मॉड्यूलर रूप: Difference between revisions
| Line 21: | Line 21: | ||
=== एक [[लाइन बंडल]] के अनुभागों के रूप में === | === एक [[लाइन बंडल]] के अनुभागों के रूप में === | ||
मॉड्यूलर रूपों को [[मॉड्यूलर वक्र]] पर एक विशिष्ट लाइन बंडल के अनुभागों के रूप में भी व्याख्या किया जा सकता है। | मॉड्यूलर रूपों को [[मॉड्यूलर वक्र]] पर एक विशिष्ट लाइन बंडल के अनुभागों के रूप में भी व्याख्या किया जा सकता है। <math>\Gamma \subset \text{SL}_2(\mathbb{Z})</math> के लिए स्तर का एक मॉड्यूलर रूप <math>\Gamma</math> और भार <math>k</math> के तत्व के रूप में परिभाषित किया जा सकता है<math>f \in H^0(X_\Gamma,\omega^{\otimes k}) = M_k(\Gamma)</math> | ||
== एसएल (2, जेड) | जहाँ <math>\omega</math> मॉड्यूलर वक्र पर एक विहित लाइन बंडल है<math>X_\Gamma = \Gamma \backslash (\mathcal{H} \cup \mathbb{P}^1(\mathbb{Q}))</math> मॉड्यूलर रूपों के इन स्थानों के आयामों की गणना रीमैन-रोच प्रमेय का उपयोग करके की जा सकती है।<ref>{{Cite web|last=Milne|title=मॉड्यूलर फ़ंक्शंस और मॉड्यूलर फॉर्म|url=https://www.jmilne.org/math/CourseNotes/mf.html|page=51}}</ref> पारंपरिक मॉड्यूलर रूपों के लिए <math>\Gamma = \text{SL}_2(\mathbb{Z})</math> अण्डाकार वक्रों के मोडुली स्टैक पर लाइन बंडल का खंड हैं। | ||
== एसएल (2, जेड) के लिए मॉड्यूलर रूप == | |||
=== मानक परिभाषा === | === मानक परिभाषा === | ||
भार का एक मॉड्यूलर रूप {{mvar|k}} मॉड्यूलर समूह के लिए | |||
:<math>\text{SL}(2, \mathbf Z) = \left \{ \left. \begin{pmatrix}a & b \\ c & d \end{pmatrix} \right| a, b, c, d \in \mathbf Z,\ ad-bc = 1 \right \}</math> | :<math>\text{SL}(2, \mathbf Z) = \left \{ \left. \begin{pmatrix}a & b \\ c & d \end{pmatrix} \right| a, b, c, d \in \mathbf Z,\ ad-bc = 1 \right \}</math> | ||
एक जटिल संख्या है | जटिल-मूल्यवान फलन {{math| ''f'' }} ऊपरी आधे तल पर {{math|'''H''' {{=}} {''z'' ∈ '''C''', [[imaginary part|Im]](''z'') > 0},}} निम्नलिखित तीन शर्तों को पूरा करना: | एक जटिल संख्या है | जटिल-मूल्यवान फलन {{math| ''f'' }} ऊपरी आधे तल पर {{math|'''H''' {{=}} {''z'' ∈ '''C''', [[imaginary part|Im]](''z'') > 0},}} निम्नलिखित तीन शर्तों को पूरा करना: | ||
| Line 60: | Line 62: | ||
:<math>G_k(\Lambda) = \sum_{0 \neq\lambda\in\Lambda}\lambda^{-k}.</math> | :<math>G_k(\Lambda) = \sum_{0 \neq\lambda\in\Lambda}\lambda^{-k}.</math> | ||
तब {{mvar|G<sub>k</sub>}} | तब {{mvar|G<sub>k</sub>}} भार का एक मॉड्यूलर रूप है {{mvar|k}}. के लिए {{math|Λ {{=}} '''Z''' + '''Z'''''τ''}} अपने पास | ||
:<math>G_k(\Lambda) = G_k(\tau) = \sum_{ (0,0) \neq (m,n)\in\mathbf{Z}^2} \frac{1}{(m + n \tau)^k},</math> | :<math>G_k(\Lambda) = G_k(\tau) = \sum_{ (0,0) \neq (m,n)\in\mathbf{Z}^2} \frac{1}{(m + n \tau)^k},</math> | ||
| Line 76: | Line 78: | ||
:<math>\vartheta_L(z) = \sum_{\lambda\in L}e^{\pi i \Vert\lambda\Vert^2 z} </math> | :<math>\vartheta_L(z) = \sum_{\lambda\in L}e^{\pi i \Vert\lambda\Vert^2 z} </math> | ||
अभिसरित होता है जब Im(z) > 0, और प्वासों योग सूत्र के परिणामस्वरूप | अभिसरित होता है जब Im(z) > 0, और प्वासों योग सूत्र के परिणामस्वरूप भार का एक मॉड्यूलर रूप दिखाया जा सकता है {{math|''n''/2}}. एक-मॉड्यूलर जाली का निर्माण करना इतना आसान नहीं है, परंतु यहाँ एक तरीका है: चलो {{mvar|n}} 8 से विभाज्य एक पूर्णांक बनें और सभी सदिशों पर विचार करें {{mvar|v}} में {{math|'''R'''<sup>''n''</sup>}} ऐसा है कि {{math|2''v''}} में पूर्णांक निर्देशांक होते हैं, या तो सभी सम या सभी विषम, और इस तरह के निर्देशांकों का योग {{mvar|v}} एक सम पूर्णांक है। हम इस जाली को कहते हैं {{mvar|L<sub>n</sub>}}. कब {{math|''n'' {{=}} 8}}, यह जड़ प्रणाली में जड़ों द्वारा उत्पन्न जाली है जिसे E8 (गणित) कहा जाता है|E<sub>8</sub>. क्योंकि स्केलर गुणन तक भार 8 का केवल एक मॉड्यूलर रूप है, | ||
:<math>\vartheta_{L_8\times L_8}(z) = \vartheta_{L_{16}}(z),</math> | :<math>\vartheta_{L_8\times L_8}(z) = \vartheta_{L_{16}}(z),</math> | ||
| Line 87: | Line 89: | ||
:<math>\eta(z) = q^{1/24}\prod_{n=1}^\infty (1-q^n), \qquad q = e^{2\pi i z}.</math> | :<math>\eta(z) = q^{1/24}\prod_{n=1}^\infty (1-q^n), \qquad q = e^{2\pi i z}.</math> | ||
जहां क्यू [[नोम (गणित)]] का वर्ग है। फिर मॉड्यूलर भेदभाव {{math|Δ(''z'') {{=}} (2π)<sup>12</sup> ''η''(''z'')<sup>24</sup>}} | जहां क्यू [[नोम (गणित)]] का वर्ग है। फिर मॉड्यूलर भेदभाव {{math|Δ(''z'') {{=}} (2π)<sup>12</sup> ''η''(''z'')<sup>24</sup>}} भार 12 का एक मॉड्यूलर रूप है। 24 की उपस्थिति इस तथ्य से संबंधित है कि [[जोंक जाली]] के 24 आयाम हैं। [[[[रामानुजन]] अनुमान]] अनुमान पर रामानुजन ने जोर दिया कि कब {{math|Δ(''z'')}} को q, के गुणांक में शक्ति श्रृंखला के रूप में विस्तारित किया गया है {{mvar|q<sup>p</sup>}} किसी भी प्राइम के लिए {{mvar|p}} का निरपेक्ष मान है {{math|≤ 2''p''<sup>11/2</sup>}}. वेइल अनुमानों के डेलिग्ने के प्रमाण के परिणामस्वरूप [[मार्टिन आइक्लर]], [[ ग्राउंडर शिमुरा ]], [[सड़क वाक्यांश]], [[यासुताका इहारा]] और पियरे डेलिग्ने के काम से इसकी पुष्टि हुई, जो रामानुजन के अनुमान को दर्शाने के लिए दिखाए गए थे। | ||
दूसरे और तीसरे उदाहरण संख्या सिद्धांत में मॉड्यूलर रूपों और | दूसरे और तीसरे उदाहरण संख्या सिद्धांत में मॉड्यूलर रूपों और पारंपरिक प्रश्नों के बीच संबंध का कुछ संकेत देते हैं, जैसे [[द्विघात रूप]]ों और [[विभाजन समारोह (संख्या सिद्धांत)]] द्वारा पूर्णांकों का प्रतिनिधित्व। मॉड्यूलर रूपों और संख्या सिद्धांत के बीच महत्वपूर्ण वैचारिक लिंक [[हेज ऑपरेटर]] के सिद्धांत द्वारा प्रस्तुत किया गया है, जो मॉड्यूलर रूपों के सिद्धांत और [[प्रतिनिधित्व सिद्धांत]] के बीच की कड़ी भी देता है। | ||
== मॉड्यूलर कार्य == | == मॉड्यूलर कार्य == | ||
| Line 126: | Line 128: | ||
=== परिभाषा === | === परिभाषा === | ||
<nowiki>के लिए एक मॉड्यूलर रूप {{mvar|G}भार k का } 'H' पर एक फलन है जो सभी आव्यूहों के लिए उपरोक्त प्रकार्यात्मक समीकरण को संतुष्ट करता है </nowiki>{{mvar|G}}, जो कि H पर और सभी पुच्छल पर पूर्णसममितिक है {{mvar|G}}. फिर से, मॉड्यूलर रूप जो सभी क्यूप्स पर गायब हो जाते हैं, उन्हें पुच्छल रूप कहा जाता है {{mvar|G}}. | <nowiki>के लिए एक मॉड्यूलर रूप {{mvar|G}भार k का } 'H' पर एक फलन है जो सभी आव्यूहों के लिए उपरोक्त प्रकार्यात्मक समीकरण को संतुष्ट करता है </nowiki>{{mvar|G}}, जो कि H पर और सभी पुच्छल पर पूर्णसममितिक है {{mvar|G}}. फिर से, मॉड्यूलर रूप जो सभी क्यूप्स पर गायब हो जाते हैं, उन्हें पुच्छल रूप कहा जाता है {{mvar|G}}. भार के मॉड्यूलर और पुच्छल रूपों के सी-वेक्टर रिक्त स्थान '' k '' को निरूपित किया जाता है {{math|''M<sub>k</sub>''(''G'')}} और {{math|''S<sub>k</sub>''(''G'')}}, क्रमश। इसी तरह, G\'H' पर एक मेरोमोर्फिक फलन<sup>∗</sup> के लिए एक मॉड्यूलर फलन कहा जाता है {{mvar|G}}. जी = जी के मामले में<sub>0</sub>(एन), उन्हें मॉड्यूलर / पुच्छल रूपों और स्तर एन के कार्यों के रूप में भी जाना जाता है {{math|''G'' {{=}} Γ(1) {{=}} SL(2, '''Z''')}}, यह पूर्वोक्त परिभाषा को वापस देता है। | ||
=== परिणाम === | === परिणाम === | ||
| Line 149: | Line 151: | ||
== मॉड्यूलर रूपों के छल्ले == | == मॉड्यूलर रूपों के छल्ले == | ||
{{Main|Ring of modular forms}} | {{Main|Ring of modular forms}} | ||
एक उपसमूह के लिए {{math|Γ}} की {{math|SL(2, '''Z''')}}, मॉड्यूलर रूपों की अंगूठी के मॉड्यूलर रूपों द्वारा उत्पन्न श्रेणीबद्ध अंगूठी है {{math|Γ}}. दूसरे शब्दों में, अगर {{math|M<sub>k</sub>(Γ)}} | एक उपसमूह के लिए {{math|Γ}} की {{math|SL(2, '''Z''')}}, मॉड्यूलर रूपों की अंगूठी के मॉड्यूलर रूपों द्वारा उत्पन्न श्रेणीबद्ध अंगूठी है {{math|Γ}}. दूसरे शब्दों में, अगर {{math|M<sub>k</sub>(Γ)}} भार के मॉड्यूलर रूपों की अंगूठी हो {{mvar|k}}, फिर के मॉड्यूलर रूपों की अंगूठी {{math|Γ}} ग्रेडेड रिंग है <math>M(\Gamma) = \bigoplus_{k > 0} M_k(\Gamma)</math>. | ||
के सर्वांगसम उपसमूहों के मॉड्यूलर रूपों के छल्ले {{math|SL(2, '''Z''')}} पियरे डेलिग्ने और [[माइकल रैपोपोर्ट]] के परिणाम के कारण अंतिम रूप से उत्पन्न होते हैं। मॉड्यूलर रूपों के ऐसे छल्ले अधिकतम 6 | के सर्वांगसम उपसमूहों के मॉड्यूलर रूपों के छल्ले {{math|SL(2, '''Z''')}} पियरे डेलिग्ने और [[माइकल रैपोपोर्ट]] के परिणाम के कारण अंतिम रूप से उत्पन्न होते हैं। मॉड्यूलर रूपों के ऐसे छल्ले अधिकतम 6 भार में उत्पन्न होते हैं और संबंध अधिकतम 12 भार में उत्पन्न होते हैं जब सर्वांगसम उपसमूह में गैर-शून्य विषम भार वाले मॉड्यूलर रूप होते हैं, और संबंधित सीमाएँ 5 और 10 होती हैं जब कोई गैर-शून्य विषम भार मॉड्यूलर रूप नहीं होता है . | ||
अधिक आम तौर पर, मॉड्यूलर रूपों की अंगूठी के जेनरेटर के | अधिक आम तौर पर, मॉड्यूलर रूपों की अंगूठी के जेनरेटर के भार और मनमाने ढंग से फ्यूचियन समूहों के लिए इसके संबंधों पर सीमा के सूत्र हैं। | ||
== प्रकार == | == प्रकार == | ||
| Line 160: | Line 162: | ||
अगर f पुच्छल पर होलोमॉर्फिक फलन है (q = 0 पर कोई ध्रुव नहीं है), तो इसे 'संपूर्ण मॉड्यूलर रूप' कहा जाता है। | अगर f पुच्छल पर होलोमॉर्फिक फलन है (q = 0 पर कोई ध्रुव नहीं है), तो इसे 'संपूर्ण मॉड्यूलर रूप' कहा जाता है। | ||
यदि च मेरोमोर्फिक है परंतु कस्प पर पूर्णसममितिक नहीं है, तो इसे 'गैर-संपूर्ण मॉड्यूलर फॉर्म' कहा जाता है। उदाहरण के लिए, जे-इनवेरिएंट | यदि च मेरोमोर्फिक है परंतु कस्प पर पूर्णसममितिक नहीं है, तो इसे 'गैर-संपूर्ण मॉड्यूलर फॉर्म' कहा जाता है। उदाहरण के लिए, जे-इनवेरिएंट भार 0 का एक गैर-संपूर्ण मॉड्यूलर रूप है, और i∞ पर एक साधारण पोल है। | ||
=== नए रूप === | === नए रूप === | ||
{{Main|Atkin–Lehner theory}} | {{Main|Atkin–Lehner theory}} | ||
एटकिन-लेहनर सिद्धांत मॉड्यूलर रूपों का एक उप-स्थान है<ref>{{Cite web|last=Mocanu|first=Andreea|title=Atkin-Lehner Theory of <math>\Gamma_1(N)</math>-Modular Forms|url=https://andreeamocanu.github.io/atkin-lehner-theory.pdf|url-status=live|archive-url=https://web.archive.org/web/20200731204425/https://andreeamocanu.github.io/atkin-lehner-theory.pdf|archive-date=31 July 2020}}</ref> एक निश्चित | एटकिन-लेहनर सिद्धांत मॉड्यूलर रूपों का एक उप-स्थान है<ref>{{Cite web|last=Mocanu|first=Andreea|title=Atkin-Lehner Theory of <math>\Gamma_1(N)</math>-Modular Forms|url=https://andreeamocanu.github.io/atkin-lehner-theory.pdf|url-status=live|archive-url=https://web.archive.org/web/20200731204425/https://andreeamocanu.github.io/atkin-lehner-theory.pdf|archive-date=31 July 2020}}</ref> एक निश्चित भार का <math>N</math> जिसका निर्माण कम भार के मॉड्यूलर रूपों से नहीं किया जा सकता है <math>M</math> डिवाइडिंग <math>N</math>. अन्य रूपों को पुराने रूप कहा जाता है। इन पुराने रूपों का निर्माण निम्नलिखित अवलोकनों का उपयोग करके किया जा सकता है: यदि <math>M \mid N</math> तब <math>\Gamma_1(N) \subseteq \Gamma_1(M)</math> मॉड्यूलर रूपों का उल्टा समावेशन देना <math>M_k(\Gamma_1(M)) \subseteq M_k(\Gamma_1(N))</math>. | ||
=== पुच्छल रूप === | === पुच्छल रूप === | ||
| Line 171: | Line 173: | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
मॉड्यूलर फलन शब्द के कई अन्य उपयोग हैं, इस | मॉड्यूलर फलन शब्द के कई अन्य उपयोग हैं, इस पारंपरिक एक के अलावा; उदाहरण के लिए, हार उपायों के सिद्धांत में, यह एक कार्य है {{math|Δ(''g'')}} संयुग्मन क्रिया द्वारा निर्धारित। | ||
मास रूप विश्लेषणात्मक कार्य हैं | [[लाप्लासियन]] के वास्तविक-विश्लेषणात्मक [[eigenfunction]] परंतु पूर्णसममितिक फलन होने की आवश्यकता नहीं है। कुछ कमजोर द्रव्यमान तरंग रूपों के पूर्णसममितिक भाग अनिवार्य रूप से रामानुजन के नकली थीटा कार्य हैं। समूह जो उपसमूह नहीं हैं {{math|SL(2, '''Z''')}} माना जा सकता है। | मास रूप विश्लेषणात्मक कार्य हैं | [[लाप्लासियन]] के वास्तविक-विश्लेषणात्मक [[eigenfunction]] परंतु पूर्णसममितिक फलन होने की आवश्यकता नहीं है। कुछ कमजोर द्रव्यमान तरंग रूपों के पूर्णसममितिक भाग अनिवार्य रूप से रामानुजन के नकली थीटा कार्य हैं। समूह जो उपसमूह नहीं हैं {{math|SL(2, '''Z''')}} माना जा सकता है। | ||
| Line 177: | Line 179: | ||
[[हिल्बर्ट मॉड्यूलर फॉर्म]] 'एन' चर में कार्य कर रहे हैं, प्रत्येक ऊपरी आधे समष्टि में एक जटिल संख्या है, जो [[पूरी तरह से वास्तविक संख्या क्षेत्र]] में प्रविष्टियों के साथ 2 × 2 आव्यूह के लिए एक मॉड्यूलर संबंध को संतुष्ट करता है। | [[हिल्बर्ट मॉड्यूलर फॉर्म]] 'एन' चर में कार्य कर रहे हैं, प्रत्येक ऊपरी आधे समष्टि में एक जटिल संख्या है, जो [[पूरी तरह से वास्तविक संख्या क्षेत्र]] में प्रविष्टियों के साथ 2 × 2 आव्यूह के लिए एक मॉड्यूलर संबंध को संतुष्ट करता है। | ||
[[ सील मॉड्यूलर रूप ]] बड़े सहानुभूति समूहों से उसी तरह जुड़े होते हैं जैसे क्लासिकल मॉड्यूलर फॉर्म जुड़े होते हैं {{math|SL(2, '''R''')}}; दूसरे शब्दों में, वे एबेलियन विविधता से उसी अर्थ में संबंधित हैं जैसे | [[ सील मॉड्यूलर रूप ]] बड़े सहानुभूति समूहों से उसी तरह जुड़े होते हैं जैसे क्लासिकल मॉड्यूलर फॉर्म जुड़े होते हैं {{math|SL(2, '''R''')}}; दूसरे शब्दों में, वे एबेलियन विविधता से उसी अर्थ में संबंधित हैं जैसे पारंपरिक मॉड्यूलर रूप (जिन्हें कभी-कभी बिंदु पर जोर देने के लिए अंडाकार मॉड्यूलर रूप कहा जाता है) अंडाकार वक्र से संबंधित होते हैं। | ||
'जैकोबी फॉर्म्स' मॉड्यूलर फॉर्म्स और एलिप्टिक फंक्शन्स का मिश्रण हैं। इस तरह के कार्यों के उदाहरण बहुत | 'जैकोबी फॉर्म्स' मॉड्यूलर फॉर्म्स और एलिप्टिक फंक्शन्स का मिश्रण हैं। इस तरह के कार्यों के उदाहरण बहुत पारंपरिक हैं - जैकोबी थीटा फलन और जीनस दो के सीगल मॉड्यूलर रूपों के फूरियर गुणांक - परंतु यह एक अपेक्षाकृत हालिया अवलोकन है कि [[जैकोबी रूप]]ों में एक अंकगणितीय सिद्धांत है जो मॉड्यूलर रूपों के सामान्य सिद्धांत के अनुरूप है। | ||
'ऑटोमॉर्फिक फॉर्म' मॉड्यूलर रूपों की धारणा को सामान्य झूठ समूहों तक फैलाते हैं। | 'ऑटोमॉर्फिक फॉर्म' मॉड्यूलर रूपों की धारणा को सामान्य झूठ समूहों तक फैलाते हैं। | ||
भार का '[[ मॉड्यूलर अभिन्न ]]' {{mvar|k}} अनंत पर मध्यम वृद्धि के ऊपरी आधे समष्टि पर मेरोमोर्फिक कार्य हैं जो भार के मॉड्यूलर होने में विफल रहते हैं {{mvar|k}} एक तर्कसंगत कार्य द्वारा। | |||
'ऑटोमॉर्फिक कारक' रूप के कार्य हैं <math>\varepsilon(a,b,c,d) (cz+d)^k</math> जिनका उपयोग मॉड्यूलर रूपों को परिभाषित करने वाले मॉड्यूलरिटी संबंध को सामान्यीकृत करने के लिए किया जाता है, ताकि | 'ऑटोमॉर्फिक कारक' रूप के कार्य हैं <math>\varepsilon(a,b,c,d) (cz+d)^k</math> जिनका उपयोग मॉड्यूलर रूपों को परिभाषित करने वाले मॉड्यूलरिटी संबंध को सामान्यीकृत करने के लिए किया जाता है, ताकि | ||
:<math>f\left(\frac{az+b}{cz+d}\right) = \varepsilon(a,b,c,d) (cz+d)^k f(z).</math> | :<math>f\left(\frac{az+b}{cz+d}\right) = \varepsilon(a,b,c,d) (cz+d)^k f(z).</math> | ||
कार्यक्रम <math>\varepsilon(a,b,c,d)</math> मॉड्यूलर रूप का नेबेंटिपस कहा जाता है। डेडेकिंड एटा फलन जैसे कार्य, | कार्यक्रम <math>\varepsilon(a,b,c,d)</math> मॉड्यूलर रूप का नेबेंटिपस कहा जाता है। डेडेकिंड एटा फलन जैसे कार्य, भार 1/2 का एक मॉड्यूलर रूप, ऑटोमोर्फिक कारकों की अनुमति देकर सिद्धांत द्वारा शामिल किया जा सकता है। | ||
== इतिहास == | == इतिहास == | ||
Revision as of 01:18, 23 June 2023
गणित में, मॉड्यूलर रूप, एक जटिल विश्लेषणात्मक फलन है जो मॉड्यूलर समूह के समूह क्रिया के संबंध में एक निश्चित प्रकार के कार्यात्मक समीकरण तथा विकास की स्थिति को संतुष्ट करता है। इसीलिए मॉड्यूलर रूपों का सिद्धांत जटिल विश्लेषण से संबंधित है परंतु इस सिद्धांत का मुख्य महत्व परंपरागत रूप से संख्या सिद्धांत के साथ इसके संबंध में रहा है। अन्य क्षेत्रों जैसे कि बीजगणितीय सांस्थिति, गोलाकार गतिकी और स्ट्रिंग सिद्धांत में भी मॉड्यूलर रूप दिखाई देते हैं।
मॉड्यूलर फलन एक ऐसा फलन है जो मॉड्यूलर समूह के संबंध में अपरिवर्तनीय है, परंतु बिना किसी शर्त के f (z) उच्च अर्ध-समष्टि में पूर्णसममितिक फलन रूप को संतुष्ट करना चाहिए। इसके अतिरिक्त, मॉड्यूलर फलन मेरोमॉर्फिक फलन हैं अर्थात, वे पृथक बिंदुओं के एक समुच्चय के पूरक पर पूर्णसममितिक हैं, जो इसी फलन के ध्रुव हैं।
मॉड्यूलर रूप सिद्धांत स्वचालित रूप के अधिक सामान्य सिद्धांत की एक विशेष परिस्थिति है। ये लाइ समूहों पर परिभाषित फलन हैं जो कुछ असतत उपसमूहों की कार्रवाई के संबंध में उपयुक्त रूप से रूपांतरित होते हैं तथा मॉड्यूलर समूह के उदाहरण को समान्यीकृत करते हैं। .
मॉड्यूलर रूपों की सामान्य परिभाषा
सामान्य रूप में,[1] एक उपसमूह परिमित सूचकांक दिया गया है, जिसे अंकगणितीय समूह कहा जाता है। इस स्तर का मॉड्यूलर रूप और भार एक पूर्णसममितिक फलन है। उच्च अर्ध-समष्टि से इस प्रकार रूपांतरित होती है कि निम्नलिखित दो शर्तें पूरी होती हैं:
1. (ऑटोमॉर्फी शर्त) किसी के लिए समानता है[note 1]
2. (वृद्धि की स्थिति) किसी के लिए फलन , के लिए बाध्य है
जहां और फलन आव्यूह से इस प्रकार पहचाना जाता है की आव्यूहों के साथ ऐसे फलनों की पहचान आव्यूह गुणन के अनुरूप ऐसे फलन की संरचना का कारण बनती है। इसके अतिरिक्त, इसे एक कस्प रूप कहा जाता है यदि यह निम्नलिखित वृद्धि की स्थिति को संतुष्ट करता है:
3. (कस्पिडल शर्त) किसी के लिए, फलन इस प्रकार
एक लाइन बंडल के अनुभागों के रूप में
मॉड्यूलर रूपों को मॉड्यूलर वक्र पर एक विशिष्ट लाइन बंडल के अनुभागों के रूप में भी व्याख्या किया जा सकता है। के लिए स्तर का एक मॉड्यूलर रूप और भार के तत्व के रूप में परिभाषित किया जा सकता है
जहाँ मॉड्यूलर वक्र पर एक विहित लाइन बंडल है मॉड्यूलर रूपों के इन स्थानों के आयामों की गणना रीमैन-रोच प्रमेय का उपयोग करके की जा सकती है।[2] पारंपरिक मॉड्यूलर रूपों के लिए अण्डाकार वक्रों के मोडुली स्टैक पर लाइन बंडल का खंड हैं।
एसएल (2, जेड) के लिए मॉड्यूलर रूप
मानक परिभाषा
भार का एक मॉड्यूलर रूप k मॉड्यूलर समूह के लिए
एक जटिल संख्या है | जटिल-मूल्यवान फलन f ऊपरी आधे तल पर H = {z ∈ C, Im(z) > 0}, निम्नलिखित तीन शर्तों को पूरा करना:
- f एक पूर्णसममितिक फलन है H.
- किसी के लिए z ∈ H और कोई भी आव्यूह SL(2, Z) ऊपर के रूप में, हमारे पास है:
- f के रूप में बाध्य होना आवश्यक है z → i∞.
टिप्पणियां:
- भार k आमतौर पर एक सकारात्मक पूर्णांक है।
- विषम के लिए k, केवल शून्य फलन ही दूसरी शर्त को पूरा कर सकता है।
- तीसरी शर्त भी ऐसा कहकर कही जाती है f शिखर पर पूर्णसममितिक है, एक शब्दावली जिसे नीचे समझाया गया है। स्पष्ट रूप से, स्थिति का अर्थ है कि कुछ मौजूद हैं ऐसा है कि , अर्थ कुछ क्षैतिज रेखा से ऊपर बँधा हुआ है।
- के लिए दूसरी शर्त
- : पढ़ता है
- क्रमश। तब से S और T एक समूह मॉड्यूलर समूह का उत्पादन सेट SL(2, Z), उपरोक्त दूसरी शर्त इन दो समीकरणों के बराबर है।
- तब से f (z + 1) = f (z), मॉड्यूलर रूप आवधिक कार्य हैं, अवधि के साथ 1, और इस प्रकार एक फूरियर श्रृंखला है।
जाली या अण्डाकार वक्रों के संदर्भ में परिभाषा
एक मॉड्यूलर रूप को समान रूप से एक फलन F के रूप में परिभाषित किया जा सकता है, जो कि अवधि जाली के सेट से होता है C सम्मिश्र संख्याओं के समुच्चय के लिए जो कुछ शर्तों को पूरा करते हैं:
- अगर हम जाली पर विचार करें Λ = Zα + Zz एक स्थिर द्वारा उत्पन्न α और एक चर z, तब F(Λ) का एक विश्लेषणात्मक कार्य है z.
- अगर α एक गैर-शून्य जटिल संख्या है और αΛ प्रत्येक तत्व को गुणा करके प्राप्त जाली है Λ द्वारा α, तब F(αΛ) = α−kF(Λ) कहाँ k एक स्थिरांक है (आमतौर पर एक धनात्मक पूर्णांक) जिसे प्रपत्र का भार कहा जाता है।
- का पूर्ण मूल्य F(Λ) जब तक सबसे छोटे गैर-शून्य तत्व का निरपेक्ष मान तब तक ऊपर बना रहता है Λ 0 से दूर है।
दो परिभाषाओं की समानता को साबित करने में महत्वपूर्ण विचार यह है कि ऐसा कार्य F दूसरी स्थिति के कारण, फॉर्म के लैटिस पर इसके मूल्यों द्वारा निर्धारित किया जाता है Z + Zτ, कहाँ τ ∈ H.
उदाहरण
इस दृष्टिकोण से सबसे सरल उदाहरण आइज़ेंस्ताइन श्रृंखला हैं। प्रत्येक सम पूर्णांक के लिए k > 2, हम परिभाषित करते हैं Gk(Λ) का योग होना λ−k सभी गैर-शून्य वैक्टरों पर λ का Λ:
तब Gk भार का एक मॉड्यूलर रूप है k. के लिए Λ = Z + Zτ अपने पास
और
स्थिति k > 2 पूर्ण अभिसरण के लिए आवश्यक है; विषम के लिए k के बीच रद्दीकरण है λ−k और (−λ)−k, ताकि ऐसी श्रृंखला समान रूप से शून्य हो।
द्वितीय। थीटा एक-मॉड्यूलर जालक के भी कार्य करता है
एक यूनिमॉड्यूलर जाली L में Rn द्वारा उत्पन्न एक जाली है n वैक्टर निर्धारक 1 के एक आव्यूह के कॉलम बनाते हैं और इस शर्त को पूरा करते हैं कि प्रत्येक वेक्टर की लंबाई का वर्ग L एक सम पूर्णांक है। तथाकथित थीटा समारोह
अभिसरित होता है जब Im(z) > 0, और प्वासों योग सूत्र के परिणामस्वरूप भार का एक मॉड्यूलर रूप दिखाया जा सकता है n/2. एक-मॉड्यूलर जाली का निर्माण करना इतना आसान नहीं है, परंतु यहाँ एक तरीका है: चलो n 8 से विभाज्य एक पूर्णांक बनें और सभी सदिशों पर विचार करें v में Rn ऐसा है कि 2v में पूर्णांक निर्देशांक होते हैं, या तो सभी सम या सभी विषम, और इस तरह के निर्देशांकों का योग v एक सम पूर्णांक है। हम इस जाली को कहते हैं Ln. कब n = 8, यह जड़ प्रणाली में जड़ों द्वारा उत्पन्न जाली है जिसे E8 (गणित) कहा जाता है|E8. क्योंकि स्केलर गुणन तक भार 8 का केवल एक मॉड्यूलर रूप है,
भले ही जाली L8 × L8 और L16 समान नहीं हैं। जॉन मिल्नोर ने देखा कि विभाजित करके प्राप्त 16-आयामी टोरस्र्स R16 इन दो जालियों के परिणामस्वरूप कॉम्पैक्ट जगह रीमैनियन कई गुना ्स के उदाहरण हैं जो आइसोस्पेक्ट्रल हैं परंतु आइसोमेट्री नहीं हैं (ड्रम के आकार को सुनना देखें।)
तृतीय। मॉड्यूलर विभेदक
डेडेकाइंड और फंक्शन को इस रूप में परिभाषित किया गया है
जहां क्यू नोम (गणित) का वर्ग है। फिर मॉड्यूलर भेदभाव Δ(z) = (2π)12 η(z)24 भार 12 का एक मॉड्यूलर रूप है। 24 की उपस्थिति इस तथ्य से संबंधित है कि जोंक जाली के 24 आयाम हैं। [[रामानुजन अनुमान]] अनुमान पर रामानुजन ने जोर दिया कि कब Δ(z) को q, के गुणांक में शक्ति श्रृंखला के रूप में विस्तारित किया गया है qp किसी भी प्राइम के लिए p का निरपेक्ष मान है ≤ 2p11/2. वेइल अनुमानों के डेलिग्ने के प्रमाण के परिणामस्वरूप मार्टिन आइक्लर, ग्राउंडर शिमुरा , सड़क वाक्यांश, यासुताका इहारा और पियरे डेलिग्ने के काम से इसकी पुष्टि हुई, जो रामानुजन के अनुमान को दर्शाने के लिए दिखाए गए थे।
दूसरे और तीसरे उदाहरण संख्या सिद्धांत में मॉड्यूलर रूपों और पारंपरिक प्रश्नों के बीच संबंध का कुछ संकेत देते हैं, जैसे द्विघात रूपों और विभाजन समारोह (संख्या सिद्धांत) द्वारा पूर्णांकों का प्रतिनिधित्व। मॉड्यूलर रूपों और संख्या सिद्धांत के बीच महत्वपूर्ण वैचारिक लिंक हेज ऑपरेटर के सिद्धांत द्वारा प्रस्तुत किया गया है, जो मॉड्यूलर रूपों के सिद्धांत और प्रतिनिधित्व सिद्धांत के बीच की कड़ी भी देता है।
मॉड्यूलर कार्य
जब भार k शून्य होता है, तो यह लिउविल के प्रमेय (जटिल विश्लेषण) का उपयोग करके दिखाया जा सकता है। लिउविल का प्रमेय कि केवल मॉड्यूलर रूप निरंतर कार्य हैं। हालाँकि, आवश्यकता को शिथिल करने से f होलोमॉर्फिक हो सकता है जो मॉड्यूलर कार्यों की धारणा को जन्म देता है। एक फलन f : 'H' → 'C' को मॉड्यूलर कहा जाता है यदि यह निम्नलिखित गुणों को संतुष्ट करता है:
- एफ खुले ऊपरी आधे समष्टि एच में मेरोमोर्फिक फलन है।
- प्रत्येक पूर्णांक आव्यूह (गणित) के लिए मॉड्यूलर समूह में | मॉड्यूलर समूह Γ, .
- जैसा कि ऊपर बताया गया है, दूसरी स्थिति का अर्थ है कि f आवधिक है, और इसलिए इसकी एक फूरियर श्रृंखला है। तीसरी शर्त यह है कि यह सीरीज फॉर्म की हो
- यह अक्सर के संदर्भ में लिखा जाता है (नोम का वर्ग (गणित)), जैसा:
इसे f के q-विस्तार (q-विस्तार सिद्धांत) के रूप में भी जाना जाता है। गुणांक f के फूरियर गुणांक के रूप में जाना जाता है, और संख्या m को i∞ पर f के ध्रुव का क्रम कहा जाता है। इस स्थिति को पुच्छल पर मेरोमोर्फिक कहा जाता है, जिसका अर्थ है कि केवल बहुत से ऋणात्मक-n गुणांक गैर-शून्य होते हैं, इसलिए q-विस्तार नीचे सीमित होता है, यह गारंटी देता है कि यह q = 0 पर मेरोमोर्फिक है।[3] कभी-कभी मॉड्यूलर कार्यों की एक कमजोर परिभाषा का उपयोग किया जाता है - वैकल्पिक परिभाषा के तहत, यह पर्याप्त है कि f खुले ऊपरी आधे समष्टि में मेरोमोर्फिक हो और f परिमित सूचकांक के मॉड्यूलर समूह के उप-समूह के संबंध में अपरिवर्तनीय हो।[4] इस लेख में इसका पालन नहीं किया गया है।
मॉड्यूलर कार्यों की परिभाषा को वाक्यांश देने का एक और तरीका अंडाकार वक्रों का उपयोग करना है: प्रत्येक जाली Λ सी पर एक अंडाकार वक्र सी/Λ निर्धारित करता है; दो जाली समरूप अण्डाकार वक्रों को निर्धारित करती हैं यदि और केवल अगर एक को दूसरे से कुछ गैर-शून्य जटिल संख्या से गुणा करके प्राप्त किया जाता है α. इस प्रकार, एक मॉड्यूलर फलन को अण्डाकार वक्रों के आइसोमोर्फिज्म वर्गों के सेट पर मेरोमोर्फिक फलन के रूप में भी माना जा सकता है। उदाहरण के लिए, एक अण्डाकार वक्र का j-invariant j(z), जिसे सभी अण्डाकार वक्रों के सेट पर एक फलन के रूप में माना जाता है, एक मॉड्यूलर फलन है। अधिक संकल्पनात्मक रूप से, मॉड्यूलर कार्यों को जटिल अण्डाकार वक्रों के समरूपता वर्गों की मॉडुली समस्या पर कार्य के रूप में माना जा सकता है।
एक मॉड्यूलर फॉर्म f जो गायब हो जाता है q = 0 (समान रूप से, a0 = 0, के रूप में भी व्याख्या की गई z = i∞) को पुच्छल रूप (जर्मन भाषा में स्पिट्जेनफॉर्म) कहते हैं। सबसे छोटा n ऐसा है an ≠ 0 f के शून्य का क्रम है i∞.
एक मॉड्यूलर इकाई एक मॉड्यूलर फलन है जिसका पोल और शून्य क्यूप्स तक ही सीमित हैं।[5]
अधिक सामान्य समूहों के लिए मॉड्यूलर रूप
कार्यात्मक समीकरण, अर्थात, के संबंध में f का व्यवहार इसे केवल छोटे समूहों में मेट्रिसेस के लिए आवश्यक करके आराम दिया जा सकता है।
रीमैन सतह G\H∗
होने देना G का एक उपसमूह हो SL(2, Z) जो एक उपसमूह के परिमित सूचकांक का है। ऐसा समूह G H पर समूह क्रिया (गणित) उसी तरह जैसे SL(2, Z). भागफल टोपोलॉजिकल स्पेस G\'H' को हॉसडॉर्फ स्पेस के रूप में दिखाया जा सकता है। आमतौर पर यह कॉम्पैक्ट नहीं होता है, परंतु कस्प्स नामक बिंदुओं की एक सीमित संख्या को जोड़कर इसे कॉम्पैक्ट किया जा सकता है। ये 'एच' की सीमा पर बिंदु हैं, यानी 'परिमेय संख्या' में ∪{∞},[6] जैसे कि एक परवलयिक तत्व है G (एक आव्यूह ± 2 के निशान के साथ एक आव्यूह) बिंदु को ठीक करता है। यह एक कॉम्पैक्ट टोपोलॉजिकल स्पेस जी \ 'एच' पैदा करता है∗. क्या अधिक है, इसे रीमैन सतह की संरचना के साथ संपन्न किया जा सकता है, जो किसी को होलो- और मेरोमोर्फिक कार्यों के बारे में बात करने की अनुमति देता है।
महत्वपूर्ण उदाहरण हैं, किसी भी धनात्मक पूर्णांक N के लिए, सर्वांगसम उपसमूहों में से कोई एक
जी के लिए = जी0(और न Γ(N), रिक्त स्थान G\'H' और G\'H'∗ को Y से दर्शाया गया है0(एन) और एक्स0(एन) और वाई (एन), एक्स (एन), क्रमशः।
G\'H' की ज्यामिति∗ को G के लिए मौलिक डोमेन का अध्ययन करके समझा जा सकता है, यानी उपसमुच्चय D ⊂ 'H' जैसे कि D, की प्रत्येक कक्षा को काटता है G-H पर ठीक एक बार क्रिया और इस प्रकार कि D का बंद होना सभी कक्षाओं से मिलता है। उदाहरण के लिए, G\H का जीनस (गणित)।∗ की गणना की जा सकती है।[7]
परिभाषा
के लिए एक मॉड्यूलर रूप {{mvar|G}भार k का } 'H' पर एक फलन है जो सभी आव्यूहों के लिए उपरोक्त प्रकार्यात्मक समीकरण को संतुष्ट करता है G, जो कि H पर और सभी पुच्छल पर पूर्णसममितिक है G. फिर से, मॉड्यूलर रूप जो सभी क्यूप्स पर गायब हो जाते हैं, उन्हें पुच्छल रूप कहा जाता है G. भार के मॉड्यूलर और पुच्छल रूपों के सी-वेक्टर रिक्त स्थान k को निरूपित किया जाता है Mk(G) और Sk(G), क्रमश। इसी तरह, G\'H' पर एक मेरोमोर्फिक फलन∗ के लिए एक मॉड्यूलर फलन कहा जाता है G. जी = जी के मामले में0(एन), उन्हें मॉड्यूलर / पुच्छल रूपों और स्तर एन के कार्यों के रूप में भी जाना जाता है G = Γ(1) = SL(2, Z), यह पूर्वोक्त परिभाषा को वापस देता है।
परिणाम
रीमैन सतहों के सिद्धांत को G\'H' पर लागू किया जा सकता है∗ मॉड्यूलर रूपों और कार्यों के बारे में अधिक जानकारी प्राप्त करने के लिए। उदाहरण के लिए रिक्त स्थान Mk(G) और Sk(G) परिमित-आयामी हैं, और उनके आयामों की गणना रीमैन-रोच प्रमेय के कारण ज्यामिति के संदर्भ में की जा सकती है। G-एच पर कार्रवाई[8] उदाहरण के लिए,
कहाँ फर्श समारोह को दर्शाता है और सम है।
मॉड्यूलर फ़ंक्शंस रीमैन सतह के बीजगणितीय विविधता के फलन फ़ील्ड का गठन करते हैं, और इसलिए श्रेष्ठता की डिग्री वन (ओवर सी) का एक क्षेत्र बनाते हैं। यदि एक मॉड्यूलर फलन "एफ" समान रूप से 0 नहीं है, तो यह दिखाया जा सकता है कि "एफ" के शून्य की संख्या "एफ" के पोल (जटिल विश्लेषण) की संख्या के बराबर है। मूलभूत क्षेत्र आर का समापन (गणित)Γयह दिखाया जा सकता है कि स्तर N (N ≥ 1) के मॉड्यूलर फलन का क्षेत्र फलन j(z) और j(Nz) द्वारा उत्पन्न होता है।[9]
लाइन बंडल
उस स्थिति की तुलना लाभप्रद रूप से की जा सकती है जो प्रक्षेपण स्थान P(V) पर फ़ंक्शंस की खोज में उत्पन्न होती है: उस सेटिंग में, कोई व्यक्ति वेक्टर स्पेस V पर फ़ंक्शंस F को आदर्श रूप से पसंद करेगा जो v ≠ 0 के निर्देशांक में बहुपद हैं V और सभी गैर-शून्य c के लिए समीकरण F(cv) = F(v) को संतुष्ट करें। दुर्भाग्य से, केवल ऐसे कार्य स्थिरांक हैं। यदि हम भाजक (बहुपद के बजाय तर्कसंगत कार्य) की अनुमति देते हैं, तो हम एफ को एक ही डिग्री के दो सजातीय कार्य बहुपदों का अनुपात मान सकते हैं। वैकल्पिक रूप से, हम बहुपदों के साथ बने रह सकते हैं और c पर निर्भरता को ढीला कर सकते हैं, F(cv) = c दे सकते हैंके</सुप>एफ(वी). समाधान तब डिग्री के सजातीय बहुपद हैं k. एक ओर, ये प्रत्येक k के लिए एक परिमित आयामी सदिश स्थान बनाते हैं, और दूसरी ओर, यदि हम k को भिन्न होने देते हैं, तो हम सभी परिमेय कार्यों के निर्माण के लिए अंश और हर का पता लगा सकते हैं जो वास्तव में अंतर्निहित प्रक्षेप्य स्थान P पर कार्य करते हैं (वी)।
कोई पूछ सकता है, चूंकि सजातीय बहुपद वास्तव में पी (वी) पर कार्य नहीं करते हैं, वे ज्यामितीय रूप से क्या बोल रहे हैं? बीजगणितीय ज्यामिति | बीजगणितीय-ज्यामितीय उत्तर यह है कि वे एक शीफ (गणित) के खंड हैं (इस मामले में कोई वेक्टर बंडल भी कह सकता है)। मॉड्यूलर रूपों के साथ स्थिति बिल्कुल समान है।
इस ज्यामितीय दिशा से मॉड्यूलर रूपों को भी लाभप्रद रूप से संपर्क किया जा सकता है, क्योंकि अण्डाकार वक्रों के मापांक स्थान पर लाइन बंडलों के खंड होते हैं।
मॉड्यूलर रूपों के छल्ले
एक उपसमूह के लिए Γ की SL(2, Z), मॉड्यूलर रूपों की अंगूठी के मॉड्यूलर रूपों द्वारा उत्पन्न श्रेणीबद्ध अंगूठी है Γ. दूसरे शब्दों में, अगर Mk(Γ) भार के मॉड्यूलर रूपों की अंगूठी हो k, फिर के मॉड्यूलर रूपों की अंगूठी Γ ग्रेडेड रिंग है .
के सर्वांगसम उपसमूहों के मॉड्यूलर रूपों के छल्ले SL(2, Z) पियरे डेलिग्ने और माइकल रैपोपोर्ट के परिणाम के कारण अंतिम रूप से उत्पन्न होते हैं। मॉड्यूलर रूपों के ऐसे छल्ले अधिकतम 6 भार में उत्पन्न होते हैं और संबंध अधिकतम 12 भार में उत्पन्न होते हैं जब सर्वांगसम उपसमूह में गैर-शून्य विषम भार वाले मॉड्यूलर रूप होते हैं, और संबंधित सीमाएँ 5 और 10 होती हैं जब कोई गैर-शून्य विषम भार मॉड्यूलर रूप नहीं होता है .
अधिक आम तौर पर, मॉड्यूलर रूपों की अंगूठी के जेनरेटर के भार और मनमाने ढंग से फ्यूचियन समूहों के लिए इसके संबंधों पर सीमा के सूत्र हैं।
प्रकार
संपूर्ण रूप
अगर f पुच्छल पर होलोमॉर्फिक फलन है (q = 0 पर कोई ध्रुव नहीं है), तो इसे 'संपूर्ण मॉड्यूलर रूप' कहा जाता है।
यदि च मेरोमोर्फिक है परंतु कस्प पर पूर्णसममितिक नहीं है, तो इसे 'गैर-संपूर्ण मॉड्यूलर फॉर्म' कहा जाता है। उदाहरण के लिए, जे-इनवेरिएंट भार 0 का एक गैर-संपूर्ण मॉड्यूलर रूप है, और i∞ पर एक साधारण पोल है।
नए रूप
एटकिन-लेहनर सिद्धांत मॉड्यूलर रूपों का एक उप-स्थान है[10] एक निश्चित भार का जिसका निर्माण कम भार के मॉड्यूलर रूपों से नहीं किया जा सकता है डिवाइडिंग . अन्य रूपों को पुराने रूप कहा जाता है। इन पुराने रूपों का निर्माण निम्नलिखित अवलोकनों का उपयोग करके किया जा सकता है: यदि तब मॉड्यूलर रूपों का उल्टा समावेशन देना .
पुच्छल रूप
पुच्छल रूप इसकी फूरियर श्रृंखला में एक शून्य स्थिर गुणांक वाला एक मॉड्यूलर रूप है। इसे पुच्छल रूप इसलिए कहा जाता है क्योंकि रूप सभी किनारों पर लुप्त हो जाता है।
सामान्यीकरण
मॉड्यूलर फलन शब्द के कई अन्य उपयोग हैं, इस पारंपरिक एक के अलावा; उदाहरण के लिए, हार उपायों के सिद्धांत में, यह एक कार्य है Δ(g) संयुग्मन क्रिया द्वारा निर्धारित।
मास रूप विश्लेषणात्मक कार्य हैं | लाप्लासियन के वास्तविक-विश्लेषणात्मक eigenfunction परंतु पूर्णसममितिक फलन होने की आवश्यकता नहीं है। कुछ कमजोर द्रव्यमान तरंग रूपों के पूर्णसममितिक भाग अनिवार्य रूप से रामानुजन के नकली थीटा कार्य हैं। समूह जो उपसमूह नहीं हैं SL(2, Z) माना जा सकता है।
हिल्बर्ट मॉड्यूलर फॉर्म 'एन' चर में कार्य कर रहे हैं, प्रत्येक ऊपरी आधे समष्टि में एक जटिल संख्या है, जो पूरी तरह से वास्तविक संख्या क्षेत्र में प्रविष्टियों के साथ 2 × 2 आव्यूह के लिए एक मॉड्यूलर संबंध को संतुष्ट करता है।
सील मॉड्यूलर रूप बड़े सहानुभूति समूहों से उसी तरह जुड़े होते हैं जैसे क्लासिकल मॉड्यूलर फॉर्म जुड़े होते हैं SL(2, R); दूसरे शब्दों में, वे एबेलियन विविधता से उसी अर्थ में संबंधित हैं जैसे पारंपरिक मॉड्यूलर रूप (जिन्हें कभी-कभी बिंदु पर जोर देने के लिए अंडाकार मॉड्यूलर रूप कहा जाता है) अंडाकार वक्र से संबंधित होते हैं।
'जैकोबी फॉर्म्स' मॉड्यूलर फॉर्म्स और एलिप्टिक फंक्शन्स का मिश्रण हैं। इस तरह के कार्यों के उदाहरण बहुत पारंपरिक हैं - जैकोबी थीटा फलन और जीनस दो के सीगल मॉड्यूलर रूपों के फूरियर गुणांक - परंतु यह एक अपेक्षाकृत हालिया अवलोकन है कि जैकोबी रूपों में एक अंकगणितीय सिद्धांत है जो मॉड्यूलर रूपों के सामान्य सिद्धांत के अनुरूप है।
'ऑटोमॉर्फिक फॉर्म' मॉड्यूलर रूपों की धारणा को सामान्य झूठ समूहों तक फैलाते हैं।
भार का 'मॉड्यूलर अभिन्न ' k अनंत पर मध्यम वृद्धि के ऊपरी आधे समष्टि पर मेरोमोर्फिक कार्य हैं जो भार के मॉड्यूलर होने में विफल रहते हैं k एक तर्कसंगत कार्य द्वारा।
'ऑटोमॉर्फिक कारक' रूप के कार्य हैं जिनका उपयोग मॉड्यूलर रूपों को परिभाषित करने वाले मॉड्यूलरिटी संबंध को सामान्यीकृत करने के लिए किया जाता है, ताकि
कार्यक्रम मॉड्यूलर रूप का नेबेंटिपस कहा जाता है। डेडेकिंड एटा फलन जैसे कार्य, भार 1/2 का एक मॉड्यूलर रूप, ऑटोमोर्फिक कारकों की अनुमति देकर सिद्धांत द्वारा शामिल किया जा सकता है।
इतिहास
This section does not cite any sources. (October 2019) (Learn how and when to remove this template message) |
मॉड्यूलर रूपों के सिद्धांत को चार अवधियों में विकसित किया गया था: पहला उन्नीसवीं शताब्दी के पहले भाग में अण्डाकार कार्यों के सिद्धांत के संबंध में; फिर फेलिक्स क्लेन और अन्य लोगों द्वारा उन्नीसवीं शताब्दी के अंत में ऑटोमोर्फिक रूप अवधारणा के रूप में समझा गया (एक चर के लिए); फिर लगभग 1925 से एरिक हेके द्वारा; और फिर 1960 के दशक में, संख्या सिद्धांत की जरूरतों और विशेष रूप से मॉड्यूलरिटी प्रमेय के निर्माण ने यह स्पष्ट कर दिया कि मॉड्यूलर रूपों को गहराई से फंसाया गया है।
मॉड्यूलर फॉर्म शब्द, एक व्यवस्थित विवरण के रूप में, आमतौर पर हेके को जिम्मेदार ठहराया जाता है।
टिप्पणियाँ
- ↑ Some authors use different conventions, allowing an additional constant depending only on , see e.g. https://dlmf.nist.gov/23.15#E5
- ↑ Lan, Kai-Wen. "ऑटोमॉर्फिक बंडलों की कोहोलॉजी" (PDF). Archived (PDF) from the original on 1 August 2020.
- ↑ Milne. "मॉड्यूलर फ़ंक्शंस और मॉड्यूलर फॉर्म". p. 51.
- ↑ A meromorphic function can only have a finite number of negative-exponent terms in its Laurent series, its q-expansion. It can only have at most a pole at q = 0, not an essential singularity as exp(1/q) has.
- ↑ Chandrasekharan, K. (1985). अण्डाकार कार्य. Springer-Verlag. ISBN 3-540-15295-4. p. 15
- ↑ Kubert, Daniel S.; Lang, Serge (1981), Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 244, Berlin, New York: Springer-Verlag, p. 24, ISBN 978-0-387-90517-4, MR 0648603, Zbl 0492.12002
- ↑ Here, a matrix sends ∞ to a/c.
- ↑ Gunning, Robert C. (1962), Lectures on modular forms, Annals of Mathematics Studies, vol. 48, Princeton University Press, p. 13
- ↑ Shimura, Goro (1971), Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Tokyo: Iwanami Shoten, Theorem 2.33, Proposition 2.26
- ↑ Milne, James (2010), Modular Functions and Modular Forms (PDF), p. 88, Theorem 6.1.
- ↑ Mocanu, Andreea. "Atkin-Lehner Theory of -Modular Forms" (PDF). Archived (PDF) from the original on 31 July 2020.
संदर्भ
- Apostol, Tom M. (1990), Modular functions and Dirichlet Series in Number Theory, New York: Springer-Verlag, ISBN 0-387-97127-0
- Diamond, Fred; Shurman, Jerry Michael (2005), A First Course in Modular Forms, Graduate Texts in Mathematics, vol. 228, New York: Springer-Verlag, ISBN 978-0387232294 Leads up to an overview of the proof of the modularity theorem.
- Gelbart, Stephen S. (1975), Automorphic Forms on Adèle Groups, Annals of Mathematics Studies, vol. 83, Princeton, N.J.: Princeton University Press, MR 0379375. Provides an introduction to modular forms from the point of view of representation theory.
- Hecke, Erich (1970), Mathematische Werke, Göttingen: Vandenhoeck & Ruprecht
- Rankin, Robert A. (1977), Modular forms and functions, Cambridge: Cambridge University Press, ISBN 0-521-21212-X
- Ribet, K.; Stein, W., Lectures on Modular Forms and Hecke Operators (PDF)
- Serre, Jean-Pierre (1973), A Course in Arithmetic, Graduate Texts in Mathematics, vol. 7, New York: Springer-Verlag. Chapter VII provides an elementary introduction to the theory of modular forms.
- Shimura, Goro (1971), Introduction to the arithmetic theory of automorphic functions, Princeton, N.J.: Princeton University Press. Provides a more advanced treatment.
- Skoruppa, N. P.; Zagier, D. (1988), "Jacobi forms and a certain space of modular forms", Inventiones Mathematicae, Springer
यह भी देखें
- फ़र्मेट की अंतिम प्रमेय का विल्स का प्रमाण
श्रेणी:मॉड्यूलर रूप श्रेणी:विश्लेषणात्मक संख्या सिद्धांत श्रेणी:विशेष कार्य