विस्तारित कलमैन फ़िल्टर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Filter for nonlinear state estimation}}
{{Short description|Filter for nonlinear state estimation}}
[[अनुमान सिद्धांत]] में, विस्तारित [[कलमन फ़िल्टर]] (ई के एफ) कलमैन फ़िल्टर का गैर-रेखीय संस्करण है जो वर्तमान माध्य और [[सहप्रसरण]] के अनुमान के बारे में रैखिककरण करता है। अच्छी तरह से परिभाषित संक्रमण मॉडल के मामले में, ईकेएफ पर विचार किया गया है<ref name=Julier2004>{{cite journal
[[अनुमान सिद्धांत]] में, विस्तारित [[कलमन फ़िल्टर|कलमैन निस्पंदन]] (ई के एफ) कलमैन निस्पंदन का गैर-रेखीय संस्करण है जो वर्तमान माध्य और [[सहप्रसरण]] के अनुमान के बारे में रैखिककरण करता है। अच्छी तरह से परिभाषित संक्रमण मॉडल के स्थितियों में, ईकेएफ पर विचार किया गया है| <ref name=Julier2004>{{cite journal
  | author = Julier, S.J.
  | author = Julier, S.J.
  |author2=Uhlmann, J.K.
  |author2=Uhlmann, J.K.
Line 12: Line 12:
  |s2cid=9614092
  |s2cid=9614092
  | url = http://www.cs.ubc.ca/~murphyk/Papers/Julier_Uhlmann_mar04.pdf
  | url = http://www.cs.ubc.ca/~murphyk/Papers/Julier_Uhlmann_mar04.pdf
  }}</ref> अरेखीय स्तिथियों अनुमान, [[ नेविगेशन प्रणाली |नेविगेशन प्रणाली]] और [[ GPS |GPS]] के सिद्धांत में वास्तविक मानक माना गया हैं।<ref name=Courses2006>{{cite book
  }}</ref> अरेखीय स्तिथियों अनुमान, [[ नेविगेशन प्रणाली |नेविगेशन प्रणाली]] और [[ GPS |जीपीएस]] के सिद्धांत में वास्तविक मानक माना गया हैं। <ref name=Courses2006>{{cite book
  | doi = 10.1109/NSSPW.2006.4378854
  | doi = 10.1109/NSSPW.2006.4378854
  | author = Courses, E.
  | author = Courses, E.
Line 24: Line 24:
  }}</ref>
  }}</ref>
==इतिहास==
==इतिहास==
कलमन प्रकार के फिल्टर की गणितीय नींव स्थापित करने वाले पेपर 1959 और 1961 के बीच प्रकाशित हुए थे। <ref name=Kalman1960-1>{{cite journal
कलमैन प्रकार के प्रभावकारी की गणितीय नींव स्थापित करने वाले पेपर 1959 और 1961 के मध्य प्रकाशित हुए थे। <ref name=Kalman1960-1>{{cite journal
  | author = R.E. Kalman
  | author = R.E. Kalman
  | year = 1960
  | year = 1960
Line 50: Line 50:
  | url = http://www.eecs.tufts.edu/~khan/Courses/Spring2014/EE130/Lecs/KalmanBucy1961.pdf
  | url = http://www.eecs.tufts.edu/~khan/Courses/Spring2014/EE130/Lecs/KalmanBucy1961.pdf
|doi=10.1115/1.3658902
|doi=10.1115/1.3658902
  }}</ref> [[कलमन फ़िल्टर]] '''रैखिक के लिए इष्टतम रैखिक अनुमानक है''' संक्रमण और माप प्रणाली दोनों में योगात्मक स्वतंत्र श्वेत शोर के साथ सिस्टम मॉडल रैखिक के लिए इष्टतम रैखिक अनुमानक है । दुर्भाग्य से, इंजीनियरिंग में, अधिकांश प्रणालियाँ अरेखीय हैं, इसलिए इसे लागू करने का प्रयास किया गया नॉनलाइनियर सिस्टम के लिए यह फ़िल्टरिंग विधि; इनमें से अधिकांश कार्य नासा [[एम्स में]] किया गया था।<ref name=McElhoe1966>{{cite journal
  }}</ref> [[कलमन फ़िल्टर|कलमैन निस्पंदन]] संक्रमण और माप प्रणाली दोनों में योगात्मक स्वतंत्र श्वेत ध्वनि के साथ प्रणाली मॉडल रैखिक के लिए इष्टतम रैखिक अनुमानक है । दुर्भाग्य से, इंजीनियरिंग में, अधिकांश प्रणालियाँ अरेखीय हैं, इसलिए इसे प्रयुक्त करने का प्रयास किया गया नॉनलाइनियर प्रणाली के लिए यह निस्पंदनिंग विधि; इनमें से अधिकांश कार्य नासा [[एम्स में]] किया गया था।<ref name=McElhoe1966>{{cite journal
  | author = Bruce A. McElhoe
  | author = Bruce A. McElhoe
  | year = 1966
  | year = 1966
Line 68: Line 68:
  | publisher = National Aeronautics and Space Administration
  | publisher = National Aeronautics and Space Administration
  | url = https://archive.org/details/nasa_techdoc_19620006857
  | url = https://archive.org/details/nasa_techdoc_19620006857
}}</ref> ईकेएफ ने कामकाजी बिंदु के बारे में मॉडल को रैखिक बनाने के लिए [[ गणना |गणना]] से तकनीकों को अनुकूलित किया, अर्थात् बहुभिन्नरूपी [[टेलर श्रृंखला]] विस्तार हैं । यदि सिस्टम मॉडल (जैसा कि नीचे वर्णित है) अच्छी तरह से ज्ञात नहीं है या गलत है, तो अनुमान के लिए मोंटे कार्लो विधियों, विशेष रूप से [[कण फिल्टर]] को नियोजित किया जाता है। मोंटे कार्लो तकनीक ई के एफ के अस्तित्व से पहले की है लेकिन किसी भी मध्यम आकार के स्तिथियों-स्थान के लिए कम्प्यूटेशनल रूप से अधिक महंगी है।
}}</ref> ईकेएफ ने फलन बिंदु के बारे में मॉडल को रैखिक बनाने के लिए [[ गणना |गणना]] से विधिों को अनुकूलित किया था, अर्थात् बहुभिन्नरूपी [[टेलर श्रृंखला]] विस्तार हैं । यदि प्रणाली मॉडल (जैसा कि नीचे वर्णित है) अच्छी तरह से ज्ञात नहीं है या गलत है, तब अनुमान के लिए मोंटे कार्लो विधियों, विशेष रूप से [[कण फिल्टर|कण प्रभावकारी]] को नियोजित किया जाता है। मोंटे कार्लो विधि ई के एफ के अस्तित्व से पहले की है किन्तु किसी भी मध्यम आकार के स्तिथियों-स्थान के लिए कम्प्यूटेशनल रूप से अधिक महंगी है।


==निरूपण==
==निरूपण==
विस्तारित कलमैन फ़िल्टर में, स्तिथियों संक्रमण और अवलोकन मॉडल को स्तिथियों के रैखिक कार्य होने की आवश्यकता नहीं है, बल्कि इसके अतिरिक्तअलग-अलग फ़ंक्शन फ़ंक्शन हो सकते हैं।
विस्तारित कलमैन निस्पंदन में, स्तिथियों संक्रमण और अवलोकन मॉडल को स्तिथियों के रैखिक कार्य होने की आवश्यकता नहीं है, किंतु इसके अतिरिक्तअलग-अलग फलन फलन हो सकते हैं।


:<math>\boldsymbol{x}_{k} = f(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}) + \boldsymbol{w}_{k}</math>
:<math>\boldsymbol{x}_{k} = f(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}) + \boldsymbol{w}_{k}</math>
:<math>\boldsymbol{z}_{k} = h(\boldsymbol{x}_{k}) + \boldsymbol{v}_{k}</math>
:<math>\boldsymbol{z}_{k} = h(\boldsymbol{x}_{k}) + \boldsymbol{v}_{k}</math>
यहाँ '''w'''<sub>''k''</sub> और '''v'''<sub>''k''</sub> प्रक्रिया और अवलोकन शोर हैं जिन्हें क्रमशः शून्य माध्य माना जाता है सहप्रसरण '''Q'''<sub>''k''</sub> और '''R'''<sub>''k''</sub> के साथ माध्य [[बहुभिन्नरूपी सामान्य वितरण|भिन्नरूपी सामान्य वितरण]] शोर माना जाता हैं| '''<sub>''k''</sub> और आर<sub>''k''</sub> क्रमश।''' '''u'''<sub>''k''</sub> नियंत्रण वेक्टर है|
यहाँ '''w'''<sub>''k''</sub> और '''v'''<sub>''k''</sub> प्रक्रिया और अवलोकन ध्वनि हैं जिन्हें क्रमशः शून्य माध्य माना जाता है सहप्रसरण '''Q'''<sub>''k''</sub> और '''R'''<sub>''k''</sub> के साथ माध्य [[बहुभिन्नरूपी सामान्य वितरण|भिन्नरूपी सामान्य वितरण]] ध्वनि माना जाता हैं| '''<sub>''k''</sub> और आर<sub>''k''</sub> क्रमश।''' '''u'''<sub>''k''</sub> नियंत्रण सदिश है|


फ़ंक्शन ''f'' का उपयोग पिछले अनुमान से अनुमानित स्थिति की गणना करने के लिए किया जा सकता है और इसी तरह फ़ंक्शन ''h'' का उपयोग अनुमानित स्थिति से अनुमानित माप की गणना करने के लिए किया जा सकता है। हालाँकि, ''f'' और ''h'' को सीधे सहप्रसरण पर लागू नहीं किया जा सकता है। इसके अतिरिक्त आंशिक डेरिवेटिव (जेकोबियन मैट्रिक्स और निर्धारक) के मैट्रिक्स की गणना की जाती है।
फलन ''f'' का उपयोग पिछले अनुमान से अनुमानित स्थिति की गणना करने के लिए किया जा सकता है और इसी तरह फलन ''h'' का उपयोग अनुमानित स्थिति से अनुमानित माप की गणना करने के लिए किया जा सकता है। चूँकि, ''f'' और ''h'' को सीधे सहप्रसरण पर प्रयुक्त नहीं किया जा सकता है। इसके अतिरिक्त आंशिक डेरिवेटिव (जेकोबियन आव्यूह और निर्धारक) के आव्यूह की गणना की जाती है।


प्रत्येक समय चरण पर, जैकोबियन का मूल्यांकन वर्तमान अनुमानित स्थितियों के साथ किया जाता है। इन मैट्रिक्स का उपयोग कलमन फ़िल्टर समीकरणों में किया जा सकता है। यह प्रक्रिया अनिवार्य रूप से वर्तमान अनुमान के आसपास गैर-रेखीय फ़ंक्शन को रैखिक बनाती है।
प्रत्येक समय चरण पर, जैकोबियन का मूल्यांकन वर्तमान अनुमानित स्थितियों के साथ किया जाता है। इन आव्यूह का उपयोग कलमैन निस्पंदन समीकरणों में किया जा सकता है। यह प्रक्रिया अनिवार्य रूप से वर्तमान अनुमान के आसपास गैर-रेखीय फलन को रैखिक बनाती है।


सांकेतिक टिप्पणियों के लिए कलमन फ़िल्टर लेख देखें।
सांकेतिक टिप्पणियों के लिए कलमैन निस्पंदन लेख देखें।


==असतत-समय की भविष्यवाणी और समीकरणों को अद्यतन करें==
==असतत-समय की पूर्वानुमान और समीकरणों को अद्यतन करें==


नोटेशन <math>\hat{\mathbf{x}}_{n\mid m}</math> समय n पर <math>\mathbf{x}</math> के अनुमान का प्रतिनिधित्व करता है, जिसमें समय {{nowrap|''m'' ≤ ''n''}} तक दिए गए अवलोकन शामिल हैं।
नोटेशन <math>\hat{\mathbf{x}}_{n\mid m}</math> समय n पर <math>\mathbf{x}</math> के अनुमान का प्रतिनिधित्व करता है, जिसमें समय {{nowrap|''m'' ≤ ''n''}} तक दिए गए अवलोकन सम्मिलित हैं।


===भविष्यवाणी===
===पूर्वानुमान===
{|
{|
|-
|-
Line 108: Line 108:
| <math>\boldsymbol{S}_{k} = {{\boldsymbol{H}_{k}}}\boldsymbol{P}_{k|k-1}{{\boldsymbol{H}_{k}^T}} + \boldsymbol{R}_{k}</math>
| <math>\boldsymbol{S}_{k} = {{\boldsymbol{H}_{k}}}\boldsymbol{P}_{k|k-1}{{\boldsymbol{H}_{k}^T}} + \boldsymbol{R}_{k}</math>
|-
|-
| निकट-इष्टतम कलमन लाभ
| निकट-इष्टतम कलमैन लाभ
| <math>\boldsymbol{K}_{k} = \boldsymbol{P}_{k|k-1}{{\boldsymbol{H}_{k}^T}}\boldsymbol{S}_{k}^{-1} </math>
| <math>\boldsymbol{K}_{k} = \boldsymbol{P}_{k|k-1}{{\boldsymbol{H}_{k}^T}}\boldsymbol{S}_{k}^{-1} </math>
|-
|-
Line 118: Line 118:
|}
|}


 
जहां स्तिथियों संक्रमण और अवलोकन आव्यूह को निम्नलिखित जैकोबियन के रूप में परिभाषित किया गया है
जहां स्तिथियों संक्रमण और अवलोकन मैट्रिक्स को निम्नलिखित जैकोबियन के रूप में परिभाषित किया गया है


:<math> {{\boldsymbol{F}_{k}}} = \left . \frac{\partial f}{\partial \boldsymbol{x} } \right \vert _{\hat{\boldsymbol{x}}_{k-1|k-1},\boldsymbol{u}_{k}} </math>
:<math> {{\boldsymbol{F}_{k}}} = \left . \frac{\partial f}{\partial \boldsymbol{x} } \right \vert _{\hat{\boldsymbol{x}}_{k-1|k-1},\boldsymbol{u}_{k}} </math>
Line 125: Line 124:




==नुकसान ==
==हानि ==


अपने रैखिक समकक्ष के विपरीत, सामान्य रूप से विस्तारित कलमैन फ़िल्टर इष्टतम अनुमानक नहीं है (यह इष्टतम है यदि माप और स्तिथियों संक्रमण मॉडल दोनों रैखिक हैं, क्योंकि उस स्थिति में विस्तारित कलमैन फ़िल्टर नियमित के समान है)। इसके अतिरिक्त, यदि स्थिति का प्रारंभिक अनुमान गलत है, या यदि प्रक्रिया को गलत तरीके से तैयार किया गया है, तो इसके रैखिककरण के कारण फ़िल्टर जल्दी से अलग हो सकता है। विस्तारित कल्मन फ़िल्टर के साथ और समस्या यह है कि अनुमानित सहप्रसरण मैट्रिक्स वास्तविक सहप्रसरण मैट्रिक्स को कम आंकता है और इसलिए स्थिरता (सांख्यिकी) बनने का जोखिम होता है या स्थिर शोर को शामिल किए बिना सांख्यिकीय अर्थों में स्थिरता रहती हैं |<ref>{{Cite conference
अपने रैखिक समकक्ष के विपरीत, सामान्य रूप से विस्तारित कलमैन निस्पंदन इष्टतम अनुमानक नहीं है (यह इष्टतम है यदि माप और स्तिथियों संक्रमण मॉडल दोनों रैखिक हैं, क्योंकि उस स्थिति में विस्तारित कलमैन निस्पंदन नियमित के समान है)। इसके अतिरिक्त, यदि स्थिति का प्रारंभिक अनुमान गलत है, या यदि प्रक्रिया को गलत विधि से तैयार किया गया है, तब इसके रैखिककरण के कारण निस्पंदन जल्दी से अलग हो सकता है। विस्तारित कल्मन निस्पंदन के साथ और समस्या यह है कि अनुमानित सहप्रसरण आव्यूह वास्तविक सहप्रसरण आव्यूह को कम आंकता है और इसलिए स्थिरता (सांख्यिकी) बनने का कठिन परिस्थिति होता है या स्थिर ध्वनि को सम्मिलित किए बिना सांख्यिकीय अर्थों में स्थिरता रहती हैं |<ref>{{Cite conference
|last1 = Huang
|last1 = Huang
|first1 = Guoquan P
|first1 = Guoquan P
Line 141: Line 140:
}}</ref>.
}}</ref>.


यह कहने के बाद, विस्तारित कलमैन फ़िल्टर उचित प्रदर्शन दे सकता है, और यकीनन नेविगेशन सिस्टम और जीपीएस में [[वास्तविक मानक]] है।
यह कहने के पश्चात्, विस्तारित कलमैन निस्पंदन उचित प्रदर्शन दे सकता है, और यकीनन नेविगेशन प्रणाली और जीपीएस में [[वास्तविक मानक]] है।


==सामान्यीकरण==
==सामान्यीकरण==


=== सतत-समय विस्तारित कलमैन फ़िल्टर ===
=== सतत-समय विस्तारित कलमैन निस्पंदन ===
नमूना
प्रतिरूप
:<math>
:<math>
\begin{align}
\begin{align}
Line 157: Line 156:
\hat{\mathbf{x}}(t_0)=E\bigl[\mathbf{x}(t_0)\bigr] \text{, } \mathbf{P}(t_0)=Var\bigl[\mathbf{x}(t_0)\bigr]
\hat{\mathbf{x}}(t_0)=E\bigl[\mathbf{x}(t_0)\bigr] \text{, } \mathbf{P}(t_0)=Var\bigl[\mathbf{x}(t_0)\bigr]
</math>
</math>
भविष्यवाणी-अद्यतन
पूर्वानुमान-अद्यतन
:<math>
:<math>
\begin{align}
\begin{align}
Line 167: Line 166:
\end{align}
\end{align}
</math>
</math>
असतत-समय विस्तारित कलमैन फ़िल्टर के विपरीत, पूर्वानुमान और अद्यतन चरण निरंतर-समय विस्तारित कलमैन फ़िल्टर में युग्मित होते हैं।<ref>{{cite book|last1=Brown|first1=Robert Grover|last2=Hwang|first2=Patrick Y.C.|title=रैंडम सिग्नल और एप्लाइड कलमैन फ़िल्टरिंग का परिचय|url=https://archive.org/details/introductiontora00brow|url-access=limited|date=1997|publisher=John Wiley & Sons|location=New York|isbn=978-0-471-12839-7|pages=[https://archive.org/details/introductiontora00brow/page/n150 289]–293|edition=3}}</ref>
असतत-समय विस्तारित कलमैन निस्पंदन के विपरीत, पूर्वानुमान और अद्यतन चरण निरंतर-समय विस्तारित कलमैन निस्पंदन में युग्मित होते हैं।<ref>{{cite book|last1=Brown|first1=Robert Grover|last2=Hwang|first2=Patrick Y.C.|title=रैंडम सिग्नल और एप्लाइड कलमैन फ़िल्टरिंग का परिचय|url=https://archive.org/details/introductiontora00brow|url-access=limited|date=1997|publisher=John Wiley & Sons|location=New York|isbn=978-0-471-12839-7|pages=[https://archive.org/details/introductiontora00brow/page/n150 289]–293|edition=3}}</ref>
 
 
==== असतत-समय माप ====
==== असतत-समय माप ====
अधिकांश भौतिक प्रणालियों को निरंतर-समय मॉडल के रूप में दर्शाया जाता है, जबकि डिजिटल प्रोसेसर के माध्यम से स्तिथियों अनुमान के लिए असतत-समय माप अक्सर लिया जाता है। इसलिए, सिस्टम मॉडल और माप मॉडल द्वारा दिया गया है
अधिकांश भौतिक प्रणालियों को निरंतर-समय मॉडल के रूप में दर्शाया जाता है, जबकि डिजिटल प्रोसेसर के माध्यम से स्तिथियों अनुमान के लिए असतत-समय माप अधिकांशतः लिया जाता है। इसलिए, प्रणाली मॉडल और माप मॉडल द्वारा दिया गया है |
:<math>
:<math>
\begin{align}
\begin{align}
Line 178: Line 175:
\end{align}
\end{align}
</math>
</math>
कहाँ <math>\mathbf{x}_k=\mathbf{x}(t_k)</math>.
जहाँ <math>\mathbf{x}_k=\mathbf{x}(t_k)</math>.


प्रारंभ
प्रारंभ
Line 184: Line 181:
\hat{\mathbf{x}}_{0|0}=E\bigl[\mathbf{x}(t_0)\bigr], \mathbf{P}_{0|0}=E\bigl[\left(\mathbf{x}(t_0)-\hat{\mathbf{x}}(t_0)\right)\left(\mathbf{x}(t_0)-\hat{\mathbf{x}}(t_0)\right)^T\bigr]
\hat{\mathbf{x}}_{0|0}=E\bigl[\mathbf{x}(t_0)\bigr], \mathbf{P}_{0|0}=E\bigl[\left(\mathbf{x}(t_0)-\hat{\mathbf{x}}(t_0)\right)\left(\mathbf{x}(t_0)-\hat{\mathbf{x}}(t_0)\right)^T\bigr]
</math>
</math>
पूर्वानुमान-अद्यतन करना
पूर्वानुमान-अद्यतन  
:<math>
:<math>
\begin{align}
\begin{align}
Line 204: Line 201:
\end{align}
\end{align}
</math>
</math>
'''कहाँ'''
जहाँ
:<math> \mathbf{F}(t) = \left. \frac{\partial f}{\partial \mathbf{x} } \right \vert _{\hat{\mathbf{x}}(t),\mathbf{u}(t)} </math>
:<math> \mathbf{F}(t) = \left. \frac{\partial f}{\partial \mathbf{x} } \right \vert _{\hat{\mathbf{x}}(t),\mathbf{u}(t)} </math>
अद्यतन
अद्यतन
Line 210: Line 207:
:<math>\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_{k}\bigl(\mathbf{z}_{k} - h(\hat{\mathbf{x}}_{k|k-1})\bigr) </math>
:<math>\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_{k}\bigl(\mathbf{z}_{k} - h(\hat{\mathbf{x}}_{k|k-1})\bigr) </math>
:<math>\mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_{k}\mathbf{H}_{k})\mathbf{P}_{k|k-1} </math>
:<math>\mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_{k}\mathbf{H}_{k})\mathbf{P}_{k|k-1} </math>
कहाँ
जहाँ
:<math> \textbf{H}_{k} = \left . \frac{\partial h}{\partial \textbf{x} } \right \vert _{\hat{\textbf{x}}_{k|k-1}} </math>
:<math> \textbf{H}_{k} = \left . \frac{\partial h}{\partial \textbf{x} } \right \vert _{\hat{\textbf{x}}_{k|k-1}} </math>
अद्यतन समीकरण असतत-समय विस्तारित कलमैन फ़िल्टर के समान हैं।
अद्यतन समीकरण असतत-समय विस्तारित कलमैन निस्पंदन के समान हैं।


===उच्च-क्रम विस्तारित कलमैन फ़िल्टर===
===उच्च-क्रम विस्तारित कलमैन निस्पंदन===


उपरोक्त रिकर्सन प्रथम-क्रम विस्तारित कलमैन फ़िल्टर (ई के एफ) है। टेलर श्रृंखला विस्तार की अधिक शर्तों को बनाए रखते हुए उच्च क्रम वाले ई के एफ प्राप्त किए जा सकते हैं। उदाहरण के लिए, दूसरे और तीसरे क्रम के ईकेएफ का वर्णन किया गया है।<ref>{{cite book | author = Einicke, G.A.
उपरोक्त रिकर्सन प्रथम-क्रम विस्तारित कलमैन निस्पंदन (ई के एफ) है। टेलर श्रृंखला विस्तार की अधिक शर्तबं को बनाए रखते हुए उच्च क्रम वाले ई के एफ प्राप्त किए जा सकते हैं। उदाहरण के लिए, दूसरे और तीसरे क्रम के ई के एफ का वर्णन किया गया है।<ref>{{cite book | author = Einicke, G.A.
  | year = 2019
  | year = 2019
  | title = Smoothing, Filtering and Prediction: Estimating the Past, Present and Future (2nd ed.)
  | title = Smoothing, Filtering and Prediction: Estimating the Past, Present and Future (2nd ed.)
  | publisher = Amazon Prime Publishing
  | publisher = Amazon Prime Publishing
  | isbn = 978-0-6485115-0-2
  | isbn = 978-0-6485115-0-2
  }}</ref> हालाँकि, उच्च क्रम के ईकेएफ केवल तभी प्रदर्शन लाभ प्रदान करते हैं जब माप शोर छोटा होता है।
  }}</ref> चूँकि, उच्च क्रम के ई के एफ केवल तभी प्रदर्शन लाभ प्रदान करते हैं जब माप ध्वनि छोटा होता है।


===गैर-योज्य शोर सूत्रीकरण और समीकरण===
===गैर-योज्य ध्वनि सूत्रीकरण और समीकरण===
ईकेएफ के विशिष्ट सूत्रीकरण में योगात्मक प्रक्रिया और माप शोर की धारणा शामिल है। हालाँकि, यह धारणा ईकेएफ कार्यान्वयन के लिए आवश्यक नहीं है।<ref>{{cite book|last=Simon|first=Dan|title=इष्टतम स्थिति का अनुमान|year=2006|publisher=John Wiley & Sons|location=Hoboken, NJ|isbn=978-0-471-70858-2}}</ref> इसके बजाय, फ़ॉर्म की अधिक सामान्य प्रणाली पर विचार करें:
ई के एफ के विशिष्ट सूत्रीकरण में योगात्मक प्रक्रिया और माप ध्वनि की धारणा सम्मिलित है। चूँकि, यह धारणा ई के एफ कार्यान्वयन के लिए आवश्यक नहीं है।<ref>{{cite book|last=Simon|first=Dan|title=इष्टतम स्थिति का अनुमान|year=2006|publisher=John Wiley & Sons|location=Hoboken, NJ|isbn=978-0-471-70858-2}}</ref> इसके अतिरिक्त, रूप की अधिक सामान्य प्रणाली पर विचार करें:


:<math>\boldsymbol{x}_{k} = f(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k-1}, \boldsymbol{w}_{k-1})</math>
:<math>\boldsymbol{x}_{k} = f(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k-1}, \boldsymbol{w}_{k-1})</math>
:<math>\boldsymbol{z}_{k} = h(\boldsymbol{x}_{k}, \boldsymbol{v}_{k})</math>
:<math>\boldsymbol{z}_{k} = h(\boldsymbol{x}_{k}, \boldsymbol{v}_{k})</math>
यहाँ डब्ल्यू<sub>''k''</sub> और वी<sub>''k''</sub> प्रक्रिया और अवलोकन शोर हैं जिन्हें शून्य माध्य माना जाता है सहप्रसरण मैट्रिक्स के साथ बहुभिन्नरूपी सामान्य वितरण शोर<sub>''k''</sub> और आर<sub>''k''</sub> क्रमश। फिर सहप्रसरण भविष्यवाणी और नवप्रवर्तन समीकरण बन जाते हैं
यहां '''w'''<sub>''k''</sub> और '''v'''<sub>''k''</sub> प्रक्रिया और अवलोकन ध्वनि हैं, जिन्हें क्रमशः सहप्रसरण '''Q'''<sub>''k''</sub> और '''R'''<sub>''k''</sub> के साथ शून्य माध्य बहुभिन्नरूपी सामान्य ध्वनि माना जाता है। फिर सहप्रसरण पूर्वानुमान और नवप्रवर्तन समीकरण बन जाते हैं|


:<math> \boldsymbol{P}_{k|k-1} =  {{{\boldsymbol{F}_{k-1}}}} {\boldsymbol{P}_{k-1|k-1}}{{{\boldsymbol{F}_{k-1}^T}}} {+} {\boldsymbol{L}_{k-1}} {\boldsymbol{Q}_{k-1}}{\boldsymbol{L}^{T}_{k-1}} </math>
:<math> \boldsymbol{P}_{k|k-1} =  {{{\boldsymbol{F}_{k-1}}}} {\boldsymbol{P}_{k-1|k-1}}{{{\boldsymbol{F}_{k-1}^T}}} {+} {\boldsymbol{L}_{k-1}} {\boldsymbol{Q}_{k-1}}{\boldsymbol{L}^{T}_{k-1}} </math>
:<math> \boldsymbol{S}_{k} = {{\boldsymbol{H}_{k}}}{\boldsymbol{P}_{k|k-1}}{{\boldsymbol{H}_{k}^T}} {+} {\boldsymbol{M}_{k}} {\boldsymbol{R}_{k}} {\boldsymbol{M}_{k}^{T}}</math>
:<math> \boldsymbol{S}_{k} = {{\boldsymbol{H}_{k}}}{\boldsymbol{P}_{k|k-1}}{{\boldsymbol{H}_{k}^T}} {+} {\boldsymbol{M}_{k}} {\boldsymbol{R}_{k}} {\boldsymbol{M}_{k}^{T}}</math>
जहां मैट्रिक्स <math>\boldsymbol{L}_{k-1}</math> और <math>\boldsymbol{M}_{k}</math> जैकोबियन मैट्रिक्स हैं:
जहां आव्यूह <math>\boldsymbol{L}_{k-1}</math> और <math>\boldsymbol{M}_{k}</math> जैकोबियन आव्यूह हैं:


:<math> {{\boldsymbol{L}_{k-1}}} = \left . \frac{\partial f}{\partial \boldsymbol{w} } \right \vert _{\hat{\boldsymbol{x}}_{k-1|k-1},\boldsymbol{u}_{k-1}} </math>
:<math> {{\boldsymbol{L}_{k-1}}} = \left . \frac{\partial f}{\partial \boldsymbol{w} } \right \vert _{\hat{\boldsymbol{x}}_{k-1|k-1},\boldsymbol{u}_{k-1}} </math>
:<math> {{\boldsymbol{M}_{k}}} = \left . \frac{\partial h}{\partial \boldsymbol{v} } \right \vert _{\hat{\boldsymbol{x}}_{k|k-1}} </math>
:<math> {{\boldsymbol{M}_{k}}} = \left . \frac{\partial h}{\partial \boldsymbol{v} } \right \vert _{\hat{\boldsymbol{x}}_{k|k-1}} </math>
अनुमानित स्थिति अनुमान और माप अवशिष्ट का मूल्यांकन प्रक्रिया और माप शोर शर्तों के माध्य पर किया जाता है, जिसे शून्य माना जाता है। अन्यथा, गैर-एडिटिव शोर फॉर्मूलेशन को एडिटिव शोर ईकेएफ के समान ही कार्यान्वित किया जाता है।
माना कि अनुमानित स्थिति अनुमान और माप अवशिष्ट का मूल्यांकन प्रक्रिया और माप ध्वनि शर्तबं के माध्य पर किया जाता है, जिसे शून्य माना जाता है। अन्यथा, गैर-एडिटिव ध्वनि फॉर्मूलेशन को एडिटिव ध्वनि ई के एफ के समान ही कार्यान्वित किया जाता है।


===अंतर्निहित विस्तारित कलमैन फ़िल्टर===
===अंतर्निहित विस्तारित कलमैन निस्पंदन===


कुछ मामलों में, गैर-रेखीय प्रणाली के अवलोकन मॉडल को हल नहीं किया जा सकता है <math>\boldsymbol{z}_{k}</math>, लेकिन अंतर्निहित फ़ंक्शन द्वारा व्यक्त किया जा सकता है:
कुछ स्थितियों में, गैर-रेखीय प्रणाली के अवलोकन मॉडल को <math>\boldsymbol{z}_{k}</math> हल नहीं किया जा सकता है किन्तु अंतर्निहित फलन द्वारा व्यक्त किया जा सकता है:


:<math>h(\boldsymbol{x}_{k}, \boldsymbol{z'}_{k}) = \boldsymbol{0} </math>
:<math>h(\boldsymbol{x}_{k}, \boldsymbol{z'}_{k}) = \boldsymbol{0} </math>
कहाँ <math>\boldsymbol{z}_{k} = \boldsymbol{z'}_{k} + \boldsymbol{v}_{k}</math> शोरगुल वाले अवलोकन हैं।
जहाँ <math>\boldsymbol{z}_{k} = \boldsymbol{z'}_{k} + \boldsymbol{v}_{k}</math> ध्वनि वाले अवलोकन हैं।


पारंपरिक विस्तारित कलमैन फ़िल्टर को निम्नलिखित प्रतिस्थापनों के साथ लागू किया जा सकता है:<ref name="Quan 2017 p. ">{{cite book | last=Quan | first=Quan | title=मल्टीकॉप्टर डिज़ाइन और नियंत्रण का परिचय| publisher=Springer | location=Singapore | year=2017 | isbn=978-981-10-3382-7 }}</ref><संदर्भ नाम= झांग 1997 पृ. 59-76 >{{cite journal | last=Zhang | first=Zhengyou | title=पैरामीटर अनुमान तकनीक: शंकु फिटिंग के अनुप्रयोग के साथ एक ट्यूटोरियल| journal=Image and Vision Computing | volume=15 | issue=1 | year=1997 | issn=0262-8856 | doi=10.1016/s0262-8856(96)01112-2 | pages=59–76| url=https://hal.inria.fr/inria-00074015/file/RR-2676.pdf }}</ref>
पारंपरिक विस्तारित कलमैन निस्पंदन को निम्नलिखित प्रतिस्थापनों के साथ प्रयुक्त किया जा सकता है:<ref name="Quan 2017 p. ">{{cite book | last=Quan | first=Quan | title=मल्टीकॉप्टर डिज़ाइन और नियंत्रण का परिचय| publisher=Springer | location=Singapore | year=2017 | isbn=978-981-10-3382-7 }}</ref><ref><संदर्भ नाम= झांग 1997 पृ. 59-76 >{{cite journal | last=Zhang | first=Zhengyou | title=पैरामीटर अनुमान तकनीक: शंकु फिटिंग के अनुप्रयोग के साथ एक ट्यूटोरियल| journal=Image and Vision Computing | volume=15 | issue=1 | year=1997 | issn=0262-8856 | doi=10.1016/s0262-8856(96)01112-2 | pages=59–76| url=https://hal.inria.fr/inria-00074015/file/RR-2676.pdf }}<nowiki></ref>


:<math> {{\boldsymbol{R}_{k}}} \leftarrow {{\boldsymbol{J}_{k}}} {{\boldsymbol{R}_{k}}} {{\boldsymbol{J}_{k}^{T}}} </math>
:<math> {{\boldsymbol{R}_{k}}} \leftarrow {{\boldsymbol{J}_{k}}} {{\boldsymbol{R}_{k}}} {{\boldsymbol{J}_{k}^{T}}} </math>
:<math> \tilde{\boldsymbol{y}}_{k} \leftarrow -h(\hat{\boldsymbol{x}}_{k|k-1}, \boldsymbol{z}_{k}) </math>
:<math> \tilde{\boldsymbol{y}}_{k} \leftarrow -h(\hat{\boldsymbol{x}}_{k|k-1}, \boldsymbol{z}_{k}) </math>
कहाँ:
जहाँ:


:<math> {{\boldsymbol{J}_{k}}} = \left . \frac{\partial h}{\partial \boldsymbol{z} } \right \vert _{\hat{\boldsymbol{x}}_{k|k-1}, \hat{\boldsymbol{z}}_{k}} </math>
:<math> {{\boldsymbol{J}_{k}}} = \left . \frac{\partial h}{\partial \boldsymbol{z} } \right \vert _{\hat{\boldsymbol{x}}_{k|k-1}, \hat{\boldsymbol{z}}_{k}} </math>
यहां मूल अवलोकन सहप्रसरण मैट्रिक्स है <math> {{\boldsymbol{R}_{k}}} </math> रूपांतरित हो गया है, और नवीनता <math> \tilde{\boldsymbol{y}}_{k} </math> अलग ढंग से परिभाषित किया गया है। जैकोबियन मैट्रिक्स <math> {{\boldsymbol{H}_{k}}} </math> पहले की तरह परिभाषित किया गया है, लेकिन अंतर्निहित अवलोकन मॉडल से निर्धारित किया गया है <math>h(\boldsymbol{x}_{k}, \boldsymbol{z}_{k})</math>.
यहां मूल अवलोकन सहप्रसरण आव्यूह <math> {{\boldsymbol{R}_{k}}} </math> रूपांतरित हो गया है, और नवीनता <math> \tilde{\boldsymbol{y}}_{k} </math> को अलग विधि से परिभाषित किया गया है। जैकोबियन आव्यूह <math> {{\boldsymbol{H}_{k}}} </math> पहले की तरह परिभाषित किया गया है, किन्तु अंतर्निहित अवलोकन मॉडल <math>h(\boldsymbol{x}_{k}, \boldsymbol{z}_{k})</math> से निर्धारित किया गया है |


== संशोधन ==
== संशोधन ==


=== पुनरावृत्त विस्तारित कलमैन फ़िल्टर ===
=== पुनरावृत्त विस्तारित कलमैन निस्पंदन ===


पुनरावृत्त विस्तारित कलमैन फ़िल्टर टेलर विस्तार के केंद्र बिंदु को पुनरावर्ती रूप से संशोधित करके विस्तारित कलमैन फ़िल्टर के रैखिककरण में सुधार करता है। यह बढ़ी हुई कम्प्यूटेशनल आवश्यकताओं की कीमत पर रैखिककरण त्रुटि को कम करता है।<रेफ नाम = झांग 1997 पीपी. 59-76 />
पुनरावृत्त विस्तारित कलमैन निस्पंदन टेलर विस्तार के केंद्र बिंदु को पुनरावर्ती रूप से संशोधित करके विस्तारित कलमैन निस्पंदन के रैखिककरण में सुधार करता है। यह बढ़ी हुई कम्प्यूटेशनल आवश्यकताओं की मूल्य पर रैखिककरण त्रुटि को कम करता है।


=== मजबूत विस्तारित कलमन फ़िल्टर ===
=== शक्तिशाली विस्तारित कलमैन निस्पंदन ===


विस्तारित कलमैन फ़िल्टर वर्तमान स्थिति अनुमान के बारे में सिग्नल मॉडल को रैखिक बनाने और अगले अनुमान की भविष्यवाणी करने के लिए रैखिक कलमैन फ़िल्टर का उपयोग करके उत्पन्न होता है। यह स्थानीय रूप से इष्टतम फिल्टर का उत्पादन करने का प्रयास करता है, हालांकि, यह आवश्यक रूप से स्थिर नहीं है क्योंकि अंतर्निहित रिकाटी समीकरण के समाधान सकारात्मक निश्चित होने की गारंटी नहीं है। प्रदर्शन में सुधार का तरीका नकली बीजगणितीय रिकाटी तकनीक है
विस्तारित कलमैन निस्पंदन वर्तमान स्थिति अनुमान के बारे में सिग्नल मॉडल को रैखिक बनाने और अगले अनुमान की पूर्वानुमान करने के लिए रैखिक कलमैन निस्पंदन का उपयोग करके उत्पन्न होता है। यह स्थानीय रूप से इष्टतम प्रभावकारी का उत्पादन करने का प्रयास करता है, चूंकि, यह आवश्यक रूप से स्थिर नहीं है क्योंकि अंतर्निहित रिकाटी समीकरण के समाधान धनात्मक निश्चित होने की गारंटी नहीं है। प्रदर्शन में सुधार का विधि नकली बीजगणितीय रिकाटी विधि है <ref>{{Cite journal  
<ref>{{Cite journal  
  |last1 = Einicke
  |last1 = Einicke
  |first1 = G.A.
  |first1 = G.A.
Line 280: Line 276:
  |hdl = 2440/2403
  |hdl = 2440/2403
  |hdl-access = free
  |hdl-access = free
  }}</ref> जो स्थिरता के लिए इष्टतमता का व्यापार करता है। विस्तारित कलमैन फ़िल्टर की परिचित संरचना को बरकरार रखा गया है लेकिन लाभ डिज़ाइन के लिए नकली बीजगणितीय रिकाटी समीकरण के सकारात्मक निश्चित समाधान का चयन करके स्थिरता प्राप्त की जाती है।
  }}</ref> जो स्थिरता के लिए इष्टतमता का व्यापार करता है। विस्तारित कलमैन निस्पंदन की परिचित संरचना को निरंतर रखा गया है किन्तु लाभ डिज़ाइन के लिए नकली बीजगणितीय रिकाटी समीकरण के धनात्मक निश्चित समाधान का चयन करके स्थिरता प्राप्त की जाती है।


विस्तारित कलमैन फ़िल्टर प्रदर्शन को बेहतर बनाने का अन्य तरीका मजबूत नियंत्रण से एच-इन्फिनिटी परिणामों को नियोजित करना है। डिज़ाइन रिकाटी समीकरण में सकारात्मक निश्चित शब्द जोड़कर मजबूत फ़िल्टर प्राप्त किए जाते हैं।<ref>{{Cite journal
विस्तारित कलमैन निस्पंदन प्रदर्शन को श्रेष्ठ बनाने का अन्य विधि शक्तिशाली नियंत्रण से एच-इन्फिनिटी परिणामों को नियोजित करना है। डिज़ाइन रिकाटी समीकरण में धनात्मक निश्चित शब्द जोड़कर शक्तिशाली निस्पंदन प्राप्त किए जाते हैं।<ref>{{Cite journal
|last1 = Einicke
|last1 = Einicke
|first1 =  G.A.
|first1 =  G.A.
Line 295: Line 291:
|doi=10.1109/78.782219
|doi=10.1109/78.782219
|bibcode = 1999ITSP...47.2596E
|bibcode = 1999ITSP...47.2596E
}}</ref> अतिरिक्त शब्द स्केलर द्वारा पैरामीट्रिज़ किया गया है जिसे डिज़ाइनर माध्य-वर्ग-त्रुटि और शिखर त्रुटि प्रदर्शन मानदंड के बीच व्यापार-बंद प्राप्त करने के लिए बदल सकता है।
}}</ref> अतिरिक्त शब्द अदिश द्वारा पैरामीट्रिज़ किया गया है जिसे डिज़ाइनर माध्य-वर्ग-त्रुटि और शिखर त्रुटि प्रदर्शन मानदंड के मध्य व्यापार-संवर्त प्राप्त करने के लिए बदल सकता है।
 
=== अपरिवर्तनीय विस्तारित कलमैन फ़िल्टर ===
{{Main|Invariant extended Kalman filter}}


इनवेरिएंट एक्सटेंडेड कलमैन फ़िल्टर (IEKF) समरूपता (या इनवेरिएंस) वाले नॉनलाइनियर सिस्टम के लिए EKF का संशोधित संस्करण है। यह ईकेएफ और हाल ही में पेश किए गए समरूपता-संरक्षण फिल्टर दोनों के फायदों को जोड़ता है। रैखिक आउटपुट त्रुटि के आधार पर रैखिक सुधार शब्द का उपयोग करने के बजाय, IEKF अपरिवर्तनीय आउटपुट त्रुटि के आधार पर ज्यामितीय रूप से अनुकूलित सुधार शब्द का उपयोग करता है; उसी तरह लाभ मैट्रिक्स को रैखिक स्तिथियों त्रुटि से अद्यतन नहीं किया जाता है, बल्कि अपरिवर्तनीय स्तिथियों त्रुटि से अद्यतन किया जाता है। मुख्य लाभ यह है कि लाभ और सहप्रसरण समीकरण संतुलन बिंदुओं की तुलना में प्रक्षेपवक्र के बहुत बड़े सेट पर स्थिर मूल्यों में परिवर्तित हो जाते हैं क्योंकि यह ईकेएफ के मामले में है, जिसके परिणामस्वरूप अनुमान का बेहतर अभिसरण होता है।
=== अपरिवर्तनीय विस्तारित कलमैन निस्पंदन ===
{{Main|अपरिवर्तनीय विस्तारित कलमैन निस्पंदन}}


==असुगंधित कलमैन फिल्टर==
इनवेरिएंट एक्सटेंडेड कलमैन निस्पंदन (आईईकेएफ) समरूपता (या इनवेरिएंस) वाले नॉनलाइनियर प्रणाली के लिए ईकेएफ का संशोधित संस्करण है। यह ईकेएफ और वर्तमान में प्रस्तुत किए गए समरूपता-संरक्षण प्रभावकारी दोनों के लाभ को जोड़ता है। रैखिक आउटपुट त्रुटि के आधार पर रैखिक सुधार शब्द का उपयोग करने के अतिरिक्त, आईईकेएफ अपरिवर्तनीय आउटपुट त्रुटि के आधार पर ज्यामितीय रूप से अनुकूलित सुधार शब्द का उपयोग करता है; उसी तरह लाभ आव्यूह को रैखिक स्तिथियों त्रुटि से अद्यतन नहीं किया जाता है, किंतु अपरिवर्तनीय स्तिथियों त्रुटि से अद्यतन किया जाता है। मुख्य लाभ यह है कि लाभ और सहप्रसरण समीकरण संतुलन बिंदुओं की तुलना में प्रक्षेपवक्र के बहुत बड़े समुच्चय पर स्थिर मूल्यों में परिवर्तित हो जाते हैं क्योंकि यह ईकेएफ के स्थितियों में है, जिसके परिणामस्वरूप अनुमान का श्रेष्ठ अभिसरण होता है।
एक नॉनलाइनियर कलमैन फिल्टर जो ईकेएफ पर सुधार का वादा करता है, वह कलमैन फिल्टरयाअनसेंटेड कलमैन फिल्टर (यूकेएफ) है। यूकेएफ में, संभाव्यता घनत्व का अनुमान बिंदुओं के नियतात्मक नमूने द्वारा लगाया जाता है जो [[गाऊसी]] के रूप में अंतर्निहित वितरण का प्रतिनिधित्व करता है। इन बिंदुओं के अरेखीय परिवर्तन का उद्देश्य पश्च वितरण का अनुमान लगाना है, जिसका [[क्षण (गणित)]] तब रूपांतरित नमूनों से प्राप्त किया जा सकता है। परिवर्तन को [[असुगंधित परिवर्तन]] के रूप में जाना जाता है। यूकेएफ सभी दिशाओं में त्रुटि के आकलन में ईकेएफ की तुलना में अधिक मजबूत और सटीक होता है।


<ब्लॉककोट>
==असुगंधित कलमैन प्रभावकारी==
  विस्तारित कलमैन फ़िल्टर (ईकेएफ) संभवतः गैर-रेखीय प्रणालियों के लिए सबसे व्यापक रूप से उपयोग किया जाने वाला अनुमान एल्गोरिदम है। हालाँकि, अनुमान समुदाय में 35 से अधिक वर्षों के अनुभव से पता चला है कि इसे लागू करना कठिन है, ट्यून करना कठिन है, और केवल उन प्रणालियों के लिए विश्वसनीय है जो अपडेट के समय के पैमाने पर लगभग रैखिक हैं। इनमें से कई कठिनाइयाँ इसके रैखिककरण के उपयोग से उत्पन्न होती हैं।<ref name="Julier2004"/></ब्लॉककोट>
एक नॉनलाइनियर कलमैन प्रभावकारी जो ईकेएफ पर सुधार का वादा करता है, वह अनसेंटेड कलमैन प्रभावकारी (यूकेएफ) है। यूकेएफ में, संभाव्यता घनत्व का अनुमान बिंदुओं के नियतात्मक प्रतिरूप द्वारा लगाया जाता है जो [[गाऊसी]] के रूप में अंतर्निहित वितरण का प्रतिनिधित्व करता है। इन बिंदुओं के अरेखीय परिवर्तन का उद्देश्य पश्च वितरण का अनुमान लगाना है, जिसका [[क्षण (गणित)]] तब रूपांतरित प्रतिरूपों से प्राप्त किया जा सकता है। परिवर्तन को [[असुगंधित परिवर्तन]] के रूप में जाना जाता है। यू के एफ सभी दिशाओं में त्रुटि के आकलन में ई के एफ की तुलना में अधिक शक्तिशाली और स्पष्ट होता है।
  विस्तारित कलमैन निस्पंदन (ईकेएफ) संभवतः गैर-रेखीय प्रणालियों के लिए सबसे व्यापक रूप से उपयोग किया जाने वाला अनुमान एल्गोरिदम है। चूँकि, अनुमान समुदाय में 35 से अधिक वर्षों के अनुभव से पता चला है कि इसे प्रयुक्त करना कठिन है,और केवल उन प्रणालियों के लिए विश्वसनीय है जो अद्यतनों के समय के मापदंड पर लगभग रैखिक हैं। इनमें से अनेक कठिनाइयाँ इसके रैखिककरण के उपयोग से उत्पन्न होती हैं।<ref name="Julier2004"/>


2012 के पेपर में सिमुलेशन परिणाम शामिल हैं जो सुझाव देते हैं कि यूकेएफ के कुछ प्रकाशित संस्करण सेकेंड ऑर्डर एक्सटेंडेड कलमैन फ़िल्टर (एसओईकेएफ) के समान सटीक होने में विफल रहते हैं, जिसे संवर्धित कलमैन फ़िल्टर के रूप में भी जाना जाता है।<ref>Gustafsson, F.; Hendeby, G.; , "Some Relations Between Extended and Unscented Kalman Filters," Signal Processing, IEEE Transactions on , vol.60, no.2, pp.545-555, Feb. 2012</ref> एसओईकेएफ बास एट अल द्वारा पहली बार वर्णित गतिशीलता के साथ यूकेएफ से लगभग 35 साल पहले का है।<ref>R. Bass, V. Norum, and L. Schwartz, “Optimal multichannel nonlinear filtering(optimal multichannel nonlinear filtering problem of minimum variance estimation of state of n- dimensional nonlinear system subject to stochastic disturbance),” J. Mathematical Analysis and Applications,vol. 16, pp. 152–164, 1966</ref> गैर-रेखीय स्तिथियों संक्रमणों के लिए किसी भी कलमन-प्रकार के फिल्टर को लागू करने में कठिनाई परिशुद्धता के लिए आवश्यक संख्यात्मक स्थिरता के मुद्दों से उत्पन्न होती है,<ref name="GrewalAndrews2015">{{cite book|author1=Mohinder S. Grewal|author2=Angus P. Andrews|title=Kalman Filtering: Theory and Practice with MATLAB|url=https://books.google.com/books?id=Sgx9BgAAQBAJ&q=%22Kalman+Filtering+%3A+Theory+and+Practice+Using+MATLAB%22|date=2 February 2015|publisher=John Wiley & Sons|isbn=978-1-118-98496-3}}</ref> हालाँकि यूकेएफ इस कठिनाई से नहीं बचता है क्योंकि यह रैखिककरण, अर्थात् रैखिक प्रतिगमन का भी उपयोग करता है। यूकेएफ के लिए स्थिरता के मुद्दे आम तौर पर संख्यात्मक सन्निकटन से सहप्रसरण मैट्रिक्स के वर्गमूल तक उत्पन्न होते हैं, जबकि ईकेएफ और एसओईकेएफ दोनों के लिए स्थिरता के मुद्दे प्रक्षेपवक्र के साथ टेलर श्रृंखला सन्निकटन में संभावित मुद्दों से उत्पन्न होते हैं।
2012 के पेपर में सिमुलेशन परिणाम सम्मिलित हैं जो सुझाव देते हैं कि यू के एफ के कुछ प्रकाशित संस्करण सेकेंड ऑर्डर एक्सटेंडेड कलमैन निस्पंदन (एसओईकेएफ) के समान स्पष्ट होने में विफल रहते हैं, जिसे संवर्धित कलमैन निस्पंदन के रूप में भी जाना जाता है।<ref>Gustafsson, F.; Hendeby, G.; , "Some Relations Between Extended and Unscented Kalman Filters," Signal Processing, IEEE Transactions on , vol.60, no.2, pp.545-555, Feb. 2012</ref> एसओईकेएफ बास एट अल द्वारा पहली बार वर्णित गतिशीलता के साथ यूकेएफ से लगभग 35 साल पहले का है।<ref>R. Bass, V. Norum, and L. Schwartz, “Optimal multichannel nonlinear filtering(optimal multichannel nonlinear filtering problem of minimum variance estimation of state of n- dimensional nonlinear system subject to stochastic disturbance),” J. Mathematical Analysis and Applications,vol. 16, pp. 152–164, 1966</ref> गैर-रेखीय स्तिथियों संक्रमणों के लिए किसी भी कलमैन-प्रकार के प्रभावकारी को प्रयुक्त करने में कठिनाई परिशुद्धता के लिए आवश्यक संख्यात्मक स्थिरता के उद्देश्यों से उत्पन्न होती है,<ref name="GrewalAndrews2015">{{cite book|author1=Mohinder S. Grewal|author2=Angus P. Andrews|title=Kalman Filtering: Theory and Practice with MATLAB|url=https://books.google.com/books?id=Sgx9BgAAQBAJ&q=%22Kalman+Filtering+%3A+Theory+and+Practice+Using+MATLAB%22|date=2 February 2015|publisher=John Wiley & Sons|isbn=978-1-118-98496-3}}</ref> चूँकि यूकेएफ इस कठिनाई से नहीं बचता है क्योंकि यह रैखिककरण, अर्थात् रैखिक प्रतिगमन का भी उपयोग करता है। यूकेएफ के लिए स्थिरता के उद्देश्य सामान्यतः संख्यात्मक सन्निकटन से सहप्रसरण आव्यूह के वर्गमूल तक उत्पन्न होते हैं, जबकि ईकेएफ और एसओईकेएफ दोनों के लिए स्थिरता के उद्देश्य प्रक्षेपवक्र के साथ टेलर श्रृंखला सन्निकटन में संभावित मुद्दों से उत्पन्न होते हैं।


==कलामन फ़िल्टर को इकट्ठा करें==
==कलमैन निस्पंदन को एकत्र करें==
यूकेएफ वास्तव में [[कलमैन फ़िल्टर को इकट्ठा करें]] से पहले का था, जिसका आविष्कार 1994 में इवेंसेन ने किया था। यूकेएफ पर इसका लाभ यह है कि उपयोग किए जाने वाले एन्सेम्बल सदस्यों की संख्या स्तिथियों आयाम से बहुत छोटी हो सकती है, जो बहुत उच्च-आयामी प्रणालियों में अनुप्रयोगों की अनुमति देती है। , जैसे कि मौसम की भविष्यवाणी, अरब या उससे अधिक के स्तिथियों-स्थान आकार के साथ।
यूकेएफ वास्तव में [[कलमैन फ़िल्टर को इकट्ठा करें|कलमैन निस्पंदन को इकट्ठा करें]] से पहले का था, जिसका आविष्कार 1994 में इवेंसेन ने किया था। यूकेएफ पर इसका लाभ यह है कि उपयोग किए जाने वाले एन्सेम्बल सदस्यों की संख्या स्तिथियों आयाम से बहुत छोटी हो सकती है, जो बहुत उच्च-आयामी प्रणालियों में अनुप्रयोगों की अनुमति देती है। , जैसे कि मौसम की पूर्वानुमान, अरब या उससे अधिक के स्तिथियों-स्थान आकार के साथ हैं।


==फ़ज़ी कलमैन फ़िल्टर==
==फ़ज़ी कलमैन निस्पंदन==
संभावना वितरण का प्रतिनिधित्व करने के लिए नई विधि के साथ फ़ज़ी कलमैन फ़िल्टर को हाल ही में वास्तविक संभावनावादी फ़िल्टर प्राप्त करने के लिए संभावित वितरण द्वारा संभाव्यता वितरण को प्रतिस्थापित करने का प्रस्ताव दिया गया था, जो गैर-सममित प्रक्रिया और अवलोकन शोर के उपयोग के साथ-साथ दोनों प्रक्रियाओं में उच्च अशुद्धियों को सक्षम करता है। अवलोकन मॉडल.<ref>{{Cite journal
संभावना वितरण का प्रतिनिधित्व करने के लिए नई विधि के साथ फ़ज़ी कलमैन निस्पंदन को वर्तमान में वास्तविक संभावनावादी निस्पंदन प्राप्त करने के लिए संभावित वितरण द्वारा संभाव्यता वितरण को प्रतिस्थापित करने का प्रस्ताव दिया गया था, जो गैर-सममित प्रक्रिया और अवलोकन ध्वनि के उपयोग के साथ-साथ दोनों प्रक्रियाओं में उच्च अशुद्धियों को सक्षम करता है। और अवलोकन मॉडल हैं.<ref>{{Cite journal
|last1 = Matía
|last1 = Matía
|first1 =  F.
|first1 =  F.
Line 331: Line 325:
|s2cid = 209913435
|s2cid = 209913435
}}</ref>
}}</ref>
==यह भी देखें==
==यह भी देखें==
* कलमन फ़िल्टर
* कलमैन निस्पंदन
* कलमन फ़िल्टर को इकट्ठा करें
* कलमैन निस्पंदन को एकत्र करें
* [[तेज़ कलमन फ़िल्टर]]
* [[Index.php?title=तेज़ कलमैन फ़िल्टर|तेज़ कलमैन निस्पंदन]]
* [[अपरिवर्तनीय विस्तारित कलमैन फ़िल्टर]]
* [[अपरिवर्तनीय विस्तारित कलमैन फ़िल्टर|अपरिवर्तनीय विस्तारित कलमैन निस्पंदन]]
* [[गतिशील क्षितिज अनुमान]]
* [[गतिशील क्षितिज अनुमान]]
* [[कण फिल्टर]]
* [[कण फिल्टर|कण प्रभावकारी]]
* कलमन फिल्टरयाअसुगंधित कलमन फिल्टर
* कलमैन प्रभावकारी या असुगंधित कलमैन प्रभावकारी


==संदर्भ==
==संदर्भ==
Line 389: Line 381:
* [http://correll.cs.colorado.edu/?p=1464 Position estimation of a differential-wheel robot based on odometry and landmarks]
* [http://correll.cs.colorado.edu/?p=1464 Position estimation of a differential-wheel robot based on odometry and landmarks]


{{DEFAULTSORT:Extended Kalman Filter}}[[Category: संकेत अनुमान]] [[Category: अरेखीय फिल्टर]] [[Category: रोबोट नियंत्रण]]
{{DEFAULTSORT:Extended Kalman Filter}}
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Extended Kalman Filter]]
[[Category:Created On 07/07/2023]]
[[Category:CS1|Extended Kalman Filter]]
[[Category:CS1 errors]]
[[Category:Created On 07/07/2023|Extended Kalman Filter]]
[[Category:Lua-based templates|Extended Kalman Filter]]
[[Category:Machine Translated Page|Extended Kalman Filter]]
[[Category:Pages with script errors|Extended Kalman Filter]]
[[Category:Short description with empty Wikidata description|Extended Kalman Filter]]
[[Category:Templates Vigyan Ready|Extended Kalman Filter]]
[[Category:Templates that add a tracking category|Extended Kalman Filter]]
[[Category:Templates that generate short descriptions|Extended Kalman Filter]]
[[Category:Templates using TemplateData|Extended Kalman Filter]]
[[Category:अरेखीय फिल्टर|Extended Kalman Filter]]
[[Category:रोबोट नियंत्रण|Extended Kalman Filter]]
[[Category:संकेत अनुमान|Extended Kalman Filter]]

Latest revision as of 09:57, 4 August 2023

अनुमान सिद्धांत में, विस्तारित कलमैन निस्पंदन (ई के एफ) कलमैन निस्पंदन का गैर-रेखीय संस्करण है जो वर्तमान माध्य और सहप्रसरण के अनुमान के बारे में रैखिककरण करता है। अच्छी तरह से परिभाषित संक्रमण मॉडल के स्थितियों में, ईकेएफ पर विचार किया गया है| [1] अरेखीय स्तिथियों अनुमान, नेविगेशन प्रणाली और जीपीएस के सिद्धांत में वास्तविक मानक माना गया हैं। [2]

इतिहास

कलमैन प्रकार के प्रभावकारी की गणितीय नींव स्थापित करने वाले पेपर 1959 और 1961 के मध्य प्रकाशित हुए थे। [3][4][5] कलमैन निस्पंदन संक्रमण और माप प्रणाली दोनों में योगात्मक स्वतंत्र श्वेत ध्वनि के साथ प्रणाली मॉडल रैखिक के लिए इष्टतम रैखिक अनुमानक है । दुर्भाग्य से, इंजीनियरिंग में, अधिकांश प्रणालियाँ अरेखीय हैं, इसलिए इसे प्रयुक्त करने का प्रयास किया गया नॉनलाइनियर प्रणाली के लिए यह निस्पंदनिंग विधि; इनमें से अधिकांश कार्य नासा एम्स में किया गया था।[6][7] ईकेएफ ने फलन बिंदु के बारे में मॉडल को रैखिक बनाने के लिए गणना से विधिों को अनुकूलित किया था, अर्थात् बहुभिन्नरूपी टेलर श्रृंखला विस्तार हैं । यदि प्रणाली मॉडल (जैसा कि नीचे वर्णित है) अच्छी तरह से ज्ञात नहीं है या गलत है, तब अनुमान के लिए मोंटे कार्लो विधियों, विशेष रूप से कण प्रभावकारी को नियोजित किया जाता है। मोंटे कार्लो विधि ई के एफ के अस्तित्व से पहले की है किन्तु किसी भी मध्यम आकार के स्तिथियों-स्थान के लिए कम्प्यूटेशनल रूप से अधिक महंगी है।

निरूपण

विस्तारित कलमैन निस्पंदन में, स्तिथियों संक्रमण और अवलोकन मॉडल को स्तिथियों के रैखिक कार्य होने की आवश्यकता नहीं है, किंतु इसके अतिरिक्तअलग-अलग फलन फलन हो सकते हैं।

यहाँ wk और vk प्रक्रिया और अवलोकन ध्वनि हैं जिन्हें क्रमशः शून्य माध्य माना जाता है सहप्रसरण Qk और Rk के साथ माध्य भिन्नरूपी सामान्य वितरण ध्वनि माना जाता हैं| k और आरk क्रमश। uk नियंत्रण सदिश है|

फलन f का उपयोग पिछले अनुमान से अनुमानित स्थिति की गणना करने के लिए किया जा सकता है और इसी तरह फलन h का उपयोग अनुमानित स्थिति से अनुमानित माप की गणना करने के लिए किया जा सकता है। चूँकि, f और h को सीधे सहप्रसरण पर प्रयुक्त नहीं किया जा सकता है। इसके अतिरिक्त आंशिक डेरिवेटिव (जेकोबियन आव्यूह और निर्धारक) के आव्यूह की गणना की जाती है।

प्रत्येक समय चरण पर, जैकोबियन का मूल्यांकन वर्तमान अनुमानित स्थितियों के साथ किया जाता है। इन आव्यूह का उपयोग कलमैन निस्पंदन समीकरणों में किया जा सकता है। यह प्रक्रिया अनिवार्य रूप से वर्तमान अनुमान के आसपास गैर-रेखीय फलन को रैखिक बनाती है।

सांकेतिक टिप्पणियों के लिए कलमैन निस्पंदन लेख देखें।

असतत-समय की पूर्वानुमान और समीकरणों को अद्यतन करें

नोटेशन समय n पर के अनुमान का प्रतिनिधित्व करता है, जिसमें समय mn तक दिए गए अवलोकन सम्मिलित हैं।

पूर्वानुमान

अनुमानित स्थिति का अनुमान
अनुमानित सहप्रसरण अनुमान


अद्यतन

नवाचार या माप अवशिष्ट
नवाचार (या अवशिष्ट) सहप्रसरण
निकट-इष्टतम कलमैन लाभ
अद्यतन स्तिथियों अनुमान
अद्यतन सहप्रसरण अनुमान

जहां स्तिथियों संक्रमण और अवलोकन आव्यूह को निम्नलिखित जैकोबियन के रूप में परिभाषित किया गया है


हानि

अपने रैखिक समकक्ष के विपरीत, सामान्य रूप से विस्तारित कलमैन निस्पंदन इष्टतम अनुमानक नहीं है (यह इष्टतम है यदि माप और स्तिथियों संक्रमण मॉडल दोनों रैखिक हैं, क्योंकि उस स्थिति में विस्तारित कलमैन निस्पंदन नियमित के समान है)। इसके अतिरिक्त, यदि स्थिति का प्रारंभिक अनुमान गलत है, या यदि प्रक्रिया को गलत विधि से तैयार किया गया है, तब इसके रैखिककरण के कारण निस्पंदन जल्दी से अलग हो सकता है। विस्तारित कल्मन निस्पंदन के साथ और समस्या यह है कि अनुमानित सहप्रसरण आव्यूह वास्तविक सहप्रसरण आव्यूह को कम आंकता है और इसलिए स्थिरता (सांख्यिकी) बनने का कठिन परिस्थिति होता है या स्थिर ध्वनि को सम्मिलित किए बिना सांख्यिकीय अर्थों में स्थिरता रहती हैं |[8].

यह कहने के पश्चात्, विस्तारित कलमैन निस्पंदन उचित प्रदर्शन दे सकता है, और यकीनन नेविगेशन प्रणाली और जीपीएस में वास्तविक मानक है।

सामान्यीकरण

सतत-समय विस्तारित कलमैन निस्पंदन

प्रतिरूप

प्रारंभ

पूर्वानुमान-अद्यतन

असतत-समय विस्तारित कलमैन निस्पंदन के विपरीत, पूर्वानुमान और अद्यतन चरण निरंतर-समय विस्तारित कलमैन निस्पंदन में युग्मित होते हैं।[9]

असतत-समय माप

अधिकांश भौतिक प्रणालियों को निरंतर-समय मॉडल के रूप में दर्शाया जाता है, जबकि डिजिटल प्रोसेसर के माध्यम से स्तिथियों अनुमान के लिए असतत-समय माप अधिकांशतः लिया जाता है। इसलिए, प्रणाली मॉडल और माप मॉडल द्वारा दिया गया है |

जहाँ .

प्रारंभ

पूर्वानुमान-अद्यतन

जहाँ

अद्यतन

जहाँ

अद्यतन समीकरण असतत-समय विस्तारित कलमैन निस्पंदन के समान हैं।

उच्च-क्रम विस्तारित कलमैन निस्पंदन

उपरोक्त रिकर्सन प्रथम-क्रम विस्तारित कलमैन निस्पंदन (ई के एफ) है। टेलर श्रृंखला विस्तार की अधिक शर्तबं को बनाए रखते हुए उच्च क्रम वाले ई के एफ प्राप्त किए जा सकते हैं। उदाहरण के लिए, दूसरे और तीसरे क्रम के ई के एफ का वर्णन किया गया है।[10] चूँकि, उच्च क्रम के ई के एफ केवल तभी प्रदर्शन लाभ प्रदान करते हैं जब माप ध्वनि छोटा होता है।

गैर-योज्य ध्वनि सूत्रीकरण और समीकरण

ई के एफ के विशिष्ट सूत्रीकरण में योगात्मक प्रक्रिया और माप ध्वनि की धारणा सम्मिलित है। चूँकि, यह धारणा ई के एफ कार्यान्वयन के लिए आवश्यक नहीं है।[11] इसके अतिरिक्त, रूप की अधिक सामान्य प्रणाली पर विचार करें:

यहां wk और vk प्रक्रिया और अवलोकन ध्वनि हैं, जिन्हें क्रमशः सहप्रसरण Qk और Rk के साथ शून्य माध्य बहुभिन्नरूपी सामान्य ध्वनि माना जाता है। फिर सहप्रसरण पूर्वानुमान और नवप्रवर्तन समीकरण बन जाते हैं|

जहां आव्यूह और जैकोबियन आव्यूह हैं:

माना कि अनुमानित स्थिति अनुमान और माप अवशिष्ट का मूल्यांकन प्रक्रिया और माप ध्वनि शर्तबं के माध्य पर किया जाता है, जिसे शून्य माना जाता है। अन्यथा, गैर-एडिटिव ध्वनि फॉर्मूलेशन को एडिटिव ध्वनि ई के एफ के समान ही कार्यान्वित किया जाता है।

अंतर्निहित विस्तारित कलमैन निस्पंदन

कुछ स्थितियों में, गैर-रेखीय प्रणाली के अवलोकन मॉडल को हल नहीं किया जा सकता है किन्तु अंतर्निहित फलन द्वारा व्यक्त किया जा सकता है:

जहाँ ध्वनि वाले अवलोकन हैं।

पारंपरिक विस्तारित कलमैन निस्पंदन को निम्नलिखित प्रतिस्थापनों के साथ प्रयुक्त किया जा सकता है:[12][13]

जहाँ:

यहां मूल अवलोकन सहप्रसरण आव्यूह रूपांतरित हो गया है, और नवीनता को अलग विधि से परिभाषित किया गया है। जैकोबियन आव्यूह पहले की तरह परिभाषित किया गया है, किन्तु अंतर्निहित अवलोकन मॉडल से निर्धारित किया गया है |

संशोधन

पुनरावृत्त विस्तारित कलमैन निस्पंदन

पुनरावृत्त विस्तारित कलमैन निस्पंदन टेलर विस्तार के केंद्र बिंदु को पुनरावर्ती रूप से संशोधित करके विस्तारित कलमैन निस्पंदन के रैखिककरण में सुधार करता है। यह बढ़ी हुई कम्प्यूटेशनल आवश्यकताओं की मूल्य पर रैखिककरण त्रुटि को कम करता है।

शक्तिशाली विस्तारित कलमैन निस्पंदन

विस्तारित कलमैन निस्पंदन वर्तमान स्थिति अनुमान के बारे में सिग्नल मॉडल को रैखिक बनाने और अगले अनुमान की पूर्वानुमान करने के लिए रैखिक कलमैन निस्पंदन का उपयोग करके उत्पन्न होता है। यह स्थानीय रूप से इष्टतम प्रभावकारी का उत्पादन करने का प्रयास करता है, चूंकि, यह आवश्यक रूप से स्थिर नहीं है क्योंकि अंतर्निहित रिकाटी समीकरण के समाधान धनात्मक निश्चित होने की गारंटी नहीं है। प्रदर्शन में सुधार का विधि नकली बीजगणितीय रिकाटी विधि है [14] जो स्थिरता के लिए इष्टतमता का व्यापार करता है। विस्तारित कलमैन निस्पंदन की परिचित संरचना को निरंतर रखा गया है किन्तु लाभ डिज़ाइन के लिए नकली बीजगणितीय रिकाटी समीकरण के धनात्मक निश्चित समाधान का चयन करके स्थिरता प्राप्त की जाती है।

विस्तारित कलमैन निस्पंदन प्रदर्शन को श्रेष्ठ बनाने का अन्य विधि शक्तिशाली नियंत्रण से एच-इन्फिनिटी परिणामों को नियोजित करना है। डिज़ाइन रिकाटी समीकरण में धनात्मक निश्चित शब्द जोड़कर शक्तिशाली निस्पंदन प्राप्त किए जाते हैं।[15] अतिरिक्त शब्द अदिश द्वारा पैरामीट्रिज़ किया गया है जिसे डिज़ाइनर माध्य-वर्ग-त्रुटि और शिखर त्रुटि प्रदर्शन मानदंड के मध्य व्यापार-संवर्त प्राप्त करने के लिए बदल सकता है।

अपरिवर्तनीय विस्तारित कलमैन निस्पंदन

इनवेरिएंट एक्सटेंडेड कलमैन निस्पंदन (आईईकेएफ) समरूपता (या इनवेरिएंस) वाले नॉनलाइनियर प्रणाली के लिए ईकेएफ का संशोधित संस्करण है। यह ईकेएफ और वर्तमान में प्रस्तुत किए गए समरूपता-संरक्षण प्रभावकारी दोनों के लाभ को जोड़ता है। रैखिक आउटपुट त्रुटि के आधार पर रैखिक सुधार शब्द का उपयोग करने के अतिरिक्त, आईईकेएफ अपरिवर्तनीय आउटपुट त्रुटि के आधार पर ज्यामितीय रूप से अनुकूलित सुधार शब्द का उपयोग करता है; उसी तरह लाभ आव्यूह को रैखिक स्तिथियों त्रुटि से अद्यतन नहीं किया जाता है, किंतु अपरिवर्तनीय स्तिथियों त्रुटि से अद्यतन किया जाता है। मुख्य लाभ यह है कि लाभ और सहप्रसरण समीकरण संतुलन बिंदुओं की तुलना में प्रक्षेपवक्र के बहुत बड़े समुच्चय पर स्थिर मूल्यों में परिवर्तित हो जाते हैं क्योंकि यह ईकेएफ के स्थितियों में है, जिसके परिणामस्वरूप अनुमान का श्रेष्ठ अभिसरण होता है।

असुगंधित कलमैन प्रभावकारी

एक नॉनलाइनियर कलमैन प्रभावकारी जो ईकेएफ पर सुधार का वादा करता है, वह अनसेंटेड कलमैन प्रभावकारी (यूकेएफ) है। यूकेएफ में, संभाव्यता घनत्व का अनुमान बिंदुओं के नियतात्मक प्रतिरूप द्वारा लगाया जाता है जो गाऊसी के रूप में अंतर्निहित वितरण का प्रतिनिधित्व करता है। इन बिंदुओं के अरेखीय परिवर्तन का उद्देश्य पश्च वितरण का अनुमान लगाना है, जिसका क्षण (गणित) तब रूपांतरित प्रतिरूपों से प्राप्त किया जा सकता है। परिवर्तन को असुगंधित परिवर्तन के रूप में जाना जाता है। यू के एफ सभी दिशाओं में त्रुटि के आकलन में ई के एफ की तुलना में अधिक शक्तिशाली और स्पष्ट होता है।

विस्तारित कलमैन निस्पंदन (ईकेएफ) संभवतः गैर-रेखीय प्रणालियों के लिए सबसे व्यापक रूप से उपयोग किया जाने वाला अनुमान एल्गोरिदम है। चूँकि, अनुमान समुदाय में 35 से अधिक वर्षों के अनुभव से पता चला है कि इसे प्रयुक्त करना कठिन है,और केवल उन प्रणालियों के लिए विश्वसनीय है जो अद्यतनों के समय के मापदंड पर लगभग रैखिक हैं। इनमें से अनेक कठिनाइयाँ इसके रैखिककरण के उपयोग से उत्पन्न होती हैं।[1]

2012 के पेपर में सिमुलेशन परिणाम सम्मिलित हैं जो सुझाव देते हैं कि यू के एफ के कुछ प्रकाशित संस्करण सेकेंड ऑर्डर एक्सटेंडेड कलमैन निस्पंदन (एसओईकेएफ) के समान स्पष्ट होने में विफल रहते हैं, जिसे संवर्धित कलमैन निस्पंदन के रूप में भी जाना जाता है।[16] एसओईकेएफ बास एट अल द्वारा पहली बार वर्णित गतिशीलता के साथ यूकेएफ से लगभग 35 साल पहले का है।[17] गैर-रेखीय स्तिथियों संक्रमणों के लिए किसी भी कलमैन-प्रकार के प्रभावकारी को प्रयुक्त करने में कठिनाई परिशुद्धता के लिए आवश्यक संख्यात्मक स्थिरता के उद्देश्यों से उत्पन्न होती है,[18] चूँकि यूकेएफ इस कठिनाई से नहीं बचता है क्योंकि यह रैखिककरण, अर्थात् रैखिक प्रतिगमन का भी उपयोग करता है। यूकेएफ के लिए स्थिरता के उद्देश्य सामान्यतः संख्यात्मक सन्निकटन से सहप्रसरण आव्यूह के वर्गमूल तक उत्पन्न होते हैं, जबकि ईकेएफ और एसओईकेएफ दोनों के लिए स्थिरता के उद्देश्य प्रक्षेपवक्र के साथ टेलर श्रृंखला सन्निकटन में संभावित मुद्दों से उत्पन्न होते हैं।

कलमैन निस्पंदन को एकत्र करें

यूकेएफ वास्तव में कलमैन निस्पंदन को इकट्ठा करें से पहले का था, जिसका आविष्कार 1994 में इवेंसेन ने किया था। यूकेएफ पर इसका लाभ यह है कि उपयोग किए जाने वाले एन्सेम्बल सदस्यों की संख्या स्तिथियों आयाम से बहुत छोटी हो सकती है, जो बहुत उच्च-आयामी प्रणालियों में अनुप्रयोगों की अनुमति देती है। , जैसे कि मौसम की पूर्वानुमान, अरब या उससे अधिक के स्तिथियों-स्थान आकार के साथ हैं।

फ़ज़ी कलमैन निस्पंदन

संभावना वितरण का प्रतिनिधित्व करने के लिए नई विधि के साथ फ़ज़ी कलमैन निस्पंदन को वर्तमान में वास्तविक संभावनावादी निस्पंदन प्राप्त करने के लिए संभावित वितरण द्वारा संभाव्यता वितरण को प्रतिस्थापित करने का प्रस्ताव दिया गया था, जो गैर-सममित प्रक्रिया और अवलोकन ध्वनि के उपयोग के साथ-साथ दोनों प्रक्रियाओं में उच्च अशुद्धियों को सक्षम करता है। और अवलोकन मॉडल हैं.[19]

यह भी देखें

संदर्भ

  1. 1.0 1.1 Julier, S.J.; Uhlmann, J.K. (2004). "Unscented filtering and nonlinear estimation" (PDF). Proceedings of the IEEE. 92 (3): 401–422. doi:10.1109/jproc.2003.823141. S2CID 9614092.
  2. Courses, E.; Surveys, T. (2006). Sigma-Point Filters: An Overview with Applications to Integrated Navigation and Vision Assisted Control. pp. 201–202. doi:10.1109/NSSPW.2006.4378854. ISBN 978-1-4244-0579-4. S2CID 18535558. {{cite book}}: |journal= ignored (help)
  3. R.E. Kalman (1960). "Contributions to the theory of optimal control". Bol. Soc. Mat. Mexicana: 102–119. CiteSeerX 10.1.1.26.4070.
  4. R.E. Kalman (1960). "A New Approach to Linear Filtering and Prediction Problems" (PDF). Journal of Basic Engineering. 82: 35–45. doi:10.1115/1.3662552.
  5. R.E. Kalman; R.S. Bucy (1961). "New results in linear filtering and prediction theory" (PDF). Journal of Basic Engineering. 83: 95–108. doi:10.1115/1.3658902.
  6. Bruce A. McElhoe (1966). "An Assessment of the Navigation and Course Corrections for a Manned Flyby of Mars or Venus". IEEE Transactions on Aerospace and Electronic Systems. 2 (4): 613–623. Bibcode:1966ITAES...2..613M. doi:10.1109/TAES.1966.4501892. S2CID 51649221.
  7. G.L. Smith; S.F. Schmidt and L.A. McGee (1962). "Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle". National Aeronautics and Space Administration. {{cite journal}}: Cite journal requires |journal= (help)
  8. Huang, Guoquan P; Mourikis, Anastasios I; Roumeliotis, Stergios I (2008). "Analysis and improvement of the consistency of extended Kalman filter based SLAM". Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on. pp. 473–479. doi:10.1109/ROBOT.2008.4543252.
  9. Brown, Robert Grover; Hwang, Patrick Y.C. (1997). रैंडम सिग्नल और एप्लाइड कलमैन फ़िल्टरिंग का परिचय (3 ed.). New York: John Wiley & Sons. pp. 289–293. ISBN 978-0-471-12839-7.
  10. Einicke, G.A. (2019). Smoothing, Filtering and Prediction: Estimating the Past, Present and Future (2nd ed.). Amazon Prime Publishing. ISBN 978-0-6485115-0-2.
  11. Simon, Dan (2006). इष्टतम स्थिति का अनुमान. Hoboken, NJ: John Wiley & Sons. ISBN 978-0-471-70858-2.
  12. Quan, Quan (2017). मल्टीकॉप्टर डिज़ाइन और नियंत्रण का परिचय. Singapore: Springer. ISBN 978-981-10-3382-7.
  13. <संदर्भ नाम= झांग 1997 पृ. 59-76 >Zhang, Zhengyou (1997). "पैरामीटर अनुमान तकनीक: शंकु फिटिंग के अनुप्रयोग के साथ एक ट्यूटोरियल" (PDF). Image and Vision Computing. 15 (1): 59–76. doi:10.1016/s0262-8856(96)01112-2. ISSN 0262-8856.<nowiki>
  14. Einicke, G.A.; White, L.B.; Bitmead, R.R. (September 2003). "The Use of Fake Algebraic Riccati Equations for Co-channel Demodulation". IEEE Trans. Signal Process. 51 (9): 2288–2293. Bibcode:2003ITSP...51.2288E. doi:10.1109/tsp.2003.815376. hdl:2440/2403.
  15. Einicke, G.A.; White, L.B. (September 1999). "Robust Extended Kalman Filtering". IEEE Trans. Signal Process. 47 (9): 2596–2599. Bibcode:1999ITSP...47.2596E. doi:10.1109/78.782219.
  16. Gustafsson, F.; Hendeby, G.; , "Some Relations Between Extended and Unscented Kalman Filters," Signal Processing, IEEE Transactions on , vol.60, no.2, pp.545-555, Feb. 2012
  17. R. Bass, V. Norum, and L. Schwartz, “Optimal multichannel nonlinear filtering(optimal multichannel nonlinear filtering problem of minimum variance estimation of state of n- dimensional nonlinear system subject to stochastic disturbance),” J. Mathematical Analysis and Applications,vol. 16, pp. 152–164, 1966
  18. Mohinder S. Grewal; Angus P. Andrews (2 February 2015). Kalman Filtering: Theory and Practice with MATLAB. John Wiley & Sons. ISBN 978-1-118-98496-3.
  19. Matía, F.; Jiménez, V.; Alvarado, B.P.; Haber, R. (January 2021). "The fuzzy Kalman filter: Improving its implementation by reformulating uncertainty representation". Fuzzy Sets Syst. 402: 78–104. doi:10.1016/j.fss.2019.10.015. S2CID 209913435.


अग्रिम पठन

  • Anderson, B.D.O.; Moore, J.B. (1979). Optimal Filtering. Englewood Cliffs, New Jersey: Prentice–Hall.
  • Gelb, A. (1974). Applied Optimal Estimation. MIT Press.
  • Maybeck, Peter S. (1979). Stochastic Models, Estimation, and Control. Mathematics in Science and Engineering. Vol. 141–1. New York: Academic Press. p. 423. ISBN 978-0-12-480701-3.


बाहरी संबंध