डिफेसिंग: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 39: Line 39:
श्रेणी:मध्याकार भौतिकी
श्रेणी:मध्याकार भौतिकी


 
[[Category:All Wikipedia articles lacking focus]]
[[Category: Machine Translated Page]]
[[Category:All articles lacking in-text citations]]
[[Category:All articles with specifically marked weasel-worded phrases]]
[[Category:Articles lacking in-text citations from February 2020]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with multiple maintenance issues]]
[[Category:Articles with specifically marked weasel-worded phrases from February 2020]]
[[Category:Created On 26/05/2023]]
[[Category:Created On 26/05/2023]]
[[Category:Vigyan Ready]]
[[Category:EngvarB from April 2019]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia articles lacking focus from February 2012]]

Latest revision as of 16:33, 14 June 2023

स्तिथियाँ के कारण गुहिका सुसंगतता खो देती है।

भौतिकी में, डीफेसिंग एक ऐसा तंत्र है जो परिमाण भौतिकी प्रणाली से पारम्परिक भौतिकी के व्यवहार को पुनः प्राप्त करता है। यह उन तरीकों को संदर्भित करता है जिसमें समय के साथ गड़बड़ी के कारण सुसंगतता (भौतिकी) घट जाती है, और प्रणाली गड़बड़ी से पहले स्तिथि में वापस आ जाता है। यह आणविक और परमाणु स्पेक्ट्रोमिकी में और मध्याकार उपकरणों के संघनित पदार्थ भौतिकी में एक महत्वपूर्ण प्रभाव है।

धातुओं में प्रवाहकत्त्व को एक पारम्परिक घटना के रूप में वर्णन करके समझा जा सकता है, जिसमें परिमाण प्रभाव सभी एक प्रभावी द्रव्यमान में अंतः स्थापित होते हैं, जो यांत्रिक रूप से परिमाण की गणना की जा सकती है, जैसा कि प्रतिरोध के लिए भी होता है जिसे चालन इलेक्ट्रॉनों के अवकीर्णन प्रभाव के रूप में देखा जा सकता है। जब तापमान कम हो जाता है और उपकरण के आयाम सार्थक रूप से कम हो जाते हैं, तो यह पारम्परिक व्यवहार गायब हो जाना चाहिए और परिमाण यांत्रिकी के नियमों को तरंगों के रूप में देखे जाने वाले इलेक्ट्रॉनों के व्यवहार को नियंत्रित करना चाहिए जो बिना किसी प्रकार के अपव्यय के निदेशक के अंदर बैलिस्टिक चालन को स्थानांतरित करते हैं। अधिकांश समय यही देखने को मिलता है। लेकिन यह एक आश्चर्य के रूप में यह उजागर करने के लिए सामने आया[to whom?] कि तथाकथित डीफेजिंग समय, वह समय है जब चालन इलेक्ट्रॉनों को अपना परिमाण व्यवहार खोने में समय लगता है, जब तापमान मध्याकार उपकरणों में शून्य के करीब पहुंच जाता है तो यह अनंत के स्थान पर परिमित हो जाता है, जो बोरिस अल्टशुलर अर्कडी अरोनोव और डेविड ई खमेलनित्सकी के सिद्धांत की अपेक्षाओं का उल्लंघन करता है। [1] कम तापमान पर इस तरह की संतृप्ति समय एक खुली समस्या है क्योंकि कई प्रस्तावों को आगे रखा गया है।

एक प्रतिरूप के सुसंगतता को घनत्व स्तिथि के अप विकर्ण तत्वों द्वारा समझाया गया है। एक बाहरी विद्युत क्षेत्र या चुंबकीय क्षेत्र एक प्रतिरूप में दो परिमाण स्तिथि के बीच सामंजस्य बना सकता है यदि आवृत्ति दो स्तिथि के बीच ऊर्जा अंतर से मेल खाती है। सुसंगति की स्तिथियाँ डिफेसिंग समय या प्रचक्रण-प्रचक्रण विश्रांति T2 के साथ क्षय होती हैं।

प्रकाश द्वारा एक प्रतिरूप में सुसंगतता उत्पन्न करने के बाद, प्रतिरूप एक ध्रुवीकरण (तरंगों) का उत्सर्जन करता है, जिसकी आवृत्ति बराबर होती है और चरण (तरंगें) घटना प्रकाश से उलटा होता है। इसके अतिरिक्त, प्रतिरूप घटना प्रकाश से उत्तेजित होता है और उत्तेजित अवस्था में अणुओं की आबादी उत्पन्न होती है। प्रतिरूप से पारित होने वाला प्रकाश इन दो प्रक्रियाओं के कारण अवशोषित होता है, और इसे एक अवशोषण वर्णक्रम द्वारा व्यक्त किया जाता है। सुसंगतता समय स्थिरांक, T2 के साथ घटती है, और ध्रुवीकरण तरंग की तीव्रता कम हो जाती है। उत्तेजित अवस्था की जनसंख्या भी प्रचक्रण-जाली छूट T1 के निरंतर समय के साथ घट जाती है। समय स्थिर T2 सामान्यतः T1 से बहुत छोटा होता है, और अवशोषण वर्णक्रम की बैंड विस्तार फूरियर रूपांतरण द्वारा इन समय स्थिरांक से संबंधित है, इसलिए समय स्थिर T2 बैंड विस्तार में मुख्य योगदानकर्ता है। समय स्थिर T2 प्रचक्रण प्रतिध्वनि प्रयोगों जैसे सीधे पराद्रुत समय-संकल्प स्पेक्ट्रोमिकी से मापा गया है।

एक कण जिसमें ऊर्जा E है उसकी डीफैसिंग दर क्या है यदि यह अस्थिर वातावरण के अधीन है जिसका तापमान T है? विशेष रूप से संतुलन दर (E~ T) के निकट क्या है, और शून्य तापमान सीमा में क्या होता है? इस प्रश्न ने पिछले दो दशकों के उपरान्त मध्याकार समुदाय को मोहित किया है (नीचे संदर्भ देखें)।

यह भी देखें

  • डिफेसिंग दर सपा सूत्र

संदर्भ

  1. Altshuler, B L; Aronov, A G; Khmelnitsky, D E (1982-12-30). "क्वांटम स्थानीयकरण पर छोटे ऊर्जा हस्तांतरण के साथ इलेक्ट्रॉन-इलेक्ट्रॉन टकराव के प्रभाव". Journal of Physics C: Solid State Physics. 15 (36): 7367–7386. Bibcode:1982JPhC...15.7367A. doi:10.1088/0022-3719/15/36/018. ISSN 0022-3719.



अन्य

श्रेणी:तरंग यांत्रिकी श्रेणी:परिमाण ऑप्टिक्स श्रेणी:परिमाण सूचना विज्ञान श्रेणी:मध्याकार भौतिकी