अर्धवृत्ताकार विभव कूप: Difference between revisions

From Vigyanwiki
(TEXT)
(text)
Line 1: Line 1:
{{short description|Elementary example of quantum phenomena and the applications of quantum mechanics}}
{{short description|Elementary example of quantum phenomena and the applications of quantum mechanics}}
[[क्वांटम यांत्रिकी|परिमाण यांत्रिकी]] में, आयामी वलय में एक कण की स्तिथि एक बॉक्स में कण के समान होता है। कण <math> 0 </math> से <math> \pi </math> तक अर्धवृत्त के पथ का अनुसरण करता है जहां वह बच नहीं सकता, क्योंकि <math> \pi </math> से <math> 2 \pi </math> तक की क्षमता अनंत है। इसके स्थान पर पूर्ण प्रतिबिंब होता है, जिसका अर्थ है कि कण <math> 0 </math> से <math> \pi </math> के बीच आगे और पीछे उछलता है। एक [[मुक्त कण]] के लिए श्रोडिंगर समीकरण जो एक अर्धवृत्त तक सीमित है (तकनीकी रूप से, जिसका विन्यास स्थान (भौतिकी) वृत्त है) <math>S^1</math>) निम्न है
[[क्वांटम यांत्रिकी|परिमाण यांत्रिकी]] में, आयामी वलय में कण की स्तिथि एक बॉक्स में कण के समान होती है। कण <math> 0 </math> से <math> \pi </math> तक अर्धवृत्त के पथ का अनुसरण करता है जहां वह बच नहीं सकता, क्योंकि <math> \pi </math> से <math> 2 \pi </math> तक की क्षमता अनंत है। इसके स्थान पर पूर्ण प्रतिबिंब होता है, जिसका अर्थ है कि कण <math> 0 </math> से <math> \pi </math> के बीच आगे और पीछे उछलता है। एक [[मुक्त कण]] के लिए श्रोडिंगर समीकरण जो एक अर्धवृत्त तक सीमित है (तकनीकी रूप से, जिसका विन्यास स्थान (भौतिकी) वृत्त है) <math>S^1</math>) वह निम्न है
  {{NumBlk||<math display="block"> -\frac{\hbar^2}{2m}\nabla^2 \psi = E\psi </math>|{{EquationRef|1}}}}
  {{NumBlk||<math display="block"> -\frac{\hbar^2}{2m}\nabla^2 \psi = E\psi </math>|{{EquationRef|1}}}}



Revision as of 04:06, 7 August 2023

परिमाण यांत्रिकी में, आयामी वलय में कण की स्तिथि एक बॉक्स में कण के समान होती है। कण से तक अर्धवृत्त के पथ का अनुसरण करता है जहां वह बच नहीं सकता, क्योंकि से तक की क्षमता अनंत है। इसके स्थान पर पूर्ण प्रतिबिंब होता है, जिसका अर्थ है कि कण से के बीच आगे और पीछे उछलता है। एक मुक्त कण के लिए श्रोडिंगर समीकरण जो एक अर्धवृत्त तक सीमित है (तकनीकी रूप से, जिसका विन्यास स्थान (भौतिकी) वृत्त है) ) वह निम्न है

 

 

 

 

(1)

तरंग फलन

1-आयामी अर्धवृत्त पर बेलनाकार निर्देशांक का उपयोग करते हुए, तरंग फलन केवल कोण निर्देशांक पर निर्भर करता है, और इसलिए

 

 

 

 

(2)

लाप्लासियन को बेलनाकार निर्देशांक में प्रतिस्थापित करते हुए, तरंग फलन को इस प्रकार व्यक्त किया जाता है

 

 

 

 

(3)

अर्धवृत्त के लिए जड़ता का क्षण, बेलनाकार निर्देशांक में सर्वोत्तम रूप से व्यक्त किया जाता है। समाकलन को हल करने पर पता चलता है कि अर्धवृत्त का जड़त्व आघूर्ण है, जो समान त्रिज्या के घेरे के लिए बिल्कुल समान है। तरंग फलन को अब इस प्रकार व्यक्त किया जा सकता है, जिसे आसानी से हल किया जा सकता है।

चूँकि कण से तक के क्षेत्र से बाहर नहीं निकल सकता, इस अंतर समीकरण का सामान्य समाधान है

 

 

 

 

(4)

परिभाषित करने पर, हम ऊर्जा की गणना इस प्रकार कर सकते हैं। फिर हम परिसीमा प्रतिबंध लागू करते हैं, जहां और निरंतर हैं और तरंग फलन सामान्य करने योग्य है:

 

 

 

 

(5)

अनंत आयत कूप की तरह, पहली परिसीमा प्रतिबंध की मांग है कि तरंग फलन और दोनों पर 0 के बराबर हो। मूल रूप से

 

 

 

 

(6)

तरंग फलन के बाद से , गुणांक A 0 के बराबर होना चाहिए क्योंकि है। तरंग फलन भी पर 0 के बराबर होता है इसलिए हमें इस परिसीमा प्रतिबंध को लागू करना होगा। तुच्छ समाधान को खारिज करते हुए जहां B=0, तरंग कार्य करता है केवल तभी जब m एक पूर्णांक है। यह परिसीमा प्रतिबंध ऊर्जा की मात्रा निर्धारित करती है जहां ऊर्जा बराबर होती है जहाँ m कोई पूर्णांक है। स्तिथि m=0 को खारिज कर दिया गया है क्योंकि , जिसका अर्थ है कि कण बिल्कुल भी क्षमता में नहीं है। नकारात्मक पूर्णांकों को भी खारिज कर दिया जाता है क्योंकि उन्हें सामान्यीकरण की स्थिति में आसानी से अवशोषित किया जा सकता है।

फिर हम तरंग फलन को सामान्य करते हैं, जिससे एक परिणाम प्राप्त होता है। सामान्यीकृत तरंग फलन निम्न है

 

 

 

 

(7)

प्रणाली की मूल अवस्था ऊर्जा है। एक बॉक्स में कण की तरह, प्रणाली की उत्तेजित अवस्था में नोड्स उपस्थित होते हैं जहां दोनों और 0 हैं, जिसका अर्थ है कि इन नोड्स पर कण मिलने की संभावना 0 है।

विश्लेषण

चूंकि तरंग फलन केवल अज़ीमुथल कोण पर निर्भर है, प्रणाली की मापनीय मात्राएँ कोणीय स्थिति और कोणीय गति हैं, जो क्रमश और ऑपरेटरों के साथ व्यक्त की जाती हैं।

बेलनाकार निर्देशांक, ऑपरेटर और क्रमशः और के रूप में व्यक्त किये गये हैं, जहां ये वेधशालाएं एक बॉक्स में कण के लिए स्थिति और गति के समान भूमिका निभाती हैं। कोणीय स्थिति और कोणीय गति के लिए रूपान्तरण और अनिश्चितता संबंध इस प्रकार दिए गए हैं:

 

 

 

 

(8)

where and

 

 

 

 

(9)

परिसीमा स्थिति

जैसा कि सभी परिमाण यांत्रिकी समस्याओं के साथ होता है, यदि सीमा की स्थितियाँ बदल जाती हैं तो तरंग भी कार्य करने लगती है। यदि कोई कण 0 से लेकर संपूर्ण वलय की गति तक सीमित है, कण केवल एक आवधिक परिसीमा प्रतिबंध के अधीन है (एक अंगूठी में कण देखें)। यदि कोई कण को की गति तक ही सीमित है, सम और विषम समता का विषय महत्वपूर्ण हो जाता है।

ऐसी क्षमता के लिए तरंग समीकरण इस प्रकार दिया गया है:

 

 

 

 

(10)

 

 

 

 

(11)

जहाँ और क्रमशः विषम और सम m के लिए हैं।

इसी प्रकार, यदि अर्धवृत्ताकार विभव कूप एक परिमित कूप है, तो समाधान परिमित क्षमता वाले कूप के समान होगा जहाँ कोणीय संचालक और रैखिक ऑपरेटरों x और p को प्रतिस्थापित करेंगे।

यह भी देखें

श्रेणी:परिमाण मॉडल श्रेणी:परिमाण यांत्रिक क्षमताएँ