एक सेट की क्षमता: Difference between revisions

From Vigyanwiki
No edit summary
Line 8: Line 8:
===संघनित्र क्षमता===
===संघनित्र क्षमता===


मान लीजिए Σ n-आयाम विषयक यूक्लिडियन स्थान ℝ<sup>n</sup> में एक बंद, शांत, (n - 1)-आयाम विषयक ऊनविम पृष्ठ है , n ≥ 3; K, n-आयाम विषयक[[ सघन स्थान ]] (अर्थात, [[बंद सेट]] और [[परिबद्ध सेट]]) सेट को निरूपित करेगा, जिसकी सीमा Σ है। मान लीजिए S अन्य (n - 1)-आयाम विषयक ऊनविम पृष्ठ है जो Σ को घेरता है: [[विद्युत]] चुंबकत्व में इसकी उत्पत्ति के संदर्भ में, जोड़ी (Σ,S) को एक [[संधारित्र]] के रूप में जाना जाता है। एस के सापेक्ष Σ की 'संघनित्र क्षमता', जिसे सी(Σ, एस) या कैप(Σ, एस) कहा जाता है, सतह अभिन्न द्वारा दी गई है
मान लीजिए Σ n-आयाम विषयक यूक्लिडियन स्थान ℝ<sup>n</sup> में एक बंद, शांत, (n - 1)-आयाम विषयक ऊनविम पृष्ठ है , n ≥ 3; K, n-आयाम विषयक[[ सघन स्थान ]] (अर्थात, [[बंद सेट]] और [[परिबद्ध सेट]]) सेट को निरूपित करेगा, जिसकी सीमा Σ है। मान लीजिए S अन्य (n - 1)-आयाम विषयक ऊनविम पृष्ठ है जो Σ को घिराव करता है: [[विद्युत]] चुंबकत्व में इसकी उत्पत्ति के संदर्भ में, जोड़ी (Σ,S) को एक [[संधारित्र]] के रूप में जाना जाता है। एस के सापेक्ष Σ की 'संघनित्र क्षमता', जिसे सी(Σ, एस) या कैप(Σ, एस) कहा जाता है, सतह अभिन्न द्वारा दी गई है


:<math>C(\Sigma, S) = - \frac1{(n - 2) \sigma_{n}} \int_{S'} \frac{\partial u}{\partial \nu}\,\mathrm{d}\sigma',</math>
:<math>C(\Sigma, S) = - \frac1{(n - 2) \sigma_{n}} \int_{S'} \frac{\partial u}{\partial \nu}\,\mathrm{d}\sigma',</math>
कहाँ:
कहाँ:


* u Σ और S के बीच क्षेत्र D पर सीमा शर्तों Σ पर u(x) = 1 और S पर u(x) = 0 के साथ परिभाषित अद्वितीय [[हार्मोनिक फ़ंक्शन]] है;
* u Σ और S के बीच क्षेत्र D पर सीमा अनुबंधों Σ पर u(x) = 1 और S पर u(x) = 0 के साथ परिभाषित अद्वितीय [[हार्मोनिक फ़ंक्शन|हार्मोनिक फलन]] है;
* S′ Σ और S के बीच की कोई मध्यवर्ती सतह है;
* S′ Σ और S के बीच की कोई मध्यवर्ती सतह है;
* ν S' के लिए बाहरी [[इकाई सामान्य]] क्षेत्र है और
* ν S' के लिए बाहरी [[इकाई सामान्य]] क्षेत्र है और
Line 21: Line 21:
* σ<sub>''n''</sub>= 2π<sup>n⁄2</sup> ⁄ Γ(n⁄ 2) ℝ<sup>n</sup> में इकाई गोले का सतह क्षेत्र है.
* σ<sub>''n''</sub>= 2π<sup>n⁄2</sup> ⁄ Γ(n⁄ 2) ℝ<sup>n</sup> में इकाई गोले का सतह क्षेत्र है.


C(Σ,S) को वॉल्यूम इंटीग्रल द्वारा समान रूप से परिभाषित किया जा सकता है
C(Σ,S) को आयतन आयतन अभिन्न द्वारा समान रूप से परिभाषित किया जा सकता है


:<math>C(\Sigma, S) = \frac1{(n - 2) \sigma_{n}} \int_{D} | \nabla u |^{2}\mathrm{d}x.</math>
:<math>C(\Sigma, S) = \frac1{(n - 2) \sigma_{n}} \int_{D} | \nabla u |^{2}\mathrm{d}x.</math>
संधारित्र क्षमता में परिवर्तनशील लक्षण वर्णन होता है: C(Σ, S) डिरिचलेट की ऊर्जा कार्यात्मकता का न्यूनतम है
संधारित्र क्षमता में परिवर्तनशील निरूपण वर्णन होता है: C(Σ, S) डिरिचलेट की ऊर्जा कार्यात्मकता का न्यूनतम है


:<math>I[v] = \frac1{(n - 2) \sigma_{n}} \int_{D} | \nabla v |^{2}\mathrm{d}x</math>
:<math>I[v] = \frac1{(n - 2) \sigma_{n}} \int_{D} | \nabla v |^{2}\mathrm{d}x</math>
D पर सभी निरंतर-भिन्न-भिन्न कार्यों पर v, Σ पर v(x) = 1 और S पर v(x) = 0 के साथ।
D पर सभी निरंतर-अवकल फलन पर v, Σ पर v(x) = 1 और S पर v(x) = 0 के साथ।


===हार्मोनिक/[[न्यूटोनियन क्षमता]]===
===हार्मोनिक/[[न्यूटोनियन क्षमता]]===


अनुमानतः, K की हार्मोनिक क्षमता, Σ से घिरा क्षेत्र, अनंत के संबंध में Σ की संधारित्र क्षमता लेकर पाया जा सकता है। अधिक सटीक रूप से, मान लीजिए कि K के पूरक में u हार्मोनिक फ़ंक्शन है जो Σ पर u = 1 और u(x) → 0 को x → ∞ के रूप में संतुष्ट करता है। इस प्रकार यू सरल परत Σ की न्यूटोनियन क्षमता है। फिर K की 'हार्मोनिक क्षमता' (जिसे 'न्यूटोनियन क्षमता' के रूप में भी जाना जाता है) को C(K) या कैप(K) द्वारा दर्शाया जाता है। तब परिभाषित किया जाता है
अनुमानतः, K की हार्मोनिक क्षमता, Σ से घिरा क्षेत्र, अनंत के संबंध में Σ की संधारित्र क्षमता लेकर पाया जा सकता है। अधिक सटीक रूप से, मान लीजिए कि K के पूरक में u हार्मोनिक फलन है जो Σ पर u = 1 और u(x) → 0 को x → ∞ के रूप में संतुष्ट करता है। इस प्रकार u सरल स्तर Σ की न्यूटोनियन क्षमता है। फिर K की 'हार्मोनिक क्षमता' (जिसे 'न्यूटोनियन क्षमता' के रूप में भी जाना जाता है) को C(K) या कैप(K) द्वारा दर्शाया जाता है। तब परिभाषित किया जाता है


:<math>C(K) = \int_{\mathbb{R}^n\setminus K} |\nabla u|^2\mathrm{d}x.</math>
:<math>C(K) = \int_{\mathbb{R}^n\setminus K} |\nabla u|^2\mathrm{d}x.</math>
यदि S, K को पूरी तरह से घेरने वाला एक सुधार योग्य हाइपरसरफेस है, तो हार्मोनिक क्षमता को u के बाहरी सामान्य व्युत्पन्न के S पर अभिन्न अंग के रूप में समान रूप से फिर से लिखा जा सकता है:
यदि S, K को पूरी तरह से घिराव वाला एक सुधार योग्य ऊनविम पृष्ठ है, तो हार्मोनिक क्षमता को u के बाहरी सामान्य व्युत्पन्न के S पर अभिन्न अंग के रूप में समान रूप से फिर से लिखा जा सकता है:


:<math>C(K) = \int_S \frac{\partial u}{\partial\nu}\,\mathrm{d}\sigma.</math>
:<math>C(K) = \int_S \frac{\partial u}{\partial\nu}\,\mathrm{d}\sigma.</math>
हार्मोनिक क्षमता को संधारित्र क्षमता की सीमा के रूप में भी समझा जा सकता है। समझदारी से, चलो एस<sub>''r''</sub> ℝ<sup>n</sup> में मूल बिंदु के चारों ओर त्रिज्या r के गोले को निरूपित करता है। चूँकि K परिबद्ध है, पर्याप्त रूप से बड़े r के लिए, Sr, K को घेरेगा और (Σ, Sr) एक संघनित्र युग्म बनाएगा। हार्मोनिक क्षमता तब [[किसी फ़ंक्शन की सीमा|सीमा]] होती है क्योंकि r अनंत की ओर प्रवृत्त होता है
हार्मोनिक क्षमता को संधारित्र क्षमता की सीमा के रूप में भी समझा जा सकता है। समझदारी से, अर्थात S<sub>''r''</sub> ℝ<sup>n</sup> में मूल बिंदु के चारों ओर त्रिज्या r के गोले को निरूपित करता है। चूँकि K परिबद्ध है, पर्याप्त रूप से बड़े r के लिए, Sr, K का घिराव करता है और (Σ, Sr) एक संघनित्र युग्म बनाएगा। हार्मोनिक क्षमता तब सीमित होती है क्योंकि r अनंत की ओर प्रवृत्त होता है


:<math>C(K) = \lim_{r \to \infty} C(\Sigma, S_{r}).</math>
:<math>C(K) = \lim_{r \to \infty} C(\Sigma, S_{r}).</math>
हार्मोनिक क्षमता कंडक्टर K की [[इलेक्ट्रोस्टैटिक क्षमता]] का गणितीय रूप से अमूर्त संस्करण है और हमेशा गैर-नकारात्मक और सीमित होती है: 0 ≤ C(K) <+∞।
हार्मोनिक क्षमता संवाहक K की [[इलेक्ट्रोस्टैटिक क्षमता]] का गणितीय रूप से अमूर्त संस्करण है और प्रायः अ-नकारात्मक और सीमित 0 ≤ C(K) <+∞ होती है।


==सामान्यीकरण==
==सामान्यीकरण==
ऊपर दिए गए विशेष सीमा मूल्यों को प्राप्त करने वाली [[ऊर्जा कार्यात्मक]]ता के न्यूनतम के रूप में एक सेट की क्षमता का लक्षण वर्णन, विविधताओं की गणना में अन्य ऊर्जा कार्यात्मकताओं तक बढ़ाया जा सकता है।
ऊपर दिए गए विशेष सीमा मूल्यों को प्राप्त करने वाली [[ऊर्जा कार्यात्मक]]ता के न्यूनतम के रूप में सेट की क्षमता का निरूपण वर्णन, विविधताओं की गणना में अन्य ऊर्जा कार्यात्मकताओं तक बढ़ाया जा सकता है।


===विचलन प्रपत्र अण्डाकार ऑपरेटर===
===विचलन प्रपत्र अण्डाकार ऑपरेटर===
विचलन रूप के साथ एक समान अण्डाकार आंशिक अंतर समीकरण का समाधान
विचलन रूप के साथ एक समान दीर्घवृत्तीय आंशिक अंतर समीकरण का समाधान
:<math> \nabla \cdot ( A \nabla u ) = 0 </math>
:<math> \nabla \cdot ( A \nabla u ) = 0 </math>
संबद्ध ऊर्जा कार्यात्मकता के न्यूनीकरणकर्ता हैं
संबद्ध ऊर्जा कार्यात्मकता के न्यूनीकरणकर्ता हैं
:<math>I[u] = \int_D (\nabla u)^T A (\nabla u)\,\mathrm{d}x</math>
:<math>I[u] = \int_D (\nabla u)^T A (\nabla u)\,\mathrm{d}x</math>
उचित सीमा शर्तों के अधीन।
उचित सीमा अनुबंधों के अधीन।


E युक्त डोमेन D के संबंध में एक सेट E की क्षमता को E पर v(x) = 1 के साथ D पर सभी निरंतर-विभेदित फ़ंक्शन v पर ऊर्जा की अधिकतम मात्रा के रूप में परिभाषित किया गया है; और D की सीमा पर v(x) = 0.
E युक्त अनुक्षेत्र D के संबंध में सेट E की क्षमता को E पर v(x) = 1 के साथ D पर सभी निरंतर-विभेदित फलन v पर ऊर्जा की अधिकतम मात्रा के रूप में परिभाषित किया गया है; और D की सीमा पर v(x) = 0.


न्यूनतम ऊर्जा एक फ़ंक्शन द्वारा प्राप्त की जाती है जिसे डी के संबंध में की कैपेसिटरी क्षमता के रूप में जाना जाता है, और यह के संकेतक फ़ंक्शन द्वारा प्रदान किए गए बाधा फ़ंक्शन के साथ डी पर [[बाधा समस्या]] को हल करता है। कैपेसिटरी क्षमता को वैकल्पिक रूप से अद्वितीय समाधान के रूप में जाना जाता है उपयुक्त सीमा शर्तों के साथ समीकरण का।
न्यूनतम ऊर्जा एक फलन द्वारा प्राप्त की जाती है जिसे D के संबंध में E की संधारित्र क्षमता के रूप में जाना जाता है, और यह E के संकेतक फलन द्वारा प्रदान किए गए अवरोध फलन के साथ D पर [[बाधा समस्या|अवरोध समस्या]] को हल करता है। संधारित्र क्षमता को वैकल्पिक रूप से अद्वितीय समाधान के रूप में जाना जाता है उपयुक्त सीमा अनुबंधों के साथ समीकरण का।


==यह भी देखें==
==यह भी देखें==

Revision as of 09:48, 9 August 2023

गणित में, यूक्लिडियन स्थान में सेट की क्षमता उस सेट के आकार का एक माप है। मान लीजिए, लेब्सेग माप के विपरीत, जो सेट की मात्रा या भौतिक मात्रा को मापता है, क्षमता किसी सेट की विद्युत आवेश धारण करने की क्षमता का गणितीय एनालॉग है। अधिक सटीक रूप से, यह सेट की धारिता है: किसी दिए गए संभावित ऊर्जा को बनाए रखते हुए एक सेट द्वारा धारण किया जा सकने वाला कुल चार्ज। संभावित ऊर्जा की गणना हार्मोनिक(अनुरूप) या न्यूटोनियन क्षमता के लिए अनंत पर आदर्श आधार के संबंध में और संधारित्र क्षमता के लिए एक सतह के संबंध में की जाती है।

ऐतिहासिक नोट

सेट की क्षमता और क्षमतापूर्ण सेट की धारणा 1950 में गुस्ताव चॉक्वेट द्वारा प्रस्तुत की गई थी: विस्तृत विवरण के लिए, संदर्भ (Choquet 1986) देखें।

परिभाषाएँ

संघनित्र क्षमता

मान लीजिए Σ n-आयाम विषयक यूक्लिडियन स्थान ℝn में एक बंद, शांत, (n - 1)-आयाम विषयक ऊनविम पृष्ठ है , n ≥ 3; K, n-आयाम विषयकसघन स्थान (अर्थात, बंद सेट और परिबद्ध सेट) सेट को निरूपित करेगा, जिसकी सीमा Σ है। मान लीजिए S अन्य (n - 1)-आयाम विषयक ऊनविम पृष्ठ है जो Σ को घिराव करता है: विद्युत चुंबकत्व में इसकी उत्पत्ति के संदर्भ में, जोड़ी (Σ,S) को एक संधारित्र के रूप में जाना जाता है। एस के सापेक्ष Σ की 'संघनित्र क्षमता', जिसे सी(Σ, एस) या कैप(Σ, एस) कहा जाता है, सतह अभिन्न द्वारा दी गई है

कहाँ:

  • u Σ और S के बीच क्षेत्र D पर सीमा अनुबंधों Σ पर u(x) = 1 और S पर u(x) = 0 के साथ परिभाषित अद्वितीय हार्मोनिक फलन है;
  • S′ Σ और S के बीच की कोई मध्यवर्ती सतह है;
  • ν S' के लिए बाहरी इकाई सामान्य क्षेत्र है और
S' के पार u का सामान्य व्युत्पन्न है; और
  • σn= 2πn⁄2 ⁄ Γ(n⁄ 2) ℝn में इकाई गोले का सतह क्षेत्र है.

C(Σ,S) को आयतन आयतन अभिन्न द्वारा समान रूप से परिभाषित किया जा सकता है

संधारित्र क्षमता में परिवर्तनशील निरूपण वर्णन होता है: C(Σ, S) डिरिचलेट की ऊर्जा कार्यात्मकता का न्यूनतम है

D पर सभी निरंतर-अवकल फलन पर v, Σ पर v(x) = 1 और S पर v(x) = 0 के साथ।

हार्मोनिक/न्यूटोनियन क्षमता

अनुमानतः, K की हार्मोनिक क्षमता, Σ से घिरा क्षेत्र, अनंत के संबंध में Σ की संधारित्र क्षमता लेकर पाया जा सकता है। अधिक सटीक रूप से, मान लीजिए कि K के पूरक में u हार्मोनिक फलन है जो Σ पर u = 1 और u(x) → 0 को x → ∞ के रूप में संतुष्ट करता है। इस प्रकार u सरल स्तर Σ की न्यूटोनियन क्षमता है। फिर K की 'हार्मोनिक क्षमता' (जिसे 'न्यूटोनियन क्षमता' के रूप में भी जाना जाता है) को C(K) या कैप(K) द्वारा दर्शाया जाता है। तब परिभाषित किया जाता है

यदि S, K को पूरी तरह से घिराव वाला एक सुधार योग्य ऊनविम पृष्ठ है, तो हार्मोनिक क्षमता को u के बाहरी सामान्य व्युत्पन्न के S पर अभिन्न अंग के रूप में समान रूप से फिर से लिखा जा सकता है:

हार्मोनिक क्षमता को संधारित्र क्षमता की सीमा के रूप में भी समझा जा सकता है। समझदारी से, अर्थात Srn में मूल बिंदु के चारों ओर त्रिज्या r के गोले को निरूपित करता है। चूँकि K परिबद्ध है, पर्याप्त रूप से बड़े r के लिए, Sr, K का घिराव करता है और (Σ, Sr) एक संघनित्र युग्म बनाएगा। हार्मोनिक क्षमता तब सीमित होती है क्योंकि r अनंत की ओर प्रवृत्त होता है

हार्मोनिक क्षमता संवाहक K की इलेक्ट्रोस्टैटिक क्षमता का गणितीय रूप से अमूर्त संस्करण है और प्रायः अ-नकारात्मक और सीमित 0 ≤ C(K) <+∞ होती है।

सामान्यीकरण

ऊपर दिए गए विशेष सीमा मूल्यों को प्राप्त करने वाली ऊर्जा कार्यात्मकता के न्यूनतम के रूप में सेट की क्षमता का निरूपण वर्णन, विविधताओं की गणना में अन्य ऊर्जा कार्यात्मकताओं तक बढ़ाया जा सकता है।

विचलन प्रपत्र अण्डाकार ऑपरेटर

विचलन रूप के साथ एक समान दीर्घवृत्तीय आंशिक अंतर समीकरण का समाधान

संबद्ध ऊर्जा कार्यात्मकता के न्यूनीकरणकर्ता हैं

उचित सीमा अनुबंधों के अधीन।

E युक्त अनुक्षेत्र D के संबंध में सेट E की क्षमता को E पर v(x) = 1 के साथ D पर सभी निरंतर-विभेदित फलन v पर ऊर्जा की अधिकतम मात्रा के रूप में परिभाषित किया गया है; और D की सीमा पर v(x) = 0.

न्यूनतम ऊर्जा एक फलन द्वारा प्राप्त की जाती है जिसे D के संबंध में E की संधारित्र क्षमता के रूप में जाना जाता है, और यह E के संकेतक फलन द्वारा प्रदान किए गए अवरोध फलन के साथ D पर अवरोध समस्या को हल करता है। संधारित्र क्षमता को वैकल्पिक रूप से अद्वितीय समाधान के रूप में जाना जाता है उपयुक्त सीमा अनुबंधों के साथ समीकरण का।

यह भी देखें

संदर्भ