अणु: Difference between revisions
mNo edit summary |
(→इतिहास) |
||
| Line 17: | Line 17: | ||
== इतिहास == | == इतिहास == | ||
{{Main|आणविक सिद्धांत का इतिहास }} | {{Main|आणविक सिद्धांत का इतिहास }} | ||
अणु की परिभाषा विकसित हुई क्योंकि अणुओं की संरचना के ज्ञान मे वृद्धि हुई है। पहले की परिभाषाएँ कम सटीक थीं, अणुओं को शुद्ध रासायनिक पदार्थों के सबसे छोटे कणों के रूप मे परिभाषित | अणु की परिभाषा विकसित हुई क्योंकि अणुओं की संरचना के ज्ञान मे वृद्धि हुई है। लेकिन पहले की परिभाषाएँ कम सटीक थीं, अणुओं को शुद्ध रासायनिक पदार्थों के सबसे छोटे कणों के रूप मे परिभाषित किया गया था जो अभी भी अपनी संरचना और रासायनिक गुणों को बरकरार रखते है।<ref>[http://antoine.frostburg.edu/chem/senese/101/glossary/m.shtml#molecule Molecule Definition] {{Webarchive|url=https://web.archive.org/web/20141013143129/http://antoine.frostburg.edu/chem/senese/101/glossary/m.shtml#molecule|date=13 October 2014}} ([[Frostburg State University]])</ref> यह परिभाषा प्रायः टूट जाती है क्योंकि सामान्य अनुभव में कई पदार्थ, जैसे कि चट्टानें, नमक और[[ धातु | धातु,]] रासायनिक रूप से बंधे परमाणुओं या [[ आयन |आयनों]] के बड़े क्रिस्टलीय नेटवर्क से बने होते हैं, लेकिन असंतत अणु से नहीं बने होते हैं। | ||
अणुओं की आधुनिक अवधारणा को पूर्व-वैज्ञानिक और ग्रीक दार्शनिकों जैसे [[ ल्यूसिपस ]] और [[ डेमोक्रिटस ]] | अणुओं की आधुनिक अवधारणा को पूर्व-वैज्ञानिक और ग्रीक दार्शनिकों जैसे[[ ल्यूसिपस ]]और[[ डेमोक्रिटस | डेमोक्रिटस]] से पता लगाया जा सकता है, जिन्होंने तर्क दिया कि सारा ब्रह्मांड परमाणुओं और रिक्तिओं से बना हुआ है। लगभग 450 ई. एम्पेडोकल्स ने मौलिक तत्वों की कल्पना की। (अग्नि(△), पृथ्वी() | ||
एक पाँचवाँ तत्व, अविनाशी सर्वोत्कृष्ट [[ ईथर (शास्त्रीय तत्व) ]], को स्वर्गीय पिंडों का मूलभूत निर्माण खंड माना जाता था। ल्यूसिपस और एम्पेडोकल्स का दृष्टिकोण, एथर के साथ, [[ अरस्तू ]] द्वारा स्वीकार किया गया था और मध्ययुगीन और पुनर्जागरण यूरोप को पारित कर दिया गया था। | एक पाँचवाँ तत्व, अविनाशी सर्वोत्कृष्ट [[ ईथर (शास्त्रीय तत्व) ]], को स्वर्गीय पिंडों का मूलभूत निर्माण खंड माना जाता था। ल्यूसिपस और एम्पेडोकल्स का दृष्टिकोण, एथर के साथ, [[ अरस्तू ]] द्वारा स्वीकार किया गया था और मध्ययुगीन और पुनर्जागरण यूरोप को पारित कर दिया गया था। | ||
अधिक ठोस तरीके से, हालांकि, बंधुआ परमाणुओं के समुच्चय या इकाइयों की अवधारणा, यानी अणु, रॉबर्ट बॉयल की 1661 की परिकल्पना के लिए अपनी उत्पत्ति का पता लगाते हैं, उनके | अधिक ठोस तरीके से, हालांकि, बंधुआ परमाणुओं के समुच्चय या इकाइयों की अवधारणा, यानी अणु, रॉबर्ट बॉयल की 1661 की परिकल्पना के लिए अपनी उत्पत्ति का पता लगाते हैं, उनके प्रसिद्ग्थ द स्केप्टिकल चिमिस्ट में, वह पदार्थ कणों के समूहों और उस रासायनिक परिवर्तन से बना है। क्लस्टर के पुनर्व्यवस्था के परिणाम। बॉयल ने तर्क दिया कि पदार्थ के मूल तत्वों में विभिन्न प्रकार और कणों के आकार होते हैं, जिन्हें कॉर्पसकल कहा जाता है, जो स्वयं को समूहों में व्यवस्थित करने में सक्षम थे। 1789 में, विलियम हिगिंस (रसायनज्ञ) ने उन विचारों को प्रकाशित किया जिन्हें उन्होंने परम कणों के संयोजन कहा था, जिसने संयोजकता बांड की अवधारणा को पूर्वाभास दिया। यदि, उदाहरण के लिए, हिगिंस के अनुसार, ऑक्सीजन के अंतिम कण और नाइट्रोजन के अंतिम कण के बीच का बल 6 था, तो बल की ताकत को तदनुसार विभाजित किया जाएगा, और इसी तरह परम कणों के अन्य संयोजनों के लिए। | ||
Amedeo Avogadro ने अणु शब्द बनाया।<ref name="ley196606">{{Cite magazine |last=Ley |first=Willy |date=June 1966 |title=The Re-Designed Solar System |url=https://archive.org/stream/Galaxy_v24n05_1966-06#page/n93/mode/2up |department=For Your Information |magazine=Galaxy Science Fiction |pages=94–106}}</ref> उनका 1811 का पेपर निबंध, निकायों के प्राथमिक अणुओं के सापेक्ष द्रव्यमान का निर्धारण पर, वह अनिवार्य रूप से कहता है, यानी जेआर पार्टिंगटन के ए शॉर्ट हिस्ट्री ऑफ केमिस्ट्री के अनुसार, कि:<ref>{{cite journal |last1=Avogadro |first1=Amedeo |date=1811 |title=Masses of the Elementary Molecules of Bodies |url=http://web.lemoyne.edu/~giunta/AVOGADRO.HTML |journal=Journal de Physique |volume=73 |pages=58–76 |access-date=25 August 2022 |archive-date=12 May 2019 |archive-url=https://web.archive.org/web/20190512182624/http://web.lemoyne.edu/~giunta/avogadro.html |url-status=live }}</ref>{{quote|The smallest particles of gases are not necessarily simple atoms, but are made up of a certain number of these atoms united by attraction to form a single '''molecule'''.}}इन अवधारणाओं के समन्वय में, 1833 में फ्रांसीसी रसायनज्ञ [[ मार्क एंटोनी अगस्टे गौडीन ]] ने अवोगाद्रो की परिकल्पना का एक स्पष्ट विवरण प्रस्तुत किया,<ref>{{cite journal |author=Seymour H. Mauskopf |date=1969 |title=The Atomic Structural Theories of Ampère and Gaudin: Molecular Speculation and Avogadro's Hypothesis |journal=Isis |volume=60 |issue=1 |pages=61–74 |doi=10.1086/350449 |jstor=229022 |s2cid=143759556}}</ref> परमाणु भार के संबंध में, आयतन आरेखों का उपयोग करके, जो स्पष्ट रूप से अर्ध-सही आणविक ज्यामिति, जैसे कि एक रैखिक पानी के अणु, और सही आणविक सूत्र, जैसे H दोनों को स्पष्ट रूप से दिखाते हैं।<sub>2</sub>ओ: | Amedeo Avogadro ने अणु शब्द बनाया।<ref name="ley196606">{{Cite magazine |last=Ley |first=Willy |date=June 1966 |title=The Re-Designed Solar System |url=https://archive.org/stream/Galaxy_v24n05_1966-06#page/n93/mode/2up |department=For Your Information |magazine=Galaxy Science Fiction |pages=94–106}}</ref> उनका 1811 का पेपर निबंध, निकायों के प्राथमिक अणुओं के सापेक्ष द्रव्यमान का निर्धारण पर, वह अनिवार्य रूप से कहता है, यानी जेआर पार्टिंगटन के ए शॉर्ट हिस्ट्री ऑफ केमिस्ट्री के अनुसार, कि:<ref>{{cite journal |last1=Avogadro |first1=Amedeo |date=1811 |title=Masses of the Elementary Molecules of Bodies |url=http://web.lemoyne.edu/~giunta/AVOGADRO.HTML |journal=Journal de Physique |volume=73 |pages=58–76 |access-date=25 August 2022 |archive-date=12 May 2019 |archive-url=https://web.archive.org/web/20190512182624/http://web.lemoyne.edu/~giunta/avogadro.html |url-status=live }}</ref>{{quote|The smallest particles of gases are not necessarily simple atoms, but are made up of a certain number of these atoms united by attraction to form a single '''molecule'''.}}इन अवधारणाओं के समन्वय में, 1833 में फ्रांसीसी रसायनज्ञ [[ मार्क एंटोनी अगस्टे गौडीन ]] ने अवोगाद्रो की परिकल्पना का एक स्पष्ट विवरण प्रस्तुत किया,<ref>{{cite journal |author=Seymour H. Mauskopf |date=1969 |title=The Atomic Structural Theories of Ampère and Gaudin: Molecular Speculation and Avogadro's Hypothesis |journal=Isis |volume=60 |issue=1 |pages=61–74 |doi=10.1086/350449 |jstor=229022 |s2cid=143759556}}</ref> परमाणु भार के संबंध में, आयतन आरेखों का उपयोग करके, जो स्पष्ट रूप से अर्ध-सही आणविक ज्यामिति, जैसे कि एक रैखिक पानी के अणु, और सही आणविक सूत्र, जैसे H दोनों को स्पष्ट रूप से दिखाते हैं।<sub>2</sub>ओ: | ||
Revision as of 14:09, 1 November 2022
अन्य उपयोगों के लिए, अणु (बहुविकल्पी) देखें।
एक अणु दो या दो से अधिक परमाणुओं का एक समूह होता है जो आकर्षक बलों द्वारा एक साथ जुडा होता है जिसे रासायनिक बंधन कहा जाता है; संदर्भ के आधार पर, शब्द में आयन सम्मिलित हो सकते हैं या नहीं भी हो सकते हैं जो इस मानदंड को पूरा करते हैं।[4][5][6][7][8] क्वांटम भौतिकी, कार्बनिक रसायन विज्ञान और जैव रसायन मे आयनों से अंतर को हटा दिया जाता है और बहुपरमाणुक आयनों के संदर्भ मे प्रायः अणु का उपयोग किया जाता है।
एक अणु समानाभिकीय हो सकता है, अर्थात इसमें रासायनिक तत्व के परमाणु होते हैं, उदाहरण के लिए ऑक्सीजन (O .)2 अणु में दो परमाणु, या यह विषमनाभिकीय हो सकता है, एक रासायनिक यौगिक जो एक से अधिक तत्वों से बना होता है, जैसे पानी(H2O) मे दो हाइड्रोजन परमाणु और एक ऑक्सीजन परमाणु। गैसों के गतिज सिद्धांत में, अणु शब्द का प्रयोग प्रायः किसी भी गैसीय कण के लिए किया जाता है, चाहे उसकी संरचना कुछ भी हो। यह इस आवश्यकता को कम करता है कि एक अणु में दो या दो से अधिक परमाणु होते हैं, क्योंकि उत्कृष्ट गैसें विशिष्ट परमाणु होती हैं।[9] हाइड्रोजन बंध या आयोनिक बंध, जैसे गैर-सहसंयोजक, अन्तःक्रियाओ से जुड़े मिश्रित परमाणुओ को आमतौर पर एकल अणु नहीं माना जाता है।[10]
अणुओं के समान अवधारणाओं पर प्राचीन काल से चर्चा की गई है, लेकिन अणुओं की प्रकृति और उनके बंधनों की आधुनिक जांच सत्तरहवीं शताब्दी में प्रारंभ हुई। रॉबर्ट बॉयल, एमेडियो अवोगाद्रो,जीन-बैप्टिस्ट पेरिन और लिनुस पॉलिंग जैसे वैज्ञानिकों द्वारा समय के साथ परिष्कृत, अणुओं के अध्ययन को आज आणविक भौतिकी या आणविक रसायन विज्ञान के रूप में जाना जाता है।
व्युत्पत्ति
मेरिएम वेबस्टर और सक्रिय व्युत्पत्ति शब्दकोश के अनुसार, ''अणु'' शब्द लैटिन मोल (इकाई) या द्रव्यमान की छोटी इकाई से निकला है। यह शब्द फ्रेंच मॉलिक्यूल(1678) से लिया गया है, जो नए शब्द लैटिन मॉलिक्यूला का लैटिन मोल ''द्रव्यमान झिल्ली'' से छोटा है। यह शब्द, जो अठारहवीं शताब्दी के अंत तक केवल लैटिन रूप में प्रयोग किया जाता था, रेने डेसकार्टेस द्वारा तत्वज्ञान के कार्यों में उपयोग किए जाने के बाद लोकप्रिय हो गया।[11][12]
इतिहास
अणु की परिभाषा विकसित हुई क्योंकि अणुओं की संरचना के ज्ञान मे वृद्धि हुई है। लेकिन पहले की परिभाषाएँ कम सटीक थीं, अणुओं को शुद्ध रासायनिक पदार्थों के सबसे छोटे कणों के रूप मे परिभाषित किया गया था जो अभी भी अपनी संरचना और रासायनिक गुणों को बरकरार रखते है।[13] यह परिभाषा प्रायः टूट जाती है क्योंकि सामान्य अनुभव में कई पदार्थ, जैसे कि चट्टानें, नमक और धातु, रासायनिक रूप से बंधे परमाणुओं या आयनों के बड़े क्रिस्टलीय नेटवर्क से बने होते हैं, लेकिन असंतत अणु से नहीं बने होते हैं।
अणुओं की आधुनिक अवधारणा को पूर्व-वैज्ञानिक और ग्रीक दार्शनिकों जैसेल्यूसिपस और डेमोक्रिटस से पता लगाया जा सकता है, जिन्होंने तर्क दिया कि सारा ब्रह्मांड परमाणुओं और रिक्तिओं से बना हुआ है। लगभग 450 ई. एम्पेडोकल्स ने मौलिक तत्वों की कल्पना की। (अग्नि(△), पृथ्वी()
एक पाँचवाँ तत्व, अविनाशी सर्वोत्कृष्ट ईथर (शास्त्रीय तत्व) , को स्वर्गीय पिंडों का मूलभूत निर्माण खंड माना जाता था। ल्यूसिपस और एम्पेडोकल्स का दृष्टिकोण, एथर के साथ, अरस्तू द्वारा स्वीकार किया गया था और मध्ययुगीन और पुनर्जागरण यूरोप को पारित कर दिया गया था।
अधिक ठोस तरीके से, हालांकि, बंधुआ परमाणुओं के समुच्चय या इकाइयों की अवधारणा, यानी अणु, रॉबर्ट बॉयल की 1661 की परिकल्पना के लिए अपनी उत्पत्ति का पता लगाते हैं, उनके प्रसिद्ग्थ द स्केप्टिकल चिमिस्ट में, वह पदार्थ कणों के समूहों और उस रासायनिक परिवर्तन से बना है। क्लस्टर के पुनर्व्यवस्था के परिणाम। बॉयल ने तर्क दिया कि पदार्थ के मूल तत्वों में विभिन्न प्रकार और कणों के आकार होते हैं, जिन्हें कॉर्पसकल कहा जाता है, जो स्वयं को समूहों में व्यवस्थित करने में सक्षम थे। 1789 में, विलियम हिगिंस (रसायनज्ञ) ने उन विचारों को प्रकाशित किया जिन्हें उन्होंने परम कणों के संयोजन कहा था, जिसने संयोजकता बांड की अवधारणा को पूर्वाभास दिया। यदि, उदाहरण के लिए, हिगिंस के अनुसार, ऑक्सीजन के अंतिम कण और नाइट्रोजन के अंतिम कण के बीच का बल 6 था, तो बल की ताकत को तदनुसार विभाजित किया जाएगा, और इसी तरह परम कणों के अन्य संयोजनों के लिए।
Amedeo Avogadro ने अणु शब्द बनाया।[14] उनका 1811 का पेपर निबंध, निकायों के प्राथमिक अणुओं के सापेक्ष द्रव्यमान का निर्धारण पर, वह अनिवार्य रूप से कहता है, यानी जेआर पार्टिंगटन के ए शॉर्ट हिस्ट्री ऑफ केमिस्ट्री के अनुसार, कि:[15]
The smallest particles of gases are not necessarily simple atoms, but are made up of a certain number of these atoms united by attraction to form a single molecule.
इन अवधारणाओं के समन्वय में, 1833 में फ्रांसीसी रसायनज्ञ मार्क एंटोनी अगस्टे गौडीन ने अवोगाद्रो की परिकल्पना का एक स्पष्ट विवरण प्रस्तुत किया,[16] परमाणु भार के संबंध में, आयतन आरेखों का उपयोग करके, जो स्पष्ट रूप से अर्ध-सही आणविक ज्यामिति, जैसे कि एक रैखिक पानी के अणु, और सही आणविक सूत्र, जैसे H दोनों को स्पष्ट रूप से दिखाते हैं।2ओ:
1917 में, लिनुस पॉलिंग नाम का एक अज्ञात अमेरिकी स्नातक रसायन इंजीनियर ओरेगॉन कृषि कॉलेज में डाल्टन मॉडल | डाल्टन हुक-एंड-आई बॉन्डिंग विधि सीख रहा था, जो उस समय परमाणुओं के बीच बंधन का मुख्य विवरण था। हालाँकि, पॉलिंग इस पद्धति से संतुष्ट नहीं थे और उन्होंने एक नई विधि के लिए क्वांटम भौतिकी के नए उभरते क्षेत्र की ओर देखा। 1926 में, फ्रांसीसी भौतिक विज्ञानी जॉन पेरिन को अणुओं के अस्तित्व को साबित करने के लिए भौतिकी में नोबेल पुरस्कार मिला। उन्होंने तीन अलग-अलग तरीकों का उपयोग करके अवोगाद्रो की संख्या की गणना करके ऐसा किया, जिसमें सभी तरल चरण प्रणालियों को शामिल किया गया था। पहला, उन्होंने गैंबोज साबुन की तरह इमल्शन का इस्तेमाल किया, दूसरा ब्राउनियन गति पर प्रायोगिक कार्य करके, और तीसरा तरल चरण में आइंस्टीन के कण रोटेशन के सिद्धांत की पुष्टि करके।[17] 1927 में, भौतिकविदों फ़्रिट्ज़ लंदन और वाल्टर हिटलर ने हाइड्रोजन अणु के संतृप्त, गैर-गतिशील आकर्षण और प्रतिकर्षण, यानी विनिमय बलों के साथ सौदे के लिए नए क्वांटम यांत्रिकी को लागू किया। इस समस्या का उनके संयोजकता बांड उपचार, उनके संयुक्त पत्र में,[18] यह एक मील का पत्थर था जिसमें यह रसायन विज्ञान को क्वांटम यांत्रिकी के तहत लाया। उनका काम पॉलिंग पर एक प्रभाव था, जिन्होंने अभी-अभी डॉक्टरेट की उपाधि प्राप्त की थी और एक गुगेनहाइम फैलोशिप पर ज्यूरिख में हिटलर और लंदन का दौरा किया था।
इसके बाद, 1931 में, हिटलर और लंदन के काम पर और लुईस के प्रसिद्ध लेख में पाए गए सिद्धांतों पर, पॉलिंग ने अपना महत्वपूर्ण लेख द नेचर ऑफ द केमिकल बॉन्ड प्रकाशित किया।[19] जिसमें उन्होंने अणुओं के गुणों और संरचनाओं की गणना करने के लिए क्वांटम यांत्रिकी का उपयोग किया, जैसे बांड के बीच कोण और बांड के बारे में रोटेशन। इन अवधारणाओं पर, पॉलिंग ने CH . जैसे अणुओं में बंधों को ध्यान में रखते हुए संकरण सिद्धांत विकसित किया4, जिसमें चार sp³ संकरित कक्षक हाइड्रोजन के 1s कक्षक द्वारा अतिव्याप्त होते हैं, जिससे चार सिग्मा आबंध|सिग्मा (σ) आबंध प्राप्त होते हैं। चार बंधन समान लंबाई और ताकत के होते हैं, जो नीचे दिखाए गए अनुसार आणविक संरचना उत्पन्न करते हैं:
आण्विक विज्ञान
अणुओं के विज्ञान को आणविक रसायन विज्ञान या आणविक भौतिकी कहा जाता है, यह इस बात पर निर्भर करता है कि ध्यान रसायन विज्ञान पर है या भौतिकी पर। आणविक रसायन विज्ञान अणुओं के बीच बातचीत को नियंत्रित करने वाले कानूनों से संबंधित है, जिसके परिणामस्वरूप रासायनिक बंधों का निर्माण और टूटना होता है, जबकि आणविक भौतिकी उनकी संरचना और गुणों को नियंत्रित करने वाले कानूनों से संबंधित है। व्यवहार में, हालांकि, यह भेद अस्पष्ट है। आणविक विज्ञान में, एक अणु में दो या दो से अधिक परमाणुओं से बनी एक स्थिर प्रणाली (बाध्य अवस्था ) होती है। बहुपरमाणुक आयनों को कभी-कभी विद्युत आवेशित अणुओं के रूप में उपयोगी माना जा सकता है। अस्थिर अणु शब्द का उपयोग बहुत प्रतिक्रियाशीलता (रसायन विज्ञान) प्रजातियों के लिए किया जाता है, अर्थात, इलेक्ट्रॉनों और परमाणु नाभिक की अल्पकालिक असेंबली (रेजोनेंस (रसायन विज्ञान)), जैसे कि रेडिकल (रसायन विज्ञान), आणविक आयन, Rydberg अणु, संक्रमण अवस्था, वैन डेर बोस-आइंस्टीन कंडेनसेट के रूप में वाल्स बॉन्डिंग, या परमाणुओं के टकराने की प्रणाली।
व्यापकता
This section does not cite any sources. (August 2022) (Learn how and when to remove this template message) |
पदार्थ के घटक के रूप में अणु आम हैं। वे अधिकांश महासागरों और वायुमंडल को भी बनाते हैं। अधिकांश कार्बनिक पदार्थ अणु होते हैं। जीवन के पदार्थ अणु हैं, उदा। प्रोटीन, अमीनो एसिड जिनसे वे बने हैं, न्यूक्लिक एसिड (डीएनए और आरएनए), शर्करा, कार्बोहाइड्रेट, वसा और विटामिन। पोषक तत्व खनिज आम तौर पर आयनिक यौगिक होते हैं, इस प्रकार वे अणु नहीं होते हैं, उदा। लौह सल्फेट।
हालाँकि, पृथ्वी पर अधिकांश परिचित ठोस पदार्थ आंशिक रूप से या पूरी तरह से क्रिस्टल या आयनिक यौगिकों से बने होते हैं, जो अणुओं से नहीं बने होते हैं। इनमें वे सभी खनिज शामिल हैं जो पृथ्वी के पदार्थ, रेत, मिट्टी, कंकड़, चट्टानें, शिलाखंड, क्रस्ट (भूविज्ञान) , मेंटल (भूविज्ञान) , और पृथ्वी कोर का निर्माण करते हैं। इन सभी में कई रासायनिक बंधन होते हैं, लेकिन ये पहचानने योग्य अणुओं से नहीं बने होते हैं।
नमक के लिए कोई विशिष्ट अणु परिभाषित नहीं किया जा सकता है और न ही नेटवर्क ठोस के लिए, हालांकि ये अक्सर दोहराई जाने वाली इकाई कोशिकाओं से बने होते हैं जो या तो एक विमान (गणित) में विस्तारित होते हैं, उदा। ग्राफीन ; या त्रि-आयामी उदा। हीरा , क्वार्ट्ज, सोडियम क्लोराइड। दोहराई जाने वाली इकाई-कोशिका-संरचना का विषय अधिकांश धातुओं के लिए भी है जो धातु बंधन के साथ संघनित चरण हैं। इस प्रकार ठोस धातुएं अणुओं से नहीं बनती हैं। चश्मे में, जो ठोस होते हैं जो एक कांच की अव्यवस्थित अवस्था में मौजूद होते हैं, परमाणुओं को रासायनिक बंधनों द्वारा एक साथ रखा जाता है, जिसमें किसी भी निश्चित अणु की उपस्थिति नहीं होती है, न ही दोहराई जाने वाली इकाई-सेलुलर-संरचना की कोई नियमितता जो लवण, सहसंयोजक क्रिस्टल, और धातु।
बंधन
अणु आमतौर पर सहसंयोजक बंधन द्वारा एक साथ होते हैं। कई गैर-धातु तत्व पर्यावरण में केवल अणुओं के रूप में या तो यौगिकों में या होमोन्यूक्लियर अणुओं के रूप में मौजूद होते हैं, न कि मुक्त परमाणुओं के रूप में: उदाहरण के लिए, हाइड्रोजन।
जबकि कुछ लोग कहते हैं कि धात्विक क्रिस्टल को धात्विक बंधन द्वारा एक साथ रखा गया एक विशाल अणु माना जा सकता है,[20] अन्य बताते हैं कि धातुएं अणुओं की तुलना में बहुत अलग तरीके से व्यवहार करती हैं।[21]
सहसंयोजक
एक सहसंयोजक बंधन एक रासायनिक बंधन है जिसमें परमाणुओं के बीच इलेक्ट्रॉन जोड़े को साझा करना शामिल है। इन इलेक्ट्रॉन जोड़े को साझा जोड़े या बंधन जोड़े कहा जाता है, और परमाणुओं के बीच आकर्षक और प्रतिकारक बलों के स्थिर संतुलन, जब वे इलेक्ट्रॉन जोड़ी साझा करते हैं, को सहसंयोजक बंधन कहा जाता है।[22]
आयनिक
आयनिक बंधन एक प्रकार का रासायनिक बंधन है जिसमें विपरीत रूप से चार्ज किए गए आयनों के बीच इलेक्ट्रोस्टैटिक आकर्षण शामिल होता है, और आयनिक यौगिक ों में होने वाली प्राथमिक बातचीत होती है। आयन ऐसे परमाणु होते हैं जिन्होंने एक या एक से अधिक इलेक्ट्रॉनों को खो दिया है (जिन्हें धनायन कहा जाता है) और परमाणु जिन्होंने एक या एक से अधिक इलेक्ट्रॉन प्राप्त किए हैं (जिन्हें आयन कहा जाता है)।[23] सहसंयोजक बंधन के विपरीत इलेक्ट्रॉनों के इस हस्तांतरण को इलेक्ट्रोवेलेंस कहा जाता है। सबसे सरल मामले में, धनायन एक धातु परमाणु है और आयन एक अधातु परमाणु है, लेकिन ये आयन अधिक जटिल प्रकृति के हो सकते हैं, उदा। NH . जैसे आणविक आयन4+ या SO42−. सामान्य तापमान और दबाव पर, आयनिक बंधन ज्यादातर अलग-अलग पहचान योग्य अणुओं के बिना ठोस (या कभी-कभी तरल पदार्थ) बनाता है, लेकिन ऐसी सामग्रियों का वाष्पीकरण/उच्च बनाने की क्रिया अलग अणुओं का उत्पादन करती है जहां बांडों को सहसंयोजक के बजाय आयनिक माना जाने के लिए इलेक्ट्रॉनों को अभी भी पूरी तरह से स्थानांतरित किया जाता है। .
आणविक आकार
अधिकांश अणु नग्न आंखों से देखे जाने के लिए बहुत छोटे होते हैं, हालांकि कई पॉलिमर के अणु स्थूल आकार तक पहुंच सकते हैं, जिसमें डीएनए जैसे जैव बहुलक भी शामिल हैं। आमतौर पर कार्बनिक संश्लेषण के लिए बिल्डिंग ब्लॉक्स के रूप में उपयोग किए जाने वाले अणुओं में कुछ एंगस्ट्रॉम (Å) से लेकर कई दर्जन या मीटर के लगभग एक अरबवें हिस्से का आयाम होता है। एकल अणुओं को आमतौर पर प्रकाश द्वारा नहीं देखा जा सकता है (जैसा कि ऊपर उल्लेख किया गया है), लेकिन छोटे अणुओं और यहां तक कि व्यक्तिगत परमाणुओं की रूपरेखा को कुछ परिस्थितियों में परमाणु बल माइक्रोस्कोप के उपयोग से पता लगाया जा सकता है। कुछ सबसे बड़े अणु मैक्रो मोलेक्यूल ्स या सुपरमोलेक्यूल्स हैं।
सबसे छोटा अणु द्विपरमाणुक हाइड्रोजन (H .) है2), 0.74 की बांड लंबाई के साथ।[24] प्रभावी आणविक त्रिज्या वह आकार है जो एक अणु समाधान में प्रदर्शित करता है।[25][26] विभिन्न पदार्थों के लिए पारगम्यता की तालिका में उदाहरण हैं।
आणविक सूत्र
रासायनिक सूत्र प्रकार
एक अणु के लिए रासायनिक सूत्र रासायनिक तत्व प्रतीकों, संख्याओं, और कभी-कभी अन्य प्रतीकों, जैसे कोष्ठक, डैश, कोष्ठक, और प्लस (+) और माइनस (-) संकेतों की एक पंक्ति का उपयोग करता है। ये प्रतीकों की एक टाइपोग्राफिक लाइन तक सीमित हैं, जिसमें सबस्क्रिप्ट और सुपरस्क्रिप्ट शामिल हो सकते हैं।
एक यौगिक का अनुभवजन्य सूत्र एक बहुत ही सरल प्रकार का रासायनिक सूत्र है।[27] यह इसे बनाने वाले रासायनिक तत्वों का सबसे सरल पूर्णांक अनुपात है।[28] उदाहरण के लिए, पानी हमेशा हाइड्रोजन से ऑक्सीजन परमाणुओं के 2:1 अनुपात से बना होता है, और इथेनॉल (एथिल अल्कोहल) हमेशा 2:6:1 के अनुपात में कार्बन, हाइड्रोजन और ऑक्सीजन से बना होता है। हालांकि, यह विशिष्ट रूप से अणु के प्रकार को निर्धारित नहीं करता है - उदाहरण के लिए, डाइमिथाइल ईथर में इथेनॉल के समान अनुपात होता है। विभिन्न व्यवस्थाओं में समान परमाणुओं वाले अणु समावयवी कहलाते हैं। इसके अलावा, उदाहरण के लिए, कार्बोहाइड्रेट का अनुपात समान होता है (कार्बन: हाइड्रोजन: ऑक्सीजन = 1:2:1) (और इस प्रकार एक ही अनुभवजन्य सूत्र) लेकिन अणु में परमाणुओं की कुल संख्या अलग होती है।
आणविक सूत्र अणु की रचना करने वाले परमाणुओं की सटीक संख्या को दर्शाता है और इसलिए विभिन्न अणुओं की विशेषता है। हालाँकि अलग-अलग अणु होते हुए भी अलग-अलग आइसोमर्स की परमाणु संरचना समान हो सकती है।
अनुभवजन्य सूत्र अक्सर आणविक सूत्र के समान होता है लेकिन हमेशा नहीं। उदाहरण के लिए, एसिटिलीन अणु का आणविक सूत्र C . होता है2H2, लेकिन तत्वों का सरलतम पूर्णांक अनुपात CH है।
आणविक द्रव्यमान की गणना रासायनिक सूत्र से की जा सकती है और इसे एक तटस्थ कार्बन -12 के द्रव्यमान के 1/12 के बराबर पारंपरिक परमाणु द्रव्यमान इकाइयों में व्यक्त किया जाता है (12कार्बन समस्थानिक) परमाणु। नेटवर्क सॉलिड के लिए, स्टोइकोमेट्रिक गणनाओं में सूत्र इकाई शब्द का उपयोग किया जाता है।
संरचनात्मक सूत्र
एक जटिल 3-आयामी संरचना वाले अणुओं के लिए, विशेष रूप से चार अलग-अलग पदार्थों से बंधे परमाणुओं को शामिल करते हुए, एक साधारण आणविक सूत्र या यहां तक कि अर्ध-संरचनात्मक रासायनिक सूत्र अणु को पूरी तरह से निर्दिष्ट करने के लिए पर्याप्त नहीं हो सकता है। इस मामले में, एक ग्राफिकल प्रकार के सूत्र की आवश्यकता हो सकती है जिसे संरचनात्मक सूत्र कहा जाता है। संरचनात्मक सूत्रों को बदले में एक-आयामी रासायनिक नाम के साथ दर्शाया जा सकता है, लेकिन ऐसे रासायनिक नामकरण के लिए कई शब्दों और शब्दों की आवश्यकता होती है जो रासायनिक सूत्रों का हिस्सा नहीं होते हैं।
आण्विक ज्यामिति
अणुओं में यांत्रिक संतुलन ज्यामिति-बंध लंबाई और कोण- निश्चित होते हैं, जिसके बारे में वे कंपन और घूर्णी गतियों के माध्यम से लगातार दोलन करते हैं। एक शुद्ध पदार्थ समान औसत ज्यामितीय संरचना वाले अणुओं से बना होता है। रासायनिक सूत्र और अणु की संरचना दो महत्वपूर्ण कारक हैं जो इसके गुणों को निर्धारित करते हैं, विशेष रूप से इसकी प्रतिक्रियाशीलता (रसायन विज्ञान)। आइसोमरों एक रासायनिक सूत्र साझा करते हैं लेकिन आम तौर पर उनकी विभिन्न संरचनाओं के कारण बहुत भिन्न गुण होते हैं। स्टीरियोइसोमर्स, एक विशेष प्रकार के आइसोमर में बहुत समान भौतिक-रासायनिक गुण हो सकते हैं और एक ही समय में विभिन्न जैव रसायन गतिविधियाँ हो सकती हैं।
आण्विक स्पेक्ट्रोस्कोपी
आणविक स्पेक्ट्रोस्कोपी अणुओं की प्रतिक्रिया (आवृत्ति स्पेक्ट्रम) से संबंधित है जो ज्ञात ऊर्जा (या आवृत्ति, प्लैंक के स्थिरांक | प्लैंक के सूत्र के अनुसार) के जांच संकेतों के साथ बातचीत करते हैं। अणुओं ने ऊर्जा के स्तर को परिमाणित किया है जिसे अवशोषण या उत्सर्जन (विद्युत चुम्बकीय विकिरण) के माध्यम से अणु के ऊर्जा विनिमय का पता लगाकर विश्लेषण किया जा सकता है।[31] स्पेक्ट्रोस्कोपी आम तौर पर विवर्तन अध्ययन का उल्लेख नहीं करता है जहां न्यूट्रॉन , इलेक्ट्रॉन, या उच्च ऊर्जा एक्स-रे जैसे कण अणुओं की नियमित व्यवस्था (जैसे क्रिस्टल में) के साथ बातचीत करते हैं।
माइक्रोवेव स्पेक्ट्रोस्कोपी आमतौर पर अणुओं के रोटेशन में परिवर्तन को मापता है, और इसका उपयोग बाहरी अंतरिक्ष में अणुओं की पहचान करने के लिए किया जा सकता अवरक्त के पास स्पेक्ट्रोस्कोपी अणुओं के कंपन को मापता है, जिसमें खींचने, झुकने या घुमाने की गति शामिल है। यह आमतौर पर अणुओं में बंधों या कार्यात्मक समूह ों के प्रकार की पहचान करने के लिए उपयोग किया जाता है। इलेक्ट्रॉनों की व्यवस्था में परिवर्तन से पराबैंगनी, दृश्यमान या निकट अवरक्त प्रकाश में अवशोषण या उत्सर्जन रेखाएं उत्पन्न होती हैं, और परिणाम रंग में होता है। परमाणु अवरक्त स्पेक्ट्रोस्कोपी अणु में विशेष नाभिक के वातावरण को मापता है, और इसका उपयोग अणु में विभिन्न स्थितियों में परमाणुओं की संख्या को चिह्नित करने के लिए किया जा सकता है।
सैद्धांतिक पहलू
आणविक भौतिकी और सैद्धांतिक रसायन विज्ञान द्वारा अणुओं का अध्ययन काफी हद तक क्वांटम यांत्रिकी पर आधारित है और रासायनिक बंधन को समझने के लिए आवश्यक है। अणुओं में सबसे सरल हाइड्रोजन अणु-आयन , H . है2+, और सभी रासायनिक बंधों में सबसे सरल एक-इलेक्ट्रॉन बंधन है। एच2+ दो धनात्मक आवेशित प्रोटॉन और एक ऋणात्मक आवेशित इलेक्ट्रॉन से बना है, जिसका अर्थ है कि इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण की कमी के कारण सिस्टम के लिए श्रोडिंगर समीकरण को अधिक आसानी से हल किया जा सकता है। तेजी से डिजिटल कंप्यूटर के विकास के साथ, अधिक जटिल अणुओं के लिए अनुमानित समाधान संभव हो गए हैं और कम्प्यूटेशनल रसायन विज्ञान के मुख्य पहलुओं में से एक हैं।
जब यह कड़ाई से परिभाषित करने की कोशिश की जा रही है कि क्या परमाणुओं की एक व्यवस्था एक अणु माने जाने के लिए पर्याप्त रूप से स्थिर है, तो IUPAC का सुझाव है कि यह संभावित ऊर्जा सतह पर एक अवसाद के अनुरूप होना चाहिए जो कम से कम एक कंपन अवस्था को सीमित करने के लिए पर्याप्त गहरा हो।[4]यह परिभाषा परमाणुओं के बीच परस्पर क्रिया की प्रकृति पर निर्भर नहीं करती है, बल्कि केवल अंतःक्रिया के बल पर निर्भर करती है। वास्तव में, इसमें कमजोर रूप से बाध्य प्रजातियां शामिल हैं जिन्हें परंपरागत रूप से अणु नहीं माना जाएगा, जैसे हीलियम डिमर (रसायन विज्ञान) , हीलियम डिमर|हे2, जिसमें एक कंपन बाध्य अवस्था है[32] और इतना शिथिल रूप से बंधा हुआ है कि इसके केवल बहुत कम तापमान पर देखे जाने की संभावना है।
अणु माने जाने के लिए परमाणुओं की व्यवस्था पर्याप्त रूप से स्थिर है या नहीं, यह स्वाभाविक रूप से एक परिचालन परिभाषा है। दार्शनिक रूप से, इसलिए, एक अणु एक मौलिक इकाई नहीं है (इसके विपरीत, उदाहरण के लिए, एक प्राथमिक कण के लिए); बल्कि, एक अणु की अवधारणा दुनिया में परमाणु-पैमाने की बातचीत की ताकत के बारे में एक उपयोगी बयान देने का रसायनज्ञ का तरीका है जिसे हम देखते हैं।
यह भी देखें
- परमाणु
- रासायनिक ध्रुवीयता
- रासायनिक संरचना
- सहसंयोजक बंधन
- द्विपरमाणुक अणु
- यौगिकों की सूची
- तारे के बीच का और परिस्थितिजन्य अणुओं की सूची
- आणविक जीव विज्ञान
- आणविक डिजाइन सॉफ्टवेयर
- आणविक इंजीनियरिंग
- आणविक ज्यामिति
- आणविक हैमिल्टनियन
- आणविक आयन*
- आणविक मॉडलिंग
- आणविक संकीर्णता
- आणविक कक्षीय
- गैर-सहसंयोजक बंधन
- छोटे अणुओं की आवधिक प्रणाली
- छोटा अणु
- आण्विक यांत्रिकी मॉडलिंग के लिए सॉफ्टवेयर की तुलना
- वैन डेर वाल्स अणु
- वर्ल्ड वाइड आणविक मैट्रिक्स
संदर्भ
- ↑ Iwata, Kota; Yamazaki, Shiro; Mutombo, Pingo; Hapala, Prokop; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki (2015). "Chemical structure imaging of a single molecule by atomic force microscopy at room temperature". Nature Communications. 6: 7766. Bibcode:2015NatCo...6.7766I. doi:10.1038/ncomms8766. PMC 4518281. PMID 26178193.
- ↑ Dinca, L.E.; De Marchi, F.; MacLeod, J.M.; Lipton-Duffin, J.; Gatti, R.; Ma, D.; Perepichka, D.F.; Rosei, F. (2015). "Pentacene on Ni(111): Room-temperature molecular packing and temperature-activated conversion to graphene". Nanoscale. 7 (7): 3263–9. Bibcode:2015Nanos...7.3263D. doi:10.1039/C4NR07057G. PMID 25619890.
- ↑ Hapala, Prokop; Švec, Martin; Stetsovych, Oleksandr; Van Der Heijden, Nadine J.; Ondráček, Martin; Van Der Lit, Joost; Mutombo, Pingo; Swart, Ingmar; Jelínek, Pavel (2016). "Mapping the electrostatic force field of single molecules from high-resolution scanning probe images". Nature Communications. 7: 11560. Bibcode:2016NatCo...711560H. doi:10.1038/ncomms11560. PMC 4894979. PMID 27230940.
- ↑ 4.0 4.1 IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Molecule". doi:10.1351/goldbook.M04002
- ↑ Ebbin, Darrell D. (1990). General Chemistry (3rd ed.). Boston: Houghton Mifflin Co. ISBN 978-0-395-43302-7.
- ↑ Brown, T.L.; Kenneth C. Kemp; Theodore L. Brown; Harold Eugene LeMay; Bruce Edward Bursten (2003). Chemistry – the Central Science (9th ed.). New Jersey: Prentice Hall. ISBN 978-0-13-066997-1.
- ↑ Chang, Raymond (1998). Chemistry (6th ed.). New York: McGraw Hill. ISBN 978-0-07-115221-1.
- ↑ Zumdahl, Steven S. (1997). Chemistry (4th ed.). Boston: Houghton Mifflin. ISBN 978-0-669-41794-4.
- ↑ Chandra, Sulekh (2005). Comprehensive Inorganic Chemistry. New Age Publishers. ISBN 978-81-224-1512-4.
- ↑ "Molecule". Encyclopædia Britannica. 22 January 2016. Archived from the original on 3 May 2020. Retrieved 23 February 2016.
- ↑ Harper, Douglas. "molecule". Online Etymology Dictionary. Retrieved 2016-02-22.
- ↑ "molecule". Merriam-Webster. Archived from the original on 24 February 2021. Retrieved 22 February 2016.
- ↑ Molecule Definition Archived 13 October 2014 at the Wayback Machine (Frostburg State University)
- ↑ Ley, Willy (June 1966). "The Re-Designed Solar System". For Your Information. Galaxy Science Fiction. pp. 94–106.
- ↑ Avogadro, Amedeo (1811). "Masses of the Elementary Molecules of Bodies". Journal de Physique. 73: 58–76. Archived from the original on 12 May 2019. Retrieved 25 August 2022.
- ↑ Seymour H. Mauskopf (1969). "The Atomic Structural Theories of Ampère and Gaudin: Molecular Speculation and Avogadro's Hypothesis". Isis. 60 (1): 61–74. doi:10.1086/350449. JSTOR 229022. S2CID 143759556.
- ↑ Perrin, Jean, B. (1926). Discontinuous Structure of Matter Archived 29 May 2019 at the Wayback Machine, Nobel Lecture, December 11.
- ↑ Heitler, Walter; London, Fritz (1927). "Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik". Zeitschrift für Physik. 44 (6–7): 455–472. Bibcode:1927ZPhy...44..455H. doi:10.1007/BF01397394. S2CID 119739102.
- ↑ Pauling, Linus (1931). "The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules". J. Am. Chem. Soc. 53 (4): 1367–1400. doi:10.1021/ja01355a027.
- ↑ Harry, B. Gray. Chemical Bonds: An Introduction to Atomic and Molecular Structure (PDF). pp. 210–211. Archived (PDF) from the original on 31 March 2021. Retrieved 22 November 2021.
- ↑ "How many gold atoms make gold metal?". phys.org (in English). Archived from the original on 30 October 2020. Retrieved 22 November 2021.
- ↑ Campbell, Neil A.; Brad Williamson; Robin J. Heyden (2006). Biology: Exploring Life. Boston: Pearson Prentice Hall. ISBN 978-0-13-250882-7. Archived from the original on 2 November 2014. Retrieved 2012-02-05.
- ↑ Campbell, Flake C. (2008). Elements of Metallurgy and Engineering Alloys (in English). ASM International. ISBN 978-1-61503-058-3. Archived from the original on 31 March 2021. Retrieved 27 October 2020.
- ↑ Roger L. DeKock; Harry B. Gray; Harry B. Gray (1989). Chemical structure and bonding. University Science Books. p. 199. ISBN 978-0-935702-61-3. Archived from the original on 31 March 2021. Retrieved 27 October 2020.
- ↑ Chang RL; Deen WM; Robertson CR; Brenner BM (1975). "Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions". Kidney Int. 8 (4): 212–218. doi:10.1038/ki.1975.104. PMID 1202253.
- ↑ Chang RL; Ueki IF; Troy JL; Deen WM; Robertson CR; Brenner BM (1975). "Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran". Biophys. J. 15 (9): 887–906. Bibcode:1975BpJ....15..887C. doi:10.1016/S0006-3495(75)85863-2. PMC 1334749. PMID 1182263.
- ↑ Wink, Donald J.; Fetzer-Gislason, Sharon; McNicholas, Sheila (2003). The Practice of Chemistry (in English). Macmillan. ISBN 978-0-7167-4871-7. Archived from the original on 10 April 2022. Retrieved 27 October 2020.
- ↑ "ChemTeam: Empirical Formula". www.chemteam.info. Archived from the original on 19 January 2021. Retrieved 2017-04-16.
- ↑ Hirsch, Brandon E.; Lee, Semin; Qiao, Bo; Chen, Chun-Hsing; McDonald, Kevin P.; Tait, Steven L.; Flood, Amar H. (2014). "Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals". Chemical Communications. 50 (69): 9827–30. doi:10.1039/C4CC03725A. PMID 25080328. Archived from the original on 31 March 2021. Retrieved 20 April 2018.
- ↑ Zoldan, V. C.; Faccio, R; Pasa, A.A. (2015). "N and p type character of single molecule diodes". Scientific Reports. 5: 8350. Bibcode:2015NatSR...5E8350Z. doi:10.1038/srep08350. PMC 4322354. PMID 25666850.
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Spectroscopy". doi:10.1351/goldbook.S05848
- ↑ Anderson JB (May 2004). "Comment on "An exact quantum Monte Carlo calculation of the helium-helium intermolecular potential" [J. Chem. Phys. 115, 4546 (2001)]". J Chem Phys. 120 (20): 9886–7. Bibcode:2004JChPh.120.9886A. doi:10.1063/1.1704638. PMID 15268005.
