का गलत अनुप्रयोग
* खुली सीढ़ियां ऊपरी और निचली मंजिलों के बीच गर्म हवा के असमान वितरण के लिए अग्रणी सीढ़ियाँ
* खुली सीढ़ियां ऊपरी और निचली मंजिलों के बीच गर्म हवा के असमान वितरण के लिए अग्रणी सीढ़ियाँ
* उच्च भवन सतह क्षेत्र से आयतन तक - बहुत सारे कोने
* उच्च भवन सतह क्षेत्र से आयतन तक - बहुत सारे कोने
*अपर्याप्त मौसम उच्च वायु समावेश के लिए अग्रणी
*अपर्याप्त मौसम उच्च वायु समावेश के लिए अग्रणी
* गर्म मौसम के दौरान विकिरित अवरोधों या गलत तरीके से स्थापित की कमी। (नीचे छत और हरी छत भी देखें)
* गर्म मौसम के दौरान विकिरित अवरोधों या गलत तरीके से स्थापित की कमी। ( नीचे छत और हरी छत भी देखें )
*इन्सुलेशन सामग्री जो ऊष्मा हस्तांतरण के मुख्य मोड से मेल नहीं खाते (जैसे कि) अवांछित संवहन/ प्रवाहकीय / विकिरण ऊष्मा हस्तांतरण
*इन्सुलेशन सामग्री जो ऊष्मा हस्तांतरण के मुख्य मोड से मेल नहीं खाते (जैसे कि) अवांछित संवहन / प्रवाहकीय / विकिरण ऊष्मा हस्तांतरण


== दक्षता और निष्क्रिय सौर ताप की अर्थशास्त्र ==
== दक्षता और निष्क्रिय सौर ताप की अर्थशास्त्र ==
Line 143: Line 143:
*प्रत्यक्ष सौर लाभ
*प्रत्यक्ष सौर लाभ
*अप्रत्यक्ष सौर प्रणाली
*अप्रत्यक्ष सौर प्रणाली
*हाइब्रिड डायरेक्ट/अप्रत्यक्ष सौर प्रणाली
*हाइब्रिड डायरेक्ट / अप्रत्यक्ष सौर प्रणाली
*पृथक सौर प्रणाली
*पृथक सौर प्रणाली


=== प्रत्यक्ष सौर प्रणाली ===
=== प्रत्यक्ष सौर प्रणाली ===
''प्रत्यक्ष-लाभ निष्क्रिय सौर प्रणाली '' में, इनडोर स्पेस सौर संग्राहक, गर्मी अवशोषण और वितरण प्रणाली के रूप में कार्य करता है। उत्तरी गोलार्द्ध में दक्षिणमुखी कांच (दक्षिणी गोलार्द्ध में उत्तरमुखी) सौर ऊर्जा को भवन के आंतरिक भाग में प्रवेश करता है जहां यह सीधे गर्म होता है (उज्ज्वल ऊर्जा अवशोषण) या अप्रत्यक्ष रूप से गर्म होता है (संवहन के माध्यम से) कंक्रीट या चिनाई फर्श और दीवारों जैसे भवन में ऊष्मीय द्रव्यमान को स्वीकार करता है। ऊष्मीय द्रव्यमान के रूप में कार्य करने वाली मंजिलों और दीवारों को भवन के कार्यात्मक भागों के रूप में शामिल किया जाता है और दिन के दौरान गर्मी की तीव्रता को शांत किया जाता है। रात में, गर्म ऊष्मीय द्रव्यमान अंदर की जगह में गर्मी को विकीर्ण करता है।{{Sfn|Wujek|2010}}
''प्रत्यक्ष-लाभ निष्क्रिय सौर प्रणाली '' में, इनडोर स्पेस सौर संग्राहक, गर्मी अवशोषण और वितरण प्रणाली के रूप में कार्य करता है। उत्तरी गोलार्द्ध में दक्षिणमुखी कांच ( दक्षिणी गोलार्द्ध में उत्तरमुखी ) सौर ऊर्जा को भवन के आंतरिक भाग में प्रवेश करता है जहां यह सीधे गर्म होता है ( उज्ज्वल ऊर्जा अवशोषण ) या अप्रत्यक्ष रूप से गर्म होता है ( संवहन के माध्यम से ) कंक्रीट या चिनाई फर्श और दीवारों जैसे भवन में ऊष्मीय द्रव्यमान को स्वीकार करता है। ऊष्मीय द्रव्यमान के रूप में कार्य करने वाली मंजिलों और दीवारों को भवन के कार्यात्मक भागों के रूप में सम्मिलित किया जाता है और दिन के दौरान गर्मी की तीव्रता को शांत किया जाता है। रात में, गर्म ऊष्मीय द्रव्यमान अंदर की जगह में गर्मी को विकीर्ण करता है।{{Sfn|Wujek|2010}}


ठंडी जलवायु में, एक सन-टेम्पर्ड बिल्डिंग प्रत्यक्ष लाभ निष्क्रिय सौर विन्यास का सबसे बुनियादी प्रकार है, जिसमें अतिरिक्त ऊष्मीय द्रव्यमान जोड़े बिना केवल दक्षिण की ओर मुख वाले ग्लेजिंग क्षेत्र में वृद्धि (हल्की) शामिल है। यह एक प्रकार की प्रत्यक्ष-गैन प्रणाली है जिसमें इमारत के लिफ़ाफ़े को अच्छी तरह से इंसुलेट किया जाता है, पूर्व-पश्चिम दिशा में लंबा किया जाता है, और दक्षिण की ओर खिड़कियों का बड़ा अंश (~80% या अधिक) होता है। इसमें पहले से ही इमारत में मौजूद ऊष्मीय द्रव्यमान (यानी, बस फ्रेमिंग, दीवार बोर्ड, आदि) को थोड़ा जोड़ा गया है। सन-टेम्पर्ड बिल्डिंग में, दक्षिण-मुखी विंडो क्षेत्र को अधिक गरम होने से रोकने के लिए कुल फर्श क्षेत्र के लगभग 5 से 7% तक सीमित किया जाना चाहिए। अतिरिक्त दक्षिण फेसिंग ग्लेजिंग को केवल तभी शामिल किया जा सकता है जब अधिक ऊष्मीय द्रव्यमान जोड़ा जाता है। ऊर्जा बचत इस प्रणाली के साथ बहुत कम होती है, और सन टेम्परिंग बहुत कम लागत होती है।{{Sfn|Wujek|2010}}
ठंडी जलवायु में, एक सन-टेम्पर्ड बिल्डिंग प्रत्यक्ष लाभ निष्क्रिय सौर विन्यास का सबसे बुनियादी प्रकार है, जिसमें अतिरिक्त ऊष्मीय द्रव्यमान जोड़े बिना केवल दक्षिण की ओर मुख वाले ग्लेजिंग क्षेत्र में वृद्धि (हल्की) सम्मिलित है। यह एक प्रकार की प्रत्यक्ष-गैन प्रणाली है जिसमें इमारत के लिफ़ाफ़े को अच्छी तरह से इंसुलेट किया जाता है, पूर्व-पश्चिम दिशा में लंबा किया जाता है, और दक्षिण की ओर खिड़कियों का बड़ा अंश (~80% या अधिक) होता है। इसमें पहले से ही इमारत में मौजूद ऊष्मीय द्रव्यमान (यानी, बस फ्रेमिंग, दीवार बोर्ड, आदि) को थोड़ा जोड़ा गया है। सन-टेम्पर्ड बिल्डिंग में, दक्षिण-मुखी विंडो क्षेत्र को अधिक गरम होने से रोकने के लिए कुल फर्श क्षेत्र के लगभग 5 से 7% तक सीमित किया जाना चाहिए। अतिरिक्त दक्षिण फेसिंग ग्लेजिंग को केवल तभी सम्मिलित किया जा सकता है जब अधिक ऊष्मीय द्रव्यमान जोड़ा जाता है। ऊर्जा बचत इस प्रणाली के साथ बहुत कम होती है, और सन टेम्परिंग बहुत कम लागत होती है।{{Sfn|Wujek|2010}}


वास्तविक ''प्रत्यक्ष लाभ निष्क्रिय सौर प्रणालियों '' में, इनडोर वायु में बड़े तापमान में उतार -चढ़ाव को रोकने के लिए पर्याप्त ऊष्मीय द्रव्यमान की आवश्यकता होती है; सूर्य के तापमान वाले भवन की तुलना में अधिक ऊष्मीय द्रव्यमान की आवश्यकता होती है। भवन के आंतरिक भाग का अतिशयोक्ति अपर्याप्त या खराब डिजाइन वाले ऊष्मीय  द्रव्यमान के कारण हो सकता है। फर्श, दीवारों और छत के आंतरिक सतह क्षेत्र का लगभग डेढ़ से दो तिहाई भाग ऊष्मीय भंडारण सामग्री से निर्मित किया जाना चाहिए। ऊष्मीय भंडारण सामग्री कंक्रीट, एडोब, ईंट और पानी हो सकती है। फर्श और दीवारों में ऊष्मीय द्रव्यमान को वैसा ही रखा जाना चाहिए जैसा कि कार्यात्मक और सौंदर्यपरक रूप से संभव है; ऊष्मीय द्रव्यमान को सीधे धूप के संपर्क में लाने की आवश्यकता है। वॉल-टू-वॉल कारपेटिंग, बड़े थ्रो रग्स, विशाल फर्नीचर और बड़ी दीवार हैंगिंग से बचना चाहिए।
वास्तविक प्रत्यक्ष लाभ में निष्क्रिय सौर प्रणाली में, इनडोर हवा में बड़े तापमान में उतार-चढ़ाव को रोकने के लिए पर्याप्त तापीय द्रव्यमान की आवश्यकता होती है, सूर्य के तापमान वाले भवन की तुलना में अधिक तापीय द्रव्यमान की आवश्यकता होती है। भवन के आंतरिक भाग का अतिशयोक्ति अपर्याप्त या खराब डिजाइन वाले तापीय द्रव्यमान के कारण हो सकता है। फर्श, दीवारों और छत के आंतरिक सतह क्षेत्र का लगभग डेढ़ से दो तिहाई भाग तापीय भंडारण सामग्री से निर्मित किया जाना चाहिए। तापीय भंडारण सामग्री कंक्रीट, एडोब, ईंट और पानी हो सकती है। फर्श और दीवारों में तापीय द्रव्यमान को वैसा ही रखा जाना चाहिए जैसा कि कार्यात्मक और सौंदर्यपरक रूप से संभव है; तापीय द्रव्यमान को सीधे धूप के संपर्क में लाने की आवश्यकता है। वॉल-टू-वॉल कारपेटिंग, बड़े थ्रो रग्स, विशाल फर्नीचर और बड़ी दीवार हैंगिंग से बचना चाहिए।


सामान्यतः दक्षिण-मुखी कांच के लगभग 1 ft<sup>2</sup> के लिए, ऊष्मीय द्रव्यमान के लिए लगभग 5 से 10 ft<sup>3</sup> की आवश्यकता होती है। जब न्यूनतम-से-औसत दीवार और फर्श कवरिंग और फर्नीचर के लिए लेखांकन करते हैं, तो यह सामान्यतः दक्षिण-फेसिंग ग्लास के लगभग 5 से 10 ft<sup>2</sup> (5 से 10 m<sup>2</sup> / m<sup>2</sup>) के बराबर होता है, यह इस बात पर निर्भर करता है कि क्या सूरज की रोशनी सीधे सतह पर आती है। अंगूठे का सबसे सरल नियम यह है कि ऊष्मीय द्रव्यमान क्षेत्र में प्रत्यक्ष-लाभ कलेक्टर (ग्लास) क्षेत्र के सतह क्षेत्र का 5 से 10 गुना क्षेत्र होना चाहिए।{{Sfn|Wujek|2010}}
सामान्यतः दक्षिण-मुखी कांच के लगभग 1 ft<sup>2</sup> के लिए, ऊष्मीय द्रव्यमान के लिए लगभग 5 से 10 ft<sup>3</sup> की आवश्यकता होती है। जब न्यूनतम-से-औसत दीवार और फर्श कवरिंग और फर्नीचर के लिए लेखांकन करते हैं, तो यह सामान्यतः दक्षिण-फेसिंग ग्लास के लगभग 5 से 10 ft<sup>2</sup> ( 5 से 10 m<sup>2</sup> / m<sup>2</sup> ) के बराबर होता है, यह इस बात पर निर्भर करता है कि क्या सूरज की रोशनी सीधे सतह पर आती है। अंगूठे का सबसे सरल नियम यह है कि ऊष्मीय द्रव्यमान क्षेत्र में प्रत्यक्ष-लाभ कलेक्टर (ग्लास) क्षेत्र के सतह क्षेत्र का 5 से 10 गुना क्षेत्र होना चाहिए।{{Sfn|Wujek|2010}}


ठोस ऊष्मीय द्रव्यमान (जैसे, कंक्रीट, चिनाई, पत्थर, आदि) अपेक्षाकृत पतला होना चाहिए, लगभग 4 इंच (100 mm) से अधिक मोटा नहीं होना चाहिए। बड़े खुले क्षेत्रों वाले ऊष्मीय द्रव्यमान और दिन के कम से कम भाग (2 घंटे न्यूनतम) के लिए सीधे सूर्य के प्रकाश में सबसे अच्छा प्रदर्शन करते हैं। मध्यम से गहरे, उच्च अवशोषण वाले रंगों का उपयोग ऊष्मीय द्रव्यमान तत्वों की सतहों पर किया जाना चाहिए जो सीधे सूर्य के प्रकाश में होंगे। ऊष्मीय द्रव्यमान जो सूर्य के प्रकाश के संपर्क में नहीं है, कोई भी रंग हो सकता है। हल्के तत्व (जैसे, ड्राईवाल की दीवारें और छत) किसी भी रंग के हो सकते हैं। अंधेरे, बादलों की अवधि और रात के घंटों के दौरान तंग-फिटिंग, चलने योग्य इन्सुलेशन पैनलों के साथ ग्लेज़िंग को कवर करने से प्रत्यक्ष-लाभ प्रणाली के प्रदर्शन में काफी वृद्धि होगी। प्राकृतिक संवहन गर्मी हस्तांतरण के कारण प्लास्टिक या धातु की रोकथाम के भीतर और सीधे सूर्य के प्रकाश में रखा गया पानी ठोस द्रव्यमान की तुलना में अधिक तेजी से और समान रूप से गर्म होता है। संवहन प्रक्रिया सतह के तापमान को अत्यधिक चरम होने से भी रोकती है जैसा कि वे कभी-कभी करते हैं जब गहरे रंग की ठोस द्रव्यमान सतहों को सीधे सूर्य का प्रकाश प्राप्त होता है।
ठोस ऊष्मीय द्रव्यमान ( जैसे, कंक्रीट, चिनाई, पत्थर, आदि ) अपेक्षाकृत पतला होना चाहिए, लगभग 4 इंच (100 mm) से अधिक मोटा नहीं होना चाहिए। बड़े खुले क्षेत्रों के साथ तापीय द्रव्यमान और दिन के कम से कम दो घंटे के लिए सीधे धूप में रहने वाले लोग सर्वश्रेष्ठ प्रदर्शन करते हैं। मध्यम से नीचे, उच्च अवशोषण के साथ रंगों का उपयोग तापीय द्रव्यमान तत्वों की सतहों पर किया जाना चाहिए जो सीधे धूप में होंगे। तापीय द्रव्यमान जो सूर्य के प्रकाश के संपर्क में नहीं है, किसी भी रंग हो सकता है। हल्के तत्व (जैसे, सूखी दीवार और छत) किसी भी रंग हो सकते हैं। काले, बादल और रात के समय तंग फिटिंग, चलने योग्य इंसुलेशन पैनलों के साथ ग्लेजिंग को कवर करने से प्रत्यक्ष-लाभ प्रणाली के प्रदर्शन में काफी वृद्धि होगी। प्लास्टिक या धातु नियंत्रण के भीतर निहित पानी और सीधे धूप में रखा गया पानी प्राकृतिक संवहन गर्मी हस्तांतरण के कारण ठोस द्रव्यमान की तुलना में अधिक तेजी से और अधिक समान रूप से गर्म होता है। संवहन प्रक्रिया सतह के तापमान को भी अत्यधिक होने से रोकती है क्योंकि वे कभी-कभी तब करते हैं जब गहरे रंग की ठोस द्रव्यमान की सतह सीधे सूर्य की रोशनी प्राप्त करती है।


जलवायु और पर्याप्त ऊष्मीय द्रव्यमान के आधार पर, प्रत्यक्ष लाभ प्रणाली में दक्षिण-मुखी ग्लास क्षेत्र फर्श क्षेत्र के लगभग 10 से 20% तक सीमित होना चाहिए (जैसे, 100 ft<sup>2</sup> फर्श क्षेत्र के लिए 10 से 20 ft<sup>2</sup> ग्लास)यह नेट ग्लास या ग्लेजिंग क्षेत्र पर आधारित होना चाहिए। ध्यान दें कि अधिकांश खिड़कियों में नेट ग्लास/ग्लेजिंग क्षेत्र होता है जो समग्र विंडो इकाई क्षेत्र का 75 से 85% होता है। इस स्तर के ऊपर, कपड़ों के ओवरहीटिंग, चमक और धुंधलेपन की समस्याएं होने की संभावना है।{{Sfn|Wujek|2010}}
जलवायु और पर्याप्त ऊष्मीय द्रव्यमान के आधार पर, प्रत्यक्ष लाभ प्रणाली में दक्षिण-मुखी ग्लास क्षेत्र फर्श क्षेत्र के लगभग 10 से 20% ( जैसे, 100 ft<sup>2</sup> फर्श क्षेत्र के लिए 10 से 20 ft<sup>2</sup> ग्लास ) तक सीमित होना चाहिए। यह नेट ग्लास या ग्लेजिंग क्षेत्र पर आधारित होना चाहिए। ध्यान दें कि अधिकांश खिड़कियों में नेट ग्लास/ग्लेजिंग क्षेत्र होता है जो समग्र विंडो इकाई क्षेत्र का 75 से 85% होता है। इस स्तर के ऊपर, कपड़ों के ओवरहीटिंग, चमक और धुंधलेपन की समस्याएं होने की संभावना है।{{Sfn|Wujek|2010}}
=== अप्रत्यक्ष सौर प्रणाली ===
=== अप्रत्यक्ष सौर प्रणाली ===
'''''अप्रत्यक्ष-लाभ निष्क्रिय सौर प्रणाली''' '' में, ऊष्मीय द्रव्यमान ([[ठोस]], चिनाई, या पानी) सीधे दक्षिण-सामना करने वाले कांच के पीछे और गर्म इनडोर स्थान के सामने स्थित है और इसलिए स्थिति को सीधे गर्म करना नहीं है।द्रव्यमान सूर्य के प्रकाश को इनडोर स्थान में प्रवेश करने से रोकता है और कांच के माध्यम से दृश्य को भी बाधित कर सकता है। अप्रत्यक्ष लाभ प्रणालियों के दो प्रकार हैं: ऊष्मीय स्टोरेज वॉल सिस्टम और रूफ पॉन्ड सिस्टम।{{Sfn|Wujek|2010}}
'''''अप्रत्यक्ष-लाभ निष्क्रिय सौर प्रणाली''' '' में, ऊष्मीय द्रव्यमान ( [[ठोस]], चिनाई, या पानी ) सीधे दक्षिण-सामना करने वाले कांच के पीछे और गर्म इनडोर स्थान के सामने स्थित है और इसलिए स्थिति को सीधे गर्म करना नहीं है। द्रव्यमान सूर्य के प्रकाश को इनडोर स्थान में प्रवेश करने से रोकता है और कांच के माध्यम से दृश्य को भी बाधित कर सकता है। अप्रत्यक्ष लाभ प्रणालियों के दो प्रकार हैं: ऊष्मीय भंडारण वॉल सिस्टम और रूफ पॉन्ड सिस्टम।{{Sfn|Wujek|2010}}
==== ऊष्मीय स्टोरेज (ट्रोम्बे) दीवारें ====
==== ऊष्मीय भंडारण (ट्रोम्बे) दीवारें ====


'' ऊष्मीय स्टोरेज वॉल '' सिस्टम में, जिसे प्रायः ट्रॉम्बे दीवार कहा जाता है, विशाल दीवार सीधे दक्षिण फेसिंग ग्लास के पीछे स्थित है, जो सौर ऊर्जा को अवशोषित करती है और रात में इमारत के इंटीरियर की ओर चुनिंदा रूप से छोड़ देती है। दीवार का निर्माण कैस्ट-इन-प्लेस कंक्रीट, ईंट, एडोब, पत्थर या ठोस (या भरे) कंक्रीट चिनाई इकाइयों से किया जा सकता है। सूर्य प्रकाश कांच के माध्यम से प्रवेश करता है और तुरंत द्रव्यमान की दीवार की सतह पर अवशोषित होता है या तो संग्रहीत या अंदर की जगह सामग्री द्रव्यमान के माध्यम से संचालित होता है। ऊष्मीय द्रव्यमान सौर ऊर्जा को तेजी से अवशोषित नहीं कर सकता है क्योंकि यह द्रव्यमान और खिड़की क्षेत्र के बीच अंतरिक्ष में प्रवेश करता है। इस स्थान पर हवा का तापमान आसानी से 120 °F (49 °C) से अधिक हो सकता है। इस गर्म हवा को दीवार के पीछे के आंतरिक स्थानों में पेश किया जा सकता है, जिसमें दीवार के शीर्ष पर हीट- डिस्ट्रीब्यूटिंग वेंट शामिल हैं। इस दीवार प्रणाली की कल्पना पहली बार 1881 में इसके आविष्कारक एडवर्ड मॉर्स ने की थी। फेलिक्स ट्रॉम्बे, जिनके लिए कभी-कभी इस प्रणाली का नाम दिया जाता है, फ्रांसीसी इंजीनियर थे जिन्होंने 1960 के दशक में फ्रांसीसी पायरेनी में इस डिजाइन का उपयोग करके कई घरों का निर्माण किया था।
'' ऊष्मीय भंडारण वॉल '' सिस्टम में, जिसे प्रायः ट्रॉम्बे दीवार कहा जाता है, विशाल दीवार सीधे दक्षिण फेसिंग ग्लास के पीछे स्थित है, जो सौर ऊर्जा को अवशोषित करती है और रात में इमारत के इंटीरियर की ओर चुनिंदा रूप से छोड़ देती है। दीवार का निर्माण कैस्ट-इन-प्लेस कंक्रीट, ईंट, एडोब, पत्थर या ठोस (या भरे) कंक्रीट चिनाई इकाइयों से किया जा सकता है। सूर्य प्रकाश कांच के माध्यम से प्रवेश करता है और तुरंत द्रव्यमान की दीवार की सतह पर अवशोषित होता है या तो संग्रहीत या अंदर की जगह सामग्री द्रव्यमान के माध्यम से संचालित होता है। ऊष्मीय द्रव्यमान सौर ऊर्जा को तेजी से अवशोषित नहीं कर सकता है क्योंकि यह द्रव्यमान और खिड़की क्षेत्र के बीच अंतरिक्ष में प्रवेश करता है। इस स्थान पर हवा का तापमान आसानी से 120 °F (49 °C) से अधिक हो सकता है। इस गर्म हवा को दीवार के पीछे के आंतरिक स्थानों में पेश किया जा सकता है, जिसमें दीवार के शीर्ष पर हीट- डिस्ट्रीब्यूटिंग वेंट सम्मिलित हैं। इस दीवार प्रणाली की कल्पना पहली बार 1881 में इसके आविष्कारक एडवर्ड मॉर्स ने की थी। फेलिक्स ट्रॉम्बे, जिनके लिए कभी-कभी इस प्रणाली का नाम दिया जाता है, फ्रांसीसी इंजीनियर थे जिन्होंने 1960 के दशक में फ्रांसीसी पायरेनी में इस डिजाइन का उपयोग करके कई घरों का निर्माण किया था।


ऊष्मीय स्टोरेज वॉल में सामान्यतः 4 से 16 (100 से 400 मिमी) मोटी मेसनरी दीवार होती है जो एक गहरे, गर्मी-अवशोषण (या चयनात्मक सतह) के साथ लेपित होती है और उच्च संचरण क्षमता ग्लास की एक या दो परत से ढकी होती है। एक छोटे हवाई क्षेत्र बनाने के लिए कांच को सामान्यतः दीवार से ¾ इंच से 2 इंच तक रखा जाता है। कुछ डिजाइनों में, द्रव्यमान कांच से 1 से 2 ft (0.6 m) दूर स्थित है, लेकिन अंतरिक्ष अभी भी उपयोग योग्य नहीं है। ऊष्मीय द्रव्यमान की सतह सौर विकिरण को अवशोषित करती है जो इसे रात के समय उपयोग के लिए संग्रहीत करती है। प्रत्यक्ष लाभ प्रणाली के विपरीत, ऊष्मीय भंडारण दीवार प्रणाली अत्यधिक खिड़की क्षेत्र और आंतरिक स्थानों में चमक के बिना निष्क्रिय सौर ताप प्रदान करती है। यद्यपि, विचारों और दिन के उजाले का लाभ उठाने की क्षमता समाप्त हो जाती है। आंतरिक स्थानों के लिए दीवार के इंटीरियर को खुला नहीं होने पर रोमबे की दीवारों का प्रदर्शन कम हो जाता है। दीवार की आंतरिक सतह पर स्थापित फर्नीचर, बुकशेल्फ़ और दीवार अलमारियाँ इसके प्रदर्शन को कम कर  देती है ।
ऊष्मीय भंडारण वॉल में सामान्यतः 4 से 16 (100 से 400 मिमी) मोटी मेसनरी दीवार होती है जो एक गहरे, गर्मी-अवशोषण (या चयनात्मक सतह) के साथ लेपित होती है और उच्च संचरण क्षमता ग्लास की एक या दो परत से ढकी होती है। एक छोटे हवाई क्षेत्र बनाने के लिए कांच को सामान्यतः दीवार से ¾ इंच से 2 इंच तक रखा जाता है। कुछ डिजाइनों में, द्रव्यमान कांच से 1 से 2 ft (0.6 m) दूर स्थित है, लेकिन अंतरिक्ष अभी भी उपयोग योग्य नहीं है। ऊष्मीय द्रव्यमान की सतह सौर विकिरण को अवशोषित करती है जो इसे रात के समय उपयोग के लिए संग्रहीत करती है। प्रत्यक्ष लाभ प्रणाली के विपरीत, ऊष्मीय भंडारण दीवार प्रणाली अत्यधिक खिड़की क्षेत्र और आंतरिक स्थानों में चमक के बिना निष्क्रिय सौर ताप प्रदान करती है। यद्यपि, विचारों और दिन के उजाले का लाभ उठाने की क्षमता समाप्त हो जाती है। आंतरिक स्थानों के लिए दीवार के इंटीरियर को खुला नहीं होने पर रोमबे की दीवारों का प्रदर्शन कम हो जाता है। दीवार की आंतरिक सतह पर स्थापित फर्नीचर, बुकशेल्फ़ और दीवार अलमारियाँ इसके प्रदर्शन को कम कर  देती है ।


चिरसम्मत '''ट्रॉम्बे दीवार''', जिसे सामान्य रूप से वेंट थर्मल स्टोरेज दीवार भी कहा जाता है, द्रव्यमान की दीवार की छत और फर्श के स्तर के पास संकार्यीय वेंट होते हैं जो प्राकृतिक संवहन के माध्यम से इनडोर हवा के प्रवाह की अनुमति देते हैं। जैसे ही सौर विकिरण कांच और दीवार के बीच फंसे हवा को गर्म करता है और यह बढ़ने लगता है। हवा को निचले वेंट में खींचा जाता है, फिर कांच और दीवार के बीच जगह में सौर विकिरण से गर्म होने के लिए, इसके तापमान में वृद्धि और इसके बढ़ने का कारण बनता है और फिर शीर्ष (सीलिंग) के माध्यम से बाहर निकलने के लिए इनडोर स्पेस में वापस चले जाते हैं। यह दीवार को सीधे गर्म हवा को अंतरिक्ष में लाने की अनुमति देता है, सामान्यतः लगभग 90 °f (32 °c) के तापमान पर हैं।
चिरसम्मत '''ट्रोम्बे की दीवार''', जिसे सामान्य रूप से वेंट तापीय भंडारण दीवार भी कहा जाता है, द्रव्यमान की दीवार की छत और फर्श के स्तर के पास संकार्यीय वेंट होते हैं जो प्राकृतिक संवहन के माध्यम से इनडोर हवा के प्रवाह की अनुमति देते हैं। जैसे ही सौर विकिरण कांच और दीवार के बीच फंसे हवा को गर्म करता है और यह बढ़ने लगता है। हवा को निचले वेंट में खींचा जाता है, फिर कांच और दीवार के बीच जगह में सौर विकिरण से गर्म होने के लिए, इसके तापमान में वृद्धि और इसके बढ़ने का कारण बनता है और फिर शीर्ष (सीलिंग) के माध्यम से बाहर निकलने के लिए इनडोर स्पेस में वापस चले जाते हैं। यह दीवार को सीधे गर्म हवा को अंतरिक्ष में लाने की अनुमति देता है, सामान्यतः लगभग 90 °f (32 °c) के तापमान पर हैं।


यदि वेंट रात में (या बादल के दिनों में) खुले रहते हैं, तो संवहनी हवा के प्रवाह का प्रत्यावर्तन होगा, जो उसे बाहर निकाल कर गर्मी को बर्बाद कर देगा। वेंट्स को रात में बंद कर दिया जाना चाहिए ताकि अंदर की दीवार की आंतरिक सतह से तेज ताप अंदर की जगह को गर्म कर सके। सामान्यतः गर्मी के महीनों के दौरान जब गर्मी बढ़ाने की आवश्यकता नहीं होती है, तो वेंट भी बंद हो जाते हैं। गर्मियों के दौरान, दीवार के शीर्ष पर बाहरी निकास वेंट को बाहर जाने के लिए खोला जा सकता है। इस तरह के वेंटिंग सिस्टम को दिन के दौरान इमारत के माध्यम से हवा चलाने के लिए सौर चिमनी के रूप में कार्य करता है।
यदि वेंट रात में ( या बादल के दिनों में ) खुले रहते हैं, तो संवहनी हवा के प्रवाह का प्रत्यावर्तन होगा, जो उसे बाहर निकाल कर गर्मी को बर्बाद कर देगा। वेंट्स को रात में बंद कर दिया जाना चाहिए ताकि अंदर की दीवार की आंतरिक सतह से तेज गर्मी अंदर की जगह को गर्म कर सके। सामान्यतः गर्मी के महीनों के दौरान जब गर्मी के लाभ की आवश्यकता नहीं होती है, तब वेंट भी बंद कर दिए जाते हैं। गर्मियों के दौरान, दीवार के शीर्ष पर एक बाहरी निकास वेंट को बाहर जाने के लिए खोला जा सकता है। इस तरह के वेंटिंग सिस्टम को दिन के दौरान इमारत के माध्यम से हवा चलाने के लिए सौर चिमनी के रूप में कार्य करता है।


वेंटेड थर्मल स्टोरेज दीवारें इंटीरियर के लिए कुछ हद तक अप्रभावी साबित हुई हैं, अधिकतर क्योंकि वे हल्के मौसम में और गर्मी के महीनों के दौरान दिन के दौरान बहुत अधिक गर्मी प्रदान करते हैं; वे बस ज़्यादा गरम करते हैं और आराम की समस्या पैदा करते हैं। अधिकांश सौर विशेषज्ञों ने सिफारिश की है कि थर्मल स्टोरेज दीवारों को इंटीरियर में नहीं लगाया जाना चाहिए था।
आंतरिक भाग में रोशनदान तापीय भंडारण की दीवारें कुछ हद तक अप्रभावी साबित हुई हैं, ज्यादातर इसलिए कि वे दिन के दौरान हल्के मौसम में और गर्मियों के महीनों के दौरान बहुत अधिक गर्मी देते हैं, वे बस अधिक गर्म और आराम की समस्या पैदा करते हैं। अधिकांश सौर विशेषज्ञों ने सिफारिश की है कि तापीय भंडारण की दीवारों को इंटीरियर में नहीं लगाया जाना चाहिए।


ट्रोम्बे दीवार प्रणाली के कई प्रकार हैं। अप्रयुक्त तापीय भंडारण दीवार (तकनीकी रूप से ट्रोम्बे की दीवार नहीं) बाहरी सतह पर सौर ऊर्जा को पकड़ती, गर्म करती और आंतरिक सतह पर गर्मी का संचालन करती है, जहां यह आंतरिक दीवार की सतह से बाद में अंदर की जगह तक विकिरण करती है। पानी की दीवार एक प्रकार के ऊष्मीय द्रव्यमान का उपयोग करती है जिसमें ऊष्मीय द्रव्यमान के रूप में उपयोग किए जाने वाले पानी के टैंक या ट्यूब होते हैं।
ट्रोम्बे दीवार प्रणाली के कई प्रकार हैं। अप्रयुक्त तापीय भंडारण दीवार ( तकनीकी रूप से ट्रॉम्बे की दीवार नहीं ) बाहरी सतह पर सौर ऊर्जा को पकड़ती है, ऊपर उठती है और आंतरिक सतह पर गर्मी का संचालन करती है, जहां यह आंतरिक दीवार की सतह से बाद में अंदर की जगह तक विकिरण करती है। पानी की दीवार एक प्रकार के तापीय द्रव्यमान का उपयोग करती है जिसमें तापीय द्रव्यमान के रूप में उपयोग किए जाने वाले पानी के टैंक या ट्यूब होते हैं।


विशिष्ट अप्रयुक्त तापीय भंडारण दीवार में दक्षिणमुखी चिनाई या कंक्रीट की दीवार होती है जिसमें बाहरी सतह पर एक गहरे, गर्मी-अवशोषण सामग्री होती है और कांच की एक या दो परत का सामना होता है। उच्च संचरण ग्लास द्रव्यमान दीवार पर सौर लाभ को अधिकतम करता है। ग्लास 3 से 6 इंच तक रखा गया है। दीवार से (20 से 150 mm) छोटे हवाई क्षेत्र बनाने के लिए। ग्लास फ्रेमिंग सामान्यतः धातु (जैसे, एल्यूमीनियम) है क्योंकि विनाइल मुलायम हो जाएगा और लकड़ी 180 °f (82 °c) तापमान पर अधिक सूखी हो जाएगी जो दीवार में ग्लास के पीछे मौजूद हो सकता है। कांच से गुजरने वाली धूप से निकलने वाली गर्मी अंधेरे सतह द्वारा अवशोषित होती है, दीवार में संग्रहीत होती है, और चिनाई के माध्यम से धीरे-धीरे अंदर की ओर संचालित होती है। एक वास्तुशिल्प विवरण के रूप में, पैटर्न ग्लास सौर ट्रांसमिसिटी नष्ट किए बिना दीवार की बाहरी दृश्यता को सीमित कर सकता है।
विशिष्ट अप्रयुक्त तापीय भंडारण दीवार में दक्षिणमुखी चिनाई या कंक्रीट की दीवार होती है जिसमें बाहरी सतह पर एक गहरे, गर्मी-अवशोषण सामग्री होती है और कांच की एक या दो परत का सामना होता है। उच्च संचरण ग्लास द्रव्यमान दीवार पर सौर लाभ को अधिकतम करता है। ग्लास 3 से 6 इंच तक रखा गया है। दीवार से (20 से 150 mm) छोटे हवाई क्षेत्र बनाने के लिए। ग्लास फ्रेमिंग सामान्यतः धातु (जैसे, एल्यूमीनियम) है क्योंकि विनाइल मुलायम हो जाएगा और लकड़ी 180 °f (82 °c) तापमान पर अधिक सूखी हो जाएगी जो दीवार में ग्लास के पीछे मौजूद हो सकता है। कांच से गुजरने वाली धूप से निकलने वाली गर्मी अंधेरे सतह द्वारा अवशोषित होती है, दीवार में संग्रहीत होती है, और चिनाई के माध्यम से धीरे-धीरे अंदर की ओर संचालित होती है। एक वास्तुशिल्प विवरण के रूप में, पैटर्न ग्लास सौर ट्रांसमिसिटी नष्ट किए बिना दीवार की बाहरी दृश्यता को सीमित कर सकता है।
Line 178: Line 178:
पानी की दीवार ठोस द्रव्यमान की दीवार के बजाय ऊष्मीय द्रव्यमान के लिए पानी के कंटेनरों का उपयोग करती है। पानी की दीवारें सामान्यतः ठोस द्रव्यमान की दीवारों की तुलना में थोड़ी अधिक कुशल होती हैं क्योंकि वे तरल पानी में संवहन धाराओं के विकास के कारण गर्मी को अधिक कुशलता से अवशोषित करते हैं क्योंकि यह गर्म होता है। ये धाराएं तेजी से मिश्रण और भवन में गर्मी के तेज हस्तांतरण का कारण बनती हैं, जो ठोस द्रव्यमान की दीवारों द्वारा प्रदान की जा सकती है।
पानी की दीवार ठोस द्रव्यमान की दीवार के बजाय ऊष्मीय द्रव्यमान के लिए पानी के कंटेनरों का उपयोग करती है। पानी की दीवारें सामान्यतः ठोस द्रव्यमान की दीवारों की तुलना में थोड़ी अधिक कुशल होती हैं क्योंकि वे तरल पानी में संवहन धाराओं के विकास के कारण गर्मी को अधिक कुशलता से अवशोषित करते हैं क्योंकि यह गर्म होता है। ये धाराएं तेजी से मिश्रण और भवन में गर्मी के तेज हस्तांतरण का कारण बनती हैं, जो ठोस द्रव्यमान की दीवारों द्वारा प्रदान की जा सकती है।


बाहरी और आंतरिक दीवार की सतहों के बीच तापमान भिन्नता द्रव्यमान की दीवार के माध्यम से गर्मी चलाती है। इमारत के अंदर, यद्यपि, दिन के समय की गर्मी में देरी हो रही है, केवल शाम के दौरान ऊष्मीय द्रव्यमान की आंतरिक सतह पर उपलब्ध हो रहा है जब इसकी आवश्यकता होती है क्योंकि सूरज सेट हो गया है। समय अंतराल का समय अंतर होता है जब सूरज की रोशनी पहली बार दीवार से टकराती है और जब गर्मी इमारत के इंटीरियर में प्रवेश करती है।समय अंतराल दीवार और दीवार की मोटाई में उपयोग की जाने वाली सामग्री के प्रकार पर आकस्मिक है;अधिक से अधिक मोटाई एक बड़ा समय अंतराल पैदा करती है। तापमान में उतार-चढ़ाव के साथ संयुक्त ऊष्मीय द्रव्यमान की समय अंतराल विशेषता, समान रात के समय गर्मी स्रोत के रूप में अलग-अलग दिन के समय सौर ऊर्जा के उपयोग की अनुमति देता है। विंडोज को प्राकृतिक प्रकाश या सौंदर्य कारणों के लिए दीवार में रखा जा सकता है, लेकिन यह दक्षता को कुछ हद तक कम करता है।
बाहरी और आंतरिक दीवार की सतहों के बीच तापमान भिन्नता द्रव्यमान की दीवार के माध्यम से गर्मी चलाती है। इमारत के अंदर, यद्यपि, दिन के समय की गर्मी में देरी हो रही है, केवल शाम के दौरान ऊष्मीय द्रव्यमान की आंतरिक सतह पर उपलब्ध हो रहा है जब इसकी आवश्यकता होती है क्योंकि सूरज सेट हो गया है। समय अंतराल का समय अंतर होता है जब सूरज की रोशनी पहली बार दीवार से टकराती है और जब गर्मी इमारत के इंटीरियर में प्रवेश करती है। समय अंतराल दीवार और दीवार की मोटाई में उपयोग की जाने वाली सामग्री के प्रकार पर आकस्मिक है;अधिक से अधिक मोटाई एक बड़ा समय अंतराल पैदा करती है। तापमान में उतार-चढ़ाव के साथ संयुक्त ऊष्मीय द्रव्यमान की समय अंतराल विशेषता, समान रात के समय गर्मी स्रोत के रूप में अलग-अलग दिन के समय सौर ऊर्जा के उपयोग की अनुमति देता है। विंडोज को प्राकृतिक प्रकाश या सौंदर्य कारणों के लिए दीवार में रखा जा सकता है, लेकिन यह दक्षता को कुछ हद तक कम करता है।


ऊष्मीय स्टोरेज वॉल की मोटाई ईंट के लिए लगभग 10 से 14 (250 से 350 mm) होनी चाहिए, कंक्रीट के लिए 12 से 18 (300 से 450 mm), 8 से 12 (200 से 300 mm) के लिए पृथ्वी/एडोब और पानी के लिए कम से कम 6 (150 mm)। ये मोटाई गर्मी के आंदोलन में देरी करते हैं जैसे कि देर शाम के घंटों के दौरान इनडोर सतह का तापमान चरम पर पहुंच जाता है। इमारत के इंटीरियर तक पहुंचने में हीट को लगभग 8 से 10 घंटे लगेंगे (गर्मी लगभग एक इंच प्रति घंटे की दर से कंक्रीट की दीवार के माध्यम से यात्रा करती है)। अंदर की दीवार खत्म (जैसे, ड्राईवॉल) और ऊष्मीय द्रव्यमान की दीवार के बीच अच्छा ऊष्मीय कनेक्शन आंतरिक स्थान पर गर्मी हस्तांतरण को अधिकतम करने के लिए आवश्यक है।
ऊष्मीय भंडारण वॉल की मोटाई ईंट के लिए लगभग 10 से 14 (250 से 350 mm) होनी चाहिए, कंक्रीट के लिए 12 से 18 (300 से 450 mm), 8 से 12 (200 से 300 mm) के लिए पृथ्वी / एडोब और पानी के लिए कम से कम 6 (150 mm)। ये मोटाई गर्मी के आंदोलन में देरी करते हैं जैसे कि देर शाम के घंटों के दौरान इनडोर सतह का तापमान चरम पर पहुंच जाता है। इमारत के इंटीरियर तक पहुंचने में हीट को लगभग 8 से 10 घंटे लगेंगे ( गर्मी लगभग एक इंच प्रति घंटे की दर से कंक्रीट की दीवार के माध्यम से यात्रा करती है )। अंदर की दीवार खत्म (जैसे, ड्राईवॉल) और ऊष्मीय द्रव्यमान की दीवार के बीच अच्छा ऊष्मीय कनेक्शन आंतरिक स्थान पर गर्मी हस्तांतरण को अधिकतम करने के लिए आवश्यक है।


'''यद्यपि ऊष्मीय भंडारण दीवार की स्थिति इनडोर स्थान के दिन के समय ओवरहीटिंग को कम करती है, अच्छी तरह से निर्मित इमारत को लगभग 0.2 से 0.3 ft2 तक सीमित किया जाना चाहिए। प्रति ft2 फ्लोर एरिया को गर्म किया जा रहा है (0.2 से 0.3 m2 प्रति m2 फर्श क्षेत्र), जलवायु पर निर्भर करता है। पानी की दीवार में लगभग 0.15 से 0.2 ft2 पानी की दीवार की सतह प्रति ft2 (0.15 से 0.2 वर्ग मीटर प्रति वर्ग मीटर) फर्श क्षेत्र होनी चाहिए।'''
'''यद्यपि ऊष्मीय भंडारण दीवार की स्थिति इनडोर स्थान के दिन के समय ओवरहीटिंग को कम करती है, अच्छी तरह से निर्मित इमारत को लगभग 0.2 से 0.3 ft<sup>2</sup> तक सीमित किया जाना चाहिए। प्रति ft<sup>2</sup> फ्लोर एरिया को गर्म किया जा रहा है (0.2 से 0.3 m<sup>2</sup> प्रति m<sup>2</sup> फर्श क्षेत्र), जलवायु पर निर्भर करता है। पानी की दीवार में लगभग 0.15 से 0.2 ft<sup>2</sup> पानी की दीवार की सतह प्रति ft<sup>2</sup> (0.15 से 0.2 m<sup>2</sup>) फर्श क्षेत्र होनी चाहिए।'''


ऊष्मीय द्रव्यमान की दीवारें धूप सर्दियों के जलवायु के लिए सबसे अधिक अनुकूल हैं, जिनमें उच्च डायर्नल (दिन-रात) तापमान झूलों (जैसे, दक्षिण-पश्चिम, पर्वत-पश्चिम) होते हैं। वे बादल या बेहद ठंडे जलवायु या जलवायु में भी प्रदर्शन नहीं करते हैं जहां बड़ा द्वंद्व तापमान स्विंग नहीं होता है। दीवार के ऊष्मीय द्रव्यमान के माध्यम से रात के ऊष्मीय नुकसान अभी भी बादल और ठंडी जलवायु में महत्वपूर्ण हो सकते हैं; दीवार एक दिन से भी कम समय में संग्रहीत गर्मी खो देती है और फिर गर्मी को रिसाव करती है, जो प्रभावशाली रूप से बैकअप हीटिंग आवश्यकताओं को बढ़ाती है। कड़ी फिटिंग, चल इन्सुलेशन पैनलों के साथ ग्लेज़िंग को कवर करने से लंबी बादल की अवधि और रात के घंटों के दौरान एक ऊष्मीय स्टोरेज प्रणाली के प्रदर्शन को बढ़ाता है।
ऊष्मीय द्रव्यमान की दीवारें धूप सर्दियों के जलवायु के लिए सबसे अधिक अनुकूल हैं, जिनमें उच्च डायर्नल ( दिन-रात ) तापमान झूलों ( जैसे, दक्षिण-पश्चिम, पर्वत-पश्चिम ) होते हैं। वे बादल या बेहद ठंडे जलवायु या जलवायु में भी प्रदर्शन नहीं करते हैं जहां बड़ा द्वंद्व तापमान स्विंग नहीं होता है। दीवार के ऊष्मीय द्रव्यमान के माध्यम से रात के ऊष्मीय नुकसान अभी भी बादल और ठंडी जलवायु में महत्वपूर्ण हो सकते हैं; दीवार एक दिन से भी कम समय में संग्रहीत गर्मी खो देती है और फिर गर्मी को रिसाव करती है, जो प्रभावशाली रूप से बैकअप हीटिंग आवश्यकताओं को बढ़ाती है। कड़ी फिटिंग, चल इन्सुलेशन पैनलों के साथ ग्लेज़िंग को कवर करने से लंबी बादल की अवधि और रात के घंटों के दौरान एक ऊष्मीय भंडारण प्रणाली के प्रदर्शन को बढ़ाता है।


ऊष्मीय स्टोरेज दीवारों का मुख्य दोष उनकी गर्मी का नुकसान बाहर से है। अधिकांश जलवायु में गर्मी के नुकसान को कम करने के लिए डबल ग्लास (ग्लास या प्लास्टिक में से कोई भी) आवश्यक है। हल्के जलवायु में, सिंगल ग्लास स्वीकार्य है। ऊष्मीय स्टोरेज दीवार की बाहरी सतह पर लागू एक चयनात्मक सतह (उच्च-अवशोषित/कम-उत्सर्जक सतह) कांच के माध्यम से अवरक्त ऊर्जा की मात्रा को कम करके प्रदर्शन में सुधार करती है; सामान्यतः यह दैनिक स्थापना और इन्सुलेट पैनलों को हटाने की आवश्यकता के बिना प्रदर्शन में समान सुधार प्राप्त करता है। विशिष्ट सतह में दीवार की एक शीट होती है जो दीवार की बाहरी सतह से चिपकी होती है। यह सौर स्पेक्ट्रम के दृश्य भाग में लगभग सभी विकिरण को अवशोषित करता है और इन्फ्रारेड रेंज में बहुत कम उत्सर्जित करता है। उच्च शोषक प्रकाश को दीवार की सतह पर गर्मी में बदल देता है और कम उत्सर्जन गर्मी को कांच की ओर वापस विकिरण करने से रोकता है।{{Sfn|Wujek|2010}}
ऊष्मीय भंडारण दीवारों का मुख्य दोष उनकी गर्मी का नुकसान बाहर से है। अधिकांश जलवायु में गर्मी के नुकसान को कम करने के लिए डबल ग्लास ( ग्लास या प्लास्टिक में से कोई भी ) आवश्यक है। हल्के जलवायु में, सिंगल ग्लास स्वीकार्य है। ऊष्मीय भंडारण दीवार की बाहरी सतह पर लागू एक चयनात्मक सतह (उच्च-अवशोषित/कम-उत्सर्जक सतह) कांच के माध्यम से अवरक्त ऊर्जा की मात्रा को कम करके प्रदर्शन में सुधार करती है; सामान्यतः यह दैनिक स्थापना और इन्सुलेट पैनलों को हटाने की आवश्यकता के बिना प्रदर्शन में समान सुधार प्राप्त करता है। विशिष्ट सतह में दीवार की एक शीट होती है जो दीवार की बाहरी सतह से चिपकी होती है। यह सौर स्पेक्ट्रम के दृश्य भाग में लगभग सभी विकिरण को अवशोषित करता है और इन्फ्रारेड रेंज में बहुत कम उत्सर्जित करता है। उच्च शोषक प्रकाश को दीवार की सतह पर गर्मी में बदल देता है और कम उत्सर्जन गर्मी को कांच की ओर वापस विकिरण करने से रोकता है।{{Sfn|Wujek|2010}}
=== रूफ पान्ड प्रणाली ===
=== रूफ पान्ड प्रणाली ===


रूफ पान्ड'' निष्क्रिय सौर प्रणाली'', जिसे कभी -कभी ''सौर छत '' कहा जाता है, छत पर गर्म और ठंडे आंतरिक तापमान पर संग्रहीत पानी का उपयोग करता है, सामान्यतः रेगिस्तानी वातावरण में। यह सामान्यतः सपाट छत पर पानी के 6 से 12 (150 से 300 mm) रखने वाले कंटेनरों का निर्माण किया जाता है। उज्ज्वल उत्सर्जन को अधिकतम करने और वाष्पीकरण को कम करने के लिए पानी को बड़े प्लास्टिक बैग या फाइबरग्लास कंटेनरों में संग्रहीत किया जाता है। इसे अनगढ़ छोड़ा जा सकता है या ग्लेज़िंग द्वारा कवर किया जा सकता है। सौर विकिरण पानी को गर्म करता है, जो ऊष्मीय स्टोरेज माध्यम के रूप में कार्य करता है। रात में या बादल के मौसम के दौरान, कंटेनरों को इन्सुलेट पैनल के साथ कवर किया जा सकता है। छत तालाब के नीचे स्थित इनडोर स्थान को छत के तालाब के ऊपर के स्टोरेज से उत्सर्जित ताप ऊर्जा से गर्म किया जाता है। इन '''प्रणालियों के लिए अच्छी ड्रेनेज सिस्टम, चल इन्सुलेशन और 35 से 70 lb/ft2 (1.7 से 3.3 kn/m2) डेड लोड का समर्थन करने के लिए उन्नत संरचनात्मक प्रणाली की आवश्यकता होती है।'''
रूफ पान्ड'' निष्क्रिय सौर प्रणाली'', जिसे कभी -कभी ''सौर छत '' कहा जाता है, छत पर गर्म और ठंडे आंतरिक तापमान पर संग्रहीत पानी का उपयोग करता है, सामान्यतः रेगिस्तानी वातावरण में। यह सामान्यतः सपाट छत पर पानी के 6 से 12 (150 से 300 mm) रखने वाले कंटेनरों का निर्माण किया जाता है। उज्ज्वल उत्सर्जन को अधिकतम करने और वाष्पीकरण को कम करने के लिए पानी को बड़े प्लास्टिक बैग या फाइबरग्लास कंटेनरों में संग्रहीत किया जाता है। इसे अनगढ़ छोड़ा जा सकता है या ग्लेज़िंग द्वारा कवर किया जा सकता है। सौर विकिरण पानी को गर्म करता है, जो ऊष्मीय भंडारण माध्यम के रूप में कार्य करता है। रात में या बादल के मौसम के दौरान, कंटेनरों को इन्सुलेट पैनल के साथ कवर किया जा सकता है। छत तालाब के नीचे स्थित इनडोर स्थान को छत के तालाब के ऊपर के भंडारण से उत्सर्जित ताप ऊर्जा से गर्म किया जाता है। इन '''प्रणालियों के लिए अच्छी ड्रेनेज सिस्टम, चल इन्सुलेशन और 35 से 70 lb/ft<sup>2</sup> (1.7 से 3.3 kN/m<sup>2</sup>) डेड लोड का समर्थन करने के लिए उन्नत संरचनात्मक प्रणाली की आवश्यकता होती है।'''


दिन के दौरान सूर्य के प्रकाश की घटनाओं के कोण के साथ, छत के तालाब केवल गर्म और समशीतोष्ण जलवायु में निचले और मध्य अक्षांशों पर गर्म करने के लिए प्रभावी होते हैं। रूफ पॉन्ड सिस्टम गर्म, कम नमी वाले मौसम में ठंडा करने के लिए बेहतर प्रदर्शन करते हैं। बहुत अधिक सोलर रूफ नहीं बनाए गए हैं और ऊष्मीय स्टोरेज रूफ के डिजाइन, लागत, प्रदर्शन और निर्माण विवरण पर सीमित जानकारी है।{{Sfn|Wujek|2010}}
दिन के दौरान सूर्य के प्रकाश की घटनाओं के कोण के साथ, छत के तालाब केवल गर्म और समशीतोष्ण जलवायु में निचले और मध्य अक्षांशों पर गर्म करने के लिए प्रभावी होते हैं। रूफ पॉन्ड सिस्टम गर्म, कम नमी वाले मौसम में ठंडा करने के लिए बेहतर प्रदर्शन करते हैं। बहुत अधिक सोलर रूफ नहीं बनाए गए हैं और ऊष्मीय भंडारण रूफ के डिजाइन, लागत, प्रदर्शन और निर्माण विवरण पर सीमित जानकारी है।{{Sfn|Wujek|2010}}
=== हाइब्रिड डायरेक्ट/अप्रत्यक्ष सौर प्रणाली ===
=== हाइब्रिड डायरेक्ट/अप्रत्यक्ष सौर प्रणाली ===
काचडोरियन ने प्रदर्शित किया कि ऊष्मीय स्टोरेज की दीवारों की कमियों को ट्रोम्बे की दीवार को क्षैतिज रूप से लंबवत रूप से उन्मुख करके दूर किया जा सकता है।{{Sfn|Kachadorian|2006}} यदि ऊष्मीय स्टोरेज द्रव्यमान का निर्माण दीवार के रूप में हवादार कंक्रीट स्लैब फर्श के रूप में किया जाता है, तो यह घर में प्रवेश करने से सूरज की रोशनी को अवरुद्ध नहीं करता है (ट्रोम्बे दीवार का सबसे स्पष्ट नुकसान) लेकिन यह अभी भी डबल-क्लेज़ेड इक्वेटर के माध्यम से सीधे सूर्य के प्रकाश के लिए उजागर किया जा सकता है-फैसिंग विंडोज, जो रात में ऊष्मीय शटर या शेड्स द्वारा आगे अछूता हो सकता है।{{Sfn|Shurcliff|1980}} दिन के समय गर्मी पकड़ने में ट्रॉमब दीवार की समस्याग्रस्त देरी को समाप्त कर दिया गया है, क्योंकि गर्मी को दीवार के माध्यम से आंतरिक वायु क्षेत्र तक पहुंचने के लिए नहीं चलाया जाता है: इसमें से कुछ फर्श से तुरंत प्रतिबिंबित या फिर से विकिरण करते हैं। बशर्ते कि स्लैब में टेरोम्बे दीवार जैसे वायु चैनल हैं, जो उत्तर-दक्षिण दिशा में इसके माध्यम से चलते हैं और उत्तर और दक्षिण दीवारों के भीतर कंक्रीट स्लैब फर्श के माध्यम से इंटीरियर एयर स्पेस के लिए पेटेंट किए जाते हैं, स्लैब के माध्यम से जोरदार हवा थर्मोसिपोनिंग अभी भी ऊर्ध्वाधर ट्रॉम्बे दीवार के रूप में होता है, पूरे घर में संचित गर्मी (और विपरीत प्रक्रिया द्वारा गर्मियों में घर को ठंडा करते हैं)।
काचडोरियन ने प्रदर्शित किया कि ऊष्मीय भंडारण की दीवारों की कमियों को ट्रोम्बे की दीवार को क्षैतिज रूप से लंबवत रूप से उन्मुख करके दूर किया जा सकता है।{{Sfn|Kachadorian|2006}} यदि ऊष्मीय भंडारण द्रव्यमान का निर्माण दीवार के रूप में हवादार कंक्रीट स्लैब फर्श के रूप में किया जाता है, तो यह घर में प्रवेश करने से सूरज की रोशनी को अवरुद्ध नहीं करता है ( ट्रोम्बे दीवार का सबसे स्पष्ट नुकसान ) लेकिन यह अभी भी डबल-क्लेज़ेड इक्वेटर के माध्यम से सीधे सूर्य के प्रकाश के लिए उजागर किया जा सकता है-फैसिंग विंडोज, जो रात में ऊष्मीय शटर या शेड्स द्वारा आगे अछूता हो सकता है।{{Sfn|Shurcliff|1980}} दिन के समय गर्मी पकड़ने में ट्रॉमब दीवार की समस्याग्रस्त देरी को समाप्त कर दिया गया है, क्योंकि गर्मी को दीवार के माध्यम से आंतरिक वायु क्षेत्र तक पहुंचने के लिए नहीं चलाया जाता है: इसमें से कुछ फर्श से तुरंत प्रतिबिंबित या फिर से विकिरण करते हैं। बशर्ते कि स्लैब में ट्रोम्बे दीवार जैसे वायु चैनल हैं, जो उत्तर-दक्षिण दिशा में इसके माध्यम से चलते हैं और उत्तर और दक्षिण दीवारों के भीतर कंक्रीट स्लैब फर्श के माध्यम से इंटीरियर एयर स्पेस के लिए पेटेंट किए जाते हैं, स्लैब के माध्यम से जोरदार हवा थर्मोसिपोनिंग अभी भी ऊर्ध्वाधर ट्रॉम्बे दीवार के रूप में होता है, पूरे घर में संचित गर्मी (और विपरीत प्रक्रिया द्वारा गर्मियों में घर को ठंडा करते हैं)।


ऊर्ध्वाधर ट्रॉम्बे की दीवारों की तुलना में निर्माण के लिए वेंटिलेटेड क्षैतिज स्लैब कम महंगा है, क्योंकि यह घर की नींव बनाता है जो किसी भी इमारत में आवश्यक खर्च है। स्लैब-ऑन-ग्रेड फाउंडेशन, अच्छी तरह से समझ में आने वाला और लागत-प्रभावी भवन घटक है ( विदेशी ट्रॉम्बे दीवार निर्माण के बजाय कंक्रीट-ब्रिक एयर चैनलों की परत को शामिल करने के द्वारा थोड़ा ही संशोधित किया गया है)। इस प्रकार के तापीय द्रव्यमान सौर वास्तुशिल्प का एकमात्र शेष ड्रॉबैक बेसमेंट की अनुपस्थिति है, जैसा कि किसी भी स्लैब-ऑन ग्रेड डिजाइन में है।
ऊर्ध्वाधर ट्रॉम्बे की दीवारों की तुलना में निर्माण के लिए वेंटिलेटेड क्षैतिज स्लैब कम महंगा है, क्योंकि यह घर की नींव बनाता है जो किसी भी इमारत में आवश्यक खर्च है। स्लैब-ऑन-ग्रेड फाउंडेशन, अच्छी तरह से समझ में आने वाला और लागत-प्रभावी भवन घटक है ( विदेशी ट्रॉम्बे दीवार निर्माण के बजाय कंक्रीट-ब्रिक एयर चैनलों की परत को सम्मिलित करने के द्वारा थोड़ा ही संशोधित किया गया है )। इस प्रकार के तापीय द्रव्यमान सौर वास्तुशिल्प का एकमात्र शेष ड्रॉबैक बेसमेंट की अनुपस्थिति है, जैसा कि किसी भी स्लैब-ऑन ग्रेड डिजाइन में है।


'''''काचडोरियन फ्लोर''' '' डिज़ाइन'' प्रत्यक्ष-लाभ '' निष्क्रिय सौर प्रणाली है, लेकिन इसका ऊष्मीय द्रव्यमान भी'' अप्रत्यक्ष '' हीटिंग (या कूलिंग) तत्व के रूप में काम करता है, रात में अपनी गर्मी दे रहा है। यह [[हाइब्रिड इलेक्ट्रिक वाहन]] की तरह वैकल्पिक चक्र हाइब्रिड ऊर्जा प्रणाली है।
'''''काचडोरियन फ्लोर''' '' डिज़ाइन'' प्रत्यक्ष-लाभ '' निष्क्रिय सौर प्रणाली है, लेकिन इसका ऊष्मीय द्रव्यमान भी'' अप्रत्यक्ष '' हीटिंग (या कूलिंग) तत्व के रूप में काम करता है, रात में अपनी गर्मी दे रहा है। यह [[हाइब्रिड इलेक्ट्रिक वाहन]] की तरह वैकल्पिक चक्र हाइब्रिड ऊर्जा प्रणाली है।


=== पृथक सौर प्रणाली ===
=== पृथक सौर प्रणाली ===
''पृथक '''लाभ निष्क्रिय सौर प्रणाली''' में, '' घटकों (जैसे, कलेक्टर और ऊष्मीय स्टोरेज) को इमारत के इनडोर क्षेत्र से अलग किया जाता है।{{Sfn|Wujek|2010}}
''पृथक '''लाभ निष्क्रिय सौर प्रणाली''' में, '' घटकों ( जैसे, कलेक्टर और ऊष्मीय भंडारण ) को इमारत के इनडोर क्षेत्र से अलग किया जाता है।{{Sfn|Wujek|2010}}


संलग्न सनस्पेस, जिसे कभी-कभी '''सौर कक्ष''' या '''सौरियम''' भी कहा जाता है, एक प्रकार का पृथक लाभ सौर प्रणाली है जिसमें गैलाकृत आंतरिक स्थान या कमरा होता है जो  इमारत का हिस्सा होता है या उससे जुड़ा होता है लेकिन जो मुख्य व्यस्त क्षेत्रों से पूरी तरह से बंद हो सकता है। यह संलग्न ग्रीन हाउस की तरह कार्य करता है जो प्रत्यक्ष-लाभ और अप्रत्यक्ष-लाभ प्रणाली विशेषताओं के संयोजन का उपयोग करता है। सनस्पेस को ग्रीनहाउस कहा जा सकता है और ग्रीनहाउस की तरह दिखाई देता है, लेकिन ग्रीन हाउस पौधों को विकसित करने के लिए डिज़ाइन किया गया है, जबकि सनस्पेस को इमारत को गर्मी और सौंदर्य प्रदान करने के लिए डिज़ाइन किया गया है। सनस्पेसेस बहुत लोकप्रिय निष्क्रिय डिजाइन तत्व हैं क्योंकि वे इमारत के जीवित क्षेत्रों का विस्तार करते हैं और पौधों और अन्य वनस्पति विकसित करने के लिए कमरा प्रदान करते हैं। यद्यपि, मध्यम और ठंडे जलवायु में, अत्यधिक ठंडे मौसम के दौरान पौधों को जमने से रोकने के लिए पूरक अंतरिक्ष हीटिंग की आवश्यकता होती है।
संलग्न सनस्पेस, जिसे कभी-कभी '''सौर कक्ष''' या '''सौरियम''' भी कहा जाता है, एक प्रकार का पृथक लाभ सौर प्रणाली है जिसमें गैलाकृत आंतरिक स्थान या कमरा होता है जो  इमारत का हिस्सा होता है या उससे जुड़ा होता है लेकिन जो मुख्य व्यस्त क्षेत्रों से पूरी तरह से बंद हो सकता है। यह संलग्न ग्रीन हाउस की तरह कार्य करता है जो प्रत्यक्ष-लाभ और अप्रत्यक्ष-लाभ प्रणाली विशेषताओं के संयोजन का उपयोग करता है। सनस्पेस को ग्रीनहाउस कहा जा सकता है और ग्रीनहाउस की तरह दिखाई देता है, लेकिन ग्रीन हाउस पौधों को विकसित करने के लिए डिज़ाइन किया गया है, जबकि सनस्पेस को इमारत को गर्मी और सौंदर्य प्रदान करने के लिए डिज़ाइन किया गया है। सनस्पेसेस बहुत लोकप्रिय निष्क्रिय डिजाइन तत्व हैं क्योंकि वे इमारत के जीवित क्षेत्रों का विस्तार करते हैं और पौधों और अन्य वनस्पति विकसित करने के लिए कमरा प्रदान करते हैं। यद्यपि, मध्यम और ठंडे जलवायु में, अत्यधिक ठंडे मौसम के दौरान पौधों को जमने से रोकने के लिए पूरक अंतरिक्ष हीटिंग की आवश्यकता होती है।


संलग्न सनस्पेस का दक्षिणी फेसिंग ग्लास एक प्रत्यक्ष-लाभ प्रणाली के रूप में सौर ऊर्जा एकत्र करता है। सबसे सरल सनस्पेस डिजाइन बिना किसी ओवरहेड ग्लेजिंग के ऊर्ध्वाधर विंडो को स्थापित करना है। धूप - झपकी की बहुतायत के कारण धूप - स्थान उच्च गर्मी लाभ और उच्च गर्मी हानि का अनुभव कर सकते हैं । यद्यपि, क्षैतिज और ढलवां ग्लेजिंग सर्दियों में अधिक गर्मी एकत्र करता है, लेकिन गर्मियों के महीनों के दौरान ओवरहीटिंग को रोकने के लिए इसे न्यूनतम किया जाता है। यद्यपि, ओवरहेड ग्लेजिंग सौंदर्यपरक रूप से सुखद हो सकता है, इन्सुलेटेड छत बेहतर थर्मल प्रदर्शन प्रदान करती है। दिन के उजाले की संभावना प्रदान करने के लिए रोशनदान का उपयोग किया जा सकता है। ऊर्ध्वाधर ग्लेजिंग सर्दियों में लाभ को अधिकतम कर सकता है, जब सूर्य का कोण कम होता है और गर्मियों के दौरान कम गर्मी लाभ प्राप्त करता है। ऊर्ध्वाधर ग्लास कम खर्चीला है, स्थापित करने और इन्सुलेट करने में आसान है और लीक, फॉगिंग, ब्रेकिंग और अन्य ग्लास विफलताओं के लिए प्रवण नहीं है। यदि गर्मियों में छायांकन प्रदान किया जाता है तो ऊर्ध्वाधर ग्लेज़िंग और कुछ ढलान वाले ग्लेज़िंग का संयोजन स्वीकार्य है। एक अच्छी तरह से डिज़ाइन किया गया ओवरहांग वह सब हो सकता है जो गर्मियों में ग्लेज़िंग को छाया देना आवश्यक है।
संलग्न सनस्पेस का दक्षिणी फेसिंग ग्लास एक प्रत्यक्ष-लाभ प्रणाली के रूप में सौर ऊर्जा एकत्र करता है। सबसे सरल सनस्पेस डिजाइन बिना किसी ओवरहेड ग्लेजिंग के ऊर्ध्वाधर विंडो को स्थापित करना है। धूप - झपकी की बहुतायत के कारण धूप - स्थान उच्च गर्मी लाभ और उच्च गर्मी हानि का अनुभव कर सकते हैं । यद्यपि, क्षैतिज और ढलवां ग्लेजिंग सर्दियों में अधिक गर्मी एकत्र करता है, लेकिन गर्मियों के महीनों के दौरान ओवरहीटिंग को रोकने के लिए इसे न्यूनतम किया जाता है। यद्यपि, ओवरहेड ग्लेजिंग सौंदर्यपरक रूप से सुखद हो सकता है, इन्सुलेटेड छत बेहतर तापीय प्रदर्शन प्रदान करती है। दिन के उजाले की संभावना प्रदान करने के लिए रोशनदान का उपयोग किया जा सकता है। ऊर्ध्वाधर ग्लेजिंग सर्दियों में लाभ को अधिकतम कर सकता है, जब सूर्य का कोण कम होता है और गर्मियों के दौरान कम गर्मी लाभ प्राप्त करता है। ऊर्ध्वाधर ग्लास कम खर्चीला है, स्थापित करने और इन्सुलेट करने में आसान है और लीक, फॉगिंग, ब्रेकिंग और अन्य ग्लास विफलताओं के लिए प्रवण नहीं है। यदि गर्मियों में छायांकन प्रदान किया जाता है तो ऊर्ध्वाधर ग्लेज़िंग और कुछ ढलान वाले ग्लेज़िंग का संयोजन स्वीकार्य है। एक अच्छी तरह से डिज़ाइन किया गया ओवरहांग वह सब हो सकता है जो गर्मियों में ग्लेज़िंग को छाया देना आवश्यक है।


गर्मी के नुकसान और लाभ के कारण होने वाले तापमान भिन्नता को ऊष्मीय द्रव्यमान और कम-उत्सर्जक खिड़कियों द्वारा संचालित किया जा सकता है। ऊष्मीय द्रव्यमान में चिनाई फर्श, घर की सीमा या पानी के कंटेनर की चिनाई की दीवार शामिल हो सकती है। भवन में गर्मी का वितरण छत और फर्श के स्तर के वेंट, खिड़कियां, दरवाजे या प्रशंसकों के माध्यम से पूरा किया जा सकता है। एक सामान्य डिजाइन में, लिविंग स्पेस से सटे सनस्पेस के पीछे स्थित ऊष्मीय द्रव्यमान दीवार अप्रत्यक्ष-लाभ ऊष्मीय द्रव्यमान दीवार की तरह काम करेगी। सनस्पेस में प्रवेश करने वाली सौर ऊर्जा को ऊष्मीय द्रव्यमान में बनाए रखा जाता है। सौर ऊर्जा को सनस्पेस के पीछे साझा द्रव्यमान की दीवार के माध्यम से और वेंट्स (जैसे कि एक अनियंत्रित ऊष्मीय स्टोरेज दीवार की तरह) या दीवार में उद्घाटन के माध्यम से कंडक्शन द्वारा भवन में अवगत कराया जाता है, जो संवहन द्वारा इनडोर स्पेस से सनस्पेस से एयरफ्लो की अनुमति देता है ( वेंटेड ऊष्मीय स्टोरेज वॉल की तरह)।
गर्मी के नुकसान और लाभ के कारण होने वाले तापमान भिन्नता को ऊष्मीय द्रव्यमान और कम-उत्सर्जक खिड़कियों द्वारा संचालित किया जा सकता है। ऊष्मीय द्रव्यमान में चिनाई फर्श, घर की सीमा या पानी के कंटेनर की चिनाई की दीवार सम्मिलित हो सकती है। भवन में गर्मी का वितरण छत और फर्श के स्तर के वेंट, खिड़कियां, दरवाजे या प्रशंसकों के माध्यम से पूरा किया जा सकता है। एक सामान्य डिजाइन में, लिविंग स्पेस से सटे सनस्पेस के पीछे स्थित ऊष्मीय द्रव्यमान दीवार अप्रत्यक्ष-लाभ ऊष्मीय द्रव्यमान दीवार की तरह काम करेगी। सनस्पेस में प्रवेश करने वाली सौर ऊर्जा को ऊष्मीय द्रव्यमान में बनाए रखा जाता है। सौर ऊर्जा को सनस्पेस के पीछे साझा द्रव्यमान की दीवार के माध्यम से और वेंट्स ( जैसे कि एक अनियंत्रित ऊष्मीय भंडारण दीवार की तरह ) या दीवार में उद्घाटन के माध्यम से कंडक्शन द्वारा भवन में अवगत कराया जाता है, जो संवहन द्वारा इनडोर स्पेस से सनस्पेस से एयरफ्लो की अनुमति देता है ( वेंटेड ऊष्मीय भंडारण वॉल की तरह )।


ठंडी जलवायु में, कांच के माध्यम से बाहर की ओर प्रवाहकीय नुकसान को कम करने के लिए डबल ग्लेज़िंग का उपयोग किया जाना चाहिए।रात के समय की गर्मी हानि, यद्यपि सर्दियों के महीनों के दौरान महत्वपूर्ण है, सनस्पेस में उतना आवश्यक नहीं है जितना कि प्रत्यक्ष लाभ प्रणालियों के साथ क्योंकि सनस्पेस को बाकी इमारत से बंद किया जा सकता है। समशीतोष्ण और ठंडी जलवायु में, रात में इमारत से सूर्य के स्थान को अलग करना महत्वपूर्ण है। इमारत और संलग्न सनस्पेस के बीच बड़े कांच के पैनल, फ्रेंच दरवाजे, या कांच के दरवाजों को फिसलने से खुले स्थान से जुड़े गर्मी के नुकसान के बिना खुली क्षमता बनाए रखेगा।
ठंडी जलवायु में, कांच के माध्यम से बाहर की ओर प्रवाहकीय नुकसान को कम करने के लिए डबल ग्लेज़िंग का उपयोग किया जाना चाहिए।रात के समय की गर्मी हानि, यद्यपि सर्दियों के महीनों के दौरान महत्वपूर्ण है, सनस्पेस में उतना आवश्यक नहीं है जितना कि प्रत्यक्ष लाभ प्रणालियों के साथ क्योंकि सनस्पेस को बाकी इमारत से बंद किया जा सकता है। समशीतोष्ण और ठंडी जलवायु में, रात में इमारत से सूर्य के स्थान को अलग करना महत्वपूर्ण है। इमारत और संलग्न सनस्पेस के बीच बड़े कांच के पैनल, फ्रेंच दरवाजे, या कांच के दरवाजों को फिसलने से खुले स्थान से जुड़े गर्मी के नुकसान के बिना खुली क्षमता बनाए रखेगा।
Line 212: Line 212:
चिनाई ऊष्मीय दीवार के साथ सनस्पेस को जलवायु के आधार पर तल क्षेत्र के प्रति ft<sup>2</sup> की ऊष्मीय द्रव्यमान दीवार की सतह के लगभग 0.3 ft<sup>2</sup> की आवश्यकता होगी। दीवार की मोटाई ऊष्मीय भंडारण दीवार के समान होनी चाहिए। यदि सूर्यस्थान और जीवित स्थान के बीच पानी की दीवार का उपयोग किया जाता है, तो फर्श क्षेत्र के प्रति ft<sup>2</sup> पर ऊष्मीय द्रव्यमान दीवार की सतह का लगभग 0.20 ft<sup>2</sup> गर्म किया जा रहा है (0.2 m<sup>2</sup> प्रति m<sup>2</sup> फर्श क्षेत्र)। अधिकांश जलवायु में, अधिक गर्म होने को रोकने के लिए गर्मियों के महीनों में वेंटिलेशन प्रणाली की आवश्यकता होती है। सामान्यतः गर्मी के ओवरहीटिंग के लिए विशेष सावधानियों के बिना सनस्पेस में बड़े ओवरहेड (होरिजोंटल) और पूर्व और पश्चिम फेसिंग ग्लास क्षेत्रों का उपयोग नहीं किया जाना चाहिए, जैसे हीट रिफ्लेक्टिंग ग्लास का उपयोग और ग्रीष्मकालीन-शेडिंग सिस्टम क्षेत्रों को प्रदान करना।
चिनाई ऊष्मीय दीवार के साथ सनस्पेस को जलवायु के आधार पर तल क्षेत्र के प्रति ft<sup>2</sup> की ऊष्मीय द्रव्यमान दीवार की सतह के लगभग 0.3 ft<sup>2</sup> की आवश्यकता होगी। दीवार की मोटाई ऊष्मीय भंडारण दीवार के समान होनी चाहिए। यदि सूर्यस्थान और जीवित स्थान के बीच पानी की दीवार का उपयोग किया जाता है, तो फर्श क्षेत्र के प्रति ft<sup>2</sup> पर ऊष्मीय द्रव्यमान दीवार की सतह का लगभग 0.20 ft<sup>2</sup> गर्म किया जा रहा है (0.2 m<sup>2</sup> प्रति m<sup>2</sup> फर्श क्षेत्र)। अधिकांश जलवायु में, अधिक गर्म होने को रोकने के लिए गर्मियों के महीनों में वेंटिलेशन प्रणाली की आवश्यकता होती है। सामान्यतः गर्मी के ओवरहीटिंग के लिए विशेष सावधानियों के बिना सनस्पेस में बड़े ओवरहेड (होरिजोंटल) और पूर्व और पश्चिम फेसिंग ग्लास क्षेत्रों का उपयोग नहीं किया जाना चाहिए, जैसे हीट रिफ्लेक्टिंग ग्लास का उपयोग और ग्रीष्मकालीन-शेडिंग सिस्टम क्षेत्रों को प्रदान करना।


ऊष्मीय द्रव्यमान की आंतरिक सतहों को रंग में गहरा होना चाहिए। चल इन्सुलेशन (जैसे, विंडो कवरिंग, शेड्स, शटर) का उपयोग सूरज के सेट और बादल के मौसम के दौरान सूर्य के स्थान पर गर्म हवा को फंसाने में मदद किया जा सकता है। गर्म दिनों के दौरान बंद होने पर, खिड़की के कवरिंग से सनस्पेस को ओवरहीटिंग से बचाने में मदद मिल सकती है।
ऊष्मीय द्रव्यमान की आंतरिक सतहों को रंग में गहरा होना चाहिए। चल इन्सुलेशन ( जैसे, विंडो कवरिंग, शेड्स, शटर ) का उपयोग सूरज के सेट और बादल के मौसम के दौरान सूर्य के स्थान पर गर्म हवा को फंसाने में मदद किया जा सकता है। गर्म दिनों के दौरान बंद होने पर, खिड़की के कवरिंग से सनस्पेस को ओवरहीटिंग से बचाने में मदद मिल सकती है।


सुविधा और दक्षता को अधिकतम करने के लिए, गैर-चश्मे की धूप की दीवारों, छत और नींव को अच्छी तरह से अछूता होना चाहिए। नींव की दीवार या स्लैब की परिधि को फ्रॉस्ट लाइन या स्लैब परिधि के आसपास अछूता होना चाहिए। समशीतोष्ण या ठंडी जलवायु में, सनस्पेस की पूर्व और पश्चिम की दीवारों को इंसुलेट (नो ग्लास) किया जाना चाहिए।
सुविधा और दक्षता को अधिकतम करने के लिए, गैर-चश्मे की धूप की दीवारों, छत और नींव को अच्छी तरह से अछूता होना चाहिए। नींव की दीवार या स्लैब की परिधि को फ्रॉस्ट लाइन या स्लैब परिधि के आसपास अछूता होना चाहिए। समशीतोष्ण या ठंडी जलवायु में, सनस्पेस की पूर्व और पश्चिम की दीवारों को इंसुलेट (नो ग्लास) किया जाना चाहिए।


== अतिरिक्त उपाय ==
== अतिरिक्त उपाय ==
रात में गर्मी के नुकसान को कम करने के लिए उपाय किए जाने चाहिए। विंडो कवरिंग या चल खिड़की इन्सुलेशन।
रात में गर्मी के नुकसान को कम करने के लिए विंडो कवरिंग या चल खिड़की इन्सुलेशन जैसे उपाय किए जाने चाहिए।


=== हीट स्टोरेज ===
=== हीट भंडारण ===
सूरज हर समय चमकता नहीं है। ऊष्म भंडारण या ऊष्मीय द्रव्यमान, भवन को गर्म रखता है जब सूरज इसे गर्म नहीं कर सकता है।
सूरज हर समय चमकता नहीं है। ऊष्म भंडारण या ऊष्मीय द्रव्यमान, भवन को गर्म रखता है जब सूरज इसे गर्म नहीं कर सकता है।


डायर्नल सौर घरों में, भंडारण एक या कुछ दिनों के लिए डिज़ाइन किया गया है। सामान्य विधि अनुकूलित-निर्मित ऊष्मीय द्रव्यमान है। इसमें ट्रॉम्ब दीवार, हवादार कंक्रीट का फर्श,{{Sfn|Kachadorian|2006|pp=26-43|loc=§3. The Solar Slab and Basic Solar Design}} कुंड, पानी की दीवार या छत तालाब शामिल है।<ref>{{cite journal|last1=Sharifi|first1=Ayyoob|last2=Yamagata|first2=Yoshiki|title=Roof ponds as passive heating and cooling systems: A systematic review|journal=Applied Energy|date=December 2015|volume=160|pages=336–357|doi=10.1016/j.apenergy.2015.09.061}}</ref> पृथ्वी के ऊष्मीय द्रव्यमान का उपयोग करना भी संभव है, या तो जैसा है या बैंकिंग द्वारा संरचना में शामिल किया जा सकता है या संरचनात्मक माध्यम के रूप में पृथ्वी का उपयोग किया जा सकता है।<ref>{{cite web|url=http://earthship.com/|title=अर्थशिप|website=earthship.com}}</ref>
डायर्नल सौर घरों में, भंडारण एक या कुछ दिनों के लिए डिज़ाइन किया गया है। सामान्य विधि अनुकूलित-निर्मित ऊष्मीय द्रव्यमान है। इसमें ट्रॉम्ब दीवार, हवादार कंक्रीट का फर्श,{{Sfn|Kachadorian|2006|pp=26-43|loc=§3. The Solar Slab and Basic Solar Design}} कुंड, पानी की दीवार या छत तालाब सम्मिलित है।<ref>{{cite journal|last1=Sharifi|first1=Ayyoob|last2=Yamagata|first2=Yoshiki|title=Roof ponds as passive heating and cooling systems: A systematic review|journal=Applied Energy|date=December 2015|volume=160|pages=336–357|doi=10.1016/j.apenergy.2015.09.061}}</ref> पृथ्वी के ऊष्मीय द्रव्यमान का उपयोग करना भी संभव है, या तो जैसा है या बैंकिंग द्वारा संरचना में सम्मिलित किया जा सकता है या संरचनात्मक माध्यम के रूप में पृथ्वी का उपयोग किया जा सकता है।<ref>{{cite web|url=http://earthship.com/|title=अर्थशिप|website=earthship.com}}</ref>


उपआर्कटिक क्षेत्रों में, या उन क्षेत्रों में जहां सौर लाभ के बिना लंबी अवधि होती है (उदाहरण के लिए ठंडे धुंध के सप्ताह), उद्देश्य से निर्मित ऊष्मीय द्रव्यमान बहुत महंगा है। डॉन स्टीफंस ने वार्षिक ताप भंडारण के लिए पर्याप्त ऊष्मीय द्रव्यमान के रूप में जमीन का उपयोग करने के लिए प्रायोगिक तकनीक का नेतृत्व किया। उनके डिजाइन घर के नीचे पृथक थर्मोसाइफन 3 मीटर चलाते हैं और 6 मीटर जलरोधक स्कर्ट के साथ जमीन को इन्सुलेट करते हैं।<ref>[http://greenershelter.org/TokyoPaper.pdf Annualized Geo-Solar Heating, Don Stephens]- Accessed 2009-02-05</ref>
उपआर्कटिक क्षेत्रों में, या उन क्षेत्रों में जहां सौर लाभ के बिना लंबी अवधि होती है ( उदाहरण के लिए ठंडे धुंध के सप्ताह ), उद्देश्य से निर्मित ऊष्मीय द्रव्यमान बहुत महंगा है। डॉन स्टीफंस ने वार्षिक ताप भंडारण के लिए पर्याप्त ऊष्मीय द्रव्यमान के रूप में जमीन का उपयोग करने के लिए प्रायोगिक तकनीक का नेतृत्व किया। उनके डिजाइन घर के नीचे पृथक थर्मोसाइफन 3 मीटर चलाते हैं और 6 मीटर जलरोधक स्कर्ट के साथ जमीन को इन्सुलेट करते हैं।<ref>[http://greenershelter.org/TokyoPaper.pdf Annualized Geo-Solar Heating, Don Stephens]- Accessed 2009-02-05</ref>
=== इन्सुलेशन ===
=== इन्सुलेशन ===
{{Main|भवन का इन्सुलेशन}}
{{Main|भवन का इन्सुलेशन}}
ऊष्मीय इन्सुलेशन या [[सुपरिंसुलेशन]] (प्रकार, प्लेसमेंट और राशि) गर्मी के अवांछित रिसाव को कम करता है।<ref name="autogenerated3" />  कुछ निष्क्रिय इमारतें वास्तव में स्ट्रॉ बेल निर्माण हैं।
ऊष्मीय इन्सुलेशन या [[सुपरिंसुलेशन]] ( प्रकार, प्लेसमेंट और राशि ) गर्मी के अवांछित रिसाव को कम करता है।<ref name="autogenerated3" />  कुछ निष्क्रिय इमारतें वास्तव में स्ट्रॉ बेल निर्माण हैं।


=== विशेष ग्लेज़िंग सिस्टम और विंडो कवरिंग ===
=== विशेष ग्लेज़िंग सिस्टम और विंडो कवरिंग ===
Line 233: Line 233:
{{Main|इन्सुलेटेड ग्लेजिंग|विंडो कवरिंग}}
{{Main|इन्सुलेटेड ग्लेजिंग|विंडो कवरिंग}}


प्रत्यक्ष सौर लाभ प्रणालियों की प्रभावशीलता इन्सुलेटिव (जैसे [[दोहरी चिकनाई|डबल ग्लेज़िंग]]), वर्णक्रमीय रूप से चयनात्मक ग्लेज़िंग (लो-ई), या मूवेबल विंडो इन्सुलेशन (विंडो क्विल्ट्स, बाइफोल्ड इंटीरियर इंसुलेशन शटर्स, शेड्स, आदि) द्वारा काफी बढ़ा दी जाती है।
प्रत्यक्ष सौर लाभ प्रणालियों की प्रभावशीलता इन्सुलेटिव (जैसे [[दोहरी चिकनाई|डबल ग्लेज़िंग]]), वर्णक्रमीय रूप से चयनात्मक ग्लेज़िंग (लो-ई), या मूवेबल विंडो इन्सुलेशन ( विंडो क्विल्ट्स, बाइफोल्ड इंटीरियर इंसुलेशन शटर्स, शेड्स, आदि ) द्वारा काफी बढ़ा दी जाती है।


सामान्यतः इक्वेटर-फेसिंग विंडोज को उन ग्लेजिंग कोटिंग्स को नियोजित नहीं करना चाहिए जो सौर लाभ को रोकते हैं।
सामान्यतः इक्वेटर-फेसिंग विंडोज को उन ग्लेजिंग कोटिंग्स को नियोजित नहीं करना चाहिए जो सौर लाभ को रोकते हैं।
Line 245: Line 245:


==== रूफ-एंगल ग्लास और रोशनदान ====
==== रूफ-एंगल ग्लास और रोशनदान ====
रोशनदान कठोर सीधे ओवरहेड सूर्य के प्रकाश को स्वीकार करते हैं <ref>{{cite web  | title = Florida Solar Energy Center – Skylights | url = http://www.fsec.ucf.edu/en/consumer/buildings/homes/windows/skylights.htm | access-date = 2011-03-29 }}</ref>  या तो क्षैतिज रूप से (एक सपाट छत) या छत की ढलान के समान कोण पर पिच करते हैं। कुछ मामलों में, सौर विकिरण की तीव्रता (और कठोर ग्लेयर) को बढ़ाने के लिए रिफ्लेक्टर के साथ क्षैतिज रोशनदान का उपयोग किया जाता है, जो घटना के छत के कोण पर निर्भर करता है। जब सर्दियों का सूर्य क्षितिज पर कम होता है तो अधिकांश सौर विकिरण छत एंगल्ड ग्लास के बंद को प्रतिबिंबित करता है (घटना का कोण लगभग छत से जुड़े ग्लास सुबह और दोपहर के समानांतर होता है)। जब गर्मियों का सूर्य ऊंचा होता है, तो यह छत से जुड़े कांच के लगभग लंबवत होता है, जो साल के गलत समय में सौर लाभ को अधिकतम करता है और सौर भट्टी की तरह कार्य करता है। प्राकृतिक संवहन (गर्म हवा बढ़ने) को कम करने के लिए स्काईलाइट को कवर किया जाना चाहिए और अच्छी तरह से तैयार किया जाना चाहिए, सर्दियों की रात में गर्मी का नुकसान, और गर्म वसंत/गर्म/फॉल दिनों के दौरान तीव्र सौर गर्मी का लाभ हैं।
रोशनदान कठोर सीधे ओवरहेड सूर्य के प्रकाश को स्वीकार करते हैं <ref>{{cite web  | title = Florida Solar Energy Center – Skylights | url = http://www.fsec.ucf.edu/en/consumer/buildings/homes/windows/skylights.htm | access-date = 2011-03-29 }}</ref>  या तो क्षैतिज रूप से (एक सपाट छत) या छत की ढलान के समान कोण पर पिच करते हैं। कुछ मामलों में, सौर विकिरण की तीव्रता (और कठोर ग्लेयर) को बढ़ाने के लिए रिफ्लेक्टर के साथ क्षैतिज रोशनदान का उपयोग किया जाता है, जो घटना के छत के कोण पर निर्भर करता है। जब सर्दियों का सूर्य क्षितिज पर कम होता है तो अधिकांश सौर विकिरण छत एंगल्ड ग्लास के बंद को प्रतिबिंबित करता है ( घटना का कोण लगभग छत से जुड़े ग्लास सुबह और दोपहर के समानांतर होता है )। जब गर्मियों का सूर्य ऊंचा होता है, तो यह छत से जुड़े कांच के लगभग लंबवत होता है, जो साल के गलत समय में सौर लाभ को अधिकतम करता है और सौर भट्टी की तरह कार्य करता है। प्राकृतिक संवहन (गर्म हवा बढ़ने) को कम करने के लिए स्काईलाइट को कवर किया जाना चाहिए और अच्छी तरह से तैयार किया जाना चाहिए, सर्दियों की रात में गर्मी का नुकसान, और गर्म वसंत/गर्म/फॉल दिनों के दौरान तीव्र सौर गर्मी का लाभ हैं।


इमारत का भूमध्य रेखा उत्तरी गोलार्ध में दक्षिण और दक्षिणी गोलार्ध में उत्तर की ओर है। भूमध्य रेखा से दूर होने वाली छतों पर रोशनदान ज्यादातर अप्रत्यक्ष रोशनी प्रदान करते हैं, गर्मी के दिनों को छोड़कर जब सूरज इमारत के गैर-इक्वेटर पक्ष (कुछ [[अक्षांशों]] पर) पर उठ सकता है। पूर्व की ओर की छत पर दी गई रोशनदान गर्मियों की सुबह में अधिकतम प्रत्यक्ष प्रकाश और सौर गर्मी का लाभ प्रदान करती हैं। दिन के सबसे गर्म हिस्से के दौरान वेस्ट फेसिंग रोशनदान दोपहर की धूप और गर्मी का लाभ प्रदान करती हैं।
इमारत का भूमध्य रेखा उत्तरी गोलार्ध में दक्षिण और दक्षिणी गोलार्ध में उत्तर की ओर है। भूमध्य रेखा से दूर होने वाली छतों पर रोशनदान ज्यादातर अप्रत्यक्ष रोशनी प्रदान करते हैं, गर्मी के दिनों को छोड़कर जब सूरज इमारत के गैर-इक्वेटर पक्ष (कुछ [[अक्षांशों]] पर) पर उठ सकता है। पूर्व की ओर की छत पर दी गई रोशनदान गर्मियों की सुबह में अधिकतम प्रत्यक्ष प्रकाश और सौर गर्मी का लाभ प्रदान करती हैं। दिन के सबसे गर्म हिस्से के दौरान वेस्ट फेसिंग रोशनदान दोपहर की धूप और गर्मी का लाभ प्रदान करती हैं।


कुछ रोशनदान में महंगा ग्लेजिंग होता है जो आंशिक रूप से ग्रीष्मकालीन सौर गर्मी के लाभ को कम करता है, जबकि अभी भी कुछ दृश्य प्रकाश संचरण की अनुमति देता है। यद्यपि, यदि दृश्य प्रकाश इसके माध्यम से गुजर सकता है, तो कुछ रेडिएंट हीट गेन (वे दोनों विद्युत चुम्बकीय विकिरण तरंगें हैं) कर सकते हैं।
कुछ रोशनदान में महंगा ग्लेजिंग होता है जो आंशिक रूप से ग्रीष्मकालीन सौर गर्मी के लाभ को कम करता है, जबकि अभी भी कुछ दृश्य प्रकाश संचरण की अनुमति देता है। यद्यपि, यदि दृश्य प्रकाश इसके माध्यम से गुजर सकता है, तो कुछ रेडिएंट हीट गेन ( वे दोनों विद्युत चुम्बकीय विकिरण तरंगें हैं ) कर सकते हैं।


आप आंशिक रूप से अवांछित छत-कोण-ग्लेज़िंग समर सौर ऊर्जा लाभ में से कुछ को कम कर सकते हैं, जो कि पर्णपाती (पत्ती-शेडिंग) पेड़ों की छाया में एक रोशनदान स्थापित कर सकते हैं, या स्काईलाइट के अंदर या बाहर चल अछूता अपारदर्शी खिड़की को जोड़कर जोड़कर कर सकते हैं। यह गर्मियों में दिन के उजाले के लाभ को समाप्त कर देगा। यदि पेड़ के अंग छत के ऊपर लटकते हैं, तो वे बारिश के गटर में पत्तियों के साथ समस्याओं को बढ़ाएंगे, संभवतः छत-हानिकारक बर्फ बांध (छत), छत के जीवन को छोटा करते हैं और अपनी अटारी में प्रवेश करने के लिए कीटों के लिए आसान रास्ता प्रदान करते हैं। रोशनदान पर पत्तियां और टहनियाँ बिना किसी अपचीय, साफ करने में मुश्किल होती हैं और हवा के तूफानों में ग्लेज़िंग टूटने के जोखिम को बढ़ा सकती हैं।
आप आंशिक रूप से अवांछित छत-कोण-ग्लेज़िंग समर सौर ऊर्जा लाभ में से कुछ को कम कर सकते हैं, जो कि पर्णपाती (पत्ती-शेडिंग) पेड़ों की छाया में एक रोशनदान स्थापित कर सकते हैं, या स्काईलाइट के अंदर या बाहर चल अछूता अपारदर्शी खिड़की को जोड़कर जोड़कर कर सकते हैं। यह गर्मियों में दिन के उजाले के लाभ को समाप्त कर देगा। यदि पेड़ के अंग छत के ऊपर लटकते हैं, तो वे बारिश के गटर में पत्तियों के साथ समस्याओं को बढ़ाएंगे, संभवतः छत-हानिकारक बर्फ बांध (छत), छत के जीवन को छोटा करते हैं और अपनी अटारी में प्रवेश करने के लिए कीटों के लिए आसान रास्ता प्रदान करते हैं। रोशनदान पर पत्तियां और टहनियाँ बिना किसी अपचीय, साफ करने में मुश्किल होती हैं और हवा के तूफानों में ग्लेज़िंग टूटने के जोखिम को बढ़ा सकती हैं।
Line 257: Line 257:
रोशनदान दिन के उजाले को प्रदान करती हैं। अधिकांश अनुप्रयोगों में उनका एकमात्र दृष्टिकोण अनिवार्य रूप से सीधे ऊपर है। अच्छी तरह से इंसुलेटेड लाइट ट्यूब स्काईलाइट का उपयोग किए बिना उत्तरी कमरों में दिन के उजाले को ला सकते हैं। निष्क्रिय-सौर ग्रीनहाउस इमारत के भूमध्य रेखा के किनारे के लिए काफी दिन का प्रकाश प्रदान करता है।
रोशनदान दिन के उजाले को प्रदान करती हैं। अधिकांश अनुप्रयोगों में उनका एकमात्र दृष्टिकोण अनिवार्य रूप से सीधे ऊपर है। अच्छी तरह से इंसुलेटेड लाइट ट्यूब स्काईलाइट का उपयोग किए बिना उत्तरी कमरों में दिन के उजाले को ला सकते हैं। निष्क्रिय-सौर ग्रीनहाउस इमारत के भूमध्य रेखा के किनारे के लिए काफी दिन का प्रकाश प्रदान करता है।


इन्फ्रारेड थर्मोग्राफी रंग थर्मल इमेजिंग कैमरा (औपचारिक ऊर्जा ऑडिट में उपयोग किया जाता है) छत से जुड़े ग्लास के ऋणात्मक ऊष्मीय प्रभाव या ठंडी सर्दियों की रात या गर्म गर्मी के दिन स्काईलाइट का तुरंत पता लगा सकता है।
इन्फ्रारेड थर्मोग्राफी रंग तापीय इमेजिंग कैमरा (औपचारिक ऊर्जा ऑडिट में उपयोग किया जाता है) छत से जुड़े ग्लास के ऋणात्मक ऊष्मीय प्रभाव या ठंडी सर्दियों की रात या गर्म गर्मी के दिन स्काईलाइट का तुरंत पता लगा सकता है।


अमेरिकी ऊर्जा विभाग कहता है: "ऊर्ध्वाधर ग्लेज़िंग सनस्पेस के लिए समग्र सर्वोत्तम विकल्प है।"<ref>{{cite web  | title = U.S. Department of Energy – Energy Efficiency and Renewable Energy – Sunspace Orientation and Glazing Angles | url = http://www.energysavers.gov/your_home/designing_remodeling/index.cfm/mytopic=10320 | access-date = 2011-03-28 }}</ref> निष्क्रिय सौर सनस्पेस के लिए रूफ-एंगल्ड ग्लास और साइडवॉल ग्लास की सिफारिश नहीं की जाती है।
अमेरिकी ऊर्जा विभाग कहता है: "ऊर्ध्वाधर ग्लेज़िंग सनस्पेस के लिए समग्र सर्वोत्तम विकल्प है।"<ref>{{cite web  | title = U.S. Department of Energy – Energy Efficiency and Renewable Energy – Sunspace Orientation and Glazing Angles | url = http://www.energysavers.gov/your_home/designing_remodeling/index.cfm/mytopic=10320 | access-date = 2011-03-28 }}</ref> निष्क्रिय सौर सनस्पेस के लिए रूफ-एंगल्ड ग्लास और साइडवॉल ग्लास की सिफारिश नहीं की जाती है।


U.S. DOE ने छत से जुड़े ग्लेज़िंग के लिए ड्रॉबैक की व्याख्या की: कांच और प्लास्टिक में बहुत कम संरचनात्मक ताकत होती है। जब क्षैतिज रूप से स्थापित किया जाता है, तो ग्लास (या प्लास्टिक) का अपना वजन होता है क्योंकि केवल छोटा क्षेत्र (ग्लाइंग का शीर्ष किनारा) गुरुत्वाकर्षण के अधीन होता है। जैसा कि ग्लास ऊर्ध्वाधर धुरी से नीचे झुकता है तथापि, ग्लेज़िंग के बढ़े हुए क्षेत्र (अब स्लाइड क्रॉस-सेक्शन) को गुरुत्वाकर्षण की शक्ति को सहन करना पड़ता है। कांच भी भंगुर होता है; यह टूटने से पहले बहुत लचीला नहीं होता। इसका मुकाबला करने के लिए, आपको सामान्यतः ग्लेज़िंग की मोटाई को बढ़ाना चाहिए या ग्लेज़िंग को पकड़ने के लिए संरचनात्मक समर्थन की संख्या को बढ़ाना चाहिए। दोनों समग्र लागत में वृद्धि करते हैं, और उत्तरार्द्ध सौर लाभ की मात्रा को सनस्पेस में कम कर देगा।
U.S. DOE ने छत से जुड़े ग्लेज़िंग के लिए ड्रॉबैक की व्याख्या की: कांच और प्लास्टिक में बहुत कम संरचनात्मक ताकत होती है। जब क्षैतिज रूप से स्थापित किया जाता है, तो ग्लास (या प्लास्टिक) का अपना वजन होता है क्योंकि केवल छोटा क्षेत्र ( ग्लाइंग का शीर्ष किनारा ) गुरुत्वाकर्षण के अधीन होता है। जैसा कि ग्लास ऊर्ध्वाधर धुरी से नीचे झुकता है तथापि, ग्लेज़िंग के बढ़े हुए क्षेत्र (अब स्लाइड क्रॉस-सेक्शन) को गुरुत्वाकर्षण की शक्ति को सहन करना पड़ता है। कांच भी भंगुर होता है; यह टूटने से पहले बहुत लचीला नहीं होता। इसका मुकाबला करने के लिए, आपको सामान्यतः ग्लेज़िंग की मोटाई को बढ़ाना चाहिए या ग्लेज़िंग को पकड़ने के लिए संरचनात्मक समर्थन की संख्या को बढ़ाना चाहिए। दोनों समग्र लागत में वृद्धि करते हैं, और उत्तरार्द्ध सौर लाभ की मात्रा को सनस्पेस में कम कर देगा।


स्लोप्ड ग्लेज़िंग के साथ एक और आम समस्या मौसम के प्रति इसका बढ़ता जोखिम है। तेज धूप में छत के कोण वाले कांच पर अच्छी सील बनाए रखना मुश्किल है। ओलावृष्टि, ओलावृष्टि, हिमपात और हवा भौतिक विफलता का कारण बन सकते हैं। रहने वालों की सुरक्षा के लिए, नियामक एजेंसियों को सामान्यतः स्लोप्ड ग्लास की आवश्यकता होती है जो सेफ्टी ग्लास, लेमिनेटेड या उसके संयोजन से बना हो, जो सौर लाभ क्षमता को कम करता है। क्राउन प्लाजा होटल ऑरलैंडो एयरपोर्ट सनस्पेस पर छत के कोण वाले अधिकांश कांच एक ही आंधी में नष्ट हो गए थेl रूफ-एंगल ग्लास निर्माण लागत बढ़ाता है, और बीमा प्रीमियम बढ़ा सकता है। रूफ-एंगल ग्लास की तुलना में वर्टिकल ग्लास मौसम की क्षति के लिए कम संवेदनशील होता है।
स्लोप्ड ग्लेज़िंग के साथ एक और आम समस्या मौसम के प्रति इसका बढ़ता जोखिम है। तेज धूप में छत के कोण वाले कांच पर अच्छी सील बनाए रखना मुश्किल है। ओलावृष्टि, ओलावृष्टि, हिमपात और हवा भौतिक विफलता का कारण बन सकते हैं। रहने वालों की सुरक्षा के लिए, नियामक एजेंसियों को सामान्यतः स्लोप्ड ग्लास की आवश्यकता होती है जो सेफ्टी ग्लास, लेमिनेटेड या उसके संयोजन से बना हो, जो सौर लाभ क्षमता को कम करता है। क्राउन प्लाजा होटल ऑरलैंडो एयरपोर्ट सनस्पेस पर छत के कोण वाले अधिकांश कांच एक ही आंधी में नष्ट हो गए थेl रूफ-एंगल ग्लास निर्माण लागत बढ़ाता है, और बीमा प्रीमियम बढ़ा सकता है। रूफ-एंगल ग्लास की तुलना में वर्टिकल ग्लास मौसम की क्षति के लिए कम संवेदनशील होता है।
Line 278: Line 278:
बहुत अधिक इक्वेटोरियल फेसिंग ग्लास के साथ डिजाइन के परिणामस्वरूप अत्यधिक सर्दी, वसंत, या पतझड़ के दिन गर्म, साल के निश्चित समय पर अपरिवर्तनीय रूप से उज्ज्वल रहने के स्थान और सर्दियों की रात और गर्मियों के दिनों में अत्यधिक ऊष्म स्थानांतरण हो सकता है।
बहुत अधिक इक्वेटोरियल फेसिंग ग्लास के साथ डिजाइन के परिणामस्वरूप अत्यधिक सर्दी, वसंत, या पतझड़ के दिन गर्म, साल के निश्चित समय पर अपरिवर्तनीय रूप से उज्ज्वल रहने के स्थान और सर्दियों की रात और गर्मियों के दिनों में अत्यधिक ऊष्म स्थानांतरण हो सकता है।


यद्यपि सूर्य एक ही ऊंचाई पर है, फिर भी सोलस्टिस से पहले और बाद में, तापन और शीतलन आवश्यकताएं काफी अलग हैं। पृथ्वी की सतह पर ऊष्मा का भंडारण "थर्मल लैग" का कारण बनता है। परिवर्तनशील बादल आवरण सौर लाभ क्षमता को प्रभावित करता है। इसका मतलब यह है कि अक्षांश-विशिष्ट फिक्स्ड विंडो ओवरहैंग्स जबकि महत्वपूर्ण हैं, पूर्ण मौसमी सौर लाभ नियंत्रण समाधान नहीं हैं।
यद्यपि सूर्य एक ही ऊंचाई पर है, फिर भी सोलस्टिस से पहले और बाद में, तापन और शीतलन आवश्यकताएं काफी अलग हैं। पृथ्वी की सतह पर ऊष्मा का भंडारण "तापीय लैग" का कारण बनता है। परिवर्तनशील बादल आवरण सौर लाभ क्षमता को प्रभावित करता है। इसका मतलब यह है कि अक्षांश-विशिष्ट फिक्स्ड विंडो ओवरहैंग्स जबकि महत्वपूर्ण हैं, पूर्ण मौसमी सौर लाभ नियंत्रण समाधान नहीं हैं।


नियंत्रण तंत्र (जैसे मैनुअल-या-मोटराइज्ड इंटीरियर इंसुलेटेड ड्रेप्स, शटर्स, एक्सटीरियर रोल-डाउन शेड स्क्रीन, या रिट्रेक्टेबल टेंट) थर्मल लैग या क्लाउड कवर के कारण होने वाले अंतर की भरपाई कर सकते हैं, और दैनिक / प्रति घंटा सौर लाभ आवश्यकता विविधताओं को नियंत्रित करने में मदद करते हैं।  
नियंत्रण तंत्र ( जैसे मैनुअल-या-मोटराइज्ड इंटीरियर इंसुलेटेड ड्रेप्स, शटर्स, एक्सटीरियर रोल-डाउन शेड स्क्रीन, या रिट्रेक्टेबल टेंट ) तापीय लैग या क्लाउड कवर के कारण होने वाले अंतर की भरपाई कर सकते हैं, और दैनिक / प्रति घंटा सौर लाभ आवश्यकता विविधताओं को नियंत्रित करने में मदद करते हैं।  


[[घर स्वचालन]] सिस्टम जो तापमान, धूप, दिन के समय और कमरे में रहने की निगरानी करता है, मोटराइज्ड विंडो-शेडिंग-एंड-इंसुलेशन उपकरणों को ठीक से नियंत्रित कर सकता है।
[[घर स्वचालन]] सिस्टम जो तापमान, धूप, दिन के समय और कमरे में रहने की निगरानी करता है, मोटराइज्ड विंडो-शेडिंग-एंड-इंसुलेशन उपकरणों को ठीक से नियंत्रित कर सकता है।
Line 287: Line 287:
सामग्री और रंगों को सौर ताप ऊर्जा को प्रतिबिंबित या अवशोषित करने के लिए चुना जा सकता है। परावर्तन या अवशोषण के अपने ताप विकिरण गुणों को निर्धारित करने के लिए विद्युत चुम्बकीय विकिरण के रंग पर सूचना का उपयोग विकल्पों की सहायता कर सकता है।
सामग्री और रंगों को सौर ताप ऊर्जा को प्रतिबिंबित या अवशोषित करने के लिए चुना जा सकता है। परावर्तन या अवशोषण के अपने ताप विकिरण गुणों को निर्धारित करने के लिए विद्युत चुम्बकीय विकिरण के रंग पर सूचना का उपयोग विकल्पों की सहायता कर सकता है।


देखें/CEC-500-2006-067.PDF लॉरेंस बर्कले नेशनल लेबोरेटरी और ओक रिज नेशनल लेबोरेटरी: कूल कलर्स]
देखें / CEC-500-2006-067.PDF लॉरेंस बर्कले नेशनल लेबोरेटरी और ओक रिज नेशनल लेबोरेटरी: कूल कलर्स ]


ठंडे मौसम में कम सर्दियों के दिनों के साथ प्रत्यक्ष-लाभ प्रणालियां इक्वेटर-फेसिंग खिड़कियों का उपयोग करते हुए वास्तव में बेहतर प्रदर्शन कर सकते हैं जब बर्फ जमीन को कवर करती है, क्योंकि प्रतिबिंबित और सीधे धूप घर में प्रवेश करेगी और गर्मी के रूप में कब्जा कर लिया जाता है।{{Sfn|Kachadorian|2006|p=42,90}}
ठंडे मौसम में कम सर्दियों के दिनों के साथ प्रत्यक्ष-लाभ प्रणालियां इक्वेटर-फेसिंग खिड़कियों का उपयोग करते हुए वास्तव में बेहतर प्रदर्शन कर सकते हैं जब बर्फ जमीन को कवर करती है, क्योंकि प्रतिबिंबित और सीधे धूप घर में प्रवेश करेगी और गर्मी के रूप में कब्जा कर लिया जाता है।{{Sfn|Kachadorian|2006|p=42,90}}
Line 293: Line 293:
{{Main|ऊर्जा कुशल परिदृश्य}}
{{Main|ऊर्जा कुशल परिदृश्य}}


सजग निष्क्रिय सौर विकल्पों के लिए [[ऊर्जा-कुशल भूनिर्माण]] सामग्री में [[हार्डस्केप]] निर्माण सामग्री और "[[सोफ्टस्केप]]" पौधे शामिल हैं। लताओं के साथ पेड़ों, [[हेज (बाधा)|हेज]] और ट्रेलिस-पेर्गोला सुविधाओं के चयन के लिए लैंडस्केप डिजाइन सिद्धांतों का उपयोग; सभी का उपयोग समर शेडिंग बनाने के लिए किया जा सकता है। सर्दियों के सौर लाभ के लिए पर्णपाती पौधों का उपयोग करना वांछनीय है जो शरद ऋतु में अपने पत्ते गिराते हैं, साल भर निष्क्रिय सौर लाभ देते हैं। गैर-पर्णपाती [[सदाबहार]] झाड़ियाँ और पेड़ सर्दियों की ठंडी हवा से सुरक्षा और आश्रय बनाने के लिए, अलग-अलग ऊँचाई और दूरी पर विंडब्रेक हो सकते हैं। प्रकृति आकार उपयुक्त और सूखा सहिष्णु पौधों की देशी प्रजातियों, ड्रिप [[सिंचाई]], खच्चर और [[कार्बनिक बागवानी|जैविक बागवानी]] प्रथाओं के साथ [[लैंडस्केप प्रकाश व्यवस्था]] और जल-गहन सिंचाई, गैस संचालित उद्यान उपकरण की आवश्यकता को कम या समाप्त करती है और लैंडफिल अपशिष्ट पदचिह्न को कम करती है।  
सजग निष्क्रिय सौर विकल्पों के लिए [[ऊर्जा-कुशल भूनिर्माण]] सामग्री में [[हार्डस्केप]] निर्माण सामग्री और " [[सोफ्टस्केप]] " पौधे सम्मिलित हैं। लताओं के साथ पेड़ों, [[हेज (बाधा)|हेज]] और ट्रेलिस-पेर्गोला सुविधाओं के चयन के लिए लैंडस्केप डिजाइन सिद्धांतों का उपयोग; सभी का उपयोग समर शेडिंग बनाने के लिए किया जा सकता है। सर्दियों के सौर लाभ के लिए पर्णपाती पौधों का उपयोग करना वांछनीय है जो शरद ऋतु में अपने पत्ते गिराते हैं, साल भर निष्क्रिय सौर लाभ देते हैं। गैर-पर्णपाती [[सदाबहार]] झाड़ियाँ और पेड़ सर्दियों की ठंडी हवा से सुरक्षा और आश्रय बनाने के लिए, अलग-अलग ऊँचाई और दूरी पर विंडब्रेक हो सकते हैं। प्रकृति आकार उपयुक्त और सूखा सहिष्णु पौधों की देशी प्रजातियों, ड्रिप [[सिंचाई]], खच्चर और [[कार्बनिक बागवानी|जैविक बागवानी]] प्रथाओं के साथ [[लैंडस्केप प्रकाश व्यवस्था]] और जल-गहन सिंचाई, गैस संचालित उद्यान उपकरण की आवश्यकता को कम या समाप्त करती है और लैंडफिल अपशिष्ट पदचिह्न को कम करती है।  
*स्थायी बागवानी
*स्थायी बागवानी
*[[स्थायी भूनिर्माण]]
*[[स्थायी भूनिर्माण]]
Line 305: Line 305:
[[निष्क्रिय सौर प्रकाश व्यवस्था]] तकनीक अंदरूनी के लिए [[दिन की रोशनी]] का लाभ उठाती है और इसलिए कृत्रिम प्रकाश प्रणालियों पर निर्भरता को कम करती है।
[[निष्क्रिय सौर प्रकाश व्यवस्था]] तकनीक अंदरूनी के लिए [[दिन की रोशनी]] का लाभ उठाती है और इसलिए कृत्रिम प्रकाश प्रणालियों पर निर्भरता को कम करती है।


यह प्रकाश एकत्र करने के लिए विंडो अनुभागों के सावधानीपूर्वक निर्माण डिजाइन, अभिविन्यास और प्लेसमेंट द्वारा हासिल किया जा सकता है। अन्य मौलिक समाधानों में इमारत के इंटीरियर में दिन के उजाले को स्वीकार करने के लिए प्रतिबिंबित सतहों का उपयोग शामिल है। विंडो खंडों को पर्याप्त आकार दिया जाना चाहिए और ओवर-ल्यूमिनेशन से बचने के लिए ब्रिस सोलिल, एवनिंग, अच्छी तरह से रखे पेड़, ग्लास कोटिंग और अन्य निष्क्रिय और सक्रिय उपकरणों के साथ परिरक्षित किया जा सकता है। <ref name="autogenerated1">Chiras, D. The Solar House: Passive Heating and Cooling. Chelsea Green Publishing Company; 2002.</ref>
यह प्रकाश एकत्र करने के लिए विंडो अनुभागों के सावधानीपूर्वक निर्माण डिजाइन, अभिविन्यास और प्लेसमेंट द्वारा हासिल किया जा सकता है। अन्य मौलिक समाधानों में इमारत के इंटीरियर में दिन के उजाले को स्वीकार करने के लिए प्रतिबिंबित सतहों का उपयोग सम्मिलित है। विंडो खंडों को पर्याप्त आकार दिया जाना चाहिए और ओवर-ल्यूमिनेशन से बचने के लिए ब्रिस सोलिल, एवनिंग, अच्छी तरह से रखे पेड़, ग्लास कोटिंग और अन्य निष्क्रिय और सक्रिय उपकरणों के साथ परिरक्षित किया जा सकता है। <ref name="autogenerated1">Chiras, D. The Solar House: Passive Heating and Cooling. Chelsea Green Publishing Company; 2002.</ref>


कई खिड़की प्रणालियों के लिए एक और प्रमुख मुद्दा यह है कि वे अत्यधिक ऊष्मीय लाभ या गर्मी हानि के संभावित असुरक्षित स्थल हो सकते हैं। जबकि हाई माउंटेड क्लीरेस्टरी विंडो और पारंपरिक [[स्काईलाइट (खिड़की)]] इमारत के खराब उन्मुख वर्गों में दिन के उजाले को पेश कर सकते हैं, लेकिन अवांछित गर्मी हस्तांतरण को नियंत्रित करना मुश्किल हो सकता है।<ref>{{cite web|url=http://www.direct.gov.uk/en/Environmentandgreenerliving/Greenerhome/DG_064374 |title=[ARCHIVED CONTENT&#93; Insulating and heating your home efficiently : Directgov – Environment and greener living |publisher=Direct.gov.uk |access-date=2010-03-16}}</ref><ref>{{cite web|url=http://allwoodwork.com/article/homeimprovement/reduce_your_heating_bills.html|archive-url=https://web.archive.org/web/20100917055254/http://allwoodwork.com/article/homeimprovement/reduce_your_heating_bills.html|archive-date=2010-09-17 |title=Reduce Your Heating Bills This Winter – Overlooked Sources of Heat Loss in the Home |publisher=Allwoodwork.com |date=2003-02-14 |access-date=2010-03-16}}</ref> इस प्रकार, कृत्रिम प्रकाश व्यवस्था को कम करके संचित की जाने वाली ऊर्जा प्रायः ऊष्मीय आराम को बनाए रखने के लिए [[एचवीएसी|HVAC]] सिस्टम के संचालन के लिए आवश्यक ऊर्जा से ऑफसेट से अधिक होती है।
कई खिड़की प्रणालियों के लिए एक और प्रमुख मुद्दा यह है कि वे अत्यधिक ऊष्मीय लाभ या गर्मी हानि के संभावित असुरक्षित स्थल हो सकते हैं। जबकि हाई माउंटेड क्लीरेस्टरी विंडो और पारंपरिक [[स्काईलाइट (खिड़की)]] इमारत के खराब उन्मुख वर्गों में दिन के उजाले को पेश कर सकते हैं, लेकिन अवांछित गर्मी हस्तांतरण को नियंत्रित करना मुश्किल हो सकता है।<ref>{{cite web|url=http://www.direct.gov.uk/en/Environmentandgreenerliving/Greenerhome/DG_064374 |title=[ARCHIVED CONTENT&#93; Insulating and heating your home efficiently : Directgov – Environment and greener living |publisher=Direct.gov.uk |access-date=2010-03-16}}</ref><ref>{{cite web|url=http://allwoodwork.com/article/homeimprovement/reduce_your_heating_bills.html|archive-url=https://web.archive.org/web/20100917055254/http://allwoodwork.com/article/homeimprovement/reduce_your_heating_bills.html|archive-date=2010-09-17 |title=Reduce Your Heating Bills This Winter – Overlooked Sources of Heat Loss in the Home |publisher=Allwoodwork.com |date=2003-02-14 |access-date=2010-03-16}}</ref> इस प्रकार, कृत्रिम प्रकाश व्यवस्था को कम करके संचित की जाने वाली ऊर्जा प्रायः ऊष्मीय आराम को बनाए रखने के लिए [[एचवीएसी]] सिस्टम के संचालन के लिए आवश्यक ऊर्जा से ऑफसेट से अधिक होती है।


इसे संबोधित करने के लिए विभिन्न तरीकों को नियोजित किया जा सकता है, लेकिन विंडो कवरिंग, इंसुलेटेड ग्लेज़िंग और उपन्यास सामग्री जैसे कि एयरगेल अर्ध-पारदर्शी इन्सुलेशन, दीवारों या छत में एम्बेडेड [[प्रकाशित तंतु]], या [https://web.archive.org/web तक सीमित नहीं है।/20130701184144/http://www.ornl.gov/sci/solar/ हाइब्रिड सौर प्रकाश ओक रिज राष्ट्रीय प्रयोगशाला में]।
इसे संबोधित करने के लिए विभिन्न तरीकों को नियोजित किया जा सकता है, लेकिन विंडो कवरिंग, इंसुलेटेड ग्लेज़िंग और उपन्यास सामग्री जैसे कि एयरगेल अर्ध-पारदर्शी इन्सुलेशन, दीवारों या छत में एम्बेडेड [[प्रकाशित तंतु]], या [https://web.archive.org/web तक सीमित नहीं है।/20130701184144/http://www.ornl.gov/sci/solar/ हाइब्रिड सौर प्रकाश ओक रिज राष्ट्रीय प्रयोगशाला में]।
Line 318: Line 318:
घरेलू उपयोग के लिए पानी को गर्म करने के लिए सौर ऊष्मीय ऊर्जा का उपयोग करने के कई तरीके हैं। अलग-अलग सक्रिय-और-पास करने वाले सौर गर्म पानी की प्रौद्योगिकियों में अलग-अलग स्थान-विशिष्ट आर्थिक [[लागत लाभ विश्लेषण]] निहितार्थ हैं।
घरेलू उपयोग के लिए पानी को गर्म करने के लिए सौर ऊष्मीय ऊर्जा का उपयोग करने के कई तरीके हैं। अलग-अलग सक्रिय-और-पास करने वाले सौर गर्म पानी की प्रौद्योगिकियों में अलग-अलग स्थान-विशिष्ट आर्थिक [[लागत लाभ विश्लेषण]] निहितार्थ हैं।


मौलिक निष्क्रिय सौर गर्म पानी के ताप में कोई पंप या कुछ भी विद्युत शामिल नहीं है। यह उन जलवायु में बहुत ही प्रभावी है जहां लंबे समय तक उप-ठंड, या बहुत बादल छाए रहते हैं, मौसम की स्थिति नहीं होती है।<ref>Brian Norton (2011) Solar Water Heaters: A Review of Systems Research and Design Innovation, Green. 1, 189–206, ISSN (Online) 1869-8778</ref> अन्य सक्रिय सौर जल ताप प्रौद्योगिकियां, आदि कुछ स्थानों के लिए अधिक उपयुक्त हो सकती हैं।
मौलिक निष्क्रिय सौर गर्म पानी के ताप में कोई पंप या कुछ भी विद्युत सम्मिलित नहीं है। यह उन जलवायु में बहुत ही प्रभावी है जहां लंबे समय तक उप-ठंड, या बहुत बादल छाए रहते हैं, मौसम की स्थिति नहीं होती है।<ref>Brian Norton (2011) Solar Water Heaters: A Review of Systems Research and Design Innovation, Green. 1, 189–206, ISSN (Online) 1869-8778</ref> अन्य सक्रिय सौर जल ताप प्रौद्योगिकियां, आदि कुछ स्थानों के लिए अधिक उपयुक्त हो सकती हैं।


सक्रिय सौर गर्म पानी होना संभव है जो "ऑफ ग्रिड" होने में भी सक्षम है और स्थायी के रूप में योग्य है। यह फोटोवोल्टिक सेल के उपयोग द्वारा किया जाता है जो पंपों को चलाने के लिए सूर्य से ऊर्जा का उपयोग करता है।<ref>{{Cite web|url=https://martinandrade.files.wordpress.com/2011/03/passive-solar-energy-my-edit.pdf|title=Solar Energy Home Design|last=Andrade|first=Martin|date=6 March 2011}}</ref>
सक्रिय सौर गर्म पानी होना संभव है जो "ऑफ ग्रिड" होने में भी सक्षम है और स्थायी के रूप में योग्य है। यह फोटोवोल्टिक सेल के उपयोग द्वारा किया जाता है जो पंपों को चलाने के लिए सूर्य से ऊर्जा का उपयोग करता है।<ref>{{Cite web|url=https://martinandrade.files.wordpress.com/2011/03/passive-solar-energy-my-edit.pdf|title=Solar Energy Home Design|last=Andrade|first=Martin|date=6 March 2011}}</ref>
Line 324: Line 324:
{{Main|पैसिव हाउस}}
{{Main|पैसिव हाउस}}


जर्मनी में पैसिव हाउस (जर्मन में पसिफियस) संस्थान द्वारा अपनाए गए दृष्टिकोण के लिए यूरोप में गति बढ़ रही है। केवल पारंपरिक निष्क्रिय सौर डिजाइन तकनीकों पर भरोसा करने के बजाय, यह दृष्टिकोण गर्मी के सभी निष्क्रिय स्रोतों का उपयोग, ऊर्जा के उपयोग को कम करने और उच्च स्तर के इन्सुलेशन की आवश्यकता पर जोर देता है जो थर्मल ब्रिजिंग और ठंडी हवा समावेश को दूर करने के लिए विस्तार से ध्यान देकर मजबूत किया जाता है। निष्क्रिय घर मानक के लिए निर्मित अधिकांश इमारतों में छोटे (सामान्यतः 1 kW) के साथ या बिना सक्रिय [[गर्मी वसूली वेंटिलेशन|ऊर्जा रिकवरी वेंटिलेशन]] यूनिट शामिल है।   
जर्मनी में पैसिव हाउस ( जर्मन में पसिफियस ) संस्थान द्वारा अपनाए गए दृष्टिकोण के लिए यूरोप में गति बढ़ रही है। केवल पारंपरिक निष्क्रिय सौर डिजाइन तकनीकों पर भरोसा करने के बजाय, यह दृष्टिकोण गर्मी के सभी निष्क्रिय स्रोतों का उपयोग, ऊर्जा के उपयोग को कम करने और उच्च स्तर के इन्सुलेशन की आवश्यकता पर जोर देता है जो तापीय ब्रिजिंग और ठंडी हवा समावेश को दूर करने के लिए विस्तार से ध्यान देकर मजबूत किया जाता है। निष्क्रिय घर मानक के लिए निर्मित अधिकांश इमारतों में छोटे (सामान्यतः 1 kW) के साथ या बिना सक्रिय [[गर्मी वसूली वेंटिलेशन|ऊर्जा रिकवरी वेंटिलेशन]] यूनिट सम्मिलित है।   


पैसिव हाउस इमारतों की ऊर्जा डिजाइन को स्प्रेडशीट-आधारित मॉडलिंग टूल का उपयोग करके विकसित किया गया है जिसे पैसिव हाउस प्लानिंग पैकेज (PHPP) कहा जाता है, जिसे समय-समय पर अपडेट किया जाता है। वर्तमान संस्करण PHPP 9.6 (2018) है। एक इमारत को [[निष्क्रिय घर]] के रूप में प्रमाणित किया जा सकता है जब यह दिखाया जा सकता है कि यह कुछ मानदंडों को पूरा करता है, सबसे महत्वपूर्ण यह है कि घर के लिए वार्षिक विशिष्ट गर्मी की मांग 15kWh/m<sup>2</sup>a से अधिक नहीं होनी चाहिए।
पैसिव हाउस इमारतों की ऊर्जा डिजाइन को स्प्रेडशीट-आधारित मॉडलिंग टूल का उपयोग करके विकसित किया गया है जिसे पैसिव हाउस प्लानिंग पैकेज (PHPP) कहा जाता है, जिसे समय-समय पर अपडेट किया जाता है। वर्तमान संस्करण PHPP 9.6 (2018) है। एक इमारत को [[निष्क्रिय घर]] के रूप में प्रमाणित किया जा सकता है जब यह दिखाया जा सकता है कि यह कुछ मानदंडों को पूरा करता है, सबसे महत्वपूर्ण यह है कि घर के लिए वार्षिक विशिष्ट गर्मी की मांग 15kWh/m<sup>2</sup>a से अधिक नहीं होनी चाहिए।
Line 335: Line 335:
== डिजाइन उपकरण ==
== डिजाइन उपकरण ==


पारंपरिक रूप से हीलियोडोन का उपयोग वर्ष के किसी भी दिन के किसी भी समय मॉडल इमारत पर चमकते सूरज की ऊंचाई और दिगंश का अनुकरण करने के लिए किया गया था।<ref>{{cite web|url=http://www.heliodon.com.mx/productos/heliodon/gal/helio_u_c_colon.JPG |title=Archived copy |access-date=February 6, 2016 |url-status=dead |archive-url=https://web.archive.org/web/20090318232122/http://www.heliodon.com.mx/productos/heliodon/gal/helio_u_c_colon.JPG |archive-date=March 18, 2009 }}</ref> आधुनिक समय में, कंप्यूटर प्रोग्राम इस घटना को मॉडल कर सकते हैं और एक वर्ष के दौरान विशेष इमारत डिजाइन के लिए सौर लाभ क्षमता की भविष्यवाणी करने के लिए स्थानीय जलवायु डेटा (जैसे कि छाया और भौतिक बाधाओं सहित) को एकीकृत कर सकते हैं। [[GPS]]-आधारित [[स्मार्टफोन]] एप्लीकेशन अब हाथ में रखे डिवाइस पर सस्ते में ऐसा कर सकते हैं। ये डिजाइन उपकरण निष्क्रिय सौर डिजाइनर को निर्माण से पहले स्थानीय स्थितियों, डिजाइन तत्वों और अभिविन्यास का मूल्यांकन करने की क्षमता प्रदान करते हैं। ऊर्जा प्रदर्शन अनुकूलन सामान्य रूप से पुनरावृत्त-पुनर्निर्माण डिजाइन-और-इवल्यूएट प्रक्रिया की आवश्यकता होती है। "एक आकार-फिट-सभी" सार्वभौमिक निष्क्रिय सौर भवन डिजाइन जैसी कोई चीज नहीं है जो सभी स्थानों पर अच्छी तरह से काम करेगी।
पारंपरिक रूप से हीलियोडोन का उपयोग वर्ष के किसी भी दिन के किसी भी समय मॉडल इमारत पर चमकते सूरज की ऊंचाई और दिगंश का अनुकरण करने के लिए किया गया था।<ref>{{cite web|url=http://www.heliodon.com.mx/productos/heliodon/gal/helio_u_c_colon.JPG |title=Archived copy |access-date=February 6, 2016 |url-status=dead |archive-url=https://web.archive.org/web/20090318232122/http://www.heliodon.com.mx/productos/heliodon/gal/helio_u_c_colon.JPG |archive-date=March 18, 2009 }}</ref> आधुनिक समय में, कंप्यूटर प्रोग्राम इस घटना को मॉडल कर सकते हैं और एक वर्ष के दौरान विशेष इमारत डिजाइन के लिए सौर लाभ क्षमता की भविष्यवाणी करने के लिए स्थानीय जलवायु डेटा ( जैसे कि छाया और भौतिक बाधाओं सहित ) को एकीकृत कर सकते हैं। [[GPS]]-आधारित [[स्मार्टफोन]] एप्लीकेशन अब हाथ में रखे डिवाइस पर सस्ते में ऐसा कर सकते हैं। ये डिजाइन उपकरण निष्क्रिय सौर डिजाइनर को निर्माण से पहले स्थानीय स्थितियों, डिजाइन तत्वों और अभिविन्यास का मूल्यांकन करने की क्षमता प्रदान करते हैं। ऊर्जा प्रदर्शन अनुकूलन सामान्य रूप से पुनरावृत्त-पुनर्निर्माण डिजाइन-और-इवल्यूएट प्रक्रिया की आवश्यकता होती है। "एक आकार-फिट-सभी" सार्वभौमिक निष्क्रिय सौर भवन डिजाइन जैसी कोई चीज नहीं है जो सभी स्थानों पर अच्छी तरह से काम करेगी।


== आवेदन का स्तर ==
== आवेदन का स्तर ==
Line 343: Line 343:
मौसमी सौर कब्जा और गर्मी और शीतलन के भंडारण के लिए निष्क्रिय सौर दृष्टिकोण का विस्तार। ये डिज़ाइन गर्म-सीजन सौर ऊर्जा को पकड़ने का प्रयास करते हैं और इसे ठंड के मौसम (वार्षिक निष्क्रिय सौर।) के दौरान महीनों बाद उपयोग के लिए [[मौसमी थर्मल ऊर्जा भंडारण|मौसमी ऊष्मीय ऊर्जा भंडारण]] तक पहुंचाते हैं।एक्सचेंजर।उपाख्यानात्मक रिपोर्टों से पता चलता है कि वे प्रभावी हो सकते हैं लेकिन उनकी श्रेष्ठता को प्रदर्शित करने के लिए कोई औपचारिक अध्ययन नहीं किया गया है। दृष्टिकोण भी गर्म मौसम में ठंडा हो सकता है। उदाहरण:
मौसमी सौर कब्जा और गर्मी और शीतलन के भंडारण के लिए निष्क्रिय सौर दृष्टिकोण का विस्तार। ये डिज़ाइन गर्म-सीजन सौर ऊर्जा को पकड़ने का प्रयास करते हैं और इसे ठंड के मौसम (वार्षिक निष्क्रिय सौर।) के दौरान महीनों बाद उपयोग के लिए [[मौसमी थर्मल ऊर्जा भंडारण|मौसमी ऊष्मीय ऊर्जा भंडारण]] तक पहुंचाते हैं।एक्सचेंजर।उपाख्यानात्मक रिपोर्टों से पता चलता है कि वे प्रभावी हो सकते हैं लेकिन उनकी श्रेष्ठता को प्रदर्शित करने के लिए कोई औपचारिक अध्ययन नहीं किया गया है। दृष्टिकोण भी गर्म मौसम में ठंडा हो सकता है। उदाहरण:


* जॉन हैट द्वारा निष्क्रिय वार्षिक हीट स्टोरेज (PAHS)  
* जॉन हैट द्वारा निष्क्रिय वार्षिक हीट भंडारण (PAHS)
*डॉन स्टीफन द्वारा वार्षिक रूप से भू-तापीय सौर (AGS) हीटिंग  
*डॉन स्टीफन द्वारा वार्षिक रूप से भू-तापीय सौर (AGS) हीटिंग  
* पृथ्वी शेल्टरिंग | पृथ्वी-छत
* पृथ्वी शेल्टरिंग | पृथ्वी-छत


"विशुद्ध रूप से निष्क्रिय" सौर-ऊर्जा घर में कोई यांत्रिक भट्टी इकाई नहीं होगी, जो धूप से प्राप्त ऊर्जा पर निर्भर करती है, केवल रोशनी, कंप्यूटर और अन्य कार्य-विशिष्ट उपकरणों (जैसे कि उन के लिए) द्वारा दी गई "आकस्मिक" ताप ऊर्जा द्वारा पूरक खाना बनाना, मनोरंजन, आदि), नहाना, लोग और पालतू जानवर। हवा का परिसंचरण करने के लिए प्राकृतिक संवहन वायु धाराओं (यांत्रिक उपकरणों जैसे पंखों की तुलना में) का उपयोग संबंधित है, हालांकि सख्ती से सौर डिजाइन नहीं है। निष्क्रिय सौर भवन डिजाइन कभी-कभी सीमित विद्युत और यांत्रिक नियंत्रणों का उपयोग करते हैं, जो कि डम्परों, शेडों, एवनिंग या रिफ्लेक्टर को संचालित करते हैं। कुछ प्रणालियां संवहनीय वायु प्रवाह में सुधार लाने के लिए छोटे पंखों या सौर-हितेड चिमनियों को सूचीबद्ध करती हैं। इन प्रणालियों का विश्लेषण करने का उचित तरीका उनके प्रदर्शन के गुणांक को मापना है। हीट पंप प्रत्येक 4 J के लिए 1 J का उपयोग कर सकता है यह 4 COP दे देता है। एक प्रणाली जो पूरे घर के माध्यम से 10 किलोवाट सौर ताप को अधिक-समान रूप से वितरित करने के लिए केवल 30 डब्ल्यू पंखे का उपयोग करती है, उसका COP 300 होगा।
"विशुद्ध रूप से निष्क्रिय" सौर-ऊर्जा घर में कोई यांत्रिक भट्टी इकाई नहीं होगी, जो धूप से प्राप्त ऊर्जा पर निर्भर करती है, केवल रोशनी, कंप्यूटर और अन्य कार्य-विशिष्ट उपकरणों ( जैसे कि उन के लिए ) द्वारा दी गई "आकस्मिक" ताप ऊर्जा द्वारा पूरक खाना बनाना, मनोरंजन, आदि), नहाना, लोग और पालतू जानवर। हवा का परिसंचरण करने के लिए प्राकृतिक संवहन वायु धाराओं ( यांत्रिक उपकरणों जैसे पंखों की तुलना में ) का उपयोग संबंधित है, हालांकि सख्ती से सौर डिजाइन नहीं है। निष्क्रिय सौर भवन डिजाइन कभी-कभी सीमित विद्युत और यांत्रिक नियंत्रणों का उपयोग करते हैं, जो कि डम्परों, शेडों, एवनिंग या रिफ्लेक्टर को संचालित करते हैं। कुछ प्रणालियां संवहनीय वायु प्रवाह में सुधार लाने के लिए छोटे पंखों या सौर-हितेड चिमनियों को सूचीबद्ध करती हैं। इन प्रणालियों का विश्लेषण करने का उचित तरीका उनके प्रदर्शन के गुणांक को मापना है। हीट पंप प्रत्येक 4 J के लिए 1 J का उपयोग कर सकता है यह 4 COP दे देता है। एक प्रणाली जो पूरे घर के माध्यम से 10 किलोवाट सौर ताप को अधिक-समान रूप से वितरित करने के लिए केवल 30 डब्ल्यू पंखे का उपयोग करती है, उसका COP 300 होगा।


निष्क्रिय सौर निर्माण डिजाइन प्रायः लागत प्रभावी शून्य ऊर्जा भवन का मूलभूत तत्व होता है।<ref>{{cite web|url=http://www.nrel.gov/docs/fy06osti/39678.pdf |title=Cold-Climate Case Study for Affordable Zero Energy Homes: Preprint |access-date=2010-03-16}}</ref><ref>{{cite web |url=http://www.toolbase.org/PDF/CaseStudies/ZEHPrimer.pdf |archive-url=https://web.archive.org/web/20060813130840/http://www.toolbase.org/PDF/CaseStudies/ZEHPrimer.pdf |url-status=dead |archive-date=2006-08-13 |title=Zero Energy Homes: A Brief Primer |access-date=2010-03-16 }}</ref> यद्यपि ZEB कई निष्क्रिय सौर बिल्डिंग डिज़ाइन अवधारणाओं का उपयोग करता है, ZEB सामान्यतः विशुद्ध रूप से निष्क्रिय नहीं होता है, जिसमें सक्रिय यांत्रिक अक्षय ऊर्जा उत्पादन प्रणाली होती है जैसे: पवन टरबाइन, [[फोटोवोल्टा]], [[माइक्रो हाइड्रो]], भूऊष्मीय  और अन्य उभरते वैकल्पिक ऊर्जा स्रोत। पैसिव सोलर भी अन्य निष्क्रिय रणनीतियों के साथ निष्क्रिय उत्तरजीविता के लिए कोर बिल्डिंग डिज़ाइन रणनीति है।<ref>{{Cite web|url=https://www.buildinggreen.com/op-ed/passive-survivability|title=Passive Survivability|last=Wilson|first=Alex|date=1 December 2005|website=Building Green}}</ref>
निष्क्रिय सौर निर्माण डिजाइन प्रायः लागत प्रभावी शून्य ऊर्जा भवन का मूलभूत तत्व होता है।<ref>{{cite web|url=http://www.nrel.gov/docs/fy06osti/39678.pdf |title=Cold-Climate Case Study for Affordable Zero Energy Homes: Preprint |access-date=2010-03-16}}</ref><ref>{{cite web |url=http://www.toolbase.org/PDF/CaseStudies/ZEHPrimer.pdf |archive-url=https://web.archive.org/web/20060813130840/http://www.toolbase.org/PDF/CaseStudies/ZEHPrimer.pdf |url-status=dead |archive-date=2006-08-13 |title=Zero Energy Homes: A Brief Primer |access-date=2010-03-16 }}</ref> यद्यपि ZEB कई निष्क्रिय सौर बिल्डिंग डिज़ाइन अवधारणाओं का उपयोग करता है, ZEB सामान्यतः विशुद्ध रूप से निष्क्रिय नहीं होता है, जिसमें सक्रिय यांत्रिक अक्षय ऊर्जा उत्पादन प्रणाली जैसे: पवन टरबाइन, [[फोटोवोल्टा]], [[माइक्रो हाइड्रो]], भूऊष्मीय  और अन्य उभरते वैकल्पिक ऊर्जा स्रोत होती है। पैसिव सोलर भी अन्य निष्क्रिय रणनीतियों के साथ निष्क्रिय उत्तरजीविता के लिए कोर बिल्डिंग डिज़ाइन रणनीति है।<ref>{{Cite web|url=https://www.buildinggreen.com/op-ed/passive-survivability|title=Passive Survivability|last=Wilson|first=Alex|date=1 December 2005|website=Building Green}}</ref>
=== गगनचुंबी इमारत पर निष्क्रिय सौर डिजाइन ===
=== गगनचुंबी इमारत पर निष्क्रिय सौर डिजाइन ===
गगनचुंबी इमारतों पर बड़ी मात्रा में सतह क्षेत्र के उपयोग में हाल ही में रुचि रही है ताकि उनकी समग्र ऊर्जा दक्षता में सुधार हो सके। चूंकि गगनचुंबी इमारतें शहरी वातावरण में तेजी से सर्वव्यापी हैं, फिर भी परिचालन के लिए बड़ी मात्रा में ऊर्जा की आवश्यकता होती है, निष्क्रिय सौर डिजाइन तकनीकों को लागू करते हुए बड़ी मात्रा में ऊर्जा बचत की संभावना होती है। एक अध्ययन,<ref>{{Cite journal|last=Lotfabadi|first=Pooya|title=Solar considerations in high-rise buildings|url=https://www.researchgate.net/publication/271226417|journal=Energy and Buildings|volume=89|pages=183–195|doi=10.1016/j.enbuild.2014.12.044|year=2015}}</ref> जिसने लंदन में प्रस्तावित [[22 बिशप्सगेट]] टॉवर का विश्लेषण करने वाले, ने पाया कि मांग में 35% ऊर्जा की कमी को सैद्धांतिक रूप से अप्रत्यक्ष सौर लाभ के माध्यम से प्राप्त किया जा सकता है, इष्टतम वेंटिलेशन और दिन के प्रकाश में प्रवेश प्राप्त करने के लिए इमारत को घुमाया जा सकता है, उच्च थर्मल द्रव्यमान फ्लोइंग सामग्री का उपयोग इमारत के भीतर तापमान में उतार-चढ़ाव को कम करने के लिए, और प्रत्यक्ष सौर लाभ के लिए डबल या ट्रिपल ग्लेज़ेड कम एमिसिटी विंडो ग्लास का उपयोग किया जा सकता है। अप्रत्यक्ष सौर लाभ तकनीकों में दीवार की मोटाई (20 से 30 सेमी तक), गर्मी की कमी को रोकने के लिए बाहरी स्थान पर विंडो ग्लेज़िंग का उपयोग करते हुए, थर्मल भंडारण के लिए 15 से 20% फर्श क्षेत्र को समर्पित और अंतरिक्ष में गर्मी को अवशोषित करने के लिए ट्रॉम्बे दीवार को लागू करना शामिल था। ओवरहैंग का उपयोग गर्मियों में प्रत्यक्ष सूर्य के प्रकाश को अवरुद्ध करने के लिए किया जाता है और इसे सर्दियों में अनुमति देते हैं और गर्मी को प्रतिबिंबित करने वाली पट्टी को ऊष्मीय दीवार और गर्मियों के महीनों में गर्मी के निर्माण को सीमित करने के लिए ग्लेज़िंग के बीच डाला जाता है।
गगनचुंबी इमारतों पर बड़ी मात्रा में सतह क्षेत्र के उपयोग में हाल ही में रुचि रही है ताकि उनकी समग्र ऊर्जा दक्षता में सुधार हो सके। चूंकि गगनचुंबी इमारतें शहरी वातावरण में तेजी से सर्वव्यापी हैं, फिर भी परिचालन के लिए बड़ी मात्रा में ऊर्जा की आवश्यकता होती है, निष्क्रिय सौर डिजाइन तकनीकों को लागू करते हुए बड़ी मात्रा में ऊर्जा बचत की संभावना होती है। एक अध्ययन,<ref>{{Cite journal|last=Lotfabadi|first=Pooya|title=Solar considerations in high-rise buildings|url=https://www.researchgate.net/publication/271226417|journal=Energy and Buildings|volume=89|pages=183–195|doi=10.1016/j.enbuild.2014.12.044|year=2015}}</ref> जिसने लंदन में प्रस्तावित [[22 बिशप्सगेट]] टॉवर का विश्लेषण करने वाले, ने पाया कि मांग में 35% ऊर्जा की कमी को सैद्धांतिक रूप से अप्रत्यक्ष सौर लाभ के माध्यम से प्राप्त किया जा सकता है, इष्टतम वेंटिलेशन और दिन के प्रकाश में प्रवेश प्राप्त करने के लिए इमारत को घुमाया जा सकता है, उच्च तापीय द्रव्यमान फ्लोइंग सामग्री का उपयोग इमारत के भीतर तापमान में उतार-चढ़ाव को कम करने के लिए, और प्रत्यक्ष सौर लाभ के लिए डबल या ट्रिपल ग्लेज़ेड कम एमिसिटी विंडो ग्लास का उपयोग किया जा सकता है। अप्रत्यक्ष सौर लाभ तकनीकों में दीवार की मोटाई (20 से 30 सेमी तक), गर्मी की कमी को रोकने के लिए बाहरी स्थान पर विंडो ग्लेज़िंग का उपयोग करते हुए, तापीय भंडारण के लिए 15 से 20% फर्श क्षेत्र को समर्पित और अंतरिक्ष में गर्मी को अवशोषित करने के लिए ट्रॉम्बे दीवार को लागू करना सम्मिलित था। ओवरहैंग का उपयोग गर्मियों में प्रत्यक्ष सूर्य के प्रकाश को अवरुद्ध करने के लिए किया जाता है और इसे सर्दियों में अनुमति देते हैं और गर्मी को प्रतिबिंबित करने वाली पट्टी को ऊष्मीय दीवार और गर्मियों के महीनों में गर्मी के निर्माण को सीमित करने के लिए ग्लेज़िंग के बीच डाला जाता है।


एक और अध्ययन<ref>{{Cite journal|last=Wong|first=Irene|last2=Baldwin|first2=Andrew N.|date=2016-02-15|title=Investigating the potential of applying vertical green walls to high-rise residential buildings for energy-saving in sub-tropical region|journal=Building and Environment|volume=97|pages=34–39|doi=10.1016/j.buildenv.2015.11.028}}</ref> ने हांगकांग में उच्च वृद्धि वाली इमारतों के बाहर डबल-ग्रीन स्किन फेसैड (DGSF) का विश्लेषण किया। इस तरह के हरे रंग के अग्रभाग या बाहरी दीवारों को कवर करने वाली वनस्पति, एयर कंडीशनिंग के उपयोग का 80% तक मुकाबला कर सकती है, जैसा कि शोधकर्ताओं द्वारा खोजा गया है।
एक और अध्ययन<ref>{{Cite journal|last=Wong|first=Irene|last2=Baldwin|first2=Andrew N.|date=2016-02-15|title=Investigating the potential of applying vertical green walls to high-rise residential buildings for energy-saving in sub-tropical region|journal=Building and Environment|volume=97|pages=34–39|doi=10.1016/j.buildenv.2015.11.028}}</ref> ने हांगकांग में उच्च वृद्धि वाली इमारतों के बाहर डबल-ग्रीन स्किन फेसैड (DGSF) का विश्लेषण किया। इस तरह के हरे रंग के अग्रभाग या बाहरी दीवारों को कवर करने वाली वनस्पति, एयर कंडीशनिंग के उपयोग का 80% तक मुकाबला कर सकती है, जैसा कि शोधकर्ताओं द्वारा खोजा गया है।
Line 398: Line 398:
* [https://web.archive.org/web/20081008034715/http://www.yourhome.gov.au/technical/index.html www.yourhome.gov.au/technical/index.html] – Your Home Technical Manual developed by the Commonwealth of Australia to provide information about how to design, build and live in environmentally sustainable homes.
* [https://web.archive.org/web/20081008034715/http://www.yourhome.gov.au/technical/index.html www.yourhome.gov.au/technical/index.html] – Your Home Technical Manual developed by the Commonwealth of Australia to provide information about how to design, build and live in environmentally sustainable homes.
* [https://web.archive.org/web/20110721132204/http://amergin.tippinst.ie/downloadsEnergyArchhtml.html amergin.tippinst.ie/downloadsEnergyArchhtml.html]- Energy in Architecture, The European Passive Solar Handbook, Goulding J.R, Owen Lewis J, Steemers Theo C, Sponsored by the European Commission, published by Batsford 1986, reprinted 1993
* [https://web.archive.org/web/20110721132204/http://amergin.tippinst.ie/downloadsEnergyArchhtml.html amergin.tippinst.ie/downloadsEnergyArchhtml.html]- Energy in Architecture, The European Passive Solar Handbook, Goulding J.R, Owen Lewis J, Steemers Theo C, Sponsored by the European Commission, published by Batsford 1986, reprinted 1993
[[Category: सौर डिजाइन | सौर डिजाइन ]] [[Category: ऊर्जा-बचत प्रकाश व्यवस्था]] [[Category: ऊष्मा देना, हवादार बनाना और वातानुकूलन]] [[Category: कम ऊर्जा भवन]] [[Category: सतत शहरी नियोजन]] [[Category: नवीकरणीय ऊर्जा]] [[Category: सौर वास्तुकला]]
     


[[es:Casa pasiva]]
[[es:Casa pasiva]]


 
[[Category:All articles with bare URLs for citations]]
 
[[Category:Articles with bare URLs for citations from March 2022]]
[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with image file bare URLs for citations]]
[[Category:CS1 maint]]
[[Category:Created On 01/02/2023]]
[[Category:Created On 01/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:ऊर्जा-बचत प्रकाश व्यवस्था]]
[[Category:ऊष्मा देना, हवादार बनाना और वातानुकूलन]]
[[Category:कम ऊर्जा भवन]]
[[Category:नवीकरणीय ऊर्जा]]
[[Category:सतत शहरी नियोजन]]
[[Category:सौर डिजाइन| सौर डिजाइन ]]
[[Category:सौर वास्तुकला]]

Latest revision as of 09:47, 23 August 2023

निष्क्रिय सौर भवन डिजाइन में, खिड़कियां, दीवारें और फर्श सर्दियों में गर्मी के रूप में और गर्मियों में सौर ऊर्जा को अस्वीकार करने के लिए सौर ऊर्जा को इकट्ठा, संग्रह, प्रतिबिंबित और वितरित करने के लिए बनाए जाते हैं। इसे निष्क्रिय सौर डिजाइन कहा जाता है क्योंकि सक्रिय सौर ताप प्रणालियों के विपरीत, इसमें यांत्रिक और विद्युत उपकरणों का उपयोग सम्मिलित नहीं है।[1]

निष्क्रिय सौर भवन डिजाइन करने का उपाय, सटीक साइट विश्लेषण करने के लिए स्थानीय जलवायु का लाभ उठाना है। जिन तत्वों पर विचार किया जाना है उनमें विंडो प्लेसमेंट और आकार, ग्लेज़िंग (खिड़की) प्रकार, ऊष्मीय इन्सुलेशन, ऊष्मीय द्रव्यमान और छायांकन सम्मिलित हैं।[2] निष्क्रिय सौर डिजाइन तकनीकों को नई इमारतों में सबसे आसानी से लागू किया जा सकता है, लेकिन मौजूदा इमारतों को अनुकूलित या पुनः संयोजित किया जा सकता है।

निष्क्रिय ऊर्जा लाभ

प्रत्यक्ष लाभ अनुप्रयोग में दिखाए गए निष्क्रिय सौर डिजाइन के तत्व

निष्क्रिय सौर प्रौद्योगिकियां सक्रिय यांत्रिक प्रणालियों के बिना सूर्य के प्रकाश का उपयोग करती है ( जैसा कि सक्रिय सौर के विपरीत है, जो ऊष्मीय संग्राहकों का उपयोग करती है )। इस तरह की प्रौद्योगिकियां सूर्य के प्रकाश को उपयोगी ऊष्मा ( पानी, वायु और ऊष्मीय द्रव्यमान में ) में परिवर्तित करती हैं, जो अन्य ऊर्जा स्रोतों के कम उपयोग के साथ वेंटिलेटिंग या भविष्य के उपयोग के लिए वायु संचलन का कारण बनती हैं। सामान्य उदाहरण एक इमारत के भूमध्य रेखा के किनारे पर धूपघड़ी है। निष्क्रिय शीतलन ग्रीष्मकालीन शीतलन आवश्यकताओं को कम करने के लिए समान डिजाइन सिद्धांतों का उपयोग है।

कुछ निष्क्रिय प्रणालियाँ प्रवात नियंत्रक, शटर, नाइट तापावरोधन और अन्य उपकरणों को नियंत्रित करने के लिए पारंपरिक ऊर्जा की छोटी मात्रा का उपयोग करते हैं जो सौर ऊर्जा संग्रह, भंडारण और उपयोग को बढ़ाते हैं, और अवांछनीय गर्मी हस्तांतरण को कम करते हैं।

निष्क्रिय सौर प्रौद्योगिकियों में अंतरिक्ष हीटिंग के लिए प्रत्यक्ष और अप्रत्यक्ष सौर ऊर्जा सम्मिलित है, थर्मोसिफोन पर आधारित सौर जल तापन प्रणाली, ऊष्मीय द्रव्यमान और आंतरिक वायु तापमान में गिरावट को धीमा करने के लिए अवस्था परिवर्तन सामग्री, सौर कुकर, प्राकृतिक वेंटिलेशन को बढ़ाने के लिए सौर चिमनी और पृथ्वी सुरक्षा सम्मिलित हैं।

अधिक व्यापक रूप से, सौर प्रौद्योगिकियों में सौर भट्टी सम्मिलित है, लेकिन इसके लिए सामान्यतः कुछ बाहरी ऊर्जा की आवश्यकता होती है जो उनके सांद्रित प्रतिबिंब या रिसीवर को संरेखित करती है, और ऐतिहासिक रूप से व्यापक उपयोग के लिए व्यावहारिक या लागत प्रभावी साबित नहीं हुई है। सौर ऊर्जा के निष्क्रिय उपयोग के लिए अंतरिक्ष और जल तापन जैसी 'निम्न-श्रेणी' ऊर्जा की ज़रूरतें समय के साथ बेहतर साबित हुई हैं।

विज्ञान के रूप में

निष्क्रिय सौर भवन डिजाइन के लिए वैज्ञानिक आधार जलवायु विज्ञान, ऊष्मप्रवैगिकी (विशेष रूप से ऊष्मा हस्तांतरण: चालन (ताप), संवहन और विद्युत चुम्बकीय विकिरण), द्रव यांत्रिकी / प्राकृतिक संवहन (उपयोग के बिना हवा और पानी के बिजली, पंखे या पंप निष्क्रिय संचलन) के संयोजन से विकसित किया गया, और मानव ऊष्मीय ताप सूचकांक पर आधारित सुविधा, वायुवाष्पमितीय और ऊष्मीय धारिता नियंत्रण के आधार पर इमारतों को मनुष्यों या जानवरों, सनरूम, सोलारियम और पौधों को बढ़ाने के लिए ग्रीन हाउस में रहने के लिए नियंत्रित किया जाता है।

विशेष देखरेख में विभाजित किया गया: भवन की साइट, स्थान और सौर अभिविन्यास, स्थानीय सूर्य पथ, आतपन का प्रचलित स्तर (अक्षांश / धूप / बादल /वर्षा), डिजाइन और निर्माण गुणवत्ता / सामग्री,प्लेसमेंट /आकार / खिड़कियों का प्रकार और दीवारें, और ताप क्षमता के साथ सौर-ऊर्जा-भंडारण ताप द्रव्यमान का समावेश है।

यद्यपि इन विचारों को किसी भी इमारत की ओर निर्देशित किया जा सकता है, आदर्श अनुकूलित लागत/प्रदर्शन समाधान को प्राप्त करने के लिए इन वैज्ञानिक सिद्धांतों के सावधानीपूर्वक, समग्र, प्रणाली एकीकरण अभियांत्रिकी की आवश्यकता होती है। कंप्यूटर मॉडलिंग के माध्यम से निष्क्रिय सौर निर्माण डिजाइन का इतिहास ( जैसे कि व्यापक अमेरिकी ऊर्जा ऊर्जा विभाग[3] निर्माण ऊर्जा सिमुलेशन सॉफ्टवेयर ) और दशकों से सीखे गए सबक के अनुप्रयोग (1970 के दशक के बाद से ऊर्जा संकट) कार्यक्षमता या एस्थेटिक्स का त्याग किए बिना महत्वपूर्ण ऊर्जा बचत और पर्यावरणीय क्षति में कमी कर सकते हैं।[4] वास्तव में, निष्क्रिय-सौर डिजाइन सुविधाएँ जैसे कि ग्रीनहाउस / सनरूम / सोलारियम अंतरिक्ष की प्रति यूनिट कम लागत पर, घर की जीवंतता, दिन के उजाले, विचारों और मूल्य को बहुत बढ़ा सकती है।

1970 के दशक के ऊर्जा संकट के बाद से निष्क्रिय सौर निर्माण डिजाइन के बारे में बहुत कुछ सीखा गया है। कई अवैज्ञानिक, अंतर्ज्ञान-आधारित महंगे निर्माण प्रयोगों ने शून्य ऊर्जा भवन को प्राप्त करने का प्रयास किया -हीटिंग-एंड-कूलिंग ऊर्जा बिलों का कुल उन्मूलन और विफल रहे हैं।

निष्क्रिय सौर भवन निर्माण मुश्किल या महंगा नहीं हो सकता है (उपस्थित सामग्री और प्रौद्योगिकी का उपयोग करके), लेकिन वैज्ञानिक निष्क्रिय सौर भवन डिजाइन गैर-विभागीय इंजीनियरिंग प्रयास है जिसके लिए पिछले काउंटर-इंट्यूटी सबक सीखे गए और प्रवेश करने के लिए समय, मूल्यांकन, और सिमुलेशन इनपुट और आउटपुट को परिष्कृत करने की आवश्यकता है।

निर्माण के बाद के सबसे उपयोगी मूल्यांकन उपकरणों में से औपचारिक मात्रात्मक वैज्ञानिक ऊर्जस्विता का लेखापरीक्षण के लिए डिजिटल थर्मोग्राफिक कैमरे का उपयोग कर थर्मोग्राफी किया गया है। ऊष्मीय इमेजिंग का उपयोग खराब ऊष्मीय प्रदर्शन के क्षेत्रों जैसे कि छत-कोण वाले ग्लास के नकारात्मक ऊष्मीय प्रभाव या ठंडे सर्दियों की रात या गर्म गर्मी के दिन पर रोशनदान के लिए किया जा सकता है।

पिछले तीन दशकों के दौरान सीखे गए वैज्ञानिक पाठ को परिष्कृत व्यापक निर्माण ऊर्जा सिमुलेशन कंप्यूटर सॉफ्टवेयर सिस्टम (जैसे U.S. DOE एनर्जी प्लस) में कैप्चर किया गया है।

मात्रात्मक लागत लाभ उत्पाद अनुकूलन के साथ वैज्ञानिक निष्क्रिय सौर निर्माण डिजाइन नौसिखिया के लिए आसान नहीं है। जटिलता के स्तर के परिणामस्वरूप वर्तमान में जारी खराब-आर्किटेक्चर और कई अंतर्ज्ञान-आधारित, अवैज्ञानिक निर्माण प्रयोग हुए हैं जो अपने डिजाइनरों को निराश करते हैं और अनुचित विचारों पर उनके निर्माण बजट का महत्वपूर्ण हिस्सा बर्बाद करते हैं।[5]

वैज्ञानिक डिजाइन और इंजीनियरिंग के लिए आर्थिक प्रेरणा महत्वपूर्ण है। यदि इसे 1980 में नए भवन निर्माण के लिए बड़े पैमाने पर लागू किया गया था (1970 के दशक के पाठों के आधार पर), संयुक्त राज्य अमेरिका महंगी ऊर्जा और संबंधित प्रदूषण पर प्रति वर्ष $ 250,000,000 से अधिक की बचत कर सकता है।[5]

1979 के बाद से, निष्क्रिय सौर निर्माण डिजाइन शैक्षिक संस्थान प्रयोगों और दुनिया भर की सरकारों द्वारा शून्य ऊर्जा निर्माण प्राप्त करने का महत्वपूर्ण तत्व रहा है, अमेरिका के ऊर्जा विभाग और ऊर्जा अनुसंधान वैज्ञानिकों सहित दुनिया भर की सरकारों ने दशकों से समर्थन किया है। अवधारणा का लागत प्रभावी प्रमाण दशकों पहले स्थापित किया गया था, लेकिन वास्तुकला, निर्माण व्यापार, और निर्माण-मालिक निर्णय लेने में सांस्कृतिक परिवर्तन बहुत धीमा और मुश्किल रहा है।[5]

वास्तुकला विज्ञान और वास्तुकला प्रौद्योगिकी जैसे नए विषयों को वास्तुकला के कुछ स्कूलों में जोड़ा जा रहा है, जिसका भविष्य का लक्ष्य उपरोक्त वैज्ञानिक और ऊर्जा-इंजीनियरिंग सिद्धांतों को सिखाना है।

निष्क्रिय डिजाइन में सौर पथ

एक वर्ष से अधिक सौर ऊंचाई;न्यूयॉर्क शहर, न्यूयॉर्क (राज्य) पर आधारित अक्षांश

एक साथ इन लक्ष्यों को प्राप्त करने की क्षमता मौलिक रूप से पूरे दिन सूर्य के पथ में मौसमी विविधताओं पर निर्भर करती है।

यह अपनी कक्षा के संबंध में पृथ्वी के घूर्णन के अक्ष के झुकाव के परिणामस्वरूप होता है। सूर्य पथ किसी भी अक्षांश के लिए अद्वितीय है।

उत्तरी गोलार्ध में गैर-उष्णकटिबंधीय अक्षांशों में भूमध्य रेखा से 23.5 डिग्री से अधिक दूर:

  • सूर्य दक्षिण की ओर (भूमध्य रेखा की दिशा में) अपने उच्चतम बिंदु पर पहुंच जाता है।
  • जैसे -जैसे शीतकालीन संक्रांति निकलता है, दिगंश जिस पर सूर्य सूर्योदय और सूर्यास्त उत्तरोत्तर दक्षिण की ओर आगे बढ़ता है, दिन के उजाले का समय छोटा हो जाता है।
  • इसके विपरीत गर्मियों में देखा गया है जहां सूर्य उदय होगा, उत्तर की ओर आगे बढ़ेगा और दिन का समय बढ़ जाता है।[6]

दक्षिणी गोलार्ध में यह देखा जाता है, लेकिन सूरज पूर्व में उगता और पश्चिम की ओर सूर्यास्त होता है, चाहे आप किसी भी गोलार्द्ध में हों।

भूमध्यरेखीय क्षेत्रों में 23.5 डिग्री से कम पर, सौर दोपहर में सूर्य की स्थिति उत्तर से दक्षिण की ओर दोलन करेगी और वर्ष के दौरान फिर से वापस आ जाएगी।[7]

उत्तर या दक्षिण ध्रुव से 23.5 डिग्री से अधिक क्षेत्रों में, गर्मियों के दौरान सूर्य बिना अस्त के आकाश में पूर्ण चक्र का पता लगाएगा, जबकि यह छह महीने बाद, सर्दियों की  उच्चत्व के दौरान क्षितिज के ऊपर कभी नहीं दिखाई देता हैl [8]

सर्दियों और गर्मियों के बीच सौर दोपहर में सूर्य की ऊंचाई में 47 डिग्री का अंतर निष्क्रिय सौर डिजाइन का आधार है। इस जानकारी को स्थानीय जलवायु डेटा ( डिग्री दिवस ) ताप और शीतन आवश्यकताओं के साथ संयुक्त किया जाता है यह निर्धारित करने के लिए कि वर्ष के किस समय सौर लाभ ऊष्मीय आराम के लिए फायदेमंद होगा, और कब इसे छायांकन के साथ अवरुद्ध किया जाना चाहिए था। ग्लेजिंग और शेडिंग उपकरणों जैसे वस्तुओं का रणनीतिक नियोजन, भवन में प्रवेश करने वाले सौर लाभ के प्रतिशत को पूरे वर्ष नियंत्रित किया जा सकता है।

निष्क्रिय सौर सूर्य पथ डिजाइन समस्या यह है कि यद्यपि सूर्य पृथ्वी के ऊष्मीय द्रव्यमान से "ऊष्मीय लैग" के कारण छह सप्ताह पहले और संक्रांति के छह सप्ताह बाद समान सापेक्ष स्थिति में है, तापमान और सौर लाभ की आवश्यकताएं गर्मी या सर्दी संक्रांति से पहले और बाद में काफी अलग हैं। मूवेबल शटर्स, शेड्स, शेड स्क्रीन्स, या विंडो क्विल्ट्स दिन-प्रतिदिन और घंटे-दर-घंटे सौर लाभ और इन्सुलेशन आवश्यकताओं को समायोजित कर सकते हैं।

कमरे की सावधानीपूर्वक व्यवस्था निष्क्रिय सौर डिजाइन को पूरा करती है। आवासीय आवासों के लिए सामान्य विशेषता यह है कि रहने वाले क्षेत्रों को दोपहर के सूरज की ओर और शयन कक्षों को विपरीत दिशा में रखा जाता है।[9] हेलिओडोन एक पारंपरिक चल प्रकाश उपकरण है जिसका उपयोग वास्तुकारों और डिजाइनरों द्वारा सूर्य पथ प्रभावों के मॉडल की सहायता के लिए किया जाता है। आधुनिक समय में, 3D कंप्यूटर ग्राफिक्स इस डेटा को दृष्टि से अनुकरण कर सकते हैं और प्रदर्शन भविष्यवाणियों की गणना कर सकते हैं।[4]

निष्क्रिय सौर ऊर्जा हस्तांतरण सिद्धांत

व्यक्तिगत ऊष्मीय आराम व्यक्तिगत स्वास्थ्य कारकों (चिकित्सा, मनोवैज्ञानिक, समाजशास्त्रीय और परिस्थितिजन्य), परिवेशी वायु तापमान, माध्य विकिरण तापमान, वायु आंदोलन (पवन ठंड, विक्षोभ) और सापेक्ष आर्द्रता (मानव वाष्पीकरण शीतलन को प्रभावित करना) का कार्य है। इमारतों में ऊष्मा हस्तांतरण छत, दीवारों, फर्श और खिड़कियों के माध्यम से संवहन, चालन और ऊष्मीय विकिरण के माध्यम से होता है।[10]

संवहन ऊष्मा हस्तांतरण

संवहन (ऊष्मा हस्तांतरण) लाभकारी या हानिकारक हो सकता है। खराब मौसम / वेदरस्ट्रिपिंग / ड्राफ्ट-प्रूफिंग से अनियंत्रित वायु समावेश सर्दियों के दौरान गर्मी के नुकसान का 40% तक योगदान कर सकता है;[11] यद्यपि, ऑपरेशनल खिड़कियों या वेंट का रणनीतिक प्लेसमेंट संवहन, क्रॉस-वेंटिलेशन और गर्मियों में ठंडा हो सकता है जब बाहरी हवा आरामदायक तापमान और सापेक्ष आर्द्रता की होती है।[12] फ़िल्टर्ड ऊर्जा पुन:प्राप्ति वेंटिलेशन प्रणाली अनफिल्टर्ड वेंटिलेशन एयर में अवांछनीय आर्द्रता, धूल, पराग और सूक्ष्मजीवों को खत्म करने के लिए उपयोगी हो सकता है।

प्राकृतिक संवहन के कारण गर्म हवा बढ़ती है और ठंडी हवा गिरती है, जिससे गर्मी का असमान स्तरीकरण हो सकता है। यह ऊपरी और निचले वातानुकूलित स्थान में तापमान असहज भिन्नता का कारण बन सकता है, गर्म हवा को बाहर निकालने की एक विधि के रूप में काम करता है, या निष्क्रिय सौर ताप वितरण और तापमान समतुल्यता के लिए प्राकृतिक-संवहन वायु-प्रवाह लूप के रूप में डिज़ाइन किया गया है। पसीना और वाष्पीकरण द्वारा प्राकृतिक मानव शीतलन प्रशंसकों द्वारा प्राकृतिक या कृत्रिम संवहनीय वायु आंदोलन के माध्यम से किया जा सकता है, लेकिन छत के पंखे कमरे के शीर्ष पर स्तरीकृत इनसुलेट हवा परतों को उत्तेजित कर सकते हैं और गर्म अटारी से या पास की खिड़कियों के माध्यम से ऊष्मा हस्तांतरण को तेज कर सकते हैं। इसके अलावा, उच्च सापेक्ष आर्द्रता मानव द्वारा वाष्पीकृत शीतलन को रोकती है।

विकिरण ऊष्मा हस्तांतरण

ऊष्मा हस्तांतरण का मुख्य स्रोत विकिरण ऊर्जा है और प्राथमिक स्रोत सूर्य है। सौर विकिरण मुख्य रूप से छत और खिड़कियों (लेकिन दीवारों के माध्यम से भी) के माध्यम से होता है। ऊष्मीय विकिरण गर्म सतह से ठंडी सतह पर चला जाता है। छतें घर में वितरित अधिकांश सौर विकिरण प्राप्त करती हैं। रेडिएंट बैरियर के अलावा ठंडी छत या कच्ची छत आपके अटारी को गर्मी के चरम बाहरी हवा के तापमान से अधिक गर्म होने से रोकने में मदद कर सकती है [13] (देखें अलबेडो, अवशोषण, उत्सर्जन और परावर्तकता)।

खिड़कियाँ तापीय विकिरण के लिए तैयार और पूर्वानुमेय स्थान हैं।[14] विकिरण से ऊर्जा दिन में एक खिड़की में और रात में एक ही खिड़की से बाहर जा सकती है। विकिरण निर्वात, या पारभासी माध्यम से विद्युत चुम्बकीय तरंगों को संचारित करने के लिए फोटॉन का उपयोग करता है। ठंडे साफ दिनों में भी सौर ताप का लाभ महत्वपूर्ण हो सकता है। खिड़कियों के माध्यम से सौर ताप लाभ को इनसुलेटेड ग्लेजिंग, छायांकन और अभिविन्यास द्वारा कम किया जा सकता है। छत और दीवारों की तुलना में विंडोज को इंसुलेट करना विशेष रूप से कठिन है। खिड़की के आवरण के माध्यम से और उसके आसपास संवहन गर्मी हस्तांतरण भी इसके इन्सुलेशन गुणों को कम करता है।[14] खिड़कियों को छायांकित करते समय, बाहरी छायांकन आंतरिक खिड़की के आवरणों की तुलना में गर्मी के लाभ को कम करने में अधिक प्रभावी होता है।[14]

पश्चिमी और पूर्वी सूर्य गर्मी और प्रकाश प्रदान कर सकते हैं, लेकिन अगर छाया नहीं की गई तो गर्मी में अधिक गर्म करने के लिए असुरक्षित हैं। इसके विपरीत, कम दोपहर का सूर्य सर्दियों के दौरान प्रकाश और गर्मी को आसानी से स्वीकार करता है, लेकिन गर्मियों के दौरान उचित लंबाई के ओवरहंग या ग्रीम छाया वाले पत्तों के साथ लूवरेस के साथ आसानी से छाया की जा सकती है जो गिरने में अपनी पत्तियां बहा देते हैं। प्राप्त विकिरण गर्मी की मात्रा स्थान अक्षांश, ऊंचाई, बादल आवरण और घटना के मौसमी / घंटा कोण से संबंधित है (देखें सूर्य पथ और लैम्बर्ट का कोज्या नियम)।

एक अन्य निष्क्रिय सौर डिजाइन सिद्धांत यह है कि ऊष्मीय ऊर्जा को कुछ निर्माण सामग्री में संग्रहीत किया जा सकता है और फिर से जारी किया जा सकता है जब ऊर्जा लाभ डायर्नल ( दिन / रात ) तापमान विविधताओं को स्थिर करने के लिए होता है। थर्मोडायनामिक सिद्धांतों की जटिल बातचीत पहली बार डिजाइनरों के लिए प्रतिकूल हो सकती है। सटीक कंप्यूटर मॉडलिंग महंगे निर्माण प्रयोगों से बचने में मदद कर सकते हैं।

साइट विशिष्ट विचार डिजाइन के दौरान

  • अक्षांश, सूर्य पथ और इनसोलेशन (धूप)
  • सौर लाभ में मौसमी विविधताएं जैसे शीतलन या ऊष्मायन दिवस, सौर आतपन, आर्द्रता
  • दैनिक तापमान में उतार-चढ़ाव
  • हवा, आर्द्रता, वनस्पति और भूमि से संबंधित सूक्ष्म जलवायु विवरण
  • अवरोध / ओवर-शैडिंग-सौर लाभ या स्थानीय क्रॉस-विंड्स के लिए

समशीतोष्ण जलवायु में आवासीय इमारतों के लिए डिजाइन तत्व

  • घर में कमरे-प्रकार, आंतरिक दरवाजे, दीवारों और उपकरणों का स्थान।
  • भूमध्य रेखा का सामना करने के लिए ( या सुबह के सूरज को पकड़ने के लिए पूर्व में कुछ डिग्री ) इमारत को उन्मुख करना।[9]
  • पूर्व -पश्चिम अक्ष के साथ भवन आयाम का विस्तार करना।
  • सर्दियों में दोपहर के सूरज का सामना करने के लिए पर्याप्त रूप से खिड़कियों को आकार देना और गर्मियों में छायांकित होना।
  • दूसरी ओर खिड़कियों को छोटा करना, विशेष रूप से पश्चिमी खिड़कियां[14]
  • सही आकार, अक्षांश-विशिष्ट छत ओवरहैंग[15] या छायांकन तत्व ( झाड़ी, पेड़, ट्रेलिस, बाड़, शटर आदि )।[16]
  • मौसमी अत्यधिक गर्मी लाभ या हानि को कम करने के लिए रेडिएंट बैरियर और थोक इन्सुलेशन सहित उचित मात्रा और प्रकार के निर्माण इन्सुलेशन का उपयोग करना।
  • सर्दियों के दिन के दौरान अतिरिक्त सौर ऊर्जा ( जो रात के दौरान फिर से विकीर्ण होता है ) को संग्रहीत करने के लिए ऊष्मीय द्रव्यमान का उपयोग करना।[17]

भूमध्य रेखा- ग्लास और ऊष्मीय मास की सटीक मात्रा अक्षांश, ऊंचाई, जलवायु परिस्थितियों और तापन / शीतलन डिग्री डे आवश्यकताओं के सावधानीपूर्वक विचार पर आधारित होनी चाहिए।

ऊष्मीय कार्य को कम करने वाले कारक:

  • आदर्श अभिविन्यास और उत्तर -दक्षिण / पूर्व / पश्चिम पहलू अनुपात से विचलन।
  • अत्यधिक ग्लास क्षेत्र (ओवर-ग्लाजिंग) के परिणामस्वरूप ओवरहीटिंग ( जिसका परिणाम सॉफ्ट फ़र्निंग भी होता है ) और परिवेशी वायु के तापमान में गिरावट आने पर गर्मी का नुकसान होता है।
  • ग्लेज़िंग स्थापित करना जहां दिन के दौरान सौर लाभ और रात के दौरान ऊष्मीय नुकसान को आसानी से नियंत्रित नहीं किया जा सकता है। उदा: वेस्ट-फेसिंग, एंगल्ड ग्लेज़िंग, रोशनदान[18]
  • गैर-इन्सुलेटेड या असुरक्षित ग्लेजिंग के माध्यम से ऊष्मीय नुकसान
  • उच्च सौर लाभ के मौसमी अवधि के दौरान पर्याप्त छायांकन की कमी ( विशेष रूप से पश्चिम की दीवार पर )
  • दैनिक तापमान भिन्नताओं को संशोधित करने के लिए ऊष्मीय द्रव्यमान का गलत अनुप्रयोग
  • खुली सीढ़ियां ऊपरी और निचली मंजिलों के बीच गर्म हवा के असमान वितरण के लिए अग्रणी सीढ़ियाँ
  • उच्च भवन सतह क्षेत्र से आयतन तक - बहुत सारे कोने
  • अपर्याप्त मौसम उच्च वायु समावेश के लिए अग्रणी
  • गर्म मौसम के दौरान विकिरित अवरोधों या गलत तरीके से स्थापित की कमी। ( नीचे छत और हरी छत भी देखें )
  • इन्सुलेशन सामग्री जो ऊष्मा हस्तांतरण के मुख्य मोड से मेल नहीं खाते (जैसे कि) अवांछित संवहन / प्रवाहकीय / विकिरण ऊष्मा हस्तांतरण

दक्षता और निष्क्रिय सौर ताप की अर्थशास्त्र

तकनीकी रूप से, PSH अत्यधिक कुशल है। प्रत्यक्ष गैन प्रणाली (यानी "उपयोगी" गर्मी में परिवर्तित) एपर्चर या कलेक्टर पर घर्षण करने वाले सौर विकिरण की ऊर्जा का 65-70% उपयोग कर सकते हैं।

निष्क्रिय सौर अंश (PSF) PSH द्वारा पूरा किए गए आवश्यक ऊष्म लोड का प्रतिशत है और इसलिए हीटिंग लागत में संभावित कमी का प्रतिनिधित्व करता है। रिटस्क्रीन इंटरनेशनल ने 20-50% की PSF की सूचना दी है। स्थिरता के क्षेत्र में, 15 प्रतिशत के क्रम में भी ऊर्जा संरक्षण को पर्याप्त माना जाता है।

अन्य स्रोत निम्नलिखित PSF की रिपोर्ट करते हैं:

  • मामूली प्रणालियों के लिए 5-25%
  • अत्यधिक अनुकूलित प्रणालियों के लिए 40%
  • बहुत तीव्र प्रणालियों के लिए 75% तक

दक्षिण -पश्चिम संयुक्त राज्य अमेरिका जैसे अनुकूल जलवायु में, अत्यधिक अनुकूलित सिस्टम 75% PSF से अधिक हो सकते हैं।[19]

अधिक जानकारी के लिए सौर वायु ताप देखें।

प्रमुख निष्क्रिय सौर बिल्डिंग कॉन्फ़िगरेशन

तीन अलग -अलग निष्क्रिय सौर ऊर्जा विन्यास [20] और कम से कम इन बुनियादी विन्यासों का एक उल्लेखनीय संकर है:

  • प्रत्यक्ष सौर लाभ
  • अप्रत्यक्ष सौर प्रणाली
  • हाइब्रिड डायरेक्ट / अप्रत्यक्ष सौर प्रणाली
  • पृथक सौर प्रणाली

प्रत्यक्ष सौर प्रणाली

प्रत्यक्ष-लाभ निष्क्रिय सौर प्रणाली में, इनडोर स्पेस सौर संग्राहक, गर्मी अवशोषण और वितरण प्रणाली के रूप में कार्य करता है। उत्तरी गोलार्द्ध में दक्षिणमुखी कांच ( दक्षिणी गोलार्द्ध में उत्तरमुखी ) सौर ऊर्जा को भवन के आंतरिक भाग में प्रवेश करता है जहां यह सीधे गर्म होता है ( उज्ज्वल ऊर्जा अवशोषण ) या अप्रत्यक्ष रूप से गर्म होता है ( संवहन के माध्यम से ) कंक्रीट या चिनाई फर्श और दीवारों जैसे भवन में ऊष्मीय द्रव्यमान को स्वीकार करता है। ऊष्मीय द्रव्यमान के रूप में कार्य करने वाली मंजिलों और दीवारों को भवन के कार्यात्मक भागों के रूप में सम्मिलित किया जाता है और दिन के दौरान गर्मी की तीव्रता को शांत किया जाता है। रात में, गर्म ऊष्मीय द्रव्यमान अंदर की जगह में गर्मी को विकीर्ण करता है।[20]

ठंडी जलवायु में, एक सन-टेम्पर्ड बिल्डिंग प्रत्यक्ष लाभ निष्क्रिय सौर विन्यास का सबसे बुनियादी प्रकार है, जिसमें अतिरिक्त ऊष्मीय द्रव्यमान जोड़े बिना केवल दक्षिण की ओर मुख वाले ग्लेजिंग क्षेत्र में वृद्धि (हल्की) सम्मिलित है। यह एक प्रकार की प्रत्यक्ष-गैन प्रणाली है जिसमें इमारत के लिफ़ाफ़े को अच्छी तरह से इंसुलेट किया जाता है, पूर्व-पश्चिम दिशा में लंबा किया जाता है, और दक्षिण की ओर खिड़कियों का बड़ा अंश (~80% या अधिक) होता है। इसमें पहले से ही इमारत में मौजूद ऊष्मीय द्रव्यमान (यानी, बस फ्रेमिंग, दीवार बोर्ड, आदि) को थोड़ा जोड़ा गया है। सन-टेम्पर्ड बिल्डिंग में, दक्षिण-मुखी विंडो क्षेत्र को अधिक गरम होने से रोकने के लिए कुल फर्श क्षेत्र के लगभग 5 से 7% तक सीमित किया जाना चाहिए। अतिरिक्त दक्षिण फेसिंग ग्लेजिंग को केवल तभी सम्मिलित किया जा सकता है जब अधिक ऊष्मीय द्रव्यमान जोड़ा जाता है। ऊर्जा बचत इस प्रणाली के साथ बहुत कम होती है, और सन टेम्परिंग बहुत कम लागत होती है।[20]

वास्तविक प्रत्यक्ष लाभ में निष्क्रिय सौर प्रणाली में, इनडोर हवा में बड़े तापमान में उतार-चढ़ाव को रोकने के लिए पर्याप्त तापीय द्रव्यमान की आवश्यकता होती है, सूर्य के तापमान वाले भवन की तुलना में अधिक तापीय द्रव्यमान की आवश्यकता होती है। भवन के आंतरिक भाग का अतिशयोक्ति अपर्याप्त या खराब डिजाइन वाले तापीय द्रव्यमान के कारण हो सकता है। फर्श, दीवारों और छत के आंतरिक सतह क्षेत्र का लगभग डेढ़ से दो तिहाई भाग तापीय भंडारण सामग्री से निर्मित किया जाना चाहिए। तापीय भंडारण सामग्री कंक्रीट, एडोब, ईंट और पानी हो सकती है। फर्श और दीवारों में तापीय द्रव्यमान को वैसा ही रखा जाना चाहिए जैसा कि कार्यात्मक और सौंदर्यपरक रूप से संभव है; तापीय द्रव्यमान को सीधे धूप के संपर्क में लाने की आवश्यकता है। वॉल-टू-वॉल कारपेटिंग, बड़े थ्रो रग्स, विशाल फर्नीचर और बड़ी दीवार हैंगिंग से बचना चाहिए।

सामान्यतः दक्षिण-मुखी कांच के लगभग 1 ft2 के लिए, ऊष्मीय द्रव्यमान के लिए लगभग 5 से 10 ft3 की आवश्यकता होती है। जब न्यूनतम-से-औसत दीवार और फर्श कवरिंग और फर्नीचर के लिए लेखांकन करते हैं, तो यह सामान्यतः दक्षिण-फेसिंग ग्लास के लगभग 5 से 10 ft2 ( 5 से 10 m2 / m2 ) के बराबर होता है, यह इस बात पर निर्भर करता है कि क्या सूरज की रोशनी सीधे सतह पर आती है। अंगूठे का सबसे सरल नियम यह है कि ऊष्मीय द्रव्यमान क्षेत्र में प्रत्यक्ष-लाभ कलेक्टर (ग्लास) क्षेत्र के सतह क्षेत्र का 5 से 10 गुना क्षेत्र होना चाहिए।[20]

ठोस ऊष्मीय द्रव्यमान ( जैसे, कंक्रीट, चिनाई, पत्थर, आदि ) अपेक्षाकृत पतला होना चाहिए, लगभग 4 इंच (100 mm) से अधिक मोटा नहीं होना चाहिए। बड़े खुले क्षेत्रों के साथ तापीय द्रव्यमान और दिन के कम से कम दो घंटे के लिए सीधे धूप में रहने वाले लोग सर्वश्रेष्ठ प्रदर्शन करते हैं। मध्यम से नीचे, उच्च अवशोषण के साथ रंगों का उपयोग तापीय द्रव्यमान तत्वों की सतहों पर किया जाना चाहिए जो सीधे धूप में होंगे। तापीय द्रव्यमान जो सूर्य के प्रकाश के संपर्क में नहीं है, किसी भी रंग हो सकता है। हल्के तत्व (जैसे, सूखी दीवार और छत) किसी भी रंग हो सकते हैं। काले, बादल और रात के समय तंग फिटिंग, चलने योग्य इंसुलेशन पैनलों के साथ ग्लेजिंग को कवर करने से प्रत्यक्ष-लाभ प्रणाली के प्रदर्शन में काफी वृद्धि होगी। प्लास्टिक या धातु नियंत्रण के भीतर निहित पानी और सीधे धूप में रखा गया पानी प्राकृतिक संवहन गर्मी हस्तांतरण के कारण ठोस द्रव्यमान की तुलना में अधिक तेजी से और अधिक समान रूप से गर्म होता है। संवहन प्रक्रिया सतह के तापमान को भी अत्यधिक होने से रोकती है क्योंकि वे कभी-कभी तब करते हैं जब गहरे रंग की ठोस द्रव्यमान की सतह सीधे सूर्य की रोशनी प्राप्त करती है।

जलवायु और पर्याप्त ऊष्मीय द्रव्यमान के आधार पर, प्रत्यक्ष लाभ प्रणाली में दक्षिण-मुखी ग्लास क्षेत्र फर्श क्षेत्र के लगभग 10 से 20% ( जैसे, 100 ft2 फर्श क्षेत्र के लिए 10 से 20 ft2 ग्लास ) तक सीमित होना चाहिए। यह नेट ग्लास या ग्लेजिंग क्षेत्र पर आधारित होना चाहिए। ध्यान दें कि अधिकांश खिड़कियों में नेट ग्लास/ग्लेजिंग क्षेत्र होता है जो समग्र विंडो इकाई क्षेत्र का 75 से 85% होता है। इस स्तर के ऊपर, कपड़ों के ओवरहीटिंग, चमक और धुंधलेपन की समस्याएं होने की संभावना है।[20]

अप्रत्यक्ष सौर प्रणाली

अप्रत्यक्ष-लाभ निष्क्रिय सौर प्रणाली में, ऊष्मीय द्रव्यमान ( ठोस, चिनाई, या पानी ) सीधे दक्षिण-सामना करने वाले कांच के पीछे और गर्म इनडोर स्थान के सामने स्थित है और इसलिए स्थिति को सीधे गर्म करना नहीं है। द्रव्यमान सूर्य के प्रकाश को इनडोर स्थान में प्रवेश करने से रोकता है और कांच के माध्यम से दृश्य को भी बाधित कर सकता है। अप्रत्यक्ष लाभ प्रणालियों के दो प्रकार हैं: ऊष्मीय भंडारण वॉल सिस्टम और रूफ पॉन्ड सिस्टम।[20]

ऊष्मीय भंडारण (ट्रोम्बे) दीवारें

ऊष्मीय भंडारण वॉल सिस्टम में, जिसे प्रायः ट्रॉम्बे दीवार कहा जाता है, विशाल दीवार सीधे दक्षिण फेसिंग ग्लास के पीछे स्थित है, जो सौर ऊर्जा को अवशोषित करती है और रात में इमारत के इंटीरियर की ओर चुनिंदा रूप से छोड़ देती है। दीवार का निर्माण कैस्ट-इन-प्लेस कंक्रीट, ईंट, एडोब, पत्थर या ठोस (या भरे) कंक्रीट चिनाई इकाइयों से किया जा सकता है। सूर्य प्रकाश कांच के माध्यम से प्रवेश करता है और तुरंत द्रव्यमान की दीवार की सतह पर अवशोषित होता है या तो संग्रहीत या अंदर की जगह सामग्री द्रव्यमान के माध्यम से संचालित होता है। ऊष्मीय द्रव्यमान सौर ऊर्जा को तेजी से अवशोषित नहीं कर सकता है क्योंकि यह द्रव्यमान और खिड़की क्षेत्र के बीच अंतरिक्ष में प्रवेश करता है। इस स्थान पर हवा का तापमान आसानी से 120 °F (49 °C) से अधिक हो सकता है। इस गर्म हवा को दीवार के पीछे के आंतरिक स्थानों में पेश किया जा सकता है, जिसमें दीवार के शीर्ष पर हीट- डिस्ट्रीब्यूटिंग वेंट सम्मिलित हैं। इस दीवार प्रणाली की कल्पना पहली बार 1881 में इसके आविष्कारक एडवर्ड मॉर्स ने की थी। फेलिक्स ट्रॉम्बे, जिनके लिए कभी-कभी इस प्रणाली का नाम दिया जाता है, फ्रांसीसी इंजीनियर थे जिन्होंने 1960 के दशक में फ्रांसीसी पायरेनी में इस डिजाइन का उपयोग करके कई घरों का निर्माण किया था।

ऊष्मीय भंडारण वॉल में सामान्यतः 4 से 16 (100 से 400 मिमी) मोटी मेसनरी दीवार होती है जो एक गहरे, गर्मी-अवशोषण (या चयनात्मक सतह) के साथ लेपित होती है और उच्च संचरण क्षमता ग्लास की एक या दो परत से ढकी होती है। एक छोटे हवाई क्षेत्र बनाने के लिए कांच को सामान्यतः दीवार से ¾ इंच से 2 इंच तक रखा जाता है। कुछ डिजाइनों में, द्रव्यमान कांच से 1 से 2 ft (0.6 m) दूर स्थित है, लेकिन अंतरिक्ष अभी भी उपयोग योग्य नहीं है। ऊष्मीय द्रव्यमान की सतह सौर विकिरण को अवशोषित करती है जो इसे रात के समय उपयोग के लिए संग्रहीत करती है। प्रत्यक्ष लाभ प्रणाली के विपरीत, ऊष्मीय भंडारण दीवार प्रणाली अत्यधिक खिड़की क्षेत्र और आंतरिक स्थानों में चमक के बिना निष्क्रिय सौर ताप प्रदान करती है। यद्यपि, विचारों और दिन के उजाले का लाभ उठाने की क्षमता समाप्त हो जाती है। आंतरिक स्थानों के लिए दीवार के इंटीरियर को खुला नहीं होने पर रोमबे की दीवारों का प्रदर्शन कम हो जाता है। दीवार की आंतरिक सतह पर स्थापित फर्नीचर, बुकशेल्फ़ और दीवार अलमारियाँ इसके प्रदर्शन को कम कर देती है ।

चिरसम्मत ट्रोम्बे की दीवार, जिसे सामान्य रूप से वेंट तापीय भंडारण दीवार भी कहा जाता है, द्रव्यमान की दीवार की छत और फर्श के स्तर के पास संकार्यीय वेंट होते हैं जो प्राकृतिक संवहन के माध्यम से इनडोर हवा के प्रवाह की अनुमति देते हैं। जैसे ही सौर विकिरण कांच और दीवार के बीच फंसे हवा को गर्म करता है और यह बढ़ने लगता है। हवा को निचले वेंट में खींचा जाता है, फिर कांच और दीवार के बीच जगह में सौर विकिरण से गर्म होने के लिए, इसके तापमान में वृद्धि और इसके बढ़ने का कारण बनता है और फिर शीर्ष (सीलिंग) के माध्यम से बाहर निकलने के लिए इनडोर स्पेस में वापस चले जाते हैं। यह दीवार को सीधे गर्म हवा को अंतरिक्ष में लाने की अनुमति देता है, सामान्यतः लगभग 90 °f (32 °c) के तापमान पर हैं।

यदि वेंट रात में ( या बादल के दिनों में ) खुले रहते हैं, तो संवहनी हवा के प्रवाह का प्रत्यावर्तन होगा, जो उसे बाहर निकाल कर गर्मी को बर्बाद कर देगा। वेंट्स को रात में बंद कर दिया जाना चाहिए ताकि अंदर की दीवार की आंतरिक सतह से तेज गर्मी अंदर की जगह को गर्म कर सके। सामान्यतः गर्मी के महीनों के दौरान जब गर्मी के लाभ की आवश्यकता नहीं होती है, तब वेंट भी बंद कर दिए जाते हैं। गर्मियों के दौरान, दीवार के शीर्ष पर एक बाहरी निकास वेंट को बाहर जाने के लिए खोला जा सकता है। इस तरह के वेंटिंग सिस्टम को दिन के दौरान इमारत के माध्यम से हवा चलाने के लिए सौर चिमनी के रूप में कार्य करता है।

आंतरिक भाग में रोशनदान तापीय भंडारण की दीवारें कुछ हद तक अप्रभावी साबित हुई हैं, ज्यादातर इसलिए कि वे दिन के दौरान हल्के मौसम में और गर्मियों के महीनों के दौरान बहुत अधिक गर्मी देते हैं, वे बस अधिक गर्म और आराम की समस्या पैदा करते हैं। अधिकांश सौर विशेषज्ञों ने सिफारिश की है कि तापीय भंडारण की दीवारों को इंटीरियर में नहीं लगाया जाना चाहिए।

ट्रोम्बे दीवार प्रणाली के कई प्रकार हैं। अप्रयुक्त तापीय भंडारण दीवार ( तकनीकी रूप से ट्रॉम्बे की दीवार नहीं ) बाहरी सतह पर सौर ऊर्जा को पकड़ती है, ऊपर उठती है और आंतरिक सतह पर गर्मी का संचालन करती है, जहां यह आंतरिक दीवार की सतह से बाद में अंदर की जगह तक विकिरण करती है। पानी की दीवार एक प्रकार के तापीय द्रव्यमान का उपयोग करती है जिसमें तापीय द्रव्यमान के रूप में उपयोग किए जाने वाले पानी के टैंक या ट्यूब होते हैं।

विशिष्ट अप्रयुक्त तापीय भंडारण दीवार में दक्षिणमुखी चिनाई या कंक्रीट की दीवार होती है जिसमें बाहरी सतह पर एक गहरे, गर्मी-अवशोषण सामग्री होती है और कांच की एक या दो परत का सामना होता है। उच्च संचरण ग्लास द्रव्यमान दीवार पर सौर लाभ को अधिकतम करता है। ग्लास 3 से 6 इंच तक रखा गया है। दीवार से (20 से 150 mm) छोटे हवाई क्षेत्र बनाने के लिए। ग्लास फ्रेमिंग सामान्यतः धातु (जैसे, एल्यूमीनियम) है क्योंकि विनाइल मुलायम हो जाएगा और लकड़ी 180 °f (82 °c) तापमान पर अधिक सूखी हो जाएगी जो दीवार में ग्लास के पीछे मौजूद हो सकता है। कांच से गुजरने वाली धूप से निकलने वाली गर्मी अंधेरे सतह द्वारा अवशोषित होती है, दीवार में संग्रहीत होती है, और चिनाई के माध्यम से धीरे-धीरे अंदर की ओर संचालित होती है। एक वास्तुशिल्प विवरण के रूप में, पैटर्न ग्लास सौर ट्रांसमिसिटी नष्ट किए बिना दीवार की बाहरी दृश्यता को सीमित कर सकता है।

पानी की दीवार ठोस द्रव्यमान की दीवार के बजाय ऊष्मीय द्रव्यमान के लिए पानी के कंटेनरों का उपयोग करती है। पानी की दीवारें सामान्यतः ठोस द्रव्यमान की दीवारों की तुलना में थोड़ी अधिक कुशल होती हैं क्योंकि वे तरल पानी में संवहन धाराओं के विकास के कारण गर्मी को अधिक कुशलता से अवशोषित करते हैं क्योंकि यह गर्म होता है। ये धाराएं तेजी से मिश्रण और भवन में गर्मी के तेज हस्तांतरण का कारण बनती हैं, जो ठोस द्रव्यमान की दीवारों द्वारा प्रदान की जा सकती है।

बाहरी और आंतरिक दीवार की सतहों के बीच तापमान भिन्नता द्रव्यमान की दीवार के माध्यम से गर्मी चलाती है। इमारत के अंदर, यद्यपि, दिन के समय की गर्मी में देरी हो रही है, केवल शाम के दौरान ऊष्मीय द्रव्यमान की आंतरिक सतह पर उपलब्ध हो रहा है जब इसकी आवश्यकता होती है क्योंकि सूरज सेट हो गया है। समय अंतराल का समय अंतर होता है जब सूरज की रोशनी पहली बार दीवार से टकराती है और जब गर्मी इमारत के इंटीरियर में प्रवेश करती है। समय अंतराल दीवार और दीवार की मोटाई में उपयोग की जाने वाली सामग्री के प्रकार पर आकस्मिक है;अधिक से अधिक मोटाई एक बड़ा समय अंतराल पैदा करती है। तापमान में उतार-चढ़ाव के साथ संयुक्त ऊष्मीय द्रव्यमान की समय अंतराल विशेषता, समान रात के समय गर्मी स्रोत के रूप में अलग-अलग दिन के समय सौर ऊर्जा के उपयोग की अनुमति देता है। विंडोज को प्राकृतिक प्रकाश या सौंदर्य कारणों के लिए दीवार में रखा जा सकता है, लेकिन यह दक्षता को कुछ हद तक कम करता है।

ऊष्मीय भंडारण वॉल की मोटाई ईंट के लिए लगभग 10 से 14 (250 से 350 mm) होनी चाहिए, कंक्रीट के लिए 12 से 18 (300 से 450 mm), 8 से 12 (200 से 300 mm) के लिए पृथ्वी / एडोब और पानी के लिए कम से कम 6 (150 mm)। ये मोटाई गर्मी के आंदोलन में देरी करते हैं जैसे कि देर शाम के घंटों के दौरान इनडोर सतह का तापमान चरम पर पहुंच जाता है। इमारत के इंटीरियर तक पहुंचने में हीट को लगभग 8 से 10 घंटे लगेंगे ( गर्मी लगभग एक इंच प्रति घंटे की दर से कंक्रीट की दीवार के माध्यम से यात्रा करती है )। अंदर की दीवार खत्म (जैसे, ड्राईवॉल) और ऊष्मीय द्रव्यमान की दीवार के बीच अच्छा ऊष्मीय कनेक्शन आंतरिक स्थान पर गर्मी हस्तांतरण को अधिकतम करने के लिए आवश्यक है।

यद्यपि ऊष्मीय भंडारण दीवार की स्थिति इनडोर स्थान के दिन के समय ओवरहीटिंग को कम करती है, अच्छी तरह से निर्मित इमारत को लगभग 0.2 से 0.3 ft2 तक सीमित किया जाना चाहिए। प्रति ft2 फ्लोर एरिया को गर्म किया जा रहा है (0.2 से 0.3 m2 प्रति m2 फर्श क्षेत्र), जलवायु पर निर्भर करता है। पानी की दीवार में लगभग 0.15 से 0.2 ft2 पानी की दीवार की सतह प्रति ft2 (0.15 से 0.2 m2) फर्श क्षेत्र होनी चाहिए।

ऊष्मीय द्रव्यमान की दीवारें धूप सर्दियों के जलवायु के लिए सबसे अधिक अनुकूल हैं, जिनमें उच्च डायर्नल ( दिन-रात ) तापमान झूलों ( जैसे, दक्षिण-पश्चिम, पर्वत-पश्चिम ) होते हैं। वे बादल या बेहद ठंडे जलवायु या जलवायु में भी प्रदर्शन नहीं करते हैं जहां बड़ा द्वंद्व तापमान स्विंग नहीं होता है। दीवार के ऊष्मीय द्रव्यमान के माध्यम से रात के ऊष्मीय नुकसान अभी भी बादल और ठंडी जलवायु में महत्वपूर्ण हो सकते हैं; दीवार एक दिन से भी कम समय में संग्रहीत गर्मी खो देती है और फिर गर्मी को रिसाव करती है, जो प्रभावशाली रूप से बैकअप हीटिंग आवश्यकताओं को बढ़ाती है। कड़ी फिटिंग, चल इन्सुलेशन पैनलों के साथ ग्लेज़िंग को कवर करने से लंबी बादल की अवधि और रात के घंटों के दौरान एक ऊष्मीय भंडारण प्रणाली के प्रदर्शन को बढ़ाता है।

ऊष्मीय भंडारण दीवारों का मुख्य दोष उनकी गर्मी का नुकसान बाहर से है। अधिकांश जलवायु में गर्मी के नुकसान को कम करने के लिए डबल ग्लास ( ग्लास या प्लास्टिक में से कोई भी ) आवश्यक है। हल्के जलवायु में, सिंगल ग्लास स्वीकार्य है। ऊष्मीय भंडारण दीवार की बाहरी सतह पर लागू एक चयनात्मक सतह (उच्च-अवशोषित/कम-उत्सर्जक सतह) कांच के माध्यम से अवरक्त ऊर्जा की मात्रा को कम करके प्रदर्शन में सुधार करती है; सामान्यतः यह दैनिक स्थापना और इन्सुलेट पैनलों को हटाने की आवश्यकता के बिना प्रदर्शन में समान सुधार प्राप्त करता है। विशिष्ट सतह में दीवार की एक शीट होती है जो दीवार की बाहरी सतह से चिपकी होती है। यह सौर स्पेक्ट्रम के दृश्य भाग में लगभग सभी विकिरण को अवशोषित करता है और इन्फ्रारेड रेंज में बहुत कम उत्सर्जित करता है। उच्च शोषक प्रकाश को दीवार की सतह पर गर्मी में बदल देता है और कम उत्सर्जन गर्मी को कांच की ओर वापस विकिरण करने से रोकता है।[20]

रूफ पान्ड प्रणाली

रूफ पान्ड निष्क्रिय सौर प्रणाली, जिसे कभी -कभी सौर छत कहा जाता है, छत पर गर्म और ठंडे आंतरिक तापमान पर संग्रहीत पानी का उपयोग करता है, सामान्यतः रेगिस्तानी वातावरण में। यह सामान्यतः सपाट छत पर पानी के 6 से 12 (150 से 300 mm) रखने वाले कंटेनरों का निर्माण किया जाता है। उज्ज्वल उत्सर्जन को अधिकतम करने और वाष्पीकरण को कम करने के लिए पानी को बड़े प्लास्टिक बैग या फाइबरग्लास कंटेनरों में संग्रहीत किया जाता है। इसे अनगढ़ छोड़ा जा सकता है या ग्लेज़िंग द्वारा कवर किया जा सकता है। सौर विकिरण पानी को गर्म करता है, जो ऊष्मीय भंडारण माध्यम के रूप में कार्य करता है। रात में या बादल के मौसम के दौरान, कंटेनरों को इन्सुलेट पैनल के साथ कवर किया जा सकता है। छत तालाब के नीचे स्थित इनडोर स्थान को छत के तालाब के ऊपर के भंडारण से उत्सर्जित ताप ऊर्जा से गर्म किया जाता है। इन प्रणालियों के लिए अच्छी ड्रेनेज सिस्टम, चल इन्सुलेशन और 35 से 70 lb/ft2 (1.7 से 3.3 kN/m2) डेड लोड का समर्थन करने के लिए उन्नत संरचनात्मक प्रणाली की आवश्यकता होती है।

दिन के दौरान सूर्य के प्रकाश की घटनाओं के कोण के साथ, छत के तालाब केवल गर्म और समशीतोष्ण जलवायु में निचले और मध्य अक्षांशों पर गर्म करने के लिए प्रभावी होते हैं। रूफ पॉन्ड सिस्टम गर्म, कम नमी वाले मौसम में ठंडा करने के लिए बेहतर प्रदर्शन करते हैं। बहुत अधिक सोलर रूफ नहीं बनाए गए हैं और ऊष्मीय भंडारण रूफ के डिजाइन, लागत, प्रदर्शन और निर्माण विवरण पर सीमित जानकारी है।[20]

हाइब्रिड डायरेक्ट/अप्रत्यक्ष सौर प्रणाली

काचडोरियन ने प्रदर्शित किया कि ऊष्मीय भंडारण की दीवारों की कमियों को ट्रोम्बे की दीवार को क्षैतिज रूप से लंबवत रूप से उन्मुख करके दूर किया जा सकता है।[21] यदि ऊष्मीय भंडारण द्रव्यमान का निर्माण दीवार के रूप में हवादार कंक्रीट स्लैब फर्श के रूप में किया जाता है, तो यह घर में प्रवेश करने से सूरज की रोशनी को अवरुद्ध नहीं करता है ( ट्रोम्बे दीवार का सबसे स्पष्ट नुकसान ) लेकिन यह अभी भी डबल-क्लेज़ेड इक्वेटर के माध्यम से सीधे सूर्य के प्रकाश के लिए उजागर किया जा सकता है-फैसिंग विंडोज, जो रात में ऊष्मीय शटर या शेड्स द्वारा आगे अछूता हो सकता है।[22] दिन के समय गर्मी पकड़ने में ट्रॉमब दीवार की समस्याग्रस्त देरी को समाप्त कर दिया गया है, क्योंकि गर्मी को दीवार के माध्यम से आंतरिक वायु क्षेत्र तक पहुंचने के लिए नहीं चलाया जाता है: इसमें से कुछ फर्श से तुरंत प्रतिबिंबित या फिर से विकिरण करते हैं। बशर्ते कि स्लैब में ट्रोम्बे दीवार जैसे वायु चैनल हैं, जो उत्तर-दक्षिण दिशा में इसके माध्यम से चलते हैं और उत्तर और दक्षिण दीवारों के भीतर कंक्रीट स्लैब फर्श के माध्यम से इंटीरियर एयर स्पेस के लिए पेटेंट किए जाते हैं, स्लैब के माध्यम से जोरदार हवा थर्मोसिपोनिंग अभी भी ऊर्ध्वाधर ट्रॉम्बे दीवार के रूप में होता है, पूरे घर में संचित गर्मी (और विपरीत प्रक्रिया द्वारा गर्मियों में घर को ठंडा करते हैं)।

ऊर्ध्वाधर ट्रॉम्बे की दीवारों की तुलना में निर्माण के लिए वेंटिलेटेड क्षैतिज स्लैब कम महंगा है, क्योंकि यह घर की नींव बनाता है जो किसी भी इमारत में आवश्यक खर्च है। स्लैब-ऑन-ग्रेड फाउंडेशन, अच्छी तरह से समझ में आने वाला और लागत-प्रभावी भवन घटक है ( विदेशी ट्रॉम्बे दीवार निर्माण के बजाय कंक्रीट-ब्रिक एयर चैनलों की परत को सम्मिलित करने के द्वारा थोड़ा ही संशोधित किया गया है )। इस प्रकार के तापीय द्रव्यमान सौर वास्तुशिल्प का एकमात्र शेष ड्रॉबैक बेसमेंट की अनुपस्थिति है, जैसा कि किसी भी स्लैब-ऑन ग्रेड डिजाइन में है।

काचडोरियन फ्लोर डिज़ाइन प्रत्यक्ष-लाभ निष्क्रिय सौर प्रणाली है, लेकिन इसका ऊष्मीय द्रव्यमान भी अप्रत्यक्ष हीटिंग (या कूलिंग) तत्व के रूप में काम करता है, रात में अपनी गर्मी दे रहा है। यह हाइब्रिड इलेक्ट्रिक वाहन की तरह वैकल्पिक चक्र हाइब्रिड ऊर्जा प्रणाली है।

पृथक सौर प्रणाली

पृथक लाभ निष्क्रिय सौर प्रणाली में, घटकों ( जैसे, कलेक्टर और ऊष्मीय भंडारण ) को इमारत के इनडोर क्षेत्र से अलग किया जाता है।[20]

संलग्न सनस्पेस, जिसे कभी-कभी सौर कक्ष या सौरियम भी कहा जाता है, एक प्रकार का पृथक लाभ सौर प्रणाली है जिसमें गैलाकृत आंतरिक स्थान या कमरा होता है जो  इमारत का हिस्सा होता है या उससे जुड़ा होता है लेकिन जो मुख्य व्यस्त क्षेत्रों से पूरी तरह से बंद हो सकता है। यह संलग्न ग्रीन हाउस की तरह कार्य करता है जो प्रत्यक्ष-लाभ और अप्रत्यक्ष-लाभ प्रणाली विशेषताओं के संयोजन का उपयोग करता है। सनस्पेस को ग्रीनहाउस कहा जा सकता है और ग्रीनहाउस की तरह दिखाई देता है, लेकिन ग्रीन हाउस पौधों को विकसित करने के लिए डिज़ाइन किया गया है, जबकि सनस्पेस को इमारत को गर्मी और सौंदर्य प्रदान करने के लिए डिज़ाइन किया गया है। सनस्पेसेस बहुत लोकप्रिय निष्क्रिय डिजाइन तत्व हैं क्योंकि वे इमारत के जीवित क्षेत्रों का विस्तार करते हैं और पौधों और अन्य वनस्पति विकसित करने के लिए कमरा प्रदान करते हैं। यद्यपि, मध्यम और ठंडे जलवायु में, अत्यधिक ठंडे मौसम के दौरान पौधों को जमने से रोकने के लिए पूरक अंतरिक्ष हीटिंग की आवश्यकता होती है।

संलग्न सनस्पेस का दक्षिणी फेसिंग ग्लास एक प्रत्यक्ष-लाभ प्रणाली के रूप में सौर ऊर्जा एकत्र करता है। सबसे सरल सनस्पेस डिजाइन बिना किसी ओवरहेड ग्लेजिंग के ऊर्ध्वाधर विंडो को स्थापित करना है। धूप - झपकी की बहुतायत के कारण धूप - स्थान उच्च गर्मी लाभ और उच्च गर्मी हानि का अनुभव कर सकते हैं । यद्यपि, क्षैतिज और ढलवां ग्लेजिंग सर्दियों में अधिक गर्मी एकत्र करता है, लेकिन गर्मियों के महीनों के दौरान ओवरहीटिंग को रोकने के लिए इसे न्यूनतम किया जाता है। यद्यपि, ओवरहेड ग्लेजिंग सौंदर्यपरक रूप से सुखद हो सकता है, इन्सुलेटेड छत बेहतर तापीय प्रदर्शन प्रदान करती है। दिन के उजाले की संभावना प्रदान करने के लिए रोशनदान का उपयोग किया जा सकता है। ऊर्ध्वाधर ग्लेजिंग सर्दियों में लाभ को अधिकतम कर सकता है, जब सूर्य का कोण कम होता है और गर्मियों के दौरान कम गर्मी लाभ प्राप्त करता है। ऊर्ध्वाधर ग्लास कम खर्चीला है, स्थापित करने और इन्सुलेट करने में आसान है और लीक, फॉगिंग, ब्रेकिंग और अन्य ग्लास विफलताओं के लिए प्रवण नहीं है। यदि गर्मियों में छायांकन प्रदान किया जाता है तो ऊर्ध्वाधर ग्लेज़िंग और कुछ ढलान वाले ग्लेज़िंग का संयोजन स्वीकार्य है। एक अच्छी तरह से डिज़ाइन किया गया ओवरहांग वह सब हो सकता है जो गर्मियों में ग्लेज़िंग को छाया देना आवश्यक है।

गर्मी के नुकसान और लाभ के कारण होने वाले तापमान भिन्नता को ऊष्मीय द्रव्यमान और कम-उत्सर्जक खिड़कियों द्वारा संचालित किया जा सकता है। ऊष्मीय द्रव्यमान में चिनाई फर्श, घर की सीमा या पानी के कंटेनर की चिनाई की दीवार सम्मिलित हो सकती है। भवन में गर्मी का वितरण छत और फर्श के स्तर के वेंट, खिड़कियां, दरवाजे या प्रशंसकों के माध्यम से पूरा किया जा सकता है। एक सामान्य डिजाइन में, लिविंग स्पेस से सटे सनस्पेस के पीछे स्थित ऊष्मीय द्रव्यमान दीवार अप्रत्यक्ष-लाभ ऊष्मीय द्रव्यमान दीवार की तरह काम करेगी। सनस्पेस में प्रवेश करने वाली सौर ऊर्जा को ऊष्मीय द्रव्यमान में बनाए रखा जाता है। सौर ऊर्जा को सनस्पेस के पीछे साझा द्रव्यमान की दीवार के माध्यम से और वेंट्स ( जैसे कि एक अनियंत्रित ऊष्मीय भंडारण दीवार की तरह ) या दीवार में उद्घाटन के माध्यम से कंडक्शन द्वारा भवन में अवगत कराया जाता है, जो संवहन द्वारा इनडोर स्पेस से सनस्पेस से एयरफ्लो की अनुमति देता है ( वेंटेड ऊष्मीय भंडारण वॉल की तरह )।

ठंडी जलवायु में, कांच के माध्यम से बाहर की ओर प्रवाहकीय नुकसान को कम करने के लिए डबल ग्लेज़िंग का उपयोग किया जाना चाहिए।रात के समय की गर्मी हानि, यद्यपि सर्दियों के महीनों के दौरान महत्वपूर्ण है, सनस्पेस में उतना आवश्यक नहीं है जितना कि प्रत्यक्ष लाभ प्रणालियों के साथ क्योंकि सनस्पेस को बाकी इमारत से बंद किया जा सकता है। समशीतोष्ण और ठंडी जलवायु में, रात में इमारत से सूर्य के स्थान को अलग करना महत्वपूर्ण है। इमारत और संलग्न सनस्पेस के बीच बड़े कांच के पैनल, फ्रेंच दरवाजे, या कांच के दरवाजों को फिसलने से खुले स्थान से जुड़े गर्मी के नुकसान के बिना खुली क्षमता बनाए रखेगा।

चिनाई ऊष्मीय दीवार के साथ सनस्पेस को जलवायु के आधार पर तल क्षेत्र के प्रति ft2 की ऊष्मीय द्रव्यमान दीवार की सतह के लगभग 0.3 ft2 की आवश्यकता होगी। दीवार की मोटाई ऊष्मीय भंडारण दीवार के समान होनी चाहिए। यदि सूर्यस्थान और जीवित स्थान के बीच पानी की दीवार का उपयोग किया जाता है, तो फर्श क्षेत्र के प्रति ft2 पर ऊष्मीय द्रव्यमान दीवार की सतह का लगभग 0.20 ft2 गर्म किया जा रहा है (0.2 m2 प्रति m2 फर्श क्षेत्र)। अधिकांश जलवायु में, अधिक गर्म होने को रोकने के लिए गर्मियों के महीनों में वेंटिलेशन प्रणाली की आवश्यकता होती है। सामान्यतः गर्मी के ओवरहीटिंग के लिए विशेष सावधानियों के बिना सनस्पेस में बड़े ओवरहेड (होरिजोंटल) और पूर्व और पश्चिम फेसिंग ग्लास क्षेत्रों का उपयोग नहीं किया जाना चाहिए, जैसे हीट रिफ्लेक्टिंग ग्लास का उपयोग और ग्रीष्मकालीन-शेडिंग सिस्टम क्षेत्रों को प्रदान करना।

ऊष्मीय द्रव्यमान की आंतरिक सतहों को रंग में गहरा होना चाहिए। चल इन्सुलेशन ( जैसे, विंडो कवरिंग, शेड्स, शटर ) का उपयोग सूरज के सेट और बादल के मौसम के दौरान सूर्य के स्थान पर गर्म हवा को फंसाने में मदद किया जा सकता है। गर्म दिनों के दौरान बंद होने पर, खिड़की के कवरिंग से सनस्पेस को ओवरहीटिंग से बचाने में मदद मिल सकती है।

सुविधा और दक्षता को अधिकतम करने के लिए, गैर-चश्मे की धूप की दीवारों, छत और नींव को अच्छी तरह से अछूता होना चाहिए। नींव की दीवार या स्लैब की परिधि को फ्रॉस्ट लाइन या स्लैब परिधि के आसपास अछूता होना चाहिए। समशीतोष्ण या ठंडी जलवायु में, सनस्पेस की पूर्व और पश्चिम की दीवारों को इंसुलेट (नो ग्लास) किया जाना चाहिए।

अतिरिक्त उपाय

रात में गर्मी के नुकसान को कम करने के लिए विंडो कवरिंग या चल खिड़की इन्सुलेशन जैसे उपाय किए जाने चाहिए।

हीट भंडारण

सूरज हर समय चमकता नहीं है। ऊष्म भंडारण या ऊष्मीय द्रव्यमान, भवन को गर्म रखता है जब सूरज इसे गर्म नहीं कर सकता है।

डायर्नल सौर घरों में, भंडारण एक या कुछ दिनों के लिए डिज़ाइन किया गया है। सामान्य विधि अनुकूलित-निर्मित ऊष्मीय द्रव्यमान है। इसमें ट्रॉम्ब दीवार, हवादार कंक्रीट का फर्श,[23] कुंड, पानी की दीवार या छत तालाब सम्मिलित है।[24] पृथ्वी के ऊष्मीय द्रव्यमान का उपयोग करना भी संभव है, या तो जैसा है या बैंकिंग द्वारा संरचना में सम्मिलित किया जा सकता है या संरचनात्मक माध्यम के रूप में पृथ्वी का उपयोग किया जा सकता है।[25]

उपआर्कटिक क्षेत्रों में, या उन क्षेत्रों में जहां सौर लाभ के बिना लंबी अवधि होती है ( उदाहरण के लिए ठंडे धुंध के सप्ताह ), उद्देश्य से निर्मित ऊष्मीय द्रव्यमान बहुत महंगा है। डॉन स्टीफंस ने वार्षिक ताप भंडारण के लिए पर्याप्त ऊष्मीय द्रव्यमान के रूप में जमीन का उपयोग करने के लिए प्रायोगिक तकनीक का नेतृत्व किया। उनके डिजाइन घर के नीचे पृथक थर्मोसाइफन 3 मीटर चलाते हैं और 6 मीटर जलरोधक स्कर्ट के साथ जमीन को इन्सुलेट करते हैं।[26]

इन्सुलेशन

ऊष्मीय इन्सुलेशन या सुपरिंसुलेशन ( प्रकार, प्लेसमेंट और राशि ) गर्मी के अवांछित रिसाव को कम करता है।[10] कुछ निष्क्रिय इमारतें वास्तव में स्ट्रॉ बेल निर्माण हैं।

विशेष ग्लेज़िंग सिस्टम और विंडो कवरिंग

प्रत्यक्ष सौर लाभ प्रणालियों की प्रभावशीलता इन्सुलेटिव (जैसे डबल ग्लेज़िंग), वर्णक्रमीय रूप से चयनात्मक ग्लेज़िंग (लो-ई), या मूवेबल विंडो इन्सुलेशन ( विंडो क्विल्ट्स, बाइफोल्ड इंटीरियर इंसुलेशन शटर्स, शेड्स, आदि ) द्वारा काफी बढ़ा दी जाती है।

सामान्यतः इक्वेटर-फेसिंग विंडोज को उन ग्लेजिंग कोटिंग्स को नियोजित नहीं करना चाहिए जो सौर लाभ को रोकते हैं।

जर्मनी निष्क्रिय घर मानक में सुपर-इंसुलेटेड विंडो का व्यापक उपयोग है। अलग-अलग वर्णक्रमीय चयनात्मक विंडो कोटिंग का चयन डिज़ाइन स्थान के लिए हीटिंग बनाम कूलिंग डिग्री दिनों के अनुपात पर निर्भर करता है।

ग्लेज़िंग चयन

इक्वेटर-फेसिंग ग्लास

ऊर्ध्वाधर इक्वेटर-फेसिंग ग्लास की आवश्यकता इमारत के अन्य तीन पक्षों से अलग है। परावर्तक विंडो कोटिंग और ग्लास के कई पैन उपयोगी सौर लाभ को कम कर सकते हैं। यद्यपि, प्रत्यक्ष-लाभ प्रणाली अधिक डबल या ट्रिपल ग्लेज़िंग या यहां तक कि उच्च भौगोलिक अक्षांशों में क्वाड्रपल ग्लेज़िंग पर निर्भर हैं ताकि गर्मी की कमी को कम किया जा सके। अप्रत्यक्ष-लाभ और पृथक-वास विन्यास अभी भी एकल-पैन ग्लेज़िंग के साथ प्रभावी रूप से कार्य करने में सक्षम हो सकते हैं। फिर भी, इष्टतम लागत प्रभावी समाधान स्थान और प्रणाली दोनों पर निर्भर है।

रूफ-एंगल ग्लास और रोशनदान

रोशनदान कठोर सीधे ओवरहेड सूर्य के प्रकाश को स्वीकार करते हैं [27] या तो क्षैतिज रूप से (एक सपाट छत) या छत की ढलान के समान कोण पर पिच करते हैं। कुछ मामलों में, सौर विकिरण की तीव्रता (और कठोर ग्लेयर) को बढ़ाने के लिए रिफ्लेक्टर के साथ क्षैतिज रोशनदान का उपयोग किया जाता है, जो घटना के छत के कोण पर निर्भर करता है। जब सर्दियों का सूर्य क्षितिज पर कम होता है तो अधिकांश सौर विकिरण छत एंगल्ड ग्लास के बंद को प्रतिबिंबित करता है ( घटना का कोण लगभग छत से जुड़े ग्लास सुबह और दोपहर के समानांतर होता है )। जब गर्मियों का सूर्य ऊंचा होता है, तो यह छत से जुड़े कांच के लगभग लंबवत होता है, जो साल के गलत समय में सौर लाभ को अधिकतम करता है और सौर भट्टी की तरह कार्य करता है। प्राकृतिक संवहन (गर्म हवा बढ़ने) को कम करने के लिए स्काईलाइट को कवर किया जाना चाहिए और अच्छी तरह से तैयार किया जाना चाहिए, सर्दियों की रात में गर्मी का नुकसान, और गर्म वसंत/गर्म/फॉल दिनों के दौरान तीव्र सौर गर्मी का लाभ हैं।

इमारत का भूमध्य रेखा उत्तरी गोलार्ध में दक्षिण और दक्षिणी गोलार्ध में उत्तर की ओर है। भूमध्य रेखा से दूर होने वाली छतों पर रोशनदान ज्यादातर अप्रत्यक्ष रोशनी प्रदान करते हैं, गर्मी के दिनों को छोड़कर जब सूरज इमारत के गैर-इक्वेटर पक्ष (कुछ अक्षांशों पर) पर उठ सकता है। पूर्व की ओर की छत पर दी गई रोशनदान गर्मियों की सुबह में अधिकतम प्रत्यक्ष प्रकाश और सौर गर्मी का लाभ प्रदान करती हैं। दिन के सबसे गर्म हिस्से के दौरान वेस्ट फेसिंग रोशनदान दोपहर की धूप और गर्मी का लाभ प्रदान करती हैं।

कुछ रोशनदान में महंगा ग्लेजिंग होता है जो आंशिक रूप से ग्रीष्मकालीन सौर गर्मी के लाभ को कम करता है, जबकि अभी भी कुछ दृश्य प्रकाश संचरण की अनुमति देता है। यद्यपि, यदि दृश्य प्रकाश इसके माध्यम से गुजर सकता है, तो कुछ रेडिएंट हीट गेन ( वे दोनों विद्युत चुम्बकीय विकिरण तरंगें हैं ) कर सकते हैं।

आप आंशिक रूप से अवांछित छत-कोण-ग्लेज़िंग समर सौर ऊर्जा लाभ में से कुछ को कम कर सकते हैं, जो कि पर्णपाती (पत्ती-शेडिंग) पेड़ों की छाया में एक रोशनदान स्थापित कर सकते हैं, या स्काईलाइट के अंदर या बाहर चल अछूता अपारदर्शी खिड़की को जोड़कर जोड़कर कर सकते हैं। यह गर्मियों में दिन के उजाले के लाभ को समाप्त कर देगा। यदि पेड़ के अंग छत के ऊपर लटकते हैं, तो वे बारिश के गटर में पत्तियों के साथ समस्याओं को बढ़ाएंगे, संभवतः छत-हानिकारक बर्फ बांध (छत), छत के जीवन को छोटा करते हैं और अपनी अटारी में प्रवेश करने के लिए कीटों के लिए आसान रास्ता प्रदान करते हैं। रोशनदान पर पत्तियां और टहनियाँ बिना किसी अपचीय, साफ करने में मुश्किल होती हैं और हवा के तूफानों में ग्लेज़िंग टूटने के जोखिम को बढ़ा सकती हैं।

ऊर्ध्वाधर-ग्लास के साथ "सॉटूथ रूफ ग्लेज़िंग" किसी भी रूफ-एंगल ग्लास या रोशनदान की आवश्यकता के बिना, वाणिज्यिक या औद्योगिक भवन के मूल में कुछ निष्क्रिय सौर भवन डिज़ाइन लाभ ला सकता है।

रोशनदान दिन के उजाले को प्रदान करती हैं। अधिकांश अनुप्रयोगों में उनका एकमात्र दृष्टिकोण अनिवार्य रूप से सीधे ऊपर है। अच्छी तरह से इंसुलेटेड लाइट ट्यूब स्काईलाइट का उपयोग किए बिना उत्तरी कमरों में दिन के उजाले को ला सकते हैं। निष्क्रिय-सौर ग्रीनहाउस इमारत के भूमध्य रेखा के किनारे के लिए काफी दिन का प्रकाश प्रदान करता है।

इन्फ्रारेड थर्मोग्राफी रंग तापीय इमेजिंग कैमरा (औपचारिक ऊर्जा ऑडिट में उपयोग किया जाता है) छत से जुड़े ग्लास के ऋणात्मक ऊष्मीय प्रभाव या ठंडी सर्दियों की रात या गर्म गर्मी के दिन स्काईलाइट का तुरंत पता लगा सकता है।

अमेरिकी ऊर्जा विभाग कहता है: "ऊर्ध्वाधर ग्लेज़िंग सनस्पेस के लिए समग्र सर्वोत्तम विकल्प है।"[28] निष्क्रिय सौर सनस्पेस के लिए रूफ-एंगल्ड ग्लास और साइडवॉल ग्लास की सिफारिश नहीं की जाती है।

U.S. DOE ने छत से जुड़े ग्लेज़िंग के लिए ड्रॉबैक की व्याख्या की: कांच और प्लास्टिक में बहुत कम संरचनात्मक ताकत होती है। जब क्षैतिज रूप से स्थापित किया जाता है, तो ग्लास (या प्लास्टिक) का अपना वजन होता है क्योंकि केवल छोटा क्षेत्र ( ग्लाइंग का शीर्ष किनारा ) गुरुत्वाकर्षण के अधीन होता है। जैसा कि ग्लास ऊर्ध्वाधर धुरी से नीचे झुकता है तथापि, ग्लेज़िंग के बढ़े हुए क्षेत्र (अब स्लाइड क्रॉस-सेक्शन) को गुरुत्वाकर्षण की शक्ति को सहन करना पड़ता है। कांच भी भंगुर होता है; यह टूटने से पहले बहुत लचीला नहीं होता। इसका मुकाबला करने के लिए, आपको सामान्यतः ग्लेज़िंग की मोटाई को बढ़ाना चाहिए या ग्लेज़िंग को पकड़ने के लिए संरचनात्मक समर्थन की संख्या को बढ़ाना चाहिए। दोनों समग्र लागत में वृद्धि करते हैं, और उत्तरार्द्ध सौर लाभ की मात्रा को सनस्पेस में कम कर देगा।

स्लोप्ड ग्लेज़िंग के साथ एक और आम समस्या मौसम के प्रति इसका बढ़ता जोखिम है। तेज धूप में छत के कोण वाले कांच पर अच्छी सील बनाए रखना मुश्किल है। ओलावृष्टि, ओलावृष्टि, हिमपात और हवा भौतिक विफलता का कारण बन सकते हैं। रहने वालों की सुरक्षा के लिए, नियामक एजेंसियों को सामान्यतः स्लोप्ड ग्लास की आवश्यकता होती है जो सेफ्टी ग्लास, लेमिनेटेड या उसके संयोजन से बना हो, जो सौर लाभ क्षमता को कम करता है। क्राउन प्लाजा होटल ऑरलैंडो एयरपोर्ट सनस्पेस पर छत के कोण वाले अधिकांश कांच एक ही आंधी में नष्ट हो गए थेl रूफ-एंगल ग्लास निर्माण लागत बढ़ाता है, और बीमा प्रीमियम बढ़ा सकता है। रूफ-एंगल ग्लास की तुलना में वर्टिकल ग्लास मौसम की क्षति के लिए कम संवेदनशील होता है।

गर्मियों के दौरान और यहां तक कि हल्के और धूप वाले सर्दियों के दौरान भी धूप में सौर गर्मी के लाभ को नियंत्रित करना मुश्किल है। स्काईलाइट शून्य ऊर्जा निर्माण के एंटीथेसिस हैं जो एयर कंडीशनिंग आवश्यकता के साथ जलवायु में निष्क्रिय सौर शीतलन का निर्माण करते हैं।

आकस्मिक विकिरण का कोण

कांच के माध्यम से प्रेषित सौर लाभ की मात्रा भी आकस्मिक सौर विकिरण के कोण से प्रभावित होती है। सूर्य प्रकाश 45 डिग्री के लंबवत के भीतर ग्लास के एकल शीट को व्यक्त करता है, जो ज्यादातर प्रेषित होता है (10% से कम प्रकाश प्रतिबिंबित होता है), जबकि प्रकाश के 20% से अधिक लंबवत 70 डिग्री पर पहुंचने के लिए, और 70 डिग्री से अधिक यह प्रतिशत तेजी से बढ़ जाता है।[29]

इन सभी कारकों को फोटोग्राफिक लाइट मीटर और हेलियोडॉन या ऑप्टिकल बेंच के साथ अधिक सटीक रूप से मॉडलिंग की जा सकती है, जो आकस्मिक कोण (ऑप्टिक्स) के आधार पर, संप्रेषण के प्रतिबिंबितता के अनुपात को निर्धारित कर सकती है।

वैकल्पिक रूप से, निष्क्रिय सौर कंप्यूटर सॉफ्टवेयर सूर्य पथ के प्रभाव का निर्धारण कर सकते हैं और ऊर्जा प्रदर्शन पर शीतलन और गर्म डिग्री दिनों का निर्धारण कर सकते हैं।

संचालन योग्य छायांकन और इन्सुलेशन उपकरण

बहुत अधिक इक्वेटोरियल फेसिंग ग्लास के साथ डिजाइन के परिणामस्वरूप अत्यधिक सर्दी, वसंत, या पतझड़ के दिन गर्म, साल के निश्चित समय पर अपरिवर्तनीय रूप से उज्ज्वल रहने के स्थान और सर्दियों की रात और गर्मियों के दिनों में अत्यधिक ऊष्म स्थानांतरण हो सकता है।

यद्यपि सूर्य एक ही ऊंचाई पर है, फिर भी सोलस्टिस से पहले और बाद में, तापन और शीतलन आवश्यकताएं काफी अलग हैं। पृथ्वी की सतह पर ऊष्मा का भंडारण "तापीय लैग" का कारण बनता है। परिवर्तनशील बादल आवरण सौर लाभ क्षमता को प्रभावित करता है। इसका मतलब यह है कि अक्षांश-विशिष्ट फिक्स्ड विंडो ओवरहैंग्स जबकि महत्वपूर्ण हैं, पूर्ण मौसमी सौर लाभ नियंत्रण समाधान नहीं हैं।

नियंत्रण तंत्र ( जैसे मैनुअल-या-मोटराइज्ड इंटीरियर इंसुलेटेड ड्रेप्स, शटर्स, एक्सटीरियर रोल-डाउन शेड स्क्रीन, या रिट्रेक्टेबल टेंट ) तापीय लैग या क्लाउड कवर के कारण होने वाले अंतर की भरपाई कर सकते हैं, और दैनिक / प्रति घंटा सौर लाभ आवश्यकता विविधताओं को नियंत्रित करने में मदद करते हैं।

घर स्वचालन सिस्टम जो तापमान, धूप, दिन के समय और कमरे में रहने की निगरानी करता है, मोटराइज्ड विंडो-शेडिंग-एंड-इंसुलेशन उपकरणों को ठीक से नियंत्रित कर सकता है।

बाहरी रंग प्रतिबिंबित - अवशोषित

सामग्री और रंगों को सौर ताप ऊर्जा को प्रतिबिंबित या अवशोषित करने के लिए चुना जा सकता है। परावर्तन या अवशोषण के अपने ताप विकिरण गुणों को निर्धारित करने के लिए विद्युत चुम्बकीय विकिरण के रंग पर सूचना का उपयोग विकल्पों की सहायता कर सकता है।

देखें / CEC-500-2006-067.PDF लॉरेंस बर्कले नेशनल लेबोरेटरी और ओक रिज नेशनल लेबोरेटरी: कूल कलर्स ]

ठंडे मौसम में कम सर्दियों के दिनों के साथ प्रत्यक्ष-लाभ प्रणालियां इक्वेटर-फेसिंग खिड़कियों का उपयोग करते हुए वास्तव में बेहतर प्रदर्शन कर सकते हैं जब बर्फ जमीन को कवर करती है, क्योंकि प्रतिबिंबित और सीधे धूप घर में प्रवेश करेगी और गर्मी के रूप में कब्जा कर लिया जाता है।[30]

भूनिर्माण और उद्यान

सजग निष्क्रिय सौर विकल्पों के लिए ऊर्जा-कुशल भूनिर्माण सामग्री में हार्डस्केप निर्माण सामग्री और " सोफ्टस्केप " पौधे सम्मिलित हैं। लताओं के साथ पेड़ों, हेज और ट्रेलिस-पेर्गोला सुविधाओं के चयन के लिए लैंडस्केप डिजाइन सिद्धांतों का उपयोग; सभी का उपयोग समर शेडिंग बनाने के लिए किया जा सकता है। सर्दियों के सौर लाभ के लिए पर्णपाती पौधों का उपयोग करना वांछनीय है जो शरद ऋतु में अपने पत्ते गिराते हैं, साल भर निष्क्रिय सौर लाभ देते हैं। गैर-पर्णपाती सदाबहार झाड़ियाँ और पेड़ सर्दियों की ठंडी हवा से सुरक्षा और आश्रय बनाने के लिए, अलग-अलग ऊँचाई और दूरी पर विंडब्रेक हो सकते हैं। प्रकृति आकार उपयुक्त और सूखा सहिष्णु पौधों की देशी प्रजातियों, ड्रिप सिंचाई, खच्चर और जैविक बागवानी प्रथाओं के साथ लैंडस्केप प्रकाश व्यवस्था और जल-गहन सिंचाई, गैस संचालित उद्यान उपकरण की आवश्यकता को कम या समाप्त करती है और लैंडफिल अपशिष्ट पदचिह्न को कम करती है।

अन्य निष्क्रिय सौर सिद्धांत

निष्क्रिय सौर प्रकाश

निष्क्रिय सौर प्रकाश व्यवस्था तकनीक अंदरूनी के लिए दिन की रोशनी का लाभ उठाती है और इसलिए कृत्रिम प्रकाश प्रणालियों पर निर्भरता को कम करती है।

यह प्रकाश एकत्र करने के लिए विंडो अनुभागों के सावधानीपूर्वक निर्माण डिजाइन, अभिविन्यास और प्लेसमेंट द्वारा हासिल किया जा सकता है। अन्य मौलिक समाधानों में इमारत के इंटीरियर में दिन के उजाले को स्वीकार करने के लिए प्रतिबिंबित सतहों का उपयोग सम्मिलित है। विंडो खंडों को पर्याप्त आकार दिया जाना चाहिए और ओवर-ल्यूमिनेशन से बचने के लिए ब्रिस सोलिल, एवनिंग, अच्छी तरह से रखे पेड़, ग्लास कोटिंग और अन्य निष्क्रिय और सक्रिय उपकरणों के साथ परिरक्षित किया जा सकता है। [31]

कई खिड़की प्रणालियों के लिए एक और प्रमुख मुद्दा यह है कि वे अत्यधिक ऊष्मीय लाभ या गर्मी हानि के संभावित असुरक्षित स्थल हो सकते हैं। जबकि हाई माउंटेड क्लीरेस्टरी विंडो और पारंपरिक स्काईलाइट (खिड़की) इमारत के खराब उन्मुख वर्गों में दिन के उजाले को पेश कर सकते हैं, लेकिन अवांछित गर्मी हस्तांतरण को नियंत्रित करना मुश्किल हो सकता है।[32][33] इस प्रकार, कृत्रिम प्रकाश व्यवस्था को कम करके संचित की जाने वाली ऊर्जा प्रायः ऊष्मीय आराम को बनाए रखने के लिए एचवीएसी सिस्टम के संचालन के लिए आवश्यक ऊर्जा से ऑफसेट से अधिक होती है।

इसे संबोधित करने के लिए विभिन्न तरीकों को नियोजित किया जा सकता है, लेकिन विंडो कवरिंग, इंसुलेटेड ग्लेज़िंग और उपन्यास सामग्री जैसे कि एयरगेल अर्ध-पारदर्शी इन्सुलेशन, दीवारों या छत में एम्बेडेड प्रकाशित तंतु, या तक सीमित नहीं है।/20130701184144/http://www.ornl.gov/sci/solar/ हाइब्रिड सौर प्रकाश ओक रिज राष्ट्रीय प्रयोगशाला में

सक्रिय और निष्क्रिय दिन के उजाले से, जैसे कि प्रकाश अलमारियों, हल्की दीवार और फर्श के रंग, प्रतिबिंबित दीवार अनुभाग, ऊपरी ग्लास पैनलों के साथ आंतरिक दीवारें, और स्पष्ट या  पारभासी ग्लास वाले दरवाजे, अधिकृत किए गए प्रकाश को लेते हैं और निष्क्रिय रूप से इसे अंदर प्रतिबिंबित करते हैं। प्रकाश निष्क्रिय खिड़कियों या रोशनदान और सौर प्रकाश ट्यूबों या सक्रिय दिन के उजाले के स्रोतों से हो सकता है। संकीर्ण जापानी वास्तुकला में, ट्रान्सलुक वाशी स्क्रीनों के साथ, शोटजी स्लाइडिंग पैनल के दरवाजे मूल उदाहरण हैं। अंतर्राष्ट्रीय शैली, आधुनिकतावादी और मध्य शताब्दी की आधुनिक वास्तुकला पहले औद्योगिक, वाणिज्यिक और आवासीय अनुप्रयोगों में इस निष्क्रिय पैठ और प्रतिबिंब के अन्वेषक थे।

निष्क्रिय सौर पानी हीटिंग

घरेलू उपयोग के लिए पानी को गर्म करने के लिए सौर ऊष्मीय ऊर्जा का उपयोग करने के कई तरीके हैं। अलग-अलग सक्रिय-और-पास करने वाले सौर गर्म पानी की प्रौद्योगिकियों में अलग-अलग स्थान-विशिष्ट आर्थिक लागत लाभ विश्लेषण निहितार्थ हैं।

मौलिक निष्क्रिय सौर गर्म पानी के ताप में कोई पंप या कुछ भी विद्युत सम्मिलित नहीं है। यह उन जलवायु में बहुत ही प्रभावी है जहां लंबे समय तक उप-ठंड, या बहुत बादल छाए रहते हैं, मौसम की स्थिति नहीं होती है।[34] अन्य सक्रिय सौर जल ताप प्रौद्योगिकियां, आदि कुछ स्थानों के लिए अधिक उपयुक्त हो सकती हैं।

सक्रिय सौर गर्म पानी होना संभव है जो "ऑफ ग्रिड" होने में भी सक्षम है और स्थायी के रूप में योग्य है। यह फोटोवोल्टिक सेल के उपयोग द्वारा किया जाता है जो पंपों को चलाने के लिए सूर्य से ऊर्जा का उपयोग करता है।[35]

यूरोप में निष्क्रिय घर मानक की तुलना

जर्मनी में पैसिव हाउस ( जर्मन में पसिफियस ) संस्थान द्वारा अपनाए गए दृष्टिकोण के लिए यूरोप में गति बढ़ रही है। केवल पारंपरिक निष्क्रिय सौर डिजाइन तकनीकों पर भरोसा करने के बजाय, यह दृष्टिकोण गर्मी के सभी निष्क्रिय स्रोतों का उपयोग, ऊर्जा के उपयोग को कम करने और उच्च स्तर के इन्सुलेशन की आवश्यकता पर जोर देता है जो तापीय ब्रिजिंग और ठंडी हवा समावेश को दूर करने के लिए विस्तार से ध्यान देकर मजबूत किया जाता है। निष्क्रिय घर मानक के लिए निर्मित अधिकांश इमारतों में छोटे (सामान्यतः 1 kW) के साथ या बिना सक्रिय ऊर्जा रिकवरी वेंटिलेशन यूनिट सम्मिलित है।

पैसिव हाउस इमारतों की ऊर्जा डिजाइन को स्प्रेडशीट-आधारित मॉडलिंग टूल का उपयोग करके विकसित किया गया है जिसे पैसिव हाउस प्लानिंग पैकेज (PHPP) कहा जाता है, जिसे समय-समय पर अपडेट किया जाता है। वर्तमान संस्करण PHPP 9.6 (2018) है। एक इमारत को निष्क्रिय घर के रूप में प्रमाणित किया जा सकता है जब यह दिखाया जा सकता है कि यह कुछ मानदंडों को पूरा करता है, सबसे महत्वपूर्ण यह है कि घर के लिए वार्षिक विशिष्ट गर्मी की मांग 15kWh/m2a से अधिक नहीं होनी चाहिए।

शून्य हीटिंग बिल्डिंग की तुलना

अल्ट्रा लो U-वैल्यू ग्लेज़िंग में प्रगति के साथ निष्क्रिय घर-आधारित (लगभग) शून्य-ऊर्जा इमारतों का प्रस्ताव किया गया है, जो स्पष्ट रूप से यूरोपीय संघ में लगभग शून्य ऊर्जा इमारतों को हटाने में विफल रहा है। शून्य हीटिंग बिल्डिंग निष्क्रिय सौर डिजाइन पर कम हो जाती और इमारत को पारंपरिक वास्तुशिल्प डिजाइन के लिए अधिक खुला बनाता है। शून्य-ऊर्जा इमारतों के लिए वार्षिक विशिष्ट गर्मी की मांग 3 kWh/m2a से अधिक नहीं होनी चाहिए। शून्य-ऊर्जा इमारतों डिजाइन और संचालन के लिए सरल है। उदाहरण के लिए: जीरो हीटिंग घरों में मॉड्यूलेटेड सन शेडिंग की कोई आवश्यकता नहीं है।

डिजाइन उपकरण

पारंपरिक रूप से हीलियोडोन का उपयोग वर्ष के किसी भी दिन के किसी भी समय मॉडल इमारत पर चमकते सूरज की ऊंचाई और दिगंश का अनुकरण करने के लिए किया गया था।[36] आधुनिक समय में, कंप्यूटर प्रोग्राम इस घटना को मॉडल कर सकते हैं और एक वर्ष के दौरान विशेष इमारत डिजाइन के लिए सौर लाभ क्षमता की भविष्यवाणी करने के लिए स्थानीय जलवायु डेटा ( जैसे कि छाया और भौतिक बाधाओं सहित ) को एकीकृत कर सकते हैं। GPS-आधारित स्मार्टफोन एप्लीकेशन अब हाथ में रखे डिवाइस पर सस्ते में ऐसा कर सकते हैं। ये डिजाइन उपकरण निष्क्रिय सौर डिजाइनर को निर्माण से पहले स्थानीय स्थितियों, डिजाइन तत्वों और अभिविन्यास का मूल्यांकन करने की क्षमता प्रदान करते हैं। ऊर्जा प्रदर्शन अनुकूलन सामान्य रूप से पुनरावृत्त-पुनर्निर्माण डिजाइन-और-इवल्यूएट प्रक्रिया की आवश्यकता होती है। "एक आकार-फिट-सभी" सार्वभौमिक निष्क्रिय सौर भवन डिजाइन जैसी कोई चीज नहीं है जो सभी स्थानों पर अच्छी तरह से काम करेगी।

आवेदन का स्तर

कई अलग -अलग उपनगरीय घर अपनी उपस्थिति, आराम या प्रयोज्य में स्पष्ट परिवर्तनों के बिना हीटिंग खर्च में कटौती को प्राप्त कर सकते हैं।[37] यह अच्छी बैठने और खिड़की की स्थिति, ऊष्मीय द्रव्यमान की छोटी मात्रा का उपयोग करके किया जाता है, जिसमें अच्छे-लेकिन-पारंपरिक इन्सुलेशन, मौसम और एक सामयिक पूरक गर्मी स्रोत के साथ, जैसे कि (सौर) वॉटर हीटर से जुड़ा केंद्रीय रेडिएटर। दिन के दौरान सूर्य की दीवार पर गिर सकते और इसके ऊष्मीय द्रव्यमान का तापमान बढ़ा सकते हैं। इसके बाद शाम को इमारत में ऊष्मीय विकिरण गर्मी होगी। बाहरी छायांकन या उज्ज्वल बाधा प्लस वायु अंतराल का उपयोग अवांछनीय ग्रीष्मकालीन सौर लाभ को कम करने के लिए किया जा सकता है।

मौसमी सौर कब्जा और गर्मी और शीतलन के भंडारण के लिए निष्क्रिय सौर दृष्टिकोण का विस्तार। ये डिज़ाइन गर्म-सीजन सौर ऊर्जा को पकड़ने का प्रयास करते हैं और इसे ठंड के मौसम (वार्षिक निष्क्रिय सौर।) के दौरान महीनों बाद उपयोग के लिए मौसमी ऊष्मीय ऊर्जा भंडारण तक पहुंचाते हैं।एक्सचेंजर।उपाख्यानात्मक रिपोर्टों से पता चलता है कि वे प्रभावी हो सकते हैं लेकिन उनकी श्रेष्ठता को प्रदर्शित करने के लिए कोई औपचारिक अध्ययन नहीं किया गया है। दृष्टिकोण भी गर्म मौसम में ठंडा हो सकता है। उदाहरण:

  • जॉन हैट द्वारा निष्क्रिय वार्षिक हीट भंडारण (PAHS)
  • डॉन स्टीफन द्वारा वार्षिक रूप से भू-तापीय सौर (AGS) हीटिंग
  • पृथ्वी शेल्टरिंग | पृथ्वी-छत

"विशुद्ध रूप से निष्क्रिय" सौर-ऊर्जा घर में कोई यांत्रिक भट्टी इकाई नहीं होगी, जो धूप से प्राप्त ऊर्जा पर निर्भर करती है, केवल रोशनी, कंप्यूटर और अन्य कार्य-विशिष्ट उपकरणों ( जैसे कि उन के लिए ) द्वारा दी गई "आकस्मिक" ताप ऊर्जा द्वारा पूरक खाना बनाना, मनोरंजन, आदि), नहाना, लोग और पालतू जानवर। हवा का परिसंचरण करने के लिए प्राकृतिक संवहन वायु धाराओं ( यांत्रिक उपकरणों जैसे पंखों की तुलना में ) का उपयोग संबंधित है, हालांकि सख्ती से सौर डिजाइन नहीं है। निष्क्रिय सौर भवन डिजाइन कभी-कभी सीमित विद्युत और यांत्रिक नियंत्रणों का उपयोग करते हैं, जो कि डम्परों, शेडों, एवनिंग या रिफ्लेक्टर को संचालित करते हैं। कुछ प्रणालियां संवहनीय वायु प्रवाह में सुधार लाने के लिए छोटे पंखों या सौर-हितेड चिमनियों को सूचीबद्ध करती हैं। इन प्रणालियों का विश्लेषण करने का उचित तरीका उनके प्रदर्शन के गुणांक को मापना है। हीट पंप प्रत्येक 4 J के लिए 1 J का उपयोग कर सकता है यह 4 COP दे देता है। एक प्रणाली जो पूरे घर के माध्यम से 10 किलोवाट सौर ताप को अधिक-समान रूप से वितरित करने के लिए केवल 30 डब्ल्यू पंखे का उपयोग करती है, उसका COP 300 होगा।

निष्क्रिय सौर निर्माण डिजाइन प्रायः लागत प्रभावी शून्य ऊर्जा भवन का मूलभूत तत्व होता है।[38][39] यद्यपि ZEB कई निष्क्रिय सौर बिल्डिंग डिज़ाइन अवधारणाओं का उपयोग करता है, ZEB सामान्यतः विशुद्ध रूप से निष्क्रिय नहीं होता है, जिसमें सक्रिय यांत्रिक अक्षय ऊर्जा उत्पादन प्रणाली जैसे: पवन टरबाइन, फोटोवोल्टा, माइक्रो हाइड्रो, भूऊष्मीय और अन्य उभरते वैकल्पिक ऊर्जा स्रोत होती है। पैसिव सोलर भी अन्य निष्क्रिय रणनीतियों के साथ निष्क्रिय उत्तरजीविता के लिए कोर बिल्डिंग डिज़ाइन रणनीति है।[40]

गगनचुंबी इमारत पर निष्क्रिय सौर डिजाइन

गगनचुंबी इमारतों पर बड़ी मात्रा में सतह क्षेत्र के उपयोग में हाल ही में रुचि रही है ताकि उनकी समग्र ऊर्जा दक्षता में सुधार हो सके। चूंकि गगनचुंबी इमारतें शहरी वातावरण में तेजी से सर्वव्यापी हैं, फिर भी परिचालन के लिए बड़ी मात्रा में ऊर्जा की आवश्यकता होती है, निष्क्रिय सौर डिजाइन तकनीकों को लागू करते हुए बड़ी मात्रा में ऊर्जा बचत की संभावना होती है। एक अध्ययन,[41] जिसने लंदन में प्रस्तावित 22 बिशप्सगेट टॉवर का विश्लेषण करने वाले, ने पाया कि मांग में 35% ऊर्जा की कमी को सैद्धांतिक रूप से अप्रत्यक्ष सौर लाभ के माध्यम से प्राप्त किया जा सकता है, इष्टतम वेंटिलेशन और दिन के प्रकाश में प्रवेश प्राप्त करने के लिए इमारत को घुमाया जा सकता है, उच्च तापीय द्रव्यमान फ्लोइंग सामग्री का उपयोग इमारत के भीतर तापमान में उतार-चढ़ाव को कम करने के लिए, और प्रत्यक्ष सौर लाभ के लिए डबल या ट्रिपल ग्लेज़ेड कम एमिसिटी विंडो ग्लास का उपयोग किया जा सकता है। अप्रत्यक्ष सौर लाभ तकनीकों में दीवार की मोटाई (20 से 30 सेमी तक), गर्मी की कमी को रोकने के लिए बाहरी स्थान पर विंडो ग्लेज़िंग का उपयोग करते हुए, तापीय भंडारण के लिए 15 से 20% फर्श क्षेत्र को समर्पित और अंतरिक्ष में गर्मी को अवशोषित करने के लिए ट्रॉम्बे दीवार को लागू करना सम्मिलित था। ओवरहैंग का उपयोग गर्मियों में प्रत्यक्ष सूर्य के प्रकाश को अवरुद्ध करने के लिए किया जाता है और इसे सर्दियों में अनुमति देते हैं और गर्मी को प्रतिबिंबित करने वाली पट्टी को ऊष्मीय दीवार और गर्मियों के महीनों में गर्मी के निर्माण को सीमित करने के लिए ग्लेज़िंग के बीच डाला जाता है।

एक और अध्ययन[42] ने हांगकांग में उच्च वृद्धि वाली इमारतों के बाहर डबल-ग्रीन स्किन फेसैड (DGSF) का विश्लेषण किया। इस तरह के हरे रंग के अग्रभाग या बाहरी दीवारों को कवर करने वाली वनस्पति, एयर कंडीशनिंग के उपयोग का 80% तक मुकाबला कर सकती है, जैसा कि शोधकर्ताओं द्वारा खोजा गया है।

धिक शीतोष्ण जलवायु में, ग्लेजिंग, विंडो-टू-वाल अनुपात के समायोजन, सन शेडिंग और छत रणनीतियों जैसे रणनीतियां 30% से 60% रेंज में पर्याप्त ऊर्जा बचत की पेशकश कर सकती हैं।[43]

यह भी देखें

संदर्भ

  1. Doerr 2012.
  2. Norton 2014.
  3. "U.S. Department of Energy – Energy Efficiency and Renewable Energy – Energy Plus Energy Simulation Software". Retrieved 2011-03-27.
  4. 4.0 4.1 "Rating tools". Archived from the original on September 30, 2007. Retrieved 2011-11-03.
  5. 5.0 5.1 5.2 Talamon, Attila (7 Aug 2013). "Passive Solar Design in Architecture – New Trend?". Governee.
  6. http://www.srrb.noaa.gov/highlights/sunrise/fig5_40n.gif[bare URL image file]
  7. http://www.srrb.noaa.gov/highlights/sunrise/fig5_0n.gif[bare URL image file]
  8. http://www.srrb.noaa.gov/highlights/sunrise/fig5_90n.gif[bare URL image file]
  9. 9.0 9.1 "Your Home Technical Manual - 4.3 Orientation - Part 1". 9 November 2012. Archived from the original on 2012-11-09.
  10. 10.0 10.1 "Your Home Technical Manual - 4.7 Insulation". 25 March 2012. Archived from the original on 2012-03-25.
  11. "BERC – Airtightness". Ornl.gov. 2004-05-26. Archived from the original on 2010-08-28. Retrieved 2010-03-16.
  12. "Your Home Technical Manual - 4.6 Passive Cooling". 20 March 2012. Archived from the original on 2012-03-20.
  13. "EERE Radiant Barriers". Eere.energy.gov. 2009-05-28. Retrieved 2010-03-16.
  14. 14.0 14.1 14.2 14.3 "Glazing". Archived from the original on December 15, 2007. Retrieved 2011-11-03.
  15. Springer, John L. (December 1954). "The 'Big Piece' Way to Build". Popular Science. 165 (6): 157.
  16. "Your Home Technical Manual - 4.4 Shading - Part 1". 21 January 2012. Archived from the original on 2012-01-21.
  17. "Your Home Technical Manual - 4.9 Thermal Mass". 16 February 2011. Archived from the original on 2011-02-16.
  18. "Introductory Passive Solar Energy Technology Overview". U.S. DOE – ORNL Passive Solar Workshop. Archived from the original on 2019-03-29. Retrieved 2007-12-23.
  19. "Passive Solar Design". New Mexico Solar Association. Archived from the original on 2015-12-01. Retrieved 2015-11-11.
  20. 20.0 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 Wujek 2010.
  21. Kachadorian 2006.
  22. Shurcliff 1980.
  23. Kachadorian 2006, pp. 26–43, §3. The Solar Slab and Basic Solar Design.
  24. Sharifi, Ayyoob; Yamagata, Yoshiki (December 2015). "Roof ponds as passive heating and cooling systems: A systematic review". Applied Energy. 160: 336–357. doi:10.1016/j.apenergy.2015.09.061.
  25. "अर्थशिप". earthship.com.
  26. Annualized Geo-Solar Heating, Don Stephens- Accessed 2009-02-05
  27. "Florida Solar Energy Center – Skylights". Retrieved 2011-03-29.
  28. "U.S. Department of Energy – Energy Efficiency and Renewable Energy – Sunspace Orientation and Glazing Angles". Retrieved 2011-03-28.
  29. "Solar Heat Gain Through Glass". Irc.nrc-cnrc.gc.ca. 2010-03-08. Archived from the original on 2009-03-21. Retrieved 2010-03-16.
  30. Kachadorian 2006, p. 42,90.
  31. Chiras, D. The Solar House: Passive Heating and Cooling. Chelsea Green Publishing Company; 2002.
  32. "[ARCHIVED CONTENT] Insulating and heating your home efficiently : Directgov – Environment and greener living". Direct.gov.uk. Retrieved 2010-03-16.
  33. "Reduce Your Heating Bills This Winter – Overlooked Sources of Heat Loss in the Home". Allwoodwork.com. 2003-02-14. Archived from the original on 2010-09-17. Retrieved 2010-03-16.
  34. Brian Norton (2011) Solar Water Heaters: A Review of Systems Research and Design Innovation, Green. 1, 189–206, ISSN (Online) 1869-8778
  35. Andrade, Martin (6 March 2011). "Solar Energy Home Design" (PDF).
  36. "Archived copy". Archived from the original on March 18, 2009. Retrieved February 6, 2016.{{cite web}}: CS1 maint: archived copy as title (link)
  37. "Industrial Technologies Program: Industrial Distributed Energy". Eere.energy.gov. Retrieved 2010-03-16.
  38. "Cold-Climate Case Study for Affordable Zero Energy Homes: Preprint" (PDF). Retrieved 2010-03-16.
  39. "Zero Energy Homes: A Brief Primer" (PDF). Archived from the original (PDF) on 2006-08-13. Retrieved 2010-03-16.
  40. Wilson, Alex (1 December 2005). "Passive Survivability". Building Green.
  41. Lotfabadi, Pooya (2015). "Solar considerations in high-rise buildings". Energy and Buildings. 89: 183–195. doi:10.1016/j.enbuild.2014.12.044.
  42. Wong, Irene; Baldwin, Andrew N. (2016-02-15). "Investigating the potential of applying vertical green walls to high-rise residential buildings for energy-saving in sub-tropical region". Building and Environment. 97: 34–39. doi:10.1016/j.buildenv.2015.11.028.
  43. Raji, Babak; Tenpierik, Martin J.; van den Dobbelsteen, Andy (2016). "An assessment of energy-saving solutions for the envelope design of high-rise buildings in temperate climates: A case study in the Netherlands". Energy and Buildings. 124: 210–221. doi:10.1016/j.enbuild.2015.10.049.

ग्रन्थसूची

  • Doerr, Thomas (2012). Passive Solar Simplified (1st ed.). Retrieved October 24, 2012.
  • Chiras, Daniel (2002). The Solar House. Chelsea Green Publishing.
  • Kachadorian, James (2006). The Passive Solar House: Using Solar Design to Cool and Heat Your Home (2nd ed.). Chelsea Green Publishing. ISBN 9781603582407.
  • Norton, Brian (2014). Harnessing Solar Heat. Springer. ISBN 978-94-007-7275-5.
  • Shurcliff, William A. (1980). Thermal Shutters & Shades – Over 100 Schemes for Reducing Heat Loss through Windows 1980. ISBN 978-0-931790-14-0.
  • Wujek, Joseph (2010). Mechanical and Electrical Systems in Architecture, Engineering and Construction. Pearson Education/Prentice Hall. ISBN 9780135000045.

बाहरी कड़ियाँ