धारिता: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Ability of a body to store an electrical charge}} {{For|capacitance of blood vessels|Compliance (physiology)}} {{Use dmy dates|date=June 2020}} {{Infobox p...")
 
mNo edit summary
Line 16: Line 16:
}}
}}
{{Electromagnetism |Network}}
{{Electromagnetism |Network}}
कैपेसिटेंस इलेक्ट्रिक कंडक्टर पर [[ विद्युत कंडक्टर ]] पर संग्रहीत [[ आवेश ]] की मात्रा का अनुपात है, जो विद्युत क्षमता में अंतर है।कैपेसिटेंस की दो निकटता से संबंधित धारणाएं हैं: '' सेल्फ कैपेसिटेंस '' और '' म्यूचुअल कैपेसिटेंस ''।<ref name=Harrington_2003>{{cite book |last=Harrington |first=Roger F. |author-link=Roger F. Harrington |title=Introduction to Electromagnetic Engineering |publisher=Dover Publications |year=2003 |edition=1st |page=43 |isbn=0-486-43241-6}}</ref>{{rp|237–238}} कोई भी वस्तु जिसे विद्युत रूप से चार्ज किया जा सकता है वह आत्म समाई प्रदर्शित करता है। इस मामले में विद्युत [[ संभावित अंतर ]] को वस्तु और जमीन के बीच मापा जाता है। एक बड़े आत्म समाई के साथ एक सामग्री कम कैपेसिटेंस के साथ एक से अधिक संभावित अंतर पर अधिक विद्युत आवेश रखती है। [[ संधारित्र ]] के संचालन को समझने के लिए पारस्परिक समाई की धारणा विशेष रूप से महत्वपूर्ण है, तीन प्राथमिक रैखिक सर्किट इलेक्ट्रॉनिक घटकों में से एक (प्रतिरोधों और [[ प्रारंभ करनेवाला ]]ों के साथ)। एक विशिष्ट संधारित्र में, दो कंडक्टरों का उपयोग इलेक्ट्रिक चार्ज को अलग करने के लिए किया जाता है, जिसमें एक कंडक्टर को सकारात्मक रूप से चार्ज किया जाता है और दूसरा नकारात्मक रूप से चार्ज किया जाता है, लेकिन सिस्टम में शून्य का कुल चार्ज होता है। इस मामले में अनुपात या तो कंडक्टर पर इलेक्ट्रिक चार्ज की भयावहता है और संभावित अंतर यह है कि दो कंडक्टरों के बीच मापा जाता है।
'''''कैपेसिटेंस (''''' इलेक्ट्रिक कंडक्टर पर [[ विद्युत कंडक्टर ]] पर संग्रहीत [[ आवेश ]] की मात्रा का अनुपात है, जो विद्युत क्षमता में अंतर है।कैपेसिटेंस की दो निकटता से संबंधित धारणाएं हैं: '' सेल्फ कैपेसिटेंस '' और '' म्यूचुअल कैपेसिटेंस ''।<ref name=Harrington_2003>{{cite book |last=Harrington |first=Roger F. |author-link=Roger F. Harrington |title=Introduction to Electromagnetic Engineering |publisher=Dover Publications |year=2003 |edition=1st |page=43 |isbn=0-486-43241-6}}</ref>{{rp|237–238}} कोई भी वस्तु जिसे विद्युत रूप से चार्ज किया जा सकता है वह आत्म समाई प्रदर्शित करता है। इस मामले में विद्युत [[ संभावित अंतर ]] को वस्तु और जमीन के बीच मापा जाता है। एक बड़े आत्म समाई के साथ एक सामग्री कम कैपेसिटेंस के साथ एक से अधिक संभावित अंतर पर अधिक विद्युत आवेश रखती है। [[ संधारित्र ]] के संचालन को समझने के लिए पारस्परिक समाई की धारणा विशेष रूप से महत्वपूर्ण है, तीन प्राथमिक रैखिक सर्किट इलेक्ट्रॉनिक घटकों में से एक (प्रतिरोधों और [[ प्रारंभ करनेवाला ]]ों के साथ)। एक विशिष्ट संधारित्र में, दो कंडक्टरों का उपयोग इलेक्ट्रिक चार्ज को अलग करने के लिए किया जाता है, जिसमें एक कंडक्टर को सकारात्मक रूप से चार्ज किया जाता है और दूसरा नकारात्मक रूप से चार्ज किया जाता है, लेकिन सिस्टम में शून्य का कुल चार्ज होता है। इस मामले में अनुपात या तो कंडक्टर पर इलेक्ट्रिक चार्ज की भयावहता है और संभावित अंतर यह है कि दो कंडक्टरों के बीच मापा जाता है।


कैपेसिटेंस केवल डिजाइन की ज्यामिति (जैसे प्लेटों का क्षेत्र और उनके बीच की दूरी) और संधारित्र की प्लेटों के बीच [[ ढांकता हुआ ]] सामग्री की पारगम्यता का एक कार्य है। कई ढांकता हुआ सामग्रियों के लिए, पारगम्यता और इस प्रकार समाई, कंडक्टरों के बीच संभावित अंतर और उन पर कुल चार्ज से स्वतंत्र है।
कैपेसिटेंस केवल डिजाइन की ज्यामिति (जैसे प्लेटों का क्षेत्र और उनके बीच की दूरी) और संधारित्र की प्लेटों के बीच [[ ढांकता हुआ ]] सामग्री की पारगम्यता का एक कार्य है। कई ढांकता हुआ सामग्रियों के लिए, पारगम्यता और इस प्रकार समाई, कंडक्टरों के बीच संभावित अंतर और उन पर कुल चार्ज से स्वतंत्र है।
Line 44: Line 44:


== म्यूचुअल कैपेसिटेंस ==
== म्यूचुअल कैपेसिटेंस ==
एक सामान्य रूप एक समानांतर-प्लेट संधारित्र है, जिसमें एक दूसरे से अछूता दो प्रवाहकीय प्लेटें होती हैं, आमतौर पर एक ढांकता हुआ सामग्री को सैंडविच करते हैं।एक समानांतर प्लेट संधारित्र में, कैपेसिटेंस कंडक्टर प्लेटों के सतह क्षेत्र के लिए बहुत आनुपातिक है और प्लेटों के बीच अलगाव दूरी के विपरीत आनुपातिक है।
ये ,सामान्य रूप एक समानांतर-प्लेट संधारित्र है, जिसमें दो प्रवाहकीय प्लेटें होती हैं,और ये दोनों प्लेट एक दूसरे के ऊपर रखीं होती हैं,आमतौर पर प्लेट एक दूसरे के ऊपर ऐसे रखीं होती है जैसे डाइइलेक्ट्रिक material उन दोनों प्लेट के बीच में रखा हो। एक समानांतर प्लेट संधारित्र में,कैपेसिटेंस कंडक्टर प्लेटों के सतह क्षेत्र के समानुपाती और और दो प्लेट के बीच की दूरी के व्युत्क्रमानुपाती होता है।


यदि प्लेटों पर शुल्क +Q और, Q हैं, और V प्लेटों के बीच [[ वोल्टेज ]] देता है, तो कैपेसिटेंस C द्वारा दिया जाता है <math display="block">C = \frac{q}{V},</math>
यदि प्लेटों पर आवेश +Q और, -Q हैं, और V प्लेटों के बीच [[ वोल्टेज |वोल्टेज]] देता है, तो कैपेसिटेंस को C द्वारा प्रदर्शित किया जाता है। <math display="block">C = \frac{q}{V},</math>
जो वोल्टेज/विद्युत वर्तमान संबंध देता है
जो वोल्टेज और विद्युत धारा में सम्बन्ध प्रदर्शित करता है  
<math display="block">i(t) = C \frac{\mathrm{d}v(t)}{\mathrm{d}t},</math>
<math display="block">i(t) = C \frac{\mathrm{d}v(t)}{\mathrm{d}t},</math>
कहाँ पे {{sfrac|d''v''(''t'')|d''t''}} वोल्टेज के परिवर्तन की तात्कालिक दर है।
कहाँ पे {{sfrac|d''v''(''t'')|d''t''}} वोल्टेज के परिवर्तन की तात्कालिक दर है।

Revision as of 11:29, 12 October 2022

सामान्य प्रतीक
C
Si   इकाईfarad
अन्य इकाइयां
μF, nF, pF
SI आधार इकाइयाँ मेंF = A2 s4 kg−1 m−2
अन्य मात्राओं से
व्युत्पत्तियां
C = charge / voltage
आयामM−1 L−2 T4 I2

कैपेसिटेंस ( इलेक्ट्रिक कंडक्टर पर विद्युत कंडक्टर पर संग्रहीत आवेश की मात्रा का अनुपात है, जो विद्युत क्षमता में अंतर है।कैपेसिटेंस की दो निकटता से संबंधित धारणाएं हैं: सेल्फ कैपेसिटेंस और म्यूचुअल कैपेसिटेंस [1]: 237–238  कोई भी वस्तु जिसे विद्युत रूप से चार्ज किया जा सकता है वह आत्म समाई प्रदर्शित करता है। इस मामले में विद्युत संभावित अंतर को वस्तु और जमीन के बीच मापा जाता है। एक बड़े आत्म समाई के साथ एक सामग्री कम कैपेसिटेंस के साथ एक से अधिक संभावित अंतर पर अधिक विद्युत आवेश रखती है। संधारित्र के संचालन को समझने के लिए पारस्परिक समाई की धारणा विशेष रूप से महत्वपूर्ण है, तीन प्राथमिक रैखिक सर्किट इलेक्ट्रॉनिक घटकों में से एक (प्रतिरोधों और प्रारंभ करनेवाला ों के साथ)। एक विशिष्ट संधारित्र में, दो कंडक्टरों का उपयोग इलेक्ट्रिक चार्ज को अलग करने के लिए किया जाता है, जिसमें एक कंडक्टर को सकारात्मक रूप से चार्ज किया जाता है और दूसरा नकारात्मक रूप से चार्ज किया जाता है, लेकिन सिस्टम में शून्य का कुल चार्ज होता है। इस मामले में अनुपात या तो कंडक्टर पर इलेक्ट्रिक चार्ज की भयावहता है और संभावित अंतर यह है कि दो कंडक्टरों के बीच मापा जाता है।

कैपेसिटेंस केवल डिजाइन की ज्यामिति (जैसे प्लेटों का क्षेत्र और उनके बीच की दूरी) और संधारित्र की प्लेटों के बीच ढांकता हुआ सामग्री की पारगम्यता का एक कार्य है। कई ढांकता हुआ सामग्रियों के लिए, पारगम्यता और इस प्रकार समाई, कंडक्टरों के बीच संभावित अंतर और उन पर कुल चार्ज से स्वतंत्र है।

कैपेसिटेंस की एसआई इकाई अंग्रेजी भौतिक विज्ञानी माइकल फैराडे के नाम पर फैराड (प्रतीक: एफ) है। 1 फैराड कैपेसिटर, जब विद्युत आवेश के 1 कूलम्ब के साथ आरोपित किया जाता है, तो इसकी प्लेटों के बीच 1 वाल्ट का संभावित अंतर होता है।[2] समाई के पारस्परिकता को इलास्टेंस कहा जाता है।

स्व समाई

विद्युत सर्किट में, समाई शब्द आमतौर पर दो आसन्न कंडक्टरों के बीच पारस्परिक समाई के लिए एक आशुलिपि है, जैसे कि एक संधारित्र की दो प्लेटें।हालांकि, एक पृथक कंडक्टर के लिए, सेल्फ कैपेसिटेंस नामक एक संपत्ति भी मौजूद है, जो कि इलेक्ट्रिक चार्ज की मात्रा है जिसे एक अलग कंडक्टर में जोड़ा जाना चाहिए ताकि इसकी विद्युत क्षमता को एक इकाई (यानी एक वोल्ट, अधिकांश माप प्रणालियों में) द्वारा बढ़ाया जा सके।[3] इस क्षमता के लिए संदर्भ बिंदु इस क्षेत्र के अंदर केंद्रित कंडक्टर के साथ अनंत त्रिज्या का एक सैद्धांतिक खोखला क्षेत्र है।

गणितीय रूप से, एक कंडक्टर की आत्म समाई द्वारा परिभाषित किया गया है

कहाँ पे

  • क्यू कंडक्टर पर आयोजित शुल्क है,
  • विद्युत क्षमता है,
  • σ सतह आवेश घनत्व है।
  • डीएस कंडक्टर की सतह पर क्षेत्र का एक असीम तत्व है,
  • r कंडक्टर पर एक निश्चित बिंदु m तक ds से लंबाई है
  • वैक्यूम पारगम्यता है

इस पद्धति का उपयोग करते हुए, त्रिज्या आर के एक संचालन क्षेत्र की आत्म समाई है:[4]

आत्म समाई के उदाहरण मूल्य हैं:

  • एक ग्राफ जनरेटर से की शीर्ष प्लेट के लिए, आमतौर पर एक गोला 20 & nbsp; त्रिज्या में सेमी: 22.24 पीएफ,
  • ग्रह पृथ्वी: लगभग 710 µf।[5]

एक विद्युत चुम्बकीय कुंडल की अंतर-घुमावदार समाई को कभी-कभी आत्म समाई कहा जाता है,[6] लेकिन यह एक अलग घटना है।यह वास्तव में कॉइल के व्यक्तिगत मोड़ के बीच पारस्परिक समाई है और आवारा, या परजीवी समाई का एक रूप है।यह आत्म -समाई उच्च आवृत्तियों पर एक महत्वपूर्ण विचार है: यह कॉइल के विद्युत प्रतिबाधा को बदलता है और समानांतर विद्युत अनुनाद को जन्म देता है।कई अनुप्रयोगों में यह एक अवांछनीय प्रभाव है और सर्किट के सही संचालन के लिए एक ऊपरी आवृत्ति सीमा निर्धारित करता है।[citation needed]


म्यूचुअल कैपेसिटेंस

ये ,सामान्य रूप एक समानांतर-प्लेट संधारित्र है, जिसमें दो प्रवाहकीय प्लेटें होती हैं,और ये दोनों प्लेट एक दूसरे के ऊपर रखीं होती हैं,आमतौर पर प्लेट एक दूसरे के ऊपर ऐसे रखीं होती है जैसे डाइइलेक्ट्रिक material उन दोनों प्लेट के बीच में रखा हो। एक समानांतर प्लेट संधारित्र में,कैपेसिटेंस कंडक्टर प्लेटों के सतह क्षेत्र के समानुपाती और और दो प्लेट के बीच की दूरी के व्युत्क्रमानुपाती होता है।

यदि प्लेटों पर आवेश +Q और, -Q हैं, और V प्लेटों के बीच वोल्टेज देता है, तो कैपेसिटेंस को C द्वारा प्रदर्शित किया जाता है।

जो वोल्टेज और विद्युत धारा में सम्बन्ध प्रदर्शित करता है
कहाँ पे dv(t)/dt वोल्टेज के परिवर्तन की तात्कालिक दर है।

एक संधारित्र में संग्रहीत ऊर्जा अभिन्न द्वारा काम किया जाता है:


कैपेसिटेंस मैट्रिक्स

उपरोक्त चर्चा दो संचालन प्लेटों के मामले तक सीमित है, हालांकि मनमानी आकार और आकार की है।मानहानि जब दो से अधिक चार्ज किए गए प्लेटें होती हैं, या जब दो प्लेटों पर नेट चार्ज गैर-शून्य होता है, तो लागू नहीं होता है।इस मामले को संभालने के लिए, मैक्सवेल ने क्षमता के अपने गुणांक पेश किए।यदि तीन (लगभग आदर्श) कंडक्टरों को शुल्क दिया जाता है , फिर कंडक्टर 1 पर वोल्टेज द्वारा दिया गया है

और इसी तरह अन्य वोल्टेज के हरमन वॉन हेल्महोल्त्ज़ और सर विलियम थॉमसन ने दिखाया कि क्षमता के गुणांक सममित हैं, ताकि
इससे, आपसी समाई दो वस्तुओं के बीच परिभाषित किया जा सकता है[7] कुल चार्ज क्यू के लिए हल करके और उपयोग करके .

चूंकि कोई भी वास्तविक उपकरण दो प्लेटों में से प्रत्येक पर पूरी तरह से समान और विपरीत शुल्क नहीं रखता है, यह आपसी समाई है जो कैपेसिटर पर रिपोर्ट की जाती है।

गुणांक का संग्रह कैपेसिटेंस मैट्रिक्स के रूप में जाना जाता है,[8][9][10] और इलास्टेंस मैट्रिक्स का मैट्रिक्स उलटा है।

कैपेसिटर

इलेक्ट्रॉनिक सर्किट में उपयोग किए जाने वाले कैपेसिटर के बहुमत की समाई आम तौर पर फैराड की तुलना में छोटे परिमाण के कई आदेश हैं।आज उपयोग में समाई के सबसे आम सबयूनिट्स सूक्ष्म फ़ारड (µf), नैनो -फ़ारड (एनएफ), पिको- फराड (पीएफ), और, माइक्रोकिर्किट्स, स्त्री फारड (एफएफ) में हैं।हालांकि, विशेष रूप से बनाए गए सुपरकैपेसिटर बहुत बड़े हो सकते हैं (जितना सैकड़ों फैराड्स), और परजीवी कैपेसिटिव तत्व एक फेमटोफाराद से कम हो सकते हैं।अतीत में, पुराने ऐतिहासिक ग्रंथों में वैकल्पिक सबयूनिट्स का उपयोग किया गया था;माइक्रोफारड () एफ) के लिए एमएफ और एमएफडी;MMF, MMFD, PFD, Picf Picofarad (PF) के लिए;लेकिन अब अप्रचलित माना जाता है।[11][12] कैपेसिटेंस की गणना की जा सकती है यदि कंडक्टरों की ज्यामिति और कंडक्टरों के बीच इन्सुलेटर के ढांकता हुआ गुणों को जाना जाता है। इसके लिए एक गुणात्मक स्पष्टीकरण निम्नानुसार दिया जा सकता है।
एक बार एक सकारात्मक आरोप एक कंडक्टर के लिए डाल दिया जाता है, यह चार्ज एक विद्युत क्षेत्र बनाता है, कंडक्टर पर स्थानांतरित किए जाने वाले किसी भी अन्य सकारात्मक चार्ज को दोहराता है; यानी, आवश्यक वोल्टेज बढ़ाना। लेकिन अगर पास में एक अन्य कंडक्टर है, तो उस पर एक नकारात्मक चार्ज होता है, दूसरे सकारात्मक चार्ज को दोहराने वाले सकारात्मक कंडक्टर के विद्युत क्षेत्र को कमजोर किया जाता है (दूसरा सकारात्मक चार्ज भी नकारात्मक चार्ज के आकर्षण बल को महसूस करता है)। इसलिए एक नकारात्मक चार्ज के साथ दूसरे कंडक्टर के कारण, पहले से ही सकारात्मक चार्ज किए गए पहले कंडक्टर पर सकारात्मक चार्ज करना आसान हो जाता है, और इसके विपरीत; यानी, आवश्यक वोल्टेज को कम किया जाता है।
एक मात्रात्मक उदाहरण के रूप में दो समानांतर प्लेटों से निर्मित एक संधारित्र की समाई पर विचार करें, जो कि एक दूरी d द्वारा अलग किए गए क्षेत्र के दोनों हैं। यदि d पर्याप्त रूप से एक के सबसे छोटे कॉर्ड के संबंध में छोटा है, तो सटीकता के उच्च स्तर के लिए, वहाँ है:

ध्यान दें कि

कहाँ पे

  • सी समाई है, फैराड्स में;
  • ए दो प्लेटों के ओवरलैप का क्षेत्र है, वर्ग मीटर में;
  • ε0 वैक्यूम पारगम्यता है (ε08.854×10−12 F⋅m−1);
  • r प्लेटों के बीच सामग्री के सापेक्ष पारगम्यता (ढांकता हुआ स्थिर) हैr = 1 हवा के लिए);तथा
  • डी प्लेटों के बीच अलगाव है, मीटर में;

कैपेसिटेंस ओवरलैप के क्षेत्र के लिए आनुपातिक है और चादरों के संचालन के बीच अलगाव के विपरीत आनुपातिक है।चादरें एक दूसरे के करीब होती हैं, समाई जितनी अधिक होती है। समीकरण एक अच्छा सन्निकटन है यदि डी प्लेटों के अन्य आयामों की तुलना में छोटा है, ताकि संधारित्र क्षेत्र में विद्युत क्षेत्र समान हो, और परिधि के चारों ओर तथाकथित फ्रिंजिंग क्षेत्र समाई में केवल एक छोटा योगदान प्रदान करता है।

समाई में संग्रहीत ऊर्जा के लिए उपरोक्त समीकरण के साथ समाई के लिए समीकरण का संयोजन, एक फ्लैट-प्लेट संधारित्र के लिए संग्रहीत ऊर्जा है:

जहां डब्ल्यू ऊर्जा है, जूल्स में;सी समाई है, फैराड्स में;और V वोल्टेज में वोल्टेज है।

आवारा समाई

कोई भी दो आसन्न कंडक्टर एक संधारित्र के रूप में कार्य कर सकते हैं, हालांकि कैपेसिटेंस तब तक छोटा होता है जब तक कि कंडक्टर लंबी दूरी के लिए या एक बड़े क्षेत्र में एक साथ करीब न हों। यह (अक्सर अवांछित) समाई को परजीवी या आवारा समाई कहा जाता है। आवारा कैपेसिटेंस संकेतों को अन्यथा पृथक सर्किट (क्रॉसस्टॉक (इलेक्ट्रॉनिक्स) नामक एक प्रभाव) के बीच लीक करने की अनुमति दे सकता है, और यह उच्च आवृत्ति पर सर्किट के उचित कामकाज के लिए एक सीमित कारक हो सकता है।

एम्पलीफायर सर्किट में इनपुट और आउटपुट के बीच आवारा समाई परेशानी भरा हो सकता है क्योंकि यह फीडबैक#इलेक्ट्रॉनिक इंजीनियरिंग के लिए एक पथ बना सकता है, जिससे एम्पलीफायर में अस्थिरता और परजीवी दोलन हो सकता है। यह अक्सर विश्लेषणात्मक उद्देश्यों के लिए एक इनपुट-टू-ग्राउंड कैपेसिटेंस और एक आउटपुट-टू-ग्राउंड कैपेसिटेंस के संयोजन के साथ इस समाई को बदलने के लिए सुविधाजनक होता है; मूल कॉन्फ़िगरेशन-इनपुट-टू-आउटपुट कैपेसिटेंस सहित-को अक्सर पीआई-कॉन्फ़िगरेशन के रूप में संदर्भित किया जाता है। इस प्रतिस्थापन को प्रभावित करने के लिए मिलर के प्रमेय का उपयोग किया जा सकता है: यह बताता है कि, यदि दो नोड्स का लाभ अनुपात 1/k है, तो Z को दो नोड्स को जोड़ने के एक विद्युत प्रतिबाधा को z/(1 & nbsp; & nbsp; k के साथ बदला जा सकता है; ) पहले नोड और जमीन और एक kz/(k & nbsp; - & nbsp; 1) के बीच प्रतिबाधा दूसरे नोड और जमीन के बीच प्रतिबाधा। चूंकि प्रतिबाधा समाई के साथ विपरीत रूप से भिन्न होती है, इंटर्नोड कैपेसिटेंस, सी, को केसी की एक कैपेसिटेंस द्वारा इनपुट से जमीन तक और (k & nbsp; - & nbsp; 1) C/K से आउटपुट से जमीन तक। जब इनपुट-टू-आउटपुट लाभ बहुत बड़ा होता है, तो समतुल्य इनपुट-टू-ग्राउंड प्रतिबाधा बहुत कम होता है जबकि आउटपुट-टू-ग्राउंड प्रतिबाधा अनिवार्य रूप से मूल (इनपुट-टू-आउटपुट) प्रतिबाधा के बराबर होता है।

साधारण आकृतियों के साथ कंडक्टरों की समाई

Laplace समीकरण को हल करने के लिए एक सिस्टम राशि की समाई की गणना2 φ & nbsp; = & nbsp; 0 3-स्पेस में एम्बेडेड कंडक्टरों की 2-आयामी सतह पर एक निरंतर क्षमता के साथ।यह समरूपता द्वारा सरल है।अधिक जटिल मामलों में प्राथमिक कार्यों के संदर्भ में कोई समाधान नहीं है।

विमान स्थितियों के लिए, विश्लेषणात्मक कार्यों का उपयोग एक दूसरे को विभिन्न ज्यामिति को मैप करने के लिए किया जा सकता है।श्वार्ज़ -क्रिस्टोफेल मैपिंग भी देखें।

Capacitance of simple systems
Type Capacitance Comment
Parallel-plate capacitor Plate CapacitorII.svg

ε: Permittivity

Concentric cylinders File:Cylindrical CapacitorII.svg

ε: Permittivity

Eccentric cylinders[13] File:Eccentric capacitor.svg

ε: Permittivity
R1: Outer radius
R2: Inner radius
d: Distance between center
: Wire length

Pair of parallel wires[14] File:Parallel Wire Capacitance.svg
Wire parallel to wall[14] a: Wire radius
d: Distance, d > a
: Wire length
Two parallel
coplanar strips[15]
d: Distance
w1, w2: Strip width
km: d/(2wm+d)

k2: k1k2
K: Complete elliptic integral of the first kind
: Length

Concentric spheres File:Spherical Capacitor.svg

ε: Permittivity

Two spheres,
equal radius[16][17]
a: Radius
d: Distance, d > 2a
D = d/2a, D > 1
γ: Euler's constant
Sphere in front of wall[16] : Radius
: Distance,
Sphere : Radius
Circular disc[18] : Radius
Thin straight wire,
finite length[19][20][21]
: Wire radius
: Length


ऊर्जा भंडारण

संधारित्र में संग्रहीत ऊर्जा (जूल में मापी गई) संधारित्र में आरोपों को धकेलने के लिए आवश्यक कार्य के बराबर है, अर्थात इसे चार्ज करने के लिए।कैपेसिटेंस सी के एक संधारित्र पर विचार करें, एक प्लेट पर एक चार्ज +क्यू और दूसरे पर the क्यू आयोजित करें।संभावित अंतर के खिलाफ एक प्लेट से दूसरी प्लेट में चार्ज DQ का एक छोटा तत्व ले जाना V = q/C काम की आवश्यकता है DW:

जहां डब्ल्यू जूल में मापा गया काम है, क्यू कूलोम्ब्स में मापा गया चार्ज है और सी कैपेसिटेंस है, जो कि फैराड्स में मापा जाता है।

एक संधारित्र में संग्रहीत ऊर्जा इस समीकरण के अभिन्न अंग द्वारा पाई जाती है।एक अपरिवर्तित समाई के साथ शुरू (q = 0) और एक प्लेट से दूसरी प्लेट तक चलती चार्ज जब तक प्लेटों में चार्ज +क्यू न हो और way क्यू को काम की आवश्यकता होती है:


नैनोस्केल सिस्टम

क्वांटम डॉट्स जैसे नैनोस्केल ढांकता हुआ कैपेसिटर की समाई बड़े कैपेसिटर के पारंपरिक योगों से भिन्न हो सकती है।विशेष रूप से, पारंपरिक कैपेसिटर में इलेक्ट्रॉनों द्वारा अनुभव किए गए इलेक्ट्रोस्टैटिक संभावित अंतर को पारंपरिक कैपेसिटर में मौजूद इलेक्ट्रॉनों की सांख्यिकीय रूप से बड़ी संख्या के अलावा धातु इलेक्ट्रोड के आकार और आकार द्वारा स्थानिक रूप से अच्छी तरह से परिभाषित और तय किया जाता है।नैनोस्केल कैपेसिटर में, हालांकि, इलेक्ट्रॉनों द्वारा अनुभव की जाने वाली इलेक्ट्रोस्टैटिक क्षमता सभी इलेक्ट्रॉनों की संख्या और स्थानों द्वारा निर्धारित की जाती है जो डिवाइस के इलेक्ट्रॉनिक गुणों में योगदान करते हैं।ऐसे उपकरणों में, इलेक्ट्रॉनों की संख्या बहुत कम हो सकती है, इसलिए डिवाइस के भीतर सुसंगत सतहों का परिणामी स्थानिक वितरण अत्यधिक जटिल है।

सिंगल-इलेक्ट्रॉन डिवाइस

एक जुड़े, या बंद, एकल-इलेक्ट्रॉन डिवाइस की समाई एक असंबद्ध, या खुले, एकल-इलेक्ट्रॉन डिवाइस की समाई से दोगुनी है।[22] इस तथ्य को एकल-इलेक्ट्रॉन डिवाइस में संग्रहीत ऊर्जा के लिए अधिक मौलिक रूप से पता लगाया जा सकता है, जिनके प्रत्यक्ष ध्रुवीकरण इंटरैक्शन ऊर्जा को इलेक्ट्रॉन की उपस्थिति और राशि की उपस्थिति के कारण डिवाइस पर ध्रुवीकृत आवेश के साथ इलेक्ट्रॉन की बातचीत में समान रूप से विभाजित किया जा सकता है।डिवाइस पर ध्रुवीकृत चार्ज बनाने के लिए आवश्यक संभावित ऊर्जा (इलेक्ट्रॉन के कारण क्षमता के साथ डिवाइस की ढांकता हुआ सामग्री में शुल्क की बातचीत)।[23]


कुछ-इलेक्ट्रॉन डिवाइस

कुछ-इलेक्ट्रॉन डिवाइस के एक क्वांटम कैपेसिटेंस की व्युत्पत्ति में एन-कण प्रणाली की थर्मोडायनामिक रासायनिक क्षमता शामिल है

जिनकी ऊर्जा शर्तों को श्रोडिंगर समीकरण के समाधान के रूप में प्राप्त किया जा सकता है।समाई की परिभाषा,
संभावित अंतर के साथ
अलग -अलग इलेक्ट्रॉनों के अतिरिक्त या हटाने के साथ डिवाइस पर लागू किया जा सकता है,
तथा
फिर
डिवाइस की क्वांटम कैपेसिटेंस है।[24] क्वांटम कैपेसिटेंस की यह अभिव्यक्ति के रूप में लिखा जा सकता है
जो परिचय में वर्णित पारंपरिक अभिव्यक्ति से भिन्न होता है , संग्रहीत इलेक्ट्रोस्टैटिक संभावित ऊर्जा,
1/2 के एक कारक द्वारा

हालांकि, विशुद्ध रूप से शास्त्रीय इलेक्ट्रोस्टैटिक इंटरैक्शन के ढांचे के भीतर, 1/2 के कारक की उपस्थिति पारंपरिक सूत्रीकरण में एकीकरण का परिणाम है,

जो उचित है कई इलेक्ट्रॉनों या धातु इलेक्ट्रोड को शामिल करने वाली प्रणालियों के लिए, लेकिन कुछ-इलेक्ट्रॉन सिस्टम में, ।अभिन्न आम तौर पर एक योग बन जाता है।कोई भी कैपेसिटेंस और इलेक्ट्रोस्टैटिक इंटरैक्शन एनर्जी के भावों को संयोजित कर सकता है,
तथा
क्रमशः, प्राप्त करने के लिए,
जो क्वांटम कैपेसिटेंस के समान है।साहित्य में एक अधिक कठोर व्युत्पत्ति बताई गई है।[25] विशेष रूप से, डिवाइस के भीतर स्थानिक रूप से जटिल सुसंगत सतहों की गणितीय चुनौतियों को दरकिनार करने के लिए, प्रत्येक इलेक्ट्रॉन द्वारा अनुभव की जाने वाली एक औसत इलेक्ट्रोस्टैटिक क्षमता को व्युत्पत्ति में उपयोग किया जाता है।

स्पष्ट गणितीय अंतर को संभावित ऊर्जा के रूप में अधिक मौलिक रूप से समझा जाता है, , एक पृथक डिवाइस (सेल्फ-कैपेसिटेंस) दो बार है जो कम सीमा n = 1 में एक जुड़े डिवाइस में संग्रहीत है।जैसे -जैसे n बढ़ता है, .[23]इस प्रकार, समाई की सामान्य अभिव्यक्ति है

क्वांटम डॉट्स जैसे नैनोस्केल उपकरणों में, कैपेसिटर अक्सर डिवाइस के भीतर एक पृथक, या आंशिक रूप से पृथक, घटक होता है।नैनोस्केल कैपेसिटर और मैक्रोस्कोपिक (पारंपरिक) कैपेसिटर के बीच प्राथमिक अंतर अतिरिक्त इलेक्ट्रॉनों (चार्ज वाहक, या इलेक्ट्रॉनों, जो डिवाइस के इलेक्ट्रॉनिक व्यवहार में योगदान करते हैं) और धातु इलेक्ट्रोड के आकार और आकार की संख्या हैं।नैनोस्केल उपकरणों में, धातु परमाणुओं से युक्त नैनोवायर आमतौर पर उनके मैक्रोस्कोपिक, या थोक सामग्री, समकक्षों के समान प्रवाहकीय गुणों का प्रदर्शन नहीं करते हैं।

इलेक्ट्रॉनिक और अर्धचालक उपकरणों में समाई

इलेक्ट्रॉनिक और अर्धचालक उपकरणों में, टर्मिनलों के बीच क्षणिक या आवृत्ति-निर्भर वर्तमान में चालन और विस्थापन दोनों घटक होते हैं।चालन करंट चलती चार्ज वाहक (इलेक्ट्रॉनों, छेद, आयनों, आदि) से संबंधित है, जबकि विस्थापन वर्तमान समय-भिन्न विद्युत क्षेत्र के कारण होता है।वाहक परिवहन विद्युत क्षेत्रों से और कई भौतिक घटनाओं से प्रभावित होता है-जैसे कि वाहक बहाव और प्रसार, ट्रैपिंग, इंजेक्शन, संपर्क-संबंधित प्रभाव, प्रभाव आयनीकरण, आदि। परिणामस्वरूप, डिवाइस प्रवेश आवृत्ति-निर्भर है, और एक सरल है, और एक सरल हैसमाई के लिए इलेक्ट्रोस्टैटिक सूत्र उपयुक्त नहीं है।समाई की एक अधिक सामान्य परिभाषा, इलेक्ट्रोस्टैटिक फॉर्मूला को शामिल करना, है:[26]

कहाँ पे डिवाइस एडमिटेंस है, और कोणीय आवृत्ति है।

सामान्य तौर पर, कैपेसिटेंस आवृत्ति का एक कार्य है।उच्च आवृत्तियों पर, कैपेसिटेंस एक निरंतर मूल्य तक पहुंचता है, ज्यामितीय समाई के बराबर, डिवाइस में टर्मिनलों की ज्यामिति और ढांकता हुआ सामग्री द्वारा निर्धारित किया जाता है। स्टीवन लक्स द्वारा एक पेपर[26]कैपेसिटेंस गणना के लिए संख्यात्मक तकनीकों की समीक्षा प्रस्तुत करता है।विशेष रूप से, कैपेसिटेंस की गणना एक कदम-जैसे वोल्टेज उत्तेजना के जवाब में एक क्षणिक वर्तमान के एक फूरियर रूपांतरण द्वारा की जा सकती है:


अर्धचालक उपकरणों में नकारात्मक समाई

आमतौर पर, अर्धचालक उपकरणों में समाई सकारात्मक है।हालांकि, कुछ उपकरणों में और कुछ शर्तों (तापमान, लागू वोल्टेज, आवृत्ति, आदि) के तहत, कैपेसिटेंस नकारात्मक हो सकता है।एक कदम जैसी उत्तेजना के जवाब में क्षणिक वर्तमान के गैर-मोनोटोनिक व्यवहार को नकारात्मक समाई के तंत्र के रूप में प्रस्तावित किया गया है।[27] कई अलग -अलग प्रकार के अर्धचालक उपकरणों में नकारात्मक समाई का प्रदर्शन और पता लगाया गया है।[28]


कैपेसिटेंस को मापने

एक कैपेसिटेंस मीटर इलेक्ट्रॉनिक परीक्षण उपकरणों का एक टुकड़ा है जिसका उपयोग कैपेसिटेंस को मापने के लिए किया जाता है, मुख्य रूप से असतत कैपेसिटर का।अधिकांश उद्देश्यों के लिए और ज्यादातर मामलों में संधारित्र को विद्युत सर्किट से डिस्कनेक्ट किया जाना चाहिए।

कई डीवीएम (वाल्टमीटर ) में एक कैपेसिटेंस-मापने वाला फ़ंक्शन होता है।ये आमतौर पर एक ज्ञात विद्युत प्रवाह के साथ परीक्षण के तहत डिवाइस को चार्ज और डिस्चार्ज करके और परिणामस्वरूप वोल्टेज के उदय की दर को मापते हैं;वृद्धि की दर को धीमा, कैपेसिटेंस जितना बड़ा होगा।डीवीएम आमतौर पर फैराड से कुछ सौ माइक्रोफारड्स तक समाई को माप सकते हैं, लेकिन व्यापक सीमाएं असामान्य नहीं हैं।परीक्षण के तहत डिवाइस के माध्यम से एक ज्ञात उच्च-आवृत्ति वैकल्पिक वर्तमान को पारित करके और इसके पार परिणामी वोल्टेज को मापने के लिए समाई को मापना भी संभव है (ध्रुवीकृत कैपेसिटर के लिए काम नहीं करता है)।

File:AH2700 cap br.jpg
एक andeen-hagerling 2700A कैपेसिटेंस ब्रिज

अधिक परिष्कृत उपकरण अन्य तकनीकों का उपयोग करते हैं जैसे कि कैपेसिटर-अंडर-टेस्ट को पुल परिपथ में सम्मिलित करना।पुल में अन्य पैरों के मूल्यों को अलग करके (ताकि पुल को संतुलन में लाया जा सके), अज्ञात संधारित्र का मूल्य निर्धारित किया जाता है।कैपेसिटेंस को मापने के अप्रत्यक्ष उपयोग की यह विधि अधिक सटीकता सुनिश्चित करती चार टर्मिनल सेंसिंग और अन्य सावधान डिजाइन तकनीकों के उपयोग के माध्यम से, ये उपकरण आमतौर पर पिकोफारड्स से लेकर फैराड तक की सीमा से अधिक कैपेसिटर को माप सकते हैं।

यह भी देखें

संदर्भ

  1. Harrington, Roger F. (2003). Introduction to Electromagnetic Engineering (1st ed.). Dover Publications. p. 43. ISBN 0-486-43241-6.
  2. "Definition of 'farad'". Collins.
  3. William D. Greason (1992). Electrostatic discharge in electronics. Research Studies Press. p. 48. ISBN 978-0-86380-136-5.
  4. Lecture notes; University of New South Wales
  5. Tipler, Paul; Mosca, Gene (2004). Physics for Scientists and Engineers (5th ed.). Macmillan. p. 752. ISBN 978-0-7167-0810-0.
  6. Massarini, A.; Kazimierczuk, M.K. (1997). "Self capacitance of inductors". IEEE Transactions on Power Electronics. 12 (4): 671–676. Bibcode:1997ITPE...12..671M. CiteSeerX 10.1.1.205.7356. doi:10.1109/63.602562: example of the use of the term 'self capacitance'.{{cite journal}}: CS1 maint: postscript (link)
  7. Jackson, John David (1999). Classical Electrodynamic (3rd ed.). John Wiley & Sons. p. 43. ISBN 978-0-471-30932-1.
  8. Maxwell, James (1873). "3". A treatise on electricity and magnetism. Vol. 1. Clarendon Press. p. 88ff.
  9. "Capacitance : Charge as a Function of Voltage". Av8n.com. Retrieved 20 September 2010.
  10. Smolić, Ivica; Klajn, Bruno (2021). "Capacitance matrix revisited". Progress in Electromagnetics Research B. 92: 1–18. arXiv:2007.10251. doi:10.2528/PIERB21011501. Retrieved 4 May 2021.
  11. "Capacitor MF-MMFD Conversion Chart". Just Radios.
  12. Fundamentals of Electronics. Vol. 1b — Basic Electricity — Alternating Current. Bureau of Naval Personnel. 1965. p. 197.
  13. Dawes, Chester L. (1973). "Capacitance and Potential Gradients of Eccentric Cylindrical Condensers". Physics. 4 (2): 81–85. doi:10.1063/1.1745162.
  14. 14.0 14.1 Jackson, J. D. (1975). Classical Electrodynamics. Wiley. p. 80.
  15. Binns; Lawrenson (1973). Analysis and computation of electric and magnetic field problems. Pergamon Press. ISBN 978-0-08-016638-4.
  16. 16.0 16.1 Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism. Dover. p. 266ff. ISBN 978-0-486-60637-8.
  17. Rawlins, A. D. (1985). "Note on the Capacitance of Two Closely Separated Spheres". IMA Journal of Applied Mathematics. 34 (1): 119–120. doi:10.1093/imamat/34.1.119.
  18. Jackson, J. D. (1975). Classical Electrodynamics. Wiley. p. 128, problem 3.3.{{cite book}}: CS1 maint: postscript (link)
  19. Maxwell, J. C. (1878). "On the electrical capacity of a long narrow cylinder and of a disk of sensible thickness". Proc. London Math. Soc. IX: 94–101. doi:10.1112/plms/s1-9.1.94.
  20. Vainshtein, L. A. (1962). "Static boundary problems for a hollow cylinder of finite length. III Approximate formulas". Zh. Tekh. Fiz. 32: 1165–1173.
  21. Jackson, J. D. (2000). "Charge density on thin straight wire, revisited". Am. J. Phys. 68 (9): 789–799. Bibcode:2000AmJPh..68..789J. doi:10.1119/1.1302908.
  22. Raphael Tsu (2011). Superlattice to Nanoelectronics. Elsevier. pp. 312–315. ISBN 978-0-08-096813-1.
  23. 23.0 23.1 T. LaFave Jr. (2011). "Discrete charge dielectric model of electrostatic energy". J. Electrostatics. 69 (6): 414–418. arXiv:1203.3798. doi:10.1016/j.elstat.2011.06.006. S2CID 94822190.
  24. G. J. Iafrate; K. Hess; J. B. Krieger; M. Macucci (1995). "Capacitive nature of atomic-sized structures". Phys. Rev. B. 52 (15): 10737–10739. Bibcode:1995PhRvB..5210737I. doi:10.1103/physrevb.52.10737. PMID 9980157.
  25. T. LaFave Jr; R. Tsu (March–April 2008). "Capacitance: A property of nanoscale materials based on spatial symmetry of discrete electrons" (PDF). Microelectronics Journal. 39 (3–4): 617–623. doi:10.1016/j.mejo.2007.07.105. Archived from the original (PDF) on 22 February 2014. Retrieved 12 February 2014.
  26. 26.0 26.1 Laux, S.E. (October 1985). "Techniques for small-signal analysis of semiconductor devices". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 4 (4): 472–481. doi:10.1109/TCAD.1985.1270145. S2CID 13058472.
  27. Jonscher, A.K. (1986). "The physical origin of negative capacitance". J. Chem. Soc. Faraday Trans. II. 82: 75–81. doi:10.1039/F29868200075.
  28. Ershov, M.; Liu, H.C.; Li, L.; Buchanan, M.; Wasilewski, Z.R.; Jonscher, A.K. (October 1998). "Negative capacitance effect in semiconductor devices". IEEE Trans. Electron Devices. 45 (10): 2196–2206. arXiv:cond-mat/9806145. Bibcode:1998ITED...45.2196E. doi:10.1109/16.725254. S2CID 204925581.


इस पृष्ठ में गुम आंतरिक लिंक की सूची

  • विद्युतीय संभाव्यता
  • अंगुली की छाप
  • रैखिक परिपथ
  • तथा
  • अवरोध
  • परावैद्युतांक
  • धरती
  • विद्युत चुम्बकीय कॉइल
  • विद्युत प्रतिध्वनि
  • विद्युत प्रवाह
  • क्षमता के गुणांक
  • लाप्लास समीकरण
  • जौल
  • प्रत्यावर्ती धारा
  • इलेक्ट्रॉनिक परीक्षण उपस्कर
  • परीक्षण के अंतर्गत उपकरण
  • उच्च आवृत्ति
  • एलसीआर मीटर

अग्रिम पठन

  • Tipler, Paul (1998). Physics for Scientists and Engineers: Vol. 2: Electricity and Magnetism, Light (4th ed.). W. H. Freeman. ISBN 1-57259-492-6
  • Serway, Raymond; Jewett, John (2003). Physics for Scientists and Engineers (6th ed.). Brooks Cole. ISBN 0-534-40842-7
  • Saslow, Wayne M.(2002). Electricity, Magnetism, and Light. Thomson Learning. ISBN 0-12-619455-6. See Chapter 8, and especially pp. 255–259 for coefficients of potential.

]