डबल बीटा क्षय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
[[परमाणु भौतिकी]] में, डबल [[बीटा क्षय]] एक प्रकार का [[रेडियोधर्मी क्षय]] है जिसमें दो [[न्यूट्रॉन]] एक [[परमाणु नाभिक]] के अंदर एक साथ दो [[प्रोटॉन]] में परिवर्तित हो जाते हैं, या जो इसके विपरीत भी संभव है। एकल बीटा क्षय के रूप में, यह प्रक्रिया परमाणु को प्रोटॉन और न्यूट्रॉन के इष्टतम अनुपात के करीब ले जाने की अनुमति देती है। इस परिवर्तन के परिणामस्वरूप, नाभिक दो पहचाने जाने योग्य [[बीटा कण|बीटा कणों]] का उत्सर्जन करता है, जो [[इलेक्ट्रॉन]] या [[पोजीट्रान]] होते हैं।
[[परमाणु भौतिकी]] में, डबल [[बीटा क्षय]] एक प्रकार का [[रेडियोधर्मी क्षय]] है जिसमें दो [[न्यूट्रॉन]] एक [[परमाणु नाभिक]] के अंदर एक साथ दो [[प्रोटॉन]] में परिवर्तित हो जाते हैं, या जो इसके विपरीत भी संभव है। एकल बीटा क्षय के रूप में, यह प्रक्रिया परमाणु को प्रोटॉन और न्यूट्रॉन के इष्टतम अनुपात के करीब ले जाने की अनुमति देती है। इस परिवर्तन के परिणामस्वरूप, नाभिक दो पहचाने जाने योग्य [[बीटा कण|बीटा कणों]] का उत्सर्जन करता है, जो [[इलेक्ट्रॉन]] या [[पोजीट्रान]] होते हैं।


साहित्य दो प्रकार के डबल बीटा क्षय के बीच अंतर करता है: ''साधारण'' डबल बीटा क्षय और ''[[ न्युट्रीनो |न्यूट्रिनोलेस]]'' डबल बीटा क्षय हैं। साधारण दोहरे बीटा क्षय में, जिसे कई समस्थानिकों में देखा गया है, क्षयकारी नाभिक से दो इलेक्ट्रॉन और दो इलेक्ट्रॉन एंटीन्यूट्रिनो उत्सर्जित होते हैं। न्यूट्रिनोलेस डबल बीटा क्षय में, एक परिकल्पित प्रक्रिया जिसे कभी नहीं देखा गया है, में केवल इलेक्ट्रॉनों का उत्सर्जन होगा।
साहित्य दो प्रकार के डबल बीटा क्षय के बीच अंतर करता है: ''साधारण'' डबल बीटा क्षय और ''[[ न्युट्रीनो |न्यूट्रिनोलेस]]'' डबल बीटा क्षय हैं। साधारण डबल बीटा क्षय में, जिसे कई समस्थानिकों में देखा गया है, क्षयकारी नाभिक से दो इलेक्ट्रॉन और दो इलेक्ट्रॉन एंटीन्यूट्रिनो उत्सर्जित होते हैं। न्यूट्रिनोलेस डबल बीटा क्षय में, एक परिकल्पित प्रक्रिया जिसे कभी नहीं देखा गया है, में केवल इलेक्ट्रॉनों का उत्सर्जन होगा।


== इतिहास ==
== इतिहास ==
Line 93: Line 93:
</ref> यथोचित रूप से आधुनिक मूल्य के काफी करीब। इसमें क्षय द्वारा उत्पादित [[क्सीनन]] के खनिजों में एकाग्रता का पता लगाना सम्मलित था।
</ref> यथोचित रूप से आधुनिक मूल्य के काफी करीब। इसमें क्षय द्वारा उत्पादित [[क्सीनन]] के खनिजों में एकाग्रता का पता लगाना सम्मलित था।


1956 में, कमजोर अंतःक्रियाओं की V-A प्रकृति स्थापित होने के पश्चात, यह स्पष्ट हो गया कि न्यूट्रिनोलेस डबल बीटा क्षय का आधा जीवन सामान्य डबल बीटा क्षय से काफी अधिक होगा। 1960-1970 के दशक में प्रयोगात्मक तकनीकों में महत्वपूर्ण प्रगति के अतिरिक्त, 1980 के दशक तक प्रयोगशाला में डबल बीटा क्षय नहीं देखा गया था। प्रयोग केवल आधे जीवन के लिए निचली सीमा स्थापित करने में सक्षम थे - प्राय {{10^|21}} वर्ष। उसी समय, भू-रासायनिक प्रयोगों ने {{SimpleNuclide|link=yes|Selenium|82}} से {{SimpleNuclide|link=yes|Tellurium|128}} के दोहरे बीटा क्षय का पता लगाया।<ref name="Barabash2011" />
1956 में, कमजोर अंतःक्रियाओं की V-A प्रकृति स्थापित होने के पश्चात, यह स्पष्ट हो गया कि न्यूट्रिनोलेस डबल बीटा क्षय का आधा जीवन सामान्य डबल बीटा क्षय से काफी अधिक होगा। 1960-1970 के दशक में प्रयोगात्मक तकनीकों में महत्वपूर्ण प्रगति के अतिरिक्त, 1980 के दशक तक प्रयोगशाला में डबल बीटा क्षय नहीं देखा गया था। प्रयोग केवल आधे जीवन के लिए निचली सीमा स्थापित करने में सक्षम थे - प्राय {{10^|21}} वर्ष। उसी समय, भू-रासायनिक प्रयोगों ने {{SimpleNuclide|link=yes|Selenium|82}} से {{SimpleNuclide|link=yes|Tellurium|128}} के डबल बीटा क्षय का पता लगाया।<ref name="Barabash2011" />


डबल बीटा क्षय पहली बार 1987 में {{SimpleNuclide|link=yes|Selenium|82}} में कैलिफोर्निया विश्वविद्यालय, इरविन में [[माइकल मो]] के समूह द्वारा एक प्रयोगशाला में देखा गया था। <ref>
डबल बीटा क्षय पहली बार 1987 में {{SimpleNuclide|link=yes|Selenium|82}} में कैलिफोर्निया विश्वविद्यालय, इरविन में [[माइकल मो]] के समूह द्वारा एक प्रयोगशाला में देखा गया था। <ref>
Line 112: Line 112:
तब से, कई प्रयोगों ने अन्य समस्थानिकों में सामान्य डबल बीटा क्षय देखा है। उन प्रयोगों में से किसी ने भी न्यूट्रिनोलेस प्रक्रिया के लिए सकारात्मक परिणाम नहीं दिए हैं, जिससे आधे जीवन की निचली सीमा प्राय {{10^|25}} वर्ष हो गई है। 1990 के दशक के समय भू-रासायनिक प्रयोग जारी रहे, जिससे कई समस्थानिकों के लिए सकारात्मक परिणाम प्राप्त हुए।<ref name="Barabash2011" />डबल बीटा क्षय दुर्लभ ज्ञात प्रकार का रेडियोधर्मी क्षय है; 2019 तक यह केवल 14 समस्थानिकों में देखा गया है ({{SimpleNuclide|link=yes|Barium|130}} में [[डबल इलेक्ट्रॉन कैप्चर]] सहित {{SimpleNuclide|link=yes|Barium|130}} 2001,{{SimpleNuclide|link=yes|Krypton|78}} में देखा गया, 2013 और {{SimpleNuclide|link=yes|Xenon|124}} में मनाया गया, 2019 में देखा गया), और सभी का जीवनकाल औसत {{10^|18}} वर्ष अधिक है।<ref name="Barabash2011" />
तब से, कई प्रयोगों ने अन्य समस्थानिकों में सामान्य डबल बीटा क्षय देखा है। उन प्रयोगों में से किसी ने भी न्यूट्रिनोलेस प्रक्रिया के लिए सकारात्मक परिणाम नहीं दिए हैं, जिससे आधे जीवन की निचली सीमा प्राय {{10^|25}} वर्ष हो गई है। 1990 के दशक के समय भू-रासायनिक प्रयोग जारी रहे, जिससे कई समस्थानिकों के लिए सकारात्मक परिणाम प्राप्त हुए।<ref name="Barabash2011" />डबल बीटा क्षय दुर्लभ ज्ञात प्रकार का रेडियोधर्मी क्षय है; 2019 तक यह केवल 14 समस्थानिकों में देखा गया है ({{SimpleNuclide|link=yes|Barium|130}} में [[डबल इलेक्ट्रॉन कैप्चर]] सहित {{SimpleNuclide|link=yes|Barium|130}} 2001,{{SimpleNuclide|link=yes|Krypton|78}} में देखा गया, 2013 और {{SimpleNuclide|link=yes|Xenon|124}} में मनाया गया, 2019 में देखा गया), और सभी का जीवनकाल औसत {{10^|18}} वर्ष अधिक है।<ref name="Barabash2011" />
== साधारण डबल बीटा क्षय ==
== साधारण डबल बीटा क्षय ==
एक विशिष्ट दोहरे बीटा क्षय में, नाभिक में दो न्यूट्रॉन प्रोटॉन में परिवर्तित हो जाते हैं, और दो इलेक्ट्रॉन और दो [[इलेक्ट्रॉन एंटीन्यूट्रिनो]] उत्सर्जित होते हैं। प्रक्रिया को एक साथ दो [[बीटा माइनस क्षय]] के रूप में सोचा जा सकता है। (डबल) बीटा क्षय संभव होने के लिए, अंतिम नाभिक में मूल नाभिक की तुलना में अधिक बाध्यकारी ऊर्जा होनी चाहिए। कुछ नाभिकों के लिए, जैसे [[जर्मेनियम-76]], [[आइसोबार (न्यूक्लाइड)]] एक परमाणु संख्या अधिक ([[आर्सेनिक - 76]]) में एक छोटी बाध्यकारी ऊर्जा होती है, जो एकल बीटा क्षय को रोकती है। चूंकि, परमाणु संख्या दो उच्च, [[सेलेनियम -76]] के साथ आइसोबार में एक बड़ी बाध्यकारी ऊर्जा होती है, इसलिए डबल बीटा क्षय की अनुमति है।
एक विशिष्ट डबल बीटा क्षय में, नाभिक में दो न्यूट्रॉन प्रोटॉन में परिवर्तित हो जाते हैं, और दो इलेक्ट्रॉन और दो [[इलेक्ट्रॉन एंटीन्यूट्रिनो]] उत्सर्जित होते हैं। प्रक्रिया को एक साथ दो [[बीटा माइनस क्षय]] के रूप में सोचा जा सकता है। (डबल) बीटा क्षय संभव होने के लिए, अंतिम नाभिक में मूल नाभिक की तुलना में अधिक बाध्यकारी ऊर्जा होनी चाहिए। कुछ नाभिकों के लिए, जैसे [[जर्मेनियम-76]], [[आइसोबार (न्यूक्लाइड)]] एक परमाणु संख्या अधिक ([[आर्सेनिक - 76]]) में एक छोटी बाध्यकारी ऊर्जा होती है, जो एकल बीटा क्षय को रोकती है। चूंकि, परमाणु संख्या दो उच्च, [[सेलेनियम -76]] के साथ आइसोबार में एक बड़ी बाध्यकारी ऊर्जा होती है, इसलिए डबल बीटा क्षय की अनुमति है।


फर्मी के सुनहरे नियम का उपयोग करके बीटा उत्सर्जन स्पेक्ट्रम के समान दो इलेक्ट्रॉनों के उत्सर्जन स्पेक्ट्रम की गणना की जा सकती है।
फर्मी के सुनहरे नियम का उपयोग करके बीटा उत्सर्जन स्पेक्ट्रम के समान दो इलेक्ट्रॉनों के उत्सर्जन स्पेक्ट्रम की गणना की जा सकती है।
Line 122: Line 122:


=== ज्ञात डबल बीटा क्षय समस्थानिक ===
=== ज्ञात डबल बीटा क्षय समस्थानिक ===
दोहरे बीटा क्षय में सक्षम 35 प्राकृतिक रूप से पाए जाने वाले समस्थानिक हैं।<ref name="Tretyak2002"/> व्यवहार में, क्षय तब देखा जा सकता है जब ऊर्जा संरक्षण द्वारा एकल बीटा क्षय को प्रतिबंधित किया जाता है। यह एक [[सम और विषम परमाणु नाभिक]] वाले तत्वों के लिए होता है, जो [[स्पिन (भौतिकी)]] -युग्मन के कारण अधिक स्थिर होते हैं। जब एकल बीटा क्षय या अल्फा क्षय भी होता है, तो डबल बीटा क्षय दर सामान्यतः देखने के लिए बहुत कम होती है। हालाँकि, {{SimpleNuclide|link=yes|Uranium|238}} का डबल बीटा क्षय (एक अल्फा उत्सर्जक भी) को रेडियोरासायनिक रूप से मापा गया है। दो अन्य न्यूक्लाइड जिनमें डबल बीटा क्षय देखा गया है, {{SimpleNuclide|link=yes|Calcium|48}} और {{SimpleNuclide|link=yes|Zirconium|96}}, , सैद्धांतिक रूप से एकल बीटा क्षय भी हो सकता है, लेकिन यह क्षय अत्यंत दबा हुआ है और कभी नहीं देखा गया है।
डबल बीटा क्षय में सक्षम 35 प्राकृतिक रूप से पाए जाने वाले समस्थानिक हैं।<ref name="Tretyak2002"/> व्यवहार में, क्षय तब देखा जा सकता है जब ऊर्जा संरक्षण द्वारा एकल बीटा क्षय को प्रतिबंधित किया जाता है। यह एक [[सम और विषम परमाणु नाभिक]] वाले तत्वों के लिए होता है, जो [[स्पिन (भौतिकी)]] -युग्मन के कारण अधिक स्थिर होते हैं। जब एकल बीटा क्षय या अल्फा क्षय भी होता है, तो डबल बीटा क्षय दर सामान्यतः देखने के लिए बहुत कम होती है। हालाँकि, {{SimpleNuclide|link=yes|Uranium|238}} का डबल बीटा क्षय (एक अल्फा उत्सर्जक भी) को रेडियोरासायनिक रूप से मापा गया है। दो अन्य न्यूक्लाइड जिनमें डबल बीटा क्षय देखा गया है, {{SimpleNuclide|link=yes|Calcium|48}} और {{SimpleNuclide|link=yes|Zirconium|96}}, , सैद्धांतिक रूप से एकल बीटा क्षय भी हो सकता है, लेकिन यह क्षय अत्यंत दबा हुआ है और कभी नहीं देखा गया है।


प्रायोगिक तौर पर चौदह समस्थानिकों को दो-न्यूट्रिनो डबल बीटा क्षय (β<sup>–</sup>β<sup>–</sup>) या दोहरे इलेक्ट्रॉन कैप्चर (εε) से गुजरते हुए देखा गया है।<ref name="Patrignani2016">{{Cite journal
प्रायोगिक तौर पर चौदह समस्थानिकों को दो-न्यूट्रिनो डबल बीटा क्षय (β<sup>–</sup>β<sup>–</sup>) या डबल इलेक्ट्रॉन कैप्चर (εε) से गुजरते हुए देखा गया है।<ref name="Patrignani2016">{{Cite journal
  |last1=Patrignani |first1=C.
  |last1=Patrignani |first1=C.
  |display-authors=etal
  |display-authors=etal
Line 230: Line 230:
| || रेडियोकेमिकल || <ref name=Patrignani2016/>
| || रेडियोकेमिकल || <ref name=Patrignani2016/>
|}
|}
समस्थानिकों में दोहरे बीटा क्षय की खोज जो महत्वपूर्ण रूप से अधिक प्रायोगिक चुनौतियाँ पेश करती हैं। ऐसा ही एक समस्थानिक  {{SimpleNuclide|link=yes|Xenon|134}} है।<ref>{{cite journal|arxiv=1704.05042|title=Searches for Double Beta Decay of <sup>134</sup>Xe with EXO-200|collaboration=EXO-200 Collaboration|first1=J. B.|last1=Albert|s2cid=28537166|display-authors=etal|date=3 November 2017|journal=Physical Review D|volume=96|issue=9|pages=092001|doi=10.1103/PhysRevD.96.092001|bibcode=2017PhRvD..96i2001A}}</ref>
समस्थानिकों में डबल बीटा क्षय की खोज जो महत्वपूर्ण रूप से अधिक प्रायोगिक चुनौतियाँ पेश करती हैं। ऐसा ही एक समस्थानिक  {{SimpleNuclide|link=yes|Xenon|134}} है।<ref>{{cite journal|arxiv=1704.05042|title=Searches for Double Beta Decay of <sup>134</sup>Xe with EXO-200|collaboration=EXO-200 Collaboration|first1=J. B.|last1=Albert|s2cid=28537166|display-authors=etal|date=3 November 2017|journal=Physical Review D|volume=96|issue=9|pages=092001|doi=10.1103/PhysRevD.96.092001|bibcode=2017PhRvD..96i2001A}}</ref>


''A'' ≤ 260 के साथ निम्नलिखित ज्ञात बीटा-स्थिर (या प्राय बीटा-स्थिर) न्यूक्लाइड्स सैद्धांतिक रूप से दोहरे बीटा क्षय के लिए सक्षम हैं, जहां लाल समस्थानिक हैं जिनकी दोहरी-बीटा दर को प्रयोगात्मक रूप से मापा जाता है और काला अभी तक प्रयोगात्मक रूप से मापा नहीं गया है: जैसा, <sup>46</sup>Ca, <sup>48</sup>Ca, <sup>70</sup>Zn, <sup>76</sup>Ge, <sup>80</sup>Se, <sup>82</sup>Se, <sup>86</sup>Kr, <sup>94</sup>Zr, <sup>96</sup>Zr, <sup>98</sup>Mo, <sup>100</sup>Mo, <sup>104</sup>Ru, <sup>110</sup>Pd, <sup>114</sup>Cd, <sup>116</sup>Cd, <sup>122</sup>Sn, <sup>124</sup>Sn, <sup>128</sup>Te, <sup>130</sup>Te, <sup>134</sup>Xe, <sup>136</sup>Xe, <sup>142</sup>Ce, <sup>146</sup>Nd, <sup>148</sup>Nd, <sup>150</sup>Nd, <sup>154</sup>Sm, <sup>160</sup>Gd, <sup>170</sup>Er, <sup>176</sup>Yb, <sup>186</sup>W, <sup>192</sup>Os, <sup>198</sup>Pt, <sup>204</sup>Hg, <sup>216</sup>Po, <sup>220</sup>Rn, <sup>222</sup>Rn, <sup>226</sup>Ra, <sup>232</sup>Th, <sup>238</sup>U, <sup>244</sup>Pu, <sup>248</sup>Cm, <sup>254</sup>Cf, <sup>256</sup>Cf, और <sup>260</sup>Fm.<sup><sup>।<ref name="Tretyak2002">{{Cite journal
''A'' ≤ 260 के साथ निम्नलिखित ज्ञात बीटा-स्थिर (या प्राय बीटा-स्थिर) न्यूक्लाइड्स सैद्धांतिक रूप से डबल बीटा क्षय के लिए सक्षम हैं, जहां लाल समस्थानिक हैं जिनकी दोहरी-बीटा दर को प्रयोगात्मक रूप से मापा जाता है और काला अभी तक प्रयोगात्मक रूप से मापा नहीं गया है: जैसा, <sup>46</sup>Ca, <sup>48</sup>Ca, <sup>70</sup>Zn, <sup>76</sup>Ge, <sup>80</sup>Se, <sup>82</sup>Se, <sup>86</sup>Kr, <sup>94</sup>Zr, <sup>96</sup>Zr, <sup>98</sup>Mo, <sup>100</sup>Mo, <sup>104</sup>Ru, <sup>110</sup>Pd, <sup>114</sup>Cd, <sup>116</sup>Cd, <sup>122</sup>Sn, <sup>124</sup>Sn, <sup>128</sup>Te, <sup>130</sup>Te, <sup>134</sup>Xe, <sup>136</sup>Xe, <sup>142</sup>Ce, <sup>146</sup>Nd, <sup>148</sup>Nd, <sup>150</sup>Nd, <sup>154</sup>Sm, <sup>160</sup>Gd, <sup>170</sup>Er, <sup>176</sup>Yb, <sup>186</sup>W, <sup>192</sup>Os, <sup>198</sup>Pt, <sup>204</sup>Hg, <sup>216</sup>Po, <sup>220</sup>Rn, <sup>222</sup>Rn, <sup>226</sup>Ra, <sup>232</sup>Th, <sup>238</sup>U, <sup>244</sup>Pu, <sup>248</sup>Cm, <sup>254</sup>Cf, <sup>256</sup>Cf, और <sup>260</sup>Fm.<sup><sup>।<ref name="Tretyak2002">{{Cite journal
  |last1=Tretyak |first1=V.I.  
  |last1=Tretyak |first1=V.I.  
  |last2=Zdesenko |first2=Yu.G.  
  |last2=Zdesenko |first2=Yu.G.  
Line 241: Line 241:
|bibcode=2002ADNDT..80...83T }}</ref>
|bibcode=2002ADNDT..80...83T }}</ref>


''A'' ≤ 260 के साथ निम्नलिखित ज्ञात बीटा-स्थिर (या प्राय बीटा-स्थिर) न्यूक्लाइड्स सैद्धांतिक रूप से दोहरे इलेक्ट्रॉन कैप्चर करने में सक्षम हैं, जहां लाल समस्थानिक होते हैं जिनकी डबल-इलेक्ट्रॉन कैप्चर दर मापी जाती है और काला अभी तक प्रयोगात्मक रूप से मापा नहीं जाता है: जैसा, Ar, <sup>40</sup>Ca, <sup>50</sup>Cr, <sup>54</sup>Fe, <sup>58</sup>Ni, <sup>64</sup>Zn, <sup>74</sup>Se, <sup>78</sup>Kr, <sup>84</sup>Sr, <sup>92</sup>Mo, <sup>96</sup>Ru, <sup>102</sup>Pd, <sup>106</sup>Cd, <sup>108</sup>Cd, <sup>112</sup>Sn, <sup>120</sup>Te, <sup>124</sup>Xe, <sup>126</sup>Xe, <sup>130</sup>Ba, <sup>132</sup>Ba, <sup>136</sup>Ce, <sup>138</sup>Ce, <sup>144</sup>Sm, <sup>148</sup>Gd, <sup>150</sup>Gd, <sup>152</sup>Gd, <sup>154</sup>Dy, <sup>156</sup>Dy, <sup>158</sup>Dy, <sup>162</sup>Er, <sup>164</sup>Er, <sup>168</sup>Yb, <sup>174</sup>Hf, <sup>180</sup>W, <sup>184</sup>Os, <sup>190</sup>Pt, <sup>196</sup>Hg, <sup>212</sup>Rn, <sup>214</sup>Rn, <sup>218</sup>Ra, <sup>224</sup>Th, <sup>230</sup>U, <sup>236</sup>Pu, <sup>242</sup>Cm, <sup>252</sup>Fm, और <sup>258</sup>No.
''A'' ≤ 260 के साथ निम्नलिखित ज्ञात बीटा-स्थिर (या प्राय बीटा-स्थिर) न्यूक्लाइड्स सैद्धांतिक रूप से डबल इलेक्ट्रॉन कैप्चर करने में सक्षम हैं, जहां लाल समस्थानिक होते हैं जिनकी डबल-इलेक्ट्रॉन कैप्चर दर मापी जाती है और काला अभी तक प्रयोगात्मक रूप से मापा नहीं जाता है: जैसा, Ar, <sup>40</sup>Ca, <sup>50</sup>Cr, <sup>54</sup>Fe, <sup>58</sup>Ni, <sup>64</sup>Zn, <sup>74</sup>Se, <sup>78</sup>Kr, <sup>84</sup>Sr, <sup>92</sup>Mo, <sup>96</sup>Ru, <sup>102</sup>Pd, <sup>106</sup>Cd, <sup>108</sup>Cd, <sup>112</sup>Sn, <sup>120</sup>Te, <sup>124</sup>Xe, <sup>126</sup>Xe, <sup>130</sup>Ba, <sup>132</sup>Ba, <sup>136</sup>Ce, <sup>138</sup>Ce, <sup>144</sup>Sm, <sup>148</sup>Gd, <sup>150</sup>Gd, <sup>152</sup>Gd, <sup>154</sup>Dy, <sup>156</sup>Dy, <sup>158</sup>Dy, <sup>162</sup>Er, <sup>164</sup>Er, <sup>168</sup>Yb, <sup>174</sup>Hf, <sup>180</sup>W, <sup>184</sup>Os, <sup>190</sup>Pt, <sup>196</sup>Hg, <sup>212</sup>Rn, <sup>214</sup>Rn, <sup>218</sup>Ra, <sup>224</sup>Th, <sup>230</sup>U, <sup>236</sup>Pu, <sup>242</sup>Cm, <sup>252</sup>Fm, और <sup>258</sup>No.
== न्यूट्रिनोलेस डबल बीटा क्षय ==
== न्यूट्रिनोलेस डबल बीटा क्षय ==
{{Main|न्यूट्रिनोलेस दोहरा बीटा क्षय}}
{{Main|न्यूट्रिनोलेस दोहरा बीटा क्षय}}
[[Image:Double beta decay feynman.svg|thumb|250px|right|न्यूट्रिनोलेस डबल बीटा क्षय का [[फेनमैन आरेख]], जिसमें दो न्यूट्रॉन दो प्रोटॉन का क्षय करते हैं। इस प्रक्रिया में केवल उत्सर्जित उत्पाद दो इलेक्ट्रॉन हैं, जो तब हो सकते हैं जब न्यूट्रिनो और एंटीन्यूट्रिनो एक ही कण (अर्थात मेजराना न्यूट्रिनो) हों, इसलिए एक ही न्यूट्रिनो को नाभिक के भीतर उत्सर्जित और अवशोषित किया जा सकता है। पारंपरिक दोहरे बीटा क्षय में, दो एंटीन्यूट्रिनो - प्रत्येक डब्ल्यू शीर्ष से उत्पन्न होने वाले - दो इलेक्ट्रॉनों के अतिरिक्त, नाभिक से उत्सर्जित होते हैं। न्यूट्रिनोलेस डबल बीटा क्षय का पता लगाना इस प्रकार एक संवेदनशील परीक्षण है कि न्यूट्रिनो मेजराना कण हैं या नहीं।]]यदि न्यूट्रिनो एक [[मेजराना फर्मियन]] है (अर्थात, एंटीन्यूट्रिनो और न्यूट्रिनो वास्तव में एक ही कण हैं), और कम से कम एक प्रकार के न्यूट्रिनो में गैर-शून्य द्रव्यमान होता है (जिसे [[न्यूट्रिनो दोलन]] प्रयोगों द्वारा स्थापित किया गया है), तो यह संभव है न्यूट्रिनोलेस डबल बीटा क्षय होने के लिए। न्यूट्रिनोलेस डबल बीटा क्षय एक [[लिप्टन संख्या]] का उल्लंघन करने वाली प्रक्रिया है। सबसे सरल सैद्धांतिक उपचार में, प्रकाश न्यूट्रिनो एक्सचेंज के रूप में जाना जाता है, एक न्यूक्लियॉन दूसरे न्यूक्लियॉन द्वारा उत्सर्जित न्यूट्रिनो को अवशोषित करता है। बदले हुए न्यूट्रिनो [[आभासी कण]] होते हैं।
[[Image:Double beta decay feynman.svg|thumb|250px|right|न्यूट्रिनोलेस डबल बीटा क्षय का [[फेनमैन आरेख]], जिसमें दो न्यूट्रॉन दो प्रोटॉन का क्षय करते हैं। इस प्रक्रिया में केवल उत्सर्जित उत्पाद दो इलेक्ट्रॉन हैं, जो तब हो सकते हैं जब न्यूट्रिनो और एंटीन्यूट्रिनो एक ही कण (अर्थात मेजराना न्यूट्रिनो) हों, इसलिए एक ही न्यूट्रिनो को नाभिक के भीतर उत्सर्जित और अवशोषित किया जा सकता है। पारंपरिक डबल बीटा क्षय में, दो एंटीन्यूट्रिनो - प्रत्येक डब्ल्यू शीर्ष से उत्पन्न होने वाले - दो इलेक्ट्रॉनों के अतिरिक्त, नाभिक से उत्सर्जित होते हैं। न्यूट्रिनोलेस डबल बीटा क्षय का पता लगाना इस प्रकार एक संवेदनशील परीक्षण है कि न्यूट्रिनो मेजराना कण हैं या नहीं।]]यदि न्यूट्रिनो एक [[मेजराना फर्मियन]] है (अर्थात, एंटीन्यूट्रिनो और न्यूट्रिनो वास्तव में एक ही कण हैं), और कम से कम एक प्रकार के न्यूट्रिनो में गैर-शून्य द्रव्यमान होता है (जिसे [[न्यूट्रिनो दोलन]] प्रयोगों द्वारा स्थापित किया गया है), तो यह संभव है न्यूट्रिनोलेस डबल बीटा क्षय होने के लिए। न्यूट्रिनोलेस डबल बीटा क्षय एक [[लिप्टन संख्या]] का उल्लंघन करने वाली प्रक्रिया है। सबसे सरल सैद्धांतिक उपचार में, प्रकाश न्यूट्रिनो एक्सचेंज के रूप में जाना जाता है, एक न्यूक्लियॉन दूसरे न्यूक्लियॉन द्वारा उत्सर्जित न्यूट्रिनो को अवशोषित करता है। बदले हुए न्यूट्रिनो [[आभासी कण]] होते हैं।


अंतिम स्थिति में केवल दो इलेक्ट्रॉनों के साथ, इलेक्ट्रॉनों की कुल [[गति|गतिज ऊर्जा]] प्राय प्रारंभिक और अंतिम [[नाभिक|नाभिकों]] की बाध्यकारी ऊर्जा अंतर होगी, बाकी के लिए परमाणु पुनरावृत्ति लेखांकन के साथ। संवेग संरक्षण के कारण, इलेक्ट्रॉन सामान्यतः एक के पश्चात एक उत्सर्जित होते हैं। इस प्रक्रिया के लिए क्षय दर द्वारा दिया गया है
अंतिम स्थिति में केवल दो इलेक्ट्रॉनों के साथ, इलेक्ट्रॉनों की कुल [[गति|गतिज ऊर्जा]] प्राय प्रारंभिक और अंतिम [[नाभिक|नाभिकों]] की बाध्यकारी ऊर्जा अंतर होगी, बाकी के लिए परमाणु पुनरावृत्ति लेखांकन के साथ। संवेग संरक्षण के कारण, इलेक्ट्रॉन सामान्यतः एक के पश्चात एक उत्सर्जित होते हैं। इस प्रक्रिया के लिए क्षय दर द्वारा दिया गया है
Line 447: Line 447:


== उच्च क्रम एक साथ बीटा क्षय ==
== उच्च क्रम एक साथ बीटा क्षय ==
दो से अधिक बीटा-स्थिर समदाब रेखाओं के साथ द्रव्यमान संख्या के लिए, चौगुनी बीटा क्षय और इसके व्युत्क्रम, चौगुनी इलेक्ट्रॉन कैप्चर, सबसे बड़ी ऊर्जा आधिक्य वाले समभारिकों में दोहरे बीटा क्षय के विकल्प के रूप में प्रस्तावित किए गए हैं। ये क्षय आठ नाभिकों में ऊर्जावान रूप से संभव हैं, चूंकि एकल या दोहरे बीटा क्षय की तुलना में आंशिक आधा जीवन बहुत लंबा होने की भविष्यवाणी की जाती है; इसलिए, चौगुना बीटा क्षय देखे जाने की संभावना नहीं है। चौगुनी बीटा क्षय के लिए आठ उम्मीदवार नाभिकों में  <sup>96</sup>Zr, <sup>136</sup>Xe, और <sup>150</sup>Nd  सम्मलित हैं जो चौगुनी बीटा-माइनस क्षय में सक्षम हैं, और <sup>124</sup>Xe, <sup>130</sup>Ba, <sup>148</sup>Gd, और <sup>1154</sup>Dy चौगुनी बीटा-प्लस क्षय या इलेक्ट्रॉन कैप्चर करने में सक्षम हैं।सिद्धांत रूप में, इनमें से तीन नाभिकों में चौगुनी बीटा क्षय प्रयोगात्मक रूप से देखा जा सकता है, जिसमें सबसे होनहार उम्मीदवार <sup>150</sup>Nd है। ट्रिपल बीटा क्षय <sup>48</sup>Ca,, <sup>96</sup>Zr, और <sup>150</sup>Nd के लिए भी संभव है।<ref name=triplebeta/>
दो से अधिक बीटा-स्थिर समदाब रेखाओं के साथ द्रव्यमान संख्या के लिए, चौगुनी बीटा क्षय और इसके व्युत्क्रम, चौगुनी इलेक्ट्रॉन कैप्चर, सबसे बड़ी ऊर्जा आधिक्य वाले समभारिकों में डबल बीटा क्षय के विकल्प के रूप में प्रस्तावित किए गए हैं। ये क्षय आठ नाभिकों में ऊर्जावान रूप से संभव हैं, चूंकि एकल या डबल बीटा क्षय की तुलना में आंशिक आधा जीवन बहुत लंबा होने की भविष्यवाणी की जाती है; इसलिए, चौगुना बीटा क्षय देखे जाने की संभावना नहीं है। चौगुनी बीटा क्षय के लिए आठ उम्मीदवार नाभिकों में  <sup>96</sup>Zr, <sup>136</sup>Xe, और <sup>150</sup>Nd  सम्मलित हैं जो चौगुनी बीटा-माइनस क्षय में सक्षम हैं, और <sup>124</sup>Xe, <sup>130</sup>Ba, <sup>148</sup>Gd, और <sup>1154</sup>Dy चौगुनी बीटा-प्लस क्षय या इलेक्ट्रॉन कैप्चर करने में सक्षम हैं।सिद्धांत रूप में, इनमें से तीन नाभिकों में चौगुनी बीटा क्षय प्रयोगात्मक रूप से देखा जा सकता है, जिसमें सबसे होनहार उम्मीदवार <sup>150</sup>Nd है। ट्रिपल बीटा क्षय <sup>48</sup>Ca,, <sup>96</sup>Zr, और <sup>150</sup>Nd के लिए भी संभव है।<ref name=triplebeta/>


इसके अतिरिक्त, इस तरह के क्षय मोड मानक मॉडल से परे भौतिकी में न्यूट्रिनोलेस भी हो सकते हैं।<ref name=betaquad>{{cite journal|last1=Heeck|first1=J.|last2=Rodejohann|first2=W.|s2cid=118632700|title=न्यूट्रिनोलेस चौगुनी बीटा क्षय|journal=Europhysics Letters|volume=103|issue=3|pages=32001|date=2013|doi=10.1209/0295-5075/103/32001|arxiv=1306.0580|bibcode=2013EL....10332001H}}</ref> न्यूट्रीनोलेस चौगुनी बीटा क्षय 4 इकाइयों में लेप्टान संख्या का उल्लंघन करेगा, जैसा कि न्यूट्रिनोलेस डबल बीटा क्षय के मामले में दो इकाइयों के एक लिप्टन संख्या को तोड़ने के विपरीत है। इसलिए, कोई 'ब्लैक-बॉक्स प्रमेय' नहीं है और इस प्रकार की प्रक्रियाओं की अनुमति देते समय न्यूट्रिनो डायराक कण हो सकते हैं। विशेष रूप से, यदि न्यूट्रिनोलेस डबल बीटा क्षय से पहले न्यूट्रिनोलेस चौगुनी बीटा क्षय पाया जाता है, तो उम्मीद की जाती है कि न्यूट्रिनोस डायराक कण होंगे।<ref name=diracneutrinos>{{cite journal|last1=Hirsch|first1=M.|last2=Srivastava|first2=R.|last3=Valle|first3=JWF.|title=Can one ever prove that neutrinos are Dirac particles?|journal=Physics Letters B|volume=781|pages=302–305|date=2018|doi =10.1016/j.physletb.2018.03.073|arxiv=1711.06181|bibcode=2018PhLB..781..302H|doi-access=free}}</ref>
इसके अतिरिक्त, इस तरह के क्षय मोड मानक मॉडल से परे भौतिकी में न्यूट्रिनोलेस भी हो सकते हैं।<ref name=betaquad>{{cite journal|last1=Heeck|first1=J.|last2=Rodejohann|first2=W.|s2cid=118632700|title=न्यूट्रिनोलेस चौगुनी बीटा क्षय|journal=Europhysics Letters|volume=103|issue=3|pages=32001|date=2013|doi=10.1209/0295-5075/103/32001|arxiv=1306.0580|bibcode=2013EL....10332001H}}</ref> न्यूट्रीनोलेस चौगुनी बीटा क्षय 4 इकाइयों में लेप्टान संख्या का उल्लंघन करेगा, जैसा कि न्यूट्रिनोलेस डबल बीटा क्षय के मामले में दो इकाइयों के एक लिप्टन संख्या को तोड़ने के विपरीत है। इसलिए, कोई 'ब्लैक-बॉक्स प्रमेय' नहीं है और इस प्रकार की प्रक्रियाओं की अनुमति देते समय न्यूट्रिनो डायराक कण हो सकते हैं। विशेष रूप से, यदि न्यूट्रिनोलेस डबल बीटा क्षय से पहले न्यूट्रिनोलेस चौगुनी बीटा क्षय पाया जाता है, तो उम्मीद की जाती है कि न्यूट्रिनोस डायराक कण होंगे।<ref name=diracneutrinos>{{cite journal|last1=Hirsch|first1=M.|last2=Srivastava|first2=R.|last3=Valle|first3=JWF.|title=Can one ever prove that neutrinos are Dirac particles?|journal=Physics Letters B|volume=781|pages=302–305|date=2018|doi =10.1016/j.physletb.2018.03.073|arxiv=1711.06181|bibcode=2018PhLB..781..302H|doi-access=free}}</ref>

Revision as of 15:19, 25 May 2023

परमाणु भौतिकी में, डबल बीटा क्षय एक प्रकार का रेडियोधर्मी क्षय है जिसमें दो न्यूट्रॉन एक परमाणु नाभिक के अंदर एक साथ दो प्रोटॉन में परिवर्तित हो जाते हैं, या जो इसके विपरीत भी संभव है। एकल बीटा क्षय के रूप में, यह प्रक्रिया परमाणु को प्रोटॉन और न्यूट्रॉन के इष्टतम अनुपात के करीब ले जाने की अनुमति देती है। इस परिवर्तन के परिणामस्वरूप, नाभिक दो पहचाने जाने योग्य बीटा कणों का उत्सर्जन करता है, जो इलेक्ट्रॉन या पोजीट्रान होते हैं।

साहित्य दो प्रकार के डबल बीटा क्षय के बीच अंतर करता है: साधारण डबल बीटा क्षय और न्यूट्रिनोलेस डबल बीटा क्षय हैं। साधारण डबल बीटा क्षय में, जिसे कई समस्थानिकों में देखा गया है, क्षयकारी नाभिक से दो इलेक्ट्रॉन और दो इलेक्ट्रॉन एंटीन्यूट्रिनो उत्सर्जित होते हैं। न्यूट्रिनोलेस डबल बीटा क्षय में, एक परिकल्पित प्रक्रिया जिसे कभी नहीं देखा गया है, में केवल इलेक्ट्रॉनों का उत्सर्जन होगा।

इतिहास

डबल बीटा क्षय का विचार पहली बार 1935 में मारिया गोएपर्ट मेयर द्वारा प्रस्तावित किया गया था।[1][2]

1937 में, एटोर मेजराना ने प्रदर्शित किया कि बीटा क्षय सिद्धांत के सभी परिणाम अपरिवर्तित रहते हैं यदि न्यूट्रिनो उसका अपना एंटीपार्टिकल होता, जिसे अब मेजराना कण के रूप में जाना जाता है।[3]

1939 में, वेंडेल एच. फेरी ने प्रस्तावित किया कि यदि न्यूट्रिनो मेजराना कण हैं, तो डबल बीटा क्षय किसी भी न्यूट्रिनो के उत्सर्जन के बिना आगे बढ़ सकता है, इस प्रक्रिया के माध्यम से जिसे अब न्यूट्रिनोलेस डबल बीटा क्षय कहा जाता है।[4]

यह अभी तक ज्ञात नहीं है कि क्या न्यूट्रिनो एक मेजराना कण है, और, संबंधित रूप से, क्या न्यूट्रिनोलेस डबल बीटा क्षय प्रकृति में उपस्थित है।[5]

1930-1940 के दशक में, कमजोर अंतःक्रियाओं में समानता का उल्लंघन ज्ञात नहीं था, और परिणामस्वरूप गणनाओं से पता चला कि न्यूट्रिनोलेस डबल बीटा क्षय सामान्य डबल बीटा क्षय की तुलना में होने की अधिक संभावना होनी चाहिए, यदि न्यूट्रिनो मेजराना कण थे। अनुमानित आधा जीवन 1015~1016 वर्षों के क्रम में था।[5]प्रयोगशाला में प्रक्रिया का निरीक्षण करने का प्रयास कम से कम 1948 से शुरू होता है जब ई.एल. फायरमैन ने 124 के आधे जीवन को सीधे मापने का पहला प्रयास किया124
Sn
समस्थानिक एक गीगर काउंटर के साथ।[6]

प्राय 1960 के माध्यम से रेडियोमेट्रिक प्रयोगों ने नकारात्मक परिणाम या झूठे सकारात्मक परिणाम दिए, पश्चात के प्रयोगों से इसकी पुष्टि नहीं हुई। 1950 में, पहली बार डबल बीटा 130
Te
के आधे जीवन का क्षय करता है भू-रासायनिक विधियों द्वारा 1.4 × 1021 वर्ष मापा गया था,[7] यथोचित रूप से आधुनिक मूल्य के काफी करीब। इसमें क्षय द्वारा उत्पादित क्सीनन के खनिजों में एकाग्रता का पता लगाना सम्मलित था।

1956 में, कमजोर अंतःक्रियाओं की V-A प्रकृति स्थापित होने के पश्चात, यह स्पष्ट हो गया कि न्यूट्रिनोलेस डबल बीटा क्षय का आधा जीवन सामान्य डबल बीटा क्षय से काफी अधिक होगा। 1960-1970 के दशक में प्रयोगात्मक तकनीकों में महत्वपूर्ण प्रगति के अतिरिक्त, 1980 के दशक तक प्रयोगशाला में डबल बीटा क्षय नहीं देखा गया था। प्रयोग केवल आधे जीवन के लिए निचली सीमा स्थापित करने में सक्षम थे - प्राय 1021 वर्ष। उसी समय, भू-रासायनिक प्रयोगों ने 82
Se
से 128
Te
के डबल बीटा क्षय का पता लगाया।[5]

डबल बीटा क्षय पहली बार 1987 में 82
Se
में कैलिफोर्निया विश्वविद्यालय, इरविन में माइकल मो के समूह द्वारा एक प्रयोगशाला में देखा गया था। [8]

तब से, कई प्रयोगों ने अन्य समस्थानिकों में सामान्य डबल बीटा क्षय देखा है। उन प्रयोगों में से किसी ने भी न्यूट्रिनोलेस प्रक्रिया के लिए सकारात्मक परिणाम नहीं दिए हैं, जिससे आधे जीवन की निचली सीमा प्राय 1025 वर्ष हो गई है। 1990 के दशक के समय भू-रासायनिक प्रयोग जारी रहे, जिससे कई समस्थानिकों के लिए सकारात्मक परिणाम प्राप्त हुए।[5]डबल बीटा क्षय दुर्लभ ज्ञात प्रकार का रेडियोधर्मी क्षय है; 2019 तक यह केवल 14 समस्थानिकों में देखा गया है (130
Ba
में डबल इलेक्ट्रॉन कैप्चर सहित 130
Ba
2001,78
Kr
में देखा गया, 2013 और 124
Xe
में मनाया गया, 2019 में देखा गया), और सभी का जीवनकाल औसत 1018 वर्ष अधिक है।[5]

साधारण डबल बीटा क्षय

एक विशिष्ट डबल बीटा क्षय में, नाभिक में दो न्यूट्रॉन प्रोटॉन में परिवर्तित हो जाते हैं, और दो इलेक्ट्रॉन और दो इलेक्ट्रॉन एंटीन्यूट्रिनो उत्सर्जित होते हैं। प्रक्रिया को एक साथ दो बीटा माइनस क्षय के रूप में सोचा जा सकता है। (डबल) बीटा क्षय संभव होने के लिए, अंतिम नाभिक में मूल नाभिक की तुलना में अधिक बाध्यकारी ऊर्जा होनी चाहिए। कुछ नाभिकों के लिए, जैसे जर्मेनियम-76, आइसोबार (न्यूक्लाइड) एक परमाणु संख्या अधिक (आर्सेनिक - 76) में एक छोटी बाध्यकारी ऊर्जा होती है, जो एकल बीटा क्षय को रोकती है। चूंकि, परमाणु संख्या दो उच्च, सेलेनियम -76 के साथ आइसोबार में एक बड़ी बाध्यकारी ऊर्जा होती है, इसलिए डबल बीटा क्षय की अनुमति है।

फर्मी के सुनहरे नियम का उपयोग करके बीटा उत्सर्जन स्पेक्ट्रम के समान दो इलेक्ट्रॉनों के उत्सर्जन स्पेक्ट्रम की गणना की जा सकती है।

जहां सबस्क्रिप्ट प्रत्येक इलेक्ट्रॉन को संदर्भित करता है, T गतिज ऊर्जा है, w कुल ऊर्जा है, F(Z, T) फर्मी फ़ंक्शन है जिसमें Z अंतिम-अवस्था नाभिक का आवेश है, p गति है, v की इकाइयों में वेग है c, इलेक्ट्रॉनों के बीच का कोण है, और Q क्षय का क्यू मान (परमाणु विज्ञान) है।

कुछ नाभिकों के लिए, प्रक्रिया दो प्रोटॉन के न्यूट्रॉन में रूपांतरण के रूप में होती है, दो इलेक्ट्रॉन न्यूट्रिनो का उत्सर्जन करती है और दो कक्षीय इलेक्ट्रॉनों (डबल इलेक्ट्रॉन कैप्चर) को अवशोषित करती है। यदि मूल और डॉटर परमाणुओं के बीच द्रव्यमान का अंतर 1.022 MeV/c2 (दो इलेक्ट्रॉन द्रव्यमान) से अधिक है, तो एक और क्षय सुलभ है, एक कक्षीय इलेक्ट्रॉन का कब्जा और एक पॉज़िट्रॉन का उत्सर्जन। जब द्रव्यमान का अंतर 2.044 MeV/c2 (चार इलेक्ट्रॉन द्रव्यमान) से अधिक होता है, तो दो पॉज़िट्रॉन का उत्सर्जन संभव है।। इन सैद्धांतिक क्षय शाखाओं को नहीं देखा गया है।

ज्ञात डबल बीटा क्षय समस्थानिक

डबल बीटा क्षय में सक्षम 35 प्राकृतिक रूप से पाए जाने वाले समस्थानिक हैं।[9] व्यवहार में, क्षय तब देखा जा सकता है जब ऊर्जा संरक्षण द्वारा एकल बीटा क्षय को प्रतिबंधित किया जाता है। यह एक सम और विषम परमाणु नाभिक वाले तत्वों के लिए होता है, जो स्पिन (भौतिकी) -युग्मन के कारण अधिक स्थिर होते हैं। जब एकल बीटा क्षय या अल्फा क्षय भी होता है, तो डबल बीटा क्षय दर सामान्यतः देखने के लिए बहुत कम होती है। हालाँकि, 238
U
का डबल बीटा क्षय (एक अल्फा उत्सर्जक भी) को रेडियोरासायनिक रूप से मापा गया है। दो अन्य न्यूक्लाइड जिनमें डबल बीटा क्षय देखा गया है, 48
Ca
और 96
Zr
, , सैद्धांतिक रूप से एकल बीटा क्षय भी हो सकता है, लेकिन यह क्षय अत्यंत दबा हुआ है और कभी नहीं देखा गया है।

प्रायोगिक तौर पर चौदह समस्थानिकों को दो-न्यूट्रिनो डबल बीटा क्षय (ββ) या डबल इलेक्ट्रॉन कैप्चर (εε) से गुजरते हुए देखा गया है।[10] नीचे दी गई तालिका में 124Xe (जिसके लिए डबल इलेक्ट्रॉन कैप्चर पहली बार 2019 में देखा गया था) को छोड़कर, दिसंबर 2016 तक नवीनतम प्रयोगात्मक रूप से मापे गए आधे जीवन वाले न्यूक्लाइड सम्मलित हैं। जहाँ दो अनिश्चितताएँ निर्दिष्ट हैं, पहली सांख्यिकीय अनिश्चितता है और दूसरी व्यवस्थित है।

न्यूक्लाइड अर्ध जीवन काल, 1021 वर्ष मोड माध्यमिक का काल विधि प्रयोग
48
Ca
0.064+0.007
−0.006
± +0.012
−0.009
ββ प्रत्यक्ष निमो--3[11]
76
Ge
1.926 ±0.094 ββ प्रत्यक्ष जेर्डा[10]
78
Kr
9.2 +5.5
−2.6
±1.3
εε प्रत्यक्ष बक्सन[10]
82
Se
0.096 ± 0.003 ± 0.010 ββ प्रत्यक्ष निमो-3[10]
96
Zr
0.0235 ± 0.0014 ± 0.0016 ββ प्रत्यक्ष निमो-3[10]
100
Mo
0.00693 ± 0.00004 ββ प्रत्यक्ष निमो-3[10]
0.69+0.10
−0.08
± 0.07
ββ 0+→ 0+1 जी कोइन्सिडन्स[10]
116
Cd
0.028 ± 0.001 ± 0.003
0.026+0.009
−0.005
ββ प्रत्यक्ष निमो-3[10]
सुरुचिपूर्ण IV[10]
128
Te
7200 ± 400
1800 ± 700
ββ भू-रासायनिक [10]
130
Te
0.82 ± 0.02 ± 0.06 ββ प्रत्यक्ष क्यूओआर-0[12]
124
Xe
18 ± 5 ± 1 εε प्रत्यक्ष क्सीनन1टी[13]
136
Xe
2.165 ± 0.016 ± 0.059 ββ प्रत्यक्ष एक्सो-200[10]
130
Ba
(0.5 – 2.7) εε भू-रासायनिक [14][15]
150
Nd
0.00911+0.00025
−0.00022
± 0.00063
ββ प्रत्यक्ष निमो-3[10]
0.107+0.046
−0.026
ββ 0+→ 0+1 जी कोइन्सिडन्स[10]
238
U
2.0 ± 0.6 ββ रेडियोकेमिकल [10]

समस्थानिकों में डबल बीटा क्षय की खोज जो महत्वपूर्ण रूप से अधिक प्रायोगिक चुनौतियाँ पेश करती हैं। ऐसा ही एक समस्थानिक 134
Xe
है।[16]

A ≤ 260 के साथ निम्नलिखित ज्ञात बीटा-स्थिर (या प्राय बीटा-स्थिर) न्यूक्लाइड्स सैद्धांतिक रूप से डबल बीटा क्षय के लिए सक्षम हैं, जहां लाल समस्थानिक हैं जिनकी दोहरी-बीटा दर को प्रयोगात्मक रूप से मापा जाता है और काला अभी तक प्रयोगात्मक रूप से मापा नहीं गया है: जैसा, 46Ca, 48Ca, 70Zn, 76Ge, 80Se, 82Se, 86Kr, 94Zr, 96Zr, 98Mo, 100Mo, 104Ru, 110Pd, 114Cd, 116Cd, 122Sn, 124Sn, 128Te, 130Te, 134Xe, 136Xe, 142Ce, 146Nd, 148Nd, 150Nd, 154Sm, 160Gd, 170Er, 176Yb, 186W, 192Os, 198Pt, 204Hg, 216Po, 220Rn, 222Rn, 226Ra, 232Th, 238U, 244Pu, 248Cm, 254Cf, 256Cf, और 260Fm.[9]

A ≤ 260 के साथ निम्नलिखित ज्ञात बीटा-स्थिर (या प्राय बीटा-स्थिर) न्यूक्लाइड्स सैद्धांतिक रूप से डबल इलेक्ट्रॉन कैप्चर करने में सक्षम हैं, जहां लाल समस्थानिक होते हैं जिनकी डबल-इलेक्ट्रॉन कैप्चर दर मापी जाती है और काला अभी तक प्रयोगात्मक रूप से मापा नहीं जाता है: जैसा, Ar, 40Ca, 50Cr, 54Fe, 58Ni, 64Zn, 74Se, 78Kr, 84Sr, 92Mo, 96Ru, 102Pd, 106Cd, 108Cd, 112Sn, 120Te, 124Xe, 126Xe, 130Ba, 132Ba, 136Ce, 138Ce, 144Sm, 148Gd, 150Gd, 152Gd, 154Dy, 156Dy, 158Dy, 162Er, 164Er, 168Yb, 174Hf, 180W, 184Os, 190Pt, 196Hg, 212Rn, 214Rn, 218Ra, 224Th, 230U, 236Pu, 242Cm, 252Fm, और 258No.

न्यूट्रिनोलेस डबल बीटा क्षय

न्यूट्रिनोलेस डबल बीटा क्षय का फेनमैन आरेख, जिसमें दो न्यूट्रॉन दो प्रोटॉन का क्षय करते हैं। इस प्रक्रिया में केवल उत्सर्जित उत्पाद दो इलेक्ट्रॉन हैं, जो तब हो सकते हैं जब न्यूट्रिनो और एंटीन्यूट्रिनो एक ही कण (अर्थात मेजराना न्यूट्रिनो) हों, इसलिए एक ही न्यूट्रिनो को नाभिक के भीतर उत्सर्जित और अवशोषित किया जा सकता है। पारंपरिक डबल बीटा क्षय में, दो एंटीन्यूट्रिनो - प्रत्येक डब्ल्यू शीर्ष से उत्पन्न होने वाले - दो इलेक्ट्रॉनों के अतिरिक्त, नाभिक से उत्सर्जित होते हैं। न्यूट्रिनोलेस डबल बीटा क्षय का पता लगाना इस प्रकार एक संवेदनशील परीक्षण है कि न्यूट्रिनो मेजराना कण हैं या नहीं।

यदि न्यूट्रिनो एक मेजराना फर्मियन है (अर्थात, एंटीन्यूट्रिनो और न्यूट्रिनो वास्तव में एक ही कण हैं), और कम से कम एक प्रकार के न्यूट्रिनो में गैर-शून्य द्रव्यमान होता है (जिसे न्यूट्रिनो दोलन प्रयोगों द्वारा स्थापित किया गया है), तो यह संभव है न्यूट्रिनोलेस डबल बीटा क्षय होने के लिए। न्यूट्रिनोलेस डबल बीटा क्षय एक लिप्टन संख्या का उल्लंघन करने वाली प्रक्रिया है। सबसे सरल सैद्धांतिक उपचार में, प्रकाश न्यूट्रिनो एक्सचेंज के रूप में जाना जाता है, एक न्यूक्लियॉन दूसरे न्यूक्लियॉन द्वारा उत्सर्जित न्यूट्रिनो को अवशोषित करता है। बदले हुए न्यूट्रिनो आभासी कण होते हैं।

अंतिम स्थिति में केवल दो इलेक्ट्रॉनों के साथ, इलेक्ट्रॉनों की कुल गतिज ऊर्जा प्राय प्रारंभिक और अंतिम नाभिकों की बाध्यकारी ऊर्जा अंतर होगी, बाकी के लिए परमाणु पुनरावृत्ति लेखांकन के साथ। संवेग संरक्षण के कारण, इलेक्ट्रॉन सामान्यतः एक के पश्चात एक उत्सर्जित होते हैं। इस प्रक्रिया के लिए क्षय दर द्वारा दिया गया है

जहां G टू-बॉडी फेज-स्पेस फैक्टर है, M न्यूक्लियर मैट्रिक्स एलिमेंट है, और mββ इलेक्ट्रॉन न्यूट्रिनो का प्रभावी मेजराना मास है। प्रकाश मेजराना न्यूट्रिनो एक्सचेंज के संदर्भ में, mββ द्वारा दिया गया है

जहां mi न्यूट्रिनो द्रव्यमान हैं और Uei पोंटेकोर्वो-माकी-नाकागावा-सकता (पीएमएनएस) मैट्रिक्स के तत्व हैं। इसलिए, न्यूट्रिनोलेस डबल बीटा क्षय का अवलोकन, मेजराना न्यूट्रिनो प्रकृति की पुष्टि के अतिरिक्त, पीएमएनएस मैट्रिक्स में पूर्ण न्यूट्रिनो द्रव्यमान स्केल और मेजराना चरणों के बारे में जानकारी दे सकता है, नाभिक के सैद्धांतिक मॉडल के माध्यम से व्याख्या के अधीन, जो परमाणु मैट्रिक्स तत्वों और क्षय के मॉडल का निर्धारण करते हैं।[17][18]

न्यूट्रिनोलेस डबल बीटा क्षय के अवलोकन के लिए आवश्यक होगा कि कम से कम एक न्यूट्रिनो एक मेजराना कण हो, भले ही यह प्रक्रिया न्यूट्रिनो कि अदला-बदली द्वारा उत्पन्न हो।[19]

प्रयोग

कई प्रयोगों ने न्यूट्रिनोलेस डबल बीटा क्षय की खोज की है। कण भेदभाव और इलेक्ट्रॉन ट्रैकिंग करने में सक्षम कुछ प्रयोगों के साथ सबसे अच्छा प्रदर्शन करने वाले प्रयोगों में क्षयकारी समस्थानिक और निम्न पृष्ठभूमि का उच्च द्रव्यमान होता है। ब्रह्मांडीय किरणों से पृष्ठभूमि को हटाने के लिए, अधिकांश प्रयोग दुनिया भर की भूमिगत प्रयोगशालाओं में स्थित हैं।

हाल के और प्रस्तावित प्रयोगों में सम्मलित हैं:

  • पूर्ण किए गए प्रयोग:
  • प्रयोग नवंबर 2017 तक डेटा ले रहे हैं:
  • प्रस्तावित/भविष्य के प्रयोग:
    • क्यूपिड, 100Mo का न्यूट्रिनोलेस डबल-बीटा क्षय
    • कामिओका वेधशाला में कैंडल्स, CaF2 में 48Ca,
    • मून, 100Mo डिटेक्टर विकसित कर रहा है
    • यांगयांग भूमिगत प्रयोगशाला में अमोर, 100Mo समृद्ध CaMoO4 क्रिस्टल [23]
    • नेक्सो, एक समय प्रक्षेपण कक्ष में तरल 136Xe का उपयोग कर रहा है [24]
    • लीजेंड, 76Ge का न्यूट्रिनोलेस डबल-बीटा क्षय।
    • ल्यूमिनेउ, एलएसएम, फ्रांस में 100Mo समृद्ध ZnMoO4 क्रिस्टल की खोज कर रहा है।
    • अगला, एक क्सीनन टीपीसी। अगला-डेमो चला और अगला-100 2016 में चलेगा।
    • एसएनओ+, एक तरल सिंटिलेटर, 130Te का अध्ययन करेगा
    • सुपरनेमो, एक नेमो अपग्रेड, 82Se का अध्ययन करेगा
    • टिन.टिन, भारत स्थित न्यूट्रिनो वेधशाला में एक 124Sn संसूचक
    • पांडाएक्स-III, 200 किग्रा से 1000 किग्रा 90% के साथ एक प्रयोग 136Xe को समृद्ध करता है
    • गहरे भूमिगत न्यूट्रिनो प्रयोग, तरल आर्गन से भरा एक टीपीसी 136Xe के साथ डोप किया गया।

स्थिति

जबकि कुछ प्रयोगों ने न्यूट्रिनोलेस डबल बीटा क्षय की खोज का दावा किया है, आधुनिक खोजों को क्षय के लिए कोई प्रमाण नहीं मिला है।

हीडलबर्ग-मास्को विवाद

हीडलबर्ग-मॉस्को सहयोग के कुछ सदस्यों ने 2001 में 76Ge में न्यूट्रिनोलेस बीटा क्षय का पता लगाने का दावा किया।[25] इस दावे की बाहरी भौतिकविदों[1][26][27][28] के साथ-साथ सहयोग के अन्य सदस्यों द्वारा आलोचना की गई थी।[29] 2006 में, उन्हीं लेखकों द्वारा एक परिष्कृत अनुमान में कहा गया था कि आधा जीवन 2.3×1025 वर्ष था।[30] जेर्डा द्वारा 76Ge सहित अन्य प्रयोगों द्वारा इस आधे जीवन को उच्च आत्मविश्वास से बाहर रखा गया है।[31]

वर्तमान परिणाम

2017 तक, न्यूट्रिनोलेस डबल बीटा क्षय पर सबसे मजबूत सीमाएं 76Ge में जेर्डा, 130Te में कुओरे और 136Xe में एक्सो-200 और कैमलैंड्स-जेन से आई हैं।

उच्च क्रम एक साथ बीटा क्षय

दो से अधिक बीटा-स्थिर समदाब रेखाओं के साथ द्रव्यमान संख्या के लिए, चौगुनी बीटा क्षय और इसके व्युत्क्रम, चौगुनी इलेक्ट्रॉन कैप्चर, सबसे बड़ी ऊर्जा आधिक्य वाले समभारिकों में डबल बीटा क्षय के विकल्प के रूप में प्रस्तावित किए गए हैं। ये क्षय आठ नाभिकों में ऊर्जावान रूप से संभव हैं, चूंकि एकल या डबल बीटा क्षय की तुलना में आंशिक आधा जीवन बहुत लंबा होने की भविष्यवाणी की जाती है; इसलिए, चौगुना बीटा क्षय देखे जाने की संभावना नहीं है। चौगुनी बीटा क्षय के लिए आठ उम्मीदवार नाभिकों में 96Zr, 136Xe, और 150Nd सम्मलित हैं जो चौगुनी बीटा-माइनस क्षय में सक्षम हैं, और 124Xe, 130Ba, 148Gd, और 1154Dy चौगुनी बीटा-प्लस क्षय या इलेक्ट्रॉन कैप्चर करने में सक्षम हैं।सिद्धांत रूप में, इनमें से तीन नाभिकों में चौगुनी बीटा क्षय प्रयोगात्मक रूप से देखा जा सकता है, जिसमें सबसे होनहार उम्मीदवार 150Nd है। ट्रिपल बीटा क्षय 48Ca,, 96Zr, और 150Nd के लिए भी संभव है।[32]

इसके अतिरिक्त, इस तरह के क्षय मोड मानक मॉडल से परे भौतिकी में न्यूट्रिनोलेस भी हो सकते हैं।[33] न्यूट्रीनोलेस चौगुनी बीटा क्षय 4 इकाइयों में लेप्टान संख्या का उल्लंघन करेगा, जैसा कि न्यूट्रिनोलेस डबल बीटा क्षय के मामले में दो इकाइयों के एक लिप्टन संख्या को तोड़ने के विपरीत है। इसलिए, कोई 'ब्लैक-बॉक्स प्रमेय' नहीं है और इस प्रकार की प्रक्रियाओं की अनुमति देते समय न्यूट्रिनो डायराक कण हो सकते हैं। विशेष रूप से, यदि न्यूट्रिनोलेस डबल बीटा क्षय से पहले न्यूट्रिनोलेस चौगुनी बीटा क्षय पाया जाता है, तो उम्मीद की जाती है कि न्यूट्रिनोस डायराक कण होंगे।[34]

अब तक, 150Nd में ट्रिपल और चौगुनी बीटा क्षय की खोज असफल रही है।[32]

यह भी देखें

संदर्भ

  1. 1.0 1.1 Giuliani, A.; Poves, A. (2012). "Neutrinoless double-beta decay" (PDF). Advances in High Energy Physics. 2012: 1–38. doi:10.1155/2012/857016.
  2. Goeppert-Mayer, M. (1935). "Double beta-disintegration". Physical Review. 48 (6): 512–516. Bibcode:1935PhRv...48..512G. doi:10.1103/PhysRev.48.512.
  3. Majorana, E. (1937). "Teoria simmetrica dell'elettrone e del positrone". Il Nuovo Cimento (in italiano). 14 (4): 171–184. Bibcode:1937NCim...14..171M. doi:10.1007/BF02961314. S2CID 18973190.
  4. Furry, W.H. (1939). "On Transition Probabilities in Double Beta-Disintegration". Physical Review. 56 (12): 1184–1193. Bibcode:1939PhRv...56.1184F. doi:10.1103/PhysRev.56.1184.
  5. 5.0 5.1 5.2 5.3 5.4 Barabash, A.S. (2011). "Experiment double beta decay: Historical review of 75 years of research". Physics of Atomic Nuclei. 74 (4): 603–613. arXiv:1104.2714. Bibcode:2011PAN....74..603B. doi:10.1134/S1063778811030070. S2CID 118716672.
  6. Fireman, E. (1948). "Double beta decay". Physical Review. 74 (9): 1201–1253. Bibcode:1948PhRv...74.1201.. doi:10.1103/PhysRev.74.1201.
  7. Inghram, M.G.; Reynolds, J.H. (1950). "Double Beta-Decay of 130Te". Physical Review. 78 (6): 822–823. Bibcode:1950PhRv...78..822I. doi:10.1103/PhysRev.78.822.2.
  8. Elliott, S. R.; Hahn, A. A.; Moe; M. K. (1987). "Direct evidence for two-neutrino double-beta decay in 82Se". Physical Review Letters. 59 (18): 2020–2023. Bibcode:1987PhRvL..59.2020E. doi:10.1103/PhysRevLett.59.2020. PMID 10035397.
  9. 9.0 9.1 Tretyak, V.I.; Zdesenko, Yu.G. (2002). "Tables of Double Beta Decay Data — An Update". At. Data Nucl. Data Tables. 80 (1): 83–116. Bibcode:2002ADNDT..80...83T. doi:10.1006/adnd.2001.0873.
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 Patrignani, C.; et al. (Particle Data Group) (2016). "Review of Particle Physics" (PDF). Chinese Physics C. 40 (10): 100001. Bibcode:2016ChPhC..40j0001P. doi:10.1088/1674-1137/40/10/100001. S2CID 125766528. See p. 768
  11. Arnold, R.; et al. (NEMO-3 Collaboration) (2016). "Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of 48Ca with the NEMO-3 detector". Physical Review D. 93 (11): 112008. arXiv:1604.01710. Bibcode:2016PhRvD..93k2008A. doi:10.1103/PhysRevD.93.112008. S2CID 55485404.
  12. Alduino, C.; et al. (CUORE-0 Collaboration) (2016). "Measurement of the Two-Neutrino Double Beta Decay Half-life of 130Te with the CUORE-0 Experiment". The European Physical Journal C. 77 (1): 13. arXiv:1609.01666. Bibcode:2017EPJC...77...13A. doi:10.1140/epjc/s10052-016-4498-6. S2CID 73575079.
  13. Aprile, E.; et al. (2019). "Observation of two-neutrino double electron capture in 124Xe with XENON1T". Nature. 568 (7753): 532–535. arXiv:1904.11002. Bibcode:2019Natur.568..532X. doi:10.1038/s41586-019-1124-4. PMID 31019319. S2CID 129948831.
  14. A. P. Meshik; C. M. Hohenberg; O. V. Pravdivtseva; Ya. S. Kapusta (2001). "Weak decay of 130Ba and 132Ba: Geochemical measurements". Physical Review C. 64 (3): 035205 [6 pages]. Bibcode:2001PhRvC..64c5205M. doi:10.1103/PhysRevC.64.035205.
  15. M. Pujol; B. Marty; P. Burnard; P. Philippot (2009). "Xenon in Archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation". Geochimica et Cosmochimica Acta. 73 (22): 6834–6846. Bibcode:2009GeCoA..73.6834P. doi:10.1016/j.gca.2009.08.002.
  16. Albert, J. B.; et al. (EXO-200 Collaboration) (3 November 2017). "Searches for Double Beta Decay of 134Xe with EXO-200". Physical Review D. 96 (9): 092001. arXiv:1704.05042. Bibcode:2017PhRvD..96i2001A. doi:10.1103/PhysRevD.96.092001. S2CID 28537166.
  17. Grotz, K.; Klapdor, H. V. (1990). The Weak Interaction in Nuclear, Particle and Astrophysics. CRC Press. ISBN 978-0-85274-313-3.
  18. Klapdor-Kleingrothaus, H. V.; Staudt, A. (1998). Non-accelerator Particle Physics (PDF) (Reprint ed.). IOP Publishing. ISBN 978-0-7503-0305-7.
  19. Schechter, J.; Valle, J. W. F. (1982). "Neutrinoless double-β decay in SU(2)×U(1) theories". Physical Review D. 25 (11): 2951–2954. Bibcode:1982PhRvD..25.2951S. doi:10.1103/PhysRevD.25.2951. hdl:10550/47205.
  20. Aalseth, C. E.; et al. (2000). "Recent Results of the IGEX 76Ge Double-Beta Decay Experiment". Physics of Atomic Nuclei. 63 (7): 1225–1228. Bibcode:2000PAN....63.1225A. doi:10.1134/1.855774. S2CID 123335600.
  21. 21.0 21.1 Schwingenheuer, B. (2013). "न्यूट्रिनोलेस डबल बीटा क्षय की खोज की स्थिति और संभावनाएं". Annalen der Physik. 525 (4): 269–280. arXiv:1210.7432. Bibcode:2013AnP...525..269S. CiteSeerX 10.1.1.760.5635. doi:10.1002/andp.201200222. S2CID 117129820.
  22. Xu, W.; et al. (2015). "The Majorana Demonstrator: A Search for Neutrinoless Double-beta Decay of 76Ge". Journal of Physics: Conference Series. 606 (1): 012004. arXiv:1501.03089. Bibcode:2015JPhCS.606a2004X. doi:10.1088/1742-6596/606/1/012004. S2CID 119301804.
  23. Khanbekov, N. D. (2013). "AMoRE: Collaboration for searches for the neutrinoless double-beta decay of the isotope of 100Mo with the aid of 40Ca100MoO4 as a cryogenic scintillation detector". Physics of Atomic Nuclei. 76 (9): 1086–1089. Bibcode:2013PAN....76.1086K. doi:10.1134/S1063778813090093. S2CID 123287005.
  24. Albert, J. B.; et al. (nEXO Collaboration) (2018). "Sensitivity and Discovery Potential of nEXO to Neutrinoless Double Beta Decay". Physical Review C. 97 (6): 065503. arXiv:1710.05075. Bibcode:2018PhRvC..97f5503A. doi:10.1103/PhysRevC.97.065503. S2CID 67854591.
  25. Klapdor-Kleingrothaus, H. V.; Dietz, A.; Harney, H. L.; Krivosheina, I. V. (2001). "Evidence for Neutrinoless Double Beta Decay". Modern Physics Letters A. 16 (37): 2409–2420. arXiv:hep-ph/0201231. Bibcode:2001MPLA...16.2409K. doi:10.1142/S0217732301005825. S2CID 18771906.
  26. Feruglio, F.; Strumia, A.; Vissani, F. (2002). "Neutrino oscillations and signals in beta and 0nu2beta experiments". Nuclear Physics. 637 (1): 345–377. arXiv:hep-ph/0201291. Bibcode:2002NuPhB.637..345F. doi:10.1016/S0550-3213(02)00345-0. S2CID 15814788.
  27. Aalseth, C. E.; et al. (2002). "Comment on "evidence for Neutrinoless Double Beta Decay"". Modern Physics Letters A. 17 (22): 1475–1478. arXiv:hep-ex/0202018. Bibcode:2002MPLA...17.1475A. doi:10.1142/S0217732302007715. S2CID 27406915.
  28. Zdesenko, Y. G.; Danevich, F. A.; Tretyak, V. I. (2002). "Has neutrinoless double β decay of 76Ge been really observed?". Physics Letters B. 546 (3–4): 206. Bibcode:2002PhLB..546..206Z. doi:10.1016/S0370-2693(02)02705-3.
  29. Bakalyarov, A. M.; Balysh, A. Y.; Belyaev, S. T.; Lebedev, V. I.; Zhukov, S. V. (2005). "Results of the experiment on investigation of Germanium-76 double beta decay". Physics of Particles and Nuclei Letters. 2 (2005): 77–81. arXiv:hep-ex/0309016. Bibcode:2003hep.ex....9016B.
  30. Klapdor-Kleingrothaus, H. V.; Krivosheina, I. V. (2006). "The Evidence for the Observation of 0νββ Decay: The Identification of 0νββ Events from the Full Spectra". Modern Physics Letters A. 21 (20): 1547. Bibcode:2006MPLA...21.1547K. doi:10.1142/S0217732306020937.
  31. Agostini, M.; et al. (GERDA Collaboration) (2017). "Background-free search for neutrinoless double-β decay of 76Ge with GERDA". Nature. 544 (7648): 47–52. arXiv:1703.00570. Bibcode:2017Natur.544...47A. doi:10.1038/nature21717. PMID 28382980. S2CID 4456764.
  32. 32.0 32.1 Barabash, A. S.; Hubert, Ph.; Nachab, A.; Umatov, V. I. (2019). "Search for triple and quadruple β decay of Nd150". Physical Review C. 100 (4): 045502. arXiv:1906.07180. doi:10.1103/PhysRevC.100.045502. S2CID 189999159.
  33. Heeck, J.; Rodejohann, W. (2013). "न्यूट्रिनोलेस चौगुनी बीटा क्षय". Europhysics Letters. 103 (3): 32001. arXiv:1306.0580. Bibcode:2013EL....10332001H. doi:10.1209/0295-5075/103/32001. S2CID 118632700.
  34. Hirsch, M.; Srivastava, R.; Valle, JWF. (2018). "Can one ever prove that neutrinos are Dirac particles?". Physics Letters B. 781: 302–305. arXiv:1711.06181. Bibcode:2018PhLB..781..302H. doi:10.1016/j.physletb.2018.03.073.

बाहरी संबंध